DEHN FILLINGS ON A TWO TORUS BOUNDARY COMPONENTS 3-MANIFOLD

Elsa MAYRAND

(Received January 22, 2001)

1. Introduction

In this paper we are interested in incompressible, boundary-incompressible planar surfaces, properly embedded in a 3-manifold X with boundary. Much has already been published for the case where X has one torus boundary component T. (see in [1], [5], [6].)

We recall the definition from [6] of planar boundary-slopes: Let $(P, \partial P) \subset(X, T)$ be an essential (i.e., properly embedded, incompressible, and boundary-incompressible) planar surface in X. All the components of $\partial P \cap T$ have the same slope r on T. We call this value the planar boundary-slope. The distance $\Delta(r, s)$ between two slopes r and s is their minimal geometric intersection number.

In [8], Gordon and Luecke have proved that distance between planar boundaryslopes is bounded by 1 . Our goal is to obtain similar results when the 3 -manifold X has two torus boundary components. In this case, for each planar surface, we have a pair of boundary-slopes. We give a bound for at least one of the two distances between boundary-slopes, depending on the numbers of boundary components of the surfaces. The first approach to this problem was to study the following question: Is it possible to produce S^{3} by a non-trivial surgery on a 2-component link in S^{3} ? The case of reducible links in S^{3} (a 2 -sphere separates the two components) is already treated in [7]: these links never yield S^{3} by surgery. But there are many known examples of links for which it is possible (see [1], [3]). Berge has annnounced in a preprint ([2]) that there is an infinity of "non-trivial" (each component is non-trivial and there is no essential annulus joining the two components) 2-component links in S^{3} yielding S^{3} by surgery with distances between the meridians arbitrarily large. In this paper we give some conditions for the realization of Berge's conjecture, which is the following:
For all integer n, there exists a "non-trivial" link $L=\left(k_{1}, k_{2}\right)$ in S^{3}, such that $M_{L}\left(\beta_{1}, \beta_{2}\right) \simeq S^{3}$, and $\Delta\left(\beta_{1}, \alpha_{1}\right)>n, \Delta\left(\beta_{2}, \alpha_{2}\right)>n$, where α_{1} (respectively α_{2}) is a meridian slope of k_{1} (resp. k_{2}).

We exclude from our study reducible links. We consider only the irreducible "nontrivial" links:

- the components of the link are non-trivial, and
- no annulus cobounds two essential circles on the two boundary components of the
complement of the link, respectively.
The thin position of the link and Cerf theory, as in [7], give us a pair of planar surfaces, P and Q, properly embedded in the link space. By combinatorial analysis of graphs of the intersection $P \cap Q$, we find a bound, depending on the link, for one of the two distances between meridians. The basic idea of this analysis comes from [6].

In Section 2, we introduce definitions and notation necessary for the theorems and we state the results. Section 3 gives elements of intersection graph theory. In Section 4, we give some combinatorial lemmas and the proof of Theorem 1. Section 5 treats the case of S^{3}.

I would like to thank Michel Domergue, Daniel Matignon and Ken Millett for their help and advices. Thank you to Mario Eudave-Muñoz for helpfull conversations.

2. Preliminaries

Let X be a 3-manifold with two boundary components: $\partial X=T_{1} \cup T_{2}$, where T_{i} is an incompressible torus in $X, i=1,2$. (Throughout, when X is said to be a 3-manifold, it will also be compact, connected and orientable). Let $(P, \partial P) \subset$ $(X, \partial X)$ be a planar surface in X with boundary components on T_{1} and T_{2}. Let a_{i} be the number of boundary components of P on T_{i}. We will always assume that $a_{1}>0$ and $a_{2}>0$. All the components of $\partial P \cap T_{i}$ have the same slope α_{i} on T_{i}, so we can assign to the surface P a pair of slopes $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$, and a pair of positive integers $a=\left(a_{1}, a_{2}\right)$. Sometimes we shall call α the slope of P and a the number of boundary components of P. Finally, the pair (α, a) will denote the parameters of P on $\left(T_{1}, T_{2}\right)$.

Let $X(\alpha)$ be the manifold obtained from X by attaching a solid torus V_{1} and a solid torus V_{2} along T_{1} and T_{2} respectively so that α_{i} bounds a meridian disc in V_{i}, $i=1,2$. Then the manifold $X(\alpha)$ contains a 2 -sphere \widehat{P} which intersects V_{i} in a_{i} meridian discs, $i=1,2$.

In the same way, let W_{1} and W_{2} denote the two Dehn filling solid tori of the manifold $X(\beta)$, where $\beta=\left(\beta_{1}, \beta_{2}\right)$ is the slope of a planar surface $(Q, \partial Q) \subset(X, \partial X)$ with number of boundary components $b=\left(b_{1}, b_{2}\right)$ on $\left(T_{1}, T_{2}\right), b_{i}>0, i=1,2$. Then the manifold $X(\beta)$ contains a 2 -sphere \widehat{Q} intersecting W_{i} in b_{i} meridian discs.

The distance $\Delta(\alpha, \beta)$ between two slopes $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}\right)$ on ∂X is the pair $\left(\Delta\left(\alpha_{1}, \beta_{1}\right), \Delta\left(\alpha_{2}, \beta_{2}\right)\right)$. In the following Δ_{i} will stand for $\Delta\left(\alpha_{i}, \beta_{i}\right)$.

Definition 1. We shall say that P and Q have graph properties if P and Q are in general position, intersect transversely in a finite disjoint union of circles and properly embedded arcs such that no properly embedded arc is boundary parallel in either P or Q, and each component of $\partial P \cap T_{i}$ intersects transversely each component of $\partial Q \cap T_{i}$ in Δ_{i} points, $i=1,2$.

Remark. Let G_{P} and G_{Q} be the planar intersection graphs ($P \cap Q \subset \widehat{P}$) and $(P \cap Q \subset \widehat{Q})$ respectively, defined as usual. In the case where P and Q have graph
properties, there is no trivial loop (disc-face with one single edge in its boundary) in either G_{P} or G_{Q}.

Theorem 1. Let X be a 3-manifold with two incompressible torus boundary components: $\partial X=T_{1} \cup T_{2}$, such that:
i) X contains no essential annulus with one boundary component on T_{1} and the other on T_{2}; and
ii) None of the manifolds $\left(X\left(\alpha_{1}\right), T_{2}\right),\left(X\left(\alpha_{2}\right), T_{1}\right)$ contains a properly embedded Möbius band.
Let P be a planar surface properly embedded in X with parameters (α, a), such that $a_{1} \geq a_{2}$. If Q is a planar surface, properly embedded in X, with slope β on ∂X, such that P and Q have graph properties, then either $\Delta\left(\alpha_{1}, \beta_{1}\right)<30$, or $\Delta\left(\alpha_{2}, \beta_{2}\right)<$ $30 a_{1} / a_{2}$.

Remark. It suffices to exchange the roles of T_{1} and T_{2} to have all the cases.
We shall now examine the analogous situation in S^{3}. Throughout, we will consider only irreducible links (there is no 2 -sphere separating the two components). Let $L=(k, l)$ be a 2-component link in S^{3} and M_{L} denote its complement, $S^{3} \backslash$ (Int $N(k) \cup \operatorname{Int} N(l)$), where $N(k)$ and $N(l)$ are tubular neighbourhoods of k and l respectively. The manifold M_{L} has two boundary components $\partial N(k)$ and $\partial N(l)$, each homeomorphic to a torus. Let α_{1} and α_{2} be the slopes of a meridian of k and l respectively.

We adapt here the definition of thin position for a link. (see [4] or [7].)
Definition 2. Note that $S^{3}=S^{2} \times \mathbf{R} \cup\{+\infty,-\infty\}$. We define $h: S^{2} \times \mathbf{R} \rightarrow \mathbf{R}$ to be the projection onto the second factor. We shall say that L has a generic presentation if $L \subset S^{2} \times \mathbf{R}$, and $h_{\mid L}$ is a Morse function. By an isotopy of L, we may always assume that L has a generic presentation. Choose a real number t_{i} between each pair of adjacent critical values of $h_{\mid L}$. The complexity of this presentation of L is the sum $\sum_{i}\left|L \cap h^{-1}\left(t_{i}\right)\right|$. A thin presentation of L is a generic presentation of minimal complexity.

Now choose a thin presentation for L. Let $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ be the pairs of adjacent critical values of $h_{\mid L}$ such that $x_{i}<y_{i}, x_{i}$ corresponds to a local minimum, and y_{i} to a local maximum. To each level sphere $\widehat{P}_{t}=h^{-1}(t)$ we can assign its ratio $r_{t}=M_{t} / m_{t} \geq 1$, where $M_{t}=\max \left(\left|\widehat{P}_{t} \cap k\right|,\left|\widehat{P}_{t} \cap l\right|\right)$ and $m_{t}=\min \left(\left|\widehat{P}_{t} \cap k\right|,\left|\widehat{P}_{t} \cap l\right|\right)$. Every level sphere in a middle slab $\left\{\widehat{P}_{t}, t \in\right] x_{i}, y_{i}[\}$ has the same ratio, because they all intersect k and l the same number of times. Then each middle slab $\left\{\widehat{P}_{t}, t \in\right] x_{i}, y_{i}[\}$ has a ratio r_{i}, defined as $r_{i}=r_{t}$ for some $\left.t \in\right] x_{i}, y_{i}[$. The linking ratio r of this thin presentation of L is the minimum: $\min _{i} r_{i}$. We may define the linking ratio $r(L)$ of L
to be the minimum number of the linking ratios r, over all thin presentations for L.
Remarks. (1) The ratio r_{i} may be infinite.
(2) Since L is irreducible, in a thin presentation there always exist middle slabs which meet both components of the link. So $r(L)<\infty$.
(3) We may suppose that $r(L)$ corresponds to the ratio $r=r_{j}=r_{t}=\left|\widehat{P}_{t} \cap k\right| /\left|\widehat{P}_{t} \cap l\right|$. There is no loss of generality because it suffices to exchange the roles of l and k.

Corollary 1. Let $L=(k, l)$ be a link in S^{3} with linking ratio $r(L), \alpha$ a pair of meridian slopes of L, and β a pair of slopes on ∂M_{L}, with $\beta_{1} \neq \alpha_{1}, \beta_{2} \neq \alpha_{2}$, such that
(i) $M_{L}\left(\beta_{1}, \beta_{2}\right) \simeq S^{3}$;
(ii) there is no essential annulus cobording the two boundary components of M_{L};
(iii) $M_{L}\left(\beta_{1}\right), M_{L}\left(\beta_{2}\right), M_{L}\left(\alpha_{1}\right)$, and $M_{L}\left(\alpha_{2}\right)$ are boundary irreducible.

Then either $\Delta\left(\alpha_{1}, \beta_{1}\right)<30$, or $\Delta\left(\alpha_{2}, \beta_{2}\right)<30 r(L)$.
Notice that property (iii) implies no component of the link is trivial. By [7, Theorem 2], property (i) implies L is irreducible.

The link L_{β} in S^{3} shall be the core of the β-surgery on L.
Recall Berge's conjecture. For any integer n, there exists a link $L=(k, l)$ in S^{3}, such that M_{L} has property (ii) of Corollary $1, l$ and k are non-trivial, $M_{L}\left(\beta_{1}, \beta_{2}\right) \simeq$ S^{3}, and $\Delta\left(\beta_{1}, \alpha_{1}\right)>n, \Delta\left(\beta_{2}, \alpha_{2}\right)>n$, where α_{1} (respectively α_{2}) is a meridian slope of k_{1} (resp. k_{2}).

By Corollary 1, if the link verifies Berge's Conjecture for $n \geq 30$, and if the components of the core are non-trivial, then the link must have a "sufficiently large" linking ratio. More precisely, $r(L)$ must be $>n / 30$.

Let V_{i} be a solid torus in S^{3} with core knot $k_{i}(i=1,2)$. Suppose that there is an annulus A connecting ∂V_{1} and $\partial V_{2} ; \partial A=c_{1} \cup c_{2}$ and c_{i} wraps p_{i}-times in longitudinal direction of V_{i}. Without loss of generality, we may assume $0 \leq p_{1} \leq p_{2}$. We divide into several cases depending on the pair p_{1}, p_{2}.

If $p_{1}=p_{2}=0$, there is a 2 -sphere in S^{3} intersecting k_{i} in one point, a contradiction.

If $p_{1}=0$ and $p_{2}=1$, then k_{2} is a trivial knot.
Assume that $p_{1}=0$ and $p_{2} \geq 2$, then we can find a lens space summand in S^{3}, a contradiction.

If $p_{1}=p_{2}=1$, then k_{1} and k_{2} are parallel.
If $p_{1}=1$ and $p_{2} \geq 2$, then k_{1} is a cable of k_{2}.
Finally suppose that both $p_{i} \geq 2$. Let us consider the 3-manifold $M=V_{1} \cup N(A) \cup$ V_{2}; it is a Seifert fiber space over the disk with two exceptional fibers k_{1} and k_{2} of
indices p_{1} and p_{2}. Note that M is boundary-irreducible, then since ∂M is a torus, $S^{3}-$ Int M is a solid torus whose core is a non-trivial torus knot. Thus the two exceptional fibers k_{1} and k_{2} form a Hopf link (cf. [10, Theorem 11]).

Hence, if $L=\left(k_{1}, k_{2}\right)$ is a link in S^{3} with k_{i} non-trivial $(i=1,2)$ such that M_{L} contains an annulus A, then either $p_{1}=p_{2}=1$ and k_{1} and k_{2} are parallel, or $p_{1}=1$ and $p_{2} \geq 2$ and k_{1} is a cable of k_{2}.

This gives us a new corollary:
Corollary 2. Let $L=(k, l)$ be a link in S^{3} with linking ratio $r(L)$, such that k and l are non-trivial. Let α be a pair of meridian slopes of L, and β a pair of slopes on ∂M_{L}, with $\beta_{1} \neq \alpha_{1}, \beta_{2} \neq \alpha_{2}$.

Suppose $M_{L}\left(\beta_{1}, \beta_{2}\right) \simeq S^{3}$, and the two components of L_{β} are non-trivial. If $\Delta\left(\alpha_{1}, \beta_{1}\right) \geq 30$, and $\Delta\left(\alpha_{2}, \beta_{2}\right) \geq 30 r(L)$, then some component of L is a cable of the other one, or both components represent the same knot.

3. Intersection graphs

Let P and Q be two planar surfaces properly embedded in X, with parameters (α, a) and (β, b) on (T_{1}, T_{2}). Let \widehat{P} and \widehat{Q} be the 2 -spheres in $X(\alpha)$ and $X(\beta)$ such that $P=X \cap \widehat{P}, \quad Q=X \cap \widehat{Q}$. As usual we consider a pair (G_{P}, G_{Q}) of graphs in $(\widehat{P}, \widehat{Q})$.

Number, from 1 to a_{i}, the components of $\partial P \cap T_{i}$, that we denote by $\partial_{1}^{i} P$, $\partial_{2}^{i} P, \ldots, \partial_{a_{i}}^{i} P$, in the order in which they appear on $T_{i}, i=1,2$. Number from 1 to b_{i} the components of $\partial Q \cap T_{i}$, that we denote by $\partial_{1}^{i} Q, \partial_{2}^{i} Q, \ldots, \partial_{b_{i}}^{i} Q$, in the order in which they appear on $T_{i}, i=1,2$.

Now label the endpoints of the properly embedded arcs in $P \cap Q$. Let e be an arc in $P \cap Q$, and t be an endpoint of e, say $t \in \partial_{n}^{i} P \cap \partial_{m}^{i} Q$. Then t is labelled n on the component $\partial_{m}^{i} Q$ in the surface Q, and t is labelled m on the component $\partial_{n}^{i} P$ in the surface P. Thus around each component of $\partial P \cap T_{i}$, we see the labels $1,2, \ldots, b_{i}$ appearing in cyclic order, and around each component of $\partial Q \cap T_{i}$ we see the labels 1 , $2, \ldots, a_{i}$, these sequences being repeated Δ_{i} times, $i=1,2$.

Assigning (arbitrarily) orientations to P and Q, we induce an orientation on each component of ∂P and each component of ∂Q. The orientation of X induces an orientation for T_{1} and T_{2}. Here we choose a positive orientation for each unoriented simple closed curve with slope α_{i} and each one with slope β_{i}, respecting the orientation of $T_{i}, i=1,2$.

We assign a sign + to a component x of $\partial P \cap T_{i}$ or $\partial Q \cap T_{i}$ if its induced orientation is the same as the positive orientation of the closed curves on T_{i} defined previously, and assign the sign - otherwise. We shall say that two components x and y of $\partial P \cap T_{i}$ (or $\partial Q \cap T_{i}$) are parallel if they have the same sign and antiparallel if they have opposite signs. Notice that signs given to components of $\partial P \cap T_{1}$ (respectively $\partial Q \cap T_{1}$) are independant of the signs of the components of $\partial P \cap T_{2}$ (respectively
$\left.\partial Q \cap T_{2}\right)$.
Cap off the components of $\partial P \cap T_{i}$ (respectively $\partial Q \cap T_{i}$) with discs, we regard these discs as "fat" vertices of type i of the graph G_{P} (respectively G_{Q}), $i=1,2$. Thus there are two types of vertices in G_{P} and G_{Q}, just as there are two types of edges: the simple edges of G_{P} (respectively G_{Q}) correspond to arcs of $P \cap Q$ in P (respectively Q) whose boundary components are in the same boundary component of ∂X, the mixed edges of G_{P} (respectively G_{Q}) correspond to arcs of $P \cap Q$ in P (respectively Q) with one boundary component on T_{1} and the other on T_{2}. In the following, we shall consider edges of G_{P} and G_{Q} as arcs in $P \cap Q$ and keep the same notation for both, and the labels and signs assigned to boundary components will be kept the same for the vertices.

If P and Q have graph properties, then there is no trivial loop (disc-face with one single edge in its boundary) in either G_{P} or G_{Q} and the parity rule still works for simple edges:
If a simple edge joins parallel vertices in G_{P}, it joins antiparallel vertices in G_{Q} and vice versa.

Two edges e and e^{\prime} in a graph G are directly parallel if they connect the two same vertices, and cobound a disc-face in G. They are parallel if there exist a finite set $\left\{e_{1}=e, e_{2}, \ldots, e_{n}=e^{\prime}\right\}$ of edges of G such that e_{i} and e_{i+1} are directly parallel, for $i \in\{1, \ldots, n-1\}$.

Recall that the reduced graph \widehat{G} of a graph G is obtained from G by replacing each family of parallel edges by a single edge. We shall use $\operatorname{val}(v, G)$ to denote the valency of a vertex v in the graph G.

4. Proof of Theorem 1

Lemma 1 ([6, Lemma 4.1]). Let Γ be a finite graph in the 2-sphere with no 1 -sided faces. Suppose every vertex of Γ has order ≥ 6. Then Γ has two parallel edges.

Suppose \mathcal{E} is a family of edges of the pair $\left(G_{Q}, G_{P}\right)$, then $G_{P}(\mathcal{E})$ is the subgraph of G_{P} consisting of all edges of \mathcal{E} and their attached vertices.

Lemma 2. Suppose $a_{1} \geq a_{2}$ and $\Delta_{1} \geq 30, \Delta_{2} \geq 30 a_{1} / a_{2}$. Then G_{Q} has a family of parallel edges \mathcal{E}, and $G_{P}(\mathcal{E})$ has two parallel edges.

Proof. Let $\widehat{G_{Q}}$ be the reduced graph of G_{Q}. By Lemma $1, \widehat{G_{Q}}$ has a vertex w_{0} so that $\operatorname{val}\left(w_{0}, \widehat{G_{Q}}\right) \leq 5$. But

$$
\operatorname{val}\left(w_{0}, G_{Q}\right)=\left\{\begin{array}{l}
\Delta_{1} a_{1} \text { if } w_{0} \text { is of type } 1 \\
\Delta_{2} a_{2} \text { if } w_{0} \text { is of type } 2
\end{array} .\right.
$$

Hence $\operatorname{val}\left(w_{0}, G_{Q}\right) \geq 30 a_{1}$, and $\widehat{G_{Q}}$ has an edge \mathcal{E} of order $\geq 6 a_{1}$ which is incident to w_{0}. The edge \mathcal{E} in $\widehat{G_{Q}}$ is a family of at least $6 a_{1}$ parallel edges in G_{Q}.

Suppose the edges of \mathcal{E} are mixed. We rename u and v the vertices of type 1 and 2 respectively, attached to \mathcal{E}. Since $a_{1} \geq a_{2}$, for each i in $\left\{1,2, \ldots, a_{1}\right\}$ there are at least 6 endpoints of \mathcal{E} labelled i on ∂u, and for each j in $\left\{1,2, \ldots, a_{2}\right\}$ there are at least 6 endpoints of \mathcal{E} labelled j on ∂v. Hence every vertex in $G_{P}(\mathcal{E})$ has valency ≥ 6. By Lemma $1, G_{P}(\mathcal{E})$ has two parallel edges. Notice that they are mixed.

Now suppose the edges of \mathcal{E} are simple. They join two vertices of same type i, which we call u and v. Since $a_{1} \geq a_{2}, \mathcal{E}$ contains at least $6 a_{i}$ edges. So for each $m_{i} \in\left\{1,2, \ldots, a_{i}\right\}$, there are at least 6 endpoints of edges in \mathcal{E} labelled m_{i} on ∂u, and the same on ∂v. Thus every vertex of $G_{P}(\mathcal{E})$ is of type i and has valency ≥ 12. If there is no trivial loop in $G_{P}(\mathcal{E})$, we can apply Lemma 1 to show that $G_{P}(\mathcal{E})$ has two parallel edges.

If $G_{P}(\mathcal{E})$ contains a trivial loop, then the both endpoints of each edge in \mathcal{E} have the same label on u and v in G_{Q}. All the edges of \mathcal{E} are loops in $G_{P}(\mathcal{E})$. By Lemma 3 below, $G_{P}(\mathcal{E})$ must contain at least two parallel edges (which are loops). In all cases we can choose two edges e_{1}, e_{2} directly parallel in $G_{P}(\mathcal{E})$.

Lemma 3. If every edge of \mathcal{E} is a loop in $G_{P}(\mathcal{E})$, then $G_{P}(\mathcal{E})$ contains two parallel edges.

Proof. For this lemma, we just need \mathcal{E} to be a family of exactly $6 a_{1}$ mutually parallel adjacent edges. The edges of \mathcal{E} are loops in G_{P}. Thus in G_{Q} they join two antiparallel vertices. There are two cases, according to whether \mathcal{E} joins in G_{Q} vertices of type 1 , or vertices of type 2 .

First assume the vertices of $G_{P}(\mathcal{E})$ are of type 1 . Then $G_{P}(\mathcal{E})$ (on the sphere $\widehat{P})$ consists of a_{1} connected components, each of which is a 6 -bouquet. Here, an n bouquet will be a graph with one vertex and n loops.

Let \mathcal{F} be the set of faces of $G_{P}(\mathcal{E})$ (as a graph on a sphere), and f_{1}, f_{2} and f_{3} be the numbers of disc faces of $G_{P}(\mathcal{E})$ with one side, two sides and at least three sides, respectively. Then an Euler characteristic calculation gives

$$
a_{1}-6 a_{1}+\sum_{f \in \mathcal{F}} \chi(f)=2
$$

But

$$
\sum_{f \in \mathcal{F}} \chi(f)=f_{1}+f_{2}+f_{3}+\sum_{f \in \mathcal{F}, f} \sum_{\text {non-disc face }} \chi(f) \leq f_{1}+f_{2}+f_{3} .
$$

Thus $f_{1}+f_{2}+f_{3} \geq 2+5 a_{1}$.
To prove the first case, it is sufficient to show that $f_{2}>0$. So we assume $f_{2}=0$, and reach a contradiction. Then $f_{1}+f_{3} \geq 2+5 a_{1}$. Since G_{P} has no trivial loop,
each 1-sided face of $G_{P}(\mathcal{E})$ must contain, in G_{P}, at least one vertex. This vertex is of type 2 because $G_{P}(\mathcal{E})$ already contains all the vertices of type 1 . Thus $f_{1} \leq a_{2}$. Since $a_{1} \geq a_{2}$, we have $f_{3} \geq 2+4 a_{1}$.

Claim 1. A 6 -bouquet on a sphere has at most two disc-faces with 3 or more sides.

Proof of Claim 1. Embed a 6-bouquet G on a sphere. Then by Euler's formula, $1-6+\sum \chi($ face $)=2$. Note that all faces are disc.

Let g_{1}, g_{2} and g_{3} be the number of disc faces with 1 side, 2 sides, and at least 3 sides, respectively. Then $g_{1}+2 g_{2}+3 g_{3} \leq 2 \times 6=12$. Since $g_{1}+g_{2}+g_{3}=\sum \chi($ face $)=7$, we have $2 g_{3} \leq g_{2}+2 g_{3} \leq 5$. Thus $g_{3} \leq 2$.

Hence each connected component of $G_{P}(\mathcal{E})$ has at most two 3-sided disc faces, and so $f_{3} \leq 2 a_{1}$. Then we have $2 a_{1} \geq 2+4 a_{1}$, a contradiction.

Next suppose that the vertices of $G_{P}(\mathcal{E})$ are of type 2 . Recall that \mathcal{E} is a family of $6 a_{1}$ parallel edges. Then $G_{P}(\mathcal{E})$ has a_{2} vertices, and a_{2} connected subgraphs, each being an n_{i}-bouquet for some integer $n_{i} \geq 6$. Note that $\sum_{i=1}^{a_{2}} n_{i}=6 a_{1}$.

A similar proof as the one of Claim 1 gives Claim 2:
Claim 2. An n_{i}-bouquet on a sphere has at most $\left(n_{i}-1\right) / 2$ disc-faces with 3 or more sides.

Keep the same notation as for the above case. In $G_{P}(\mathcal{E})$ we now have

$$
a_{2}-6 a_{1}+\sum_{f \in \mathcal{F}} \chi(f)=2
$$

which leads to $f_{1}+f_{2}+f_{3} \geq 2-a_{2}+6 a_{1}$. Assume $f_{2}=0$ for contradiction. Since $f_{1} \leq a_{1}$ (because $G_{P}(\mathcal{E})$ contains all the vertices of type 2 and G_{P} has no trivial loop), then $f_{3} \geq 2-a_{2}+5 a_{1}$. By Claim 2,

$$
f_{3} \leq \sum_{i=1}^{a_{2}} \frac{\left(n_{i}-1\right)}{2}=3 a_{1}-\frac{a_{2}}{2} .
$$

Hence

$$
2-a_{2}+5 a_{1} \leq f_{3} \leq 3 a_{1}-\frac{a_{2}}{2}
$$

Since $a_{2} \leq a_{1}$, then we have $4+3 a_{1} \leq 0$, a contradiction.
We shall say that two arcs of $P \cap Q$ are parallel in P if they cut off a disc in P.

Fig. 1. a 6-bouquet
Lemma 4 ([5, Lemma 2.1]). Let P and Q be two properly embedded planar surfaces in a 3-manifold X such that ∂X contains a torus T, and assume P and Q have boundary components on T. Suppose that P and Q intersect transversely and each component of $\partial P \cap T$ intersects each component of $\partial Q \cap T$ minimaly. Let $\mathcal{A}, \mathcal{A}^{\prime}$ be two arcs of $P \cap Q$, properly embedded in (X, T), and parallel in both P and Q. If $D \cap E=\mathcal{A} \cup \mathcal{A}^{\prime}$, where D and E are the discs in P and Q respectively, that realize the parallelism of \mathcal{A} and \mathcal{A}^{\prime}, then D and E cannot be identified along \mathcal{A} and \mathcal{A}^{\prime} as illustrated in Fig. 2.

In the following, \mathcal{E} will always denote this family with at least $6 a_{1}$ parallel edges in G_{Q}. Under the assumption $\Delta_{1} \geq 30$ and $\Delta_{2} \geq 30 a_{1} / a_{2}$, Lemma 2 implies an existence of two parallel edges in $G_{P}(\mathcal{E})$, which contradicts the assumption (ii) or (i) in Theorem 1 by Lemma 5 or 6 below. This completes the proof of Theorem 1.

Lemma 5. Let e_{1} and e_{2} be parallel edges in $G_{P}(\mathcal{E})$. Suppose e_{1} and e_{2} are simple. Then $\left(X\left(\alpha_{1}\right), T_{2}\right)$ or $\left(X\left(\alpha_{2}\right), T_{1}\right)$ contains a properly embedded Möbius band.

Proof. The edges e_{1} and e_{2} come from the family \mathcal{E} of edges in G_{Q}, so they are parallel in both G_{Q} and $G_{P}(\mathcal{E})$. First we can assume e_{1} and e_{2} are directly parallel in $G_{P}(\mathcal{E})$. Assume now e_{1} and e_{2} have their boundaries on T_{1}. Let u, v and x, y denote the vertices attached to e_{1} and e_{2} in G_{P} and G_{Q} respectively. (We can have

Fig. 2. a, b, c, d are the points of intersection between the arcs and the boundary components of P and Q.
$u=v$ or $x=y$). Since each label i in $\left\{1,2, \ldots, a_{1}\right\}$ appears as an endpoint of an edge of \mathcal{E} in G_{Q}, the graph $G_{P}(\mathcal{E})$ contains all the vertices of type 1 of G_{P}. Hence the cycle given by the edges e_{1} and e_{2} bounds a disc D in \widehat{P} such that in the interior of the cycle there are no vertices of type 1 . But, there may be vertices of type 2 of G_{P} in the interior of the cycle. Let E be the disc that realizes the parallelism between the arcs e_{1} and e_{2} in Q. Each arc of $E \cap P$ corresponds to an edge of \mathcal{E}. Then, since e_{1} and e_{2} are directly parallel in $G_{P}(\mathcal{E}), D \cap E=e_{1} \cup e_{2} \cup \mathcal{C}$, where \mathcal{C} is a union of circles. By a cut and paste method we can eliminate circles of intersection, and obtain two discs (we shall call them again D and E) such that $D \cap E=e_{1} \cup e_{2}$. There are two possibilities for the way in which E and D are identified along e_{1} and e_{2}, illustrated by Fig. 3 and Fig. 4. Notice that the disc D is in $P\left(\alpha_{2}\right) \subset X\left(\alpha_{2}\right)$. The surfaces $P\left(\alpha_{2}\right)$ and Q are transverse and their boundary components on T_{1} intersect minimaly. By Lemma 4, case (i) is impossible. In case (ii), $E \cup D$ is a Möbius band properly embedded in $X\left(\alpha_{2}\right)$.

Remark. Suppose $u=v, \mathcal{M}=D \cup E$ is a Möbius band properly embedded in $\left(X\left(\alpha_{2}\right), T_{1}\right)$. But $\partial \mathcal{M}$ also bounds a Möbius band \mathcal{M}^{\prime} in $X\left(\alpha_{1}\right)=X \cup V_{1}$, where \mathcal{M}^{\prime} is the union of the meridian disc u of V_{1} and a disc Δ on T_{1} (see Fig. 5). The

Fig. 3. case (i)

Fig. 4. case (ii)
union of the two Möbius bands is a Klein bottle $K=\mathcal{M} \bigcup_{\partial \mathcal{M}} \mathcal{M}^{\prime}$ in the manifold $X\left(\alpha_{1}, \alpha_{2}\right)$. The Dehn filling solid torus V_{1} intersects K in a single component.

Lemma 6. Let e_{1} and e_{2} be parallel edges in both G_{Q} and $G_{P}(\mathcal{E})$. Suppose e_{1} and e_{2} are mixed. Then X contains an essential annulus, such that one of the boundary components is in T_{1} and the other in T_{2}.

Proof. Assume e_{1}, e_{2} are directly parallel in $G_{P}(\mathcal{E})$. Let u, v and x, y be the pairs of vertices in G_{P} and G_{Q} respectively, attached to the parallel edges e_{1}, e_{2}. Suppose u and x are of type 1 , while v and y are of type 2 . First notice that \mathcal{E} is a family of at least $6 a_{1}$ parallel edges. Hence each i in $\left\{1,2, \ldots, a_{1}\right\}$ labels an endpoint on ∂x of some edge in \mathcal{E}, and every label of type 2 is an endpoint on ∂y of some edge in \mathcal{E}. Then $G_{P}(\mathcal{E})$ contains all the vertices of G_{P}. If e_{1} and e_{2} are non parallel in G_{P}, then e_{1} and e_{2} cut off in G_{P} a subgraph which contains at least one vertex of G_{P}. By the

Fig. 5. case $u=v$
previous remark, this vertex is also a vertex of $G_{P}(\mathcal{E})$, which contradicts the fact that e_{1} and e_{2} are parallel in $G_{P}(\mathcal{E})$. Therefore the edges e_{1} and e_{2} are also parallel in G_{P}, (but in general they are not directly parallel), so let D (respectively E) be the disc in P (respectively Q) that realizes the parallelism between e_{1} and e_{2}. If the discs E and D contain circles in their intersection, by cut and paste methods we may build two new discs (let's call these discs E and D again), such that they intersect only along e_{1} and e_{2}. Since the edges e_{1}, e_{2} are mixed, the only possibility for the way in which E and D are identified along e_{1} and e_{2} is illustrated in Fig. 6. The union $E \bigcup_{e_{1}, e_{2}} D$ is an annulus A with two boundary components $\partial_{+} A \subset T_{1}$ and $\partial_{-} A \subset T_{2}$, where $\partial_{+} A=C \cup C^{\prime}$, and $\partial_{-} A=\delta \cup \delta^{\prime}$ (see Fig. 6).

Let $|\alpha \cap \beta|$ be the geometric intersection number between the two oriented curves α and β, and $\alpha . \beta$ be their algebraic intersection number.

We suppose without loss of generality that $C^{\prime} . \partial u \geq 0$. We have

$$
\partial_{+} A . \partial u=C^{\prime} . \partial u-1
$$

and $\left|C^{\prime} \cap \partial u\right| \geq 2$. Then $\partial_{+} A$ intersects the meridian ∂u of T_{1} at least once and always with the same orientation. The annulus A joins T_{1} to T_{2} and its boundary components

Fig. 6. vertices u and x of type 1 , vertices v and y of type 2
are non-trivial on T_{1} and T_{2} respectively. Therefore A is essential.

5. Proof of Corollary 1

For the proof of Corollary 1, we'll follow the same argument as for Theorem 1. It suffices to find two planar surfaces P and Q which verify hypothesis of Theorem 1 in the case where $X=M_{L}$.

For a proof by contradiction, we consider a link $L=(k, l)$ without trivial components which produces S^{3} by a non-trivial surgery, such that the cores of the surgery are non-trivial. We may suppose it is an irreducible link because if it were reducible, it wouldn't give S^{3} by a non-trivial surgery. (This is an immediate consequence of Theorem 2 in [7]).

Proposition 1. Let $L=(k, l)$ be a link in S^{3} such that k and l are non-trivial, and with a linking ratio $r(L)$ in some thin presentation. Let α be a pair of meridian slopes of L. If $M_{L}(\beta)$ is homeomorphic to S^{3} for a slope $\beta \neq \alpha$ on ∂M_{L}, and $M_{L}\left(\beta_{1}\right)$, $M_{L}\left(\beta_{2}\right)$ are boundary-irreducible, then there exist two properly embedded planar surfaces P and Q in M_{L}, such that P has parameters (α, a), and Q has parameters (β, b) on $\partial M_{L}, r(L)=a_{1} / a_{2}$, and P and Q have graph properties.

Proof. We consider a thin presentation for L in S^{3} such that the linking ratio of this presentation is $r(L)$. Since $M_{L}(\beta) \simeq S^{3}$, the link is irreducible, so there is at least one middle slab $\left\{\widehat{P}_{t}, t \in\right] x_{j}, y_{j}[\}$ such that each level sphere \widehat{P}_{t} in this middle slab intersects both k and l. Its ratio $r_{t}=r_{j}$ is finite, and suppose $r_{j}=r(L)$, that is to say this middle slab realizes $r(L)$.

Now we choose a thin presentation for the core of the surgery $L_{\beta}=\left(k_{\beta}, l_{\beta}\right)$ in the copy $M_{L}(\beta)=S^{3}{ }_{\beta}$ of S^{3}. The link L_{β} is irreducible. As above, we choose a middle slab $\left\{\widehat{Q}_{t}, t \in\right] \overline{x_{j}}, \overline{y_{j}}[\}$ which intersects both k_{β} and l_{β}.

Applying the method of [7, Proposition 1] to a 2-component link in S^{3} with nontrivial components, we find two surfaces P and Q, where $P=\widehat{P}_{t} \cap M_{L}$ for some t in $] x_{j}, y_{j}\left[\right.$ and Q is homeomorphic to $\widehat{Q}_{t} \cap\left(S_{\beta}^{3} \backslash\right.$ Int $\left.N\left(L_{\beta}\right)\right)$, with t in $] \bar{x}_{j}, \bar{y}_{j}[$. In order to apply the general definitions of Section 1 and Section 2, we replace X by M_{L}, T_{1} by $\partial N(k)$ and T_{2} by $\partial N(l)$. The planar surfaces P and Q are properly embedded in M_{L}, with parameters $(\alpha, a),(\beta, b)$ respectively $\left(a_{i}>0, b_{i}>0\right), P$ realizes $r(L)$ and they have graph properties.

We may assume $r(L)=\left|\widehat{P}_{t} \cap k\right| /\left|\widehat{P}_{t} \cap l\right|$, so $a_{1} \geq a_{2}$. We apply Theorem 1 , which leads us to the following conclusion: Either M_{L} contains an essential annulus that joins its two boundary components or one of the two manifolds $M_{L}\left(\alpha_{1}\right), M_{L}\left(\alpha_{2}\right)$ contains a properly embedded Möbius band. The first case contradicts hypothesis i) of Corollary 2. We will see that the second case is impossible too.

The Möbius band we have built in the proof of Theorem 1 leads to a contradiction in each case. We shall describe exactly what happens.

Consider the case (ii) of Fig. 4, and we suppose without loss of generality that u and v are meridian discs for $\partial N(k)$. In fact, we shall divide the case (ii) in the three following subcases:
(ii). $1 u=v$
(ii). $2 u \neq v, u$ and v are antiparallel
(ii). $3 u \neq v, u$ and v are parallel.

We are going to see that all the subcases are impossible.
Keep the same notation (discs E and D, vertices u, v, x and y) as in the general case, changing the vertices of type 1 (respectively of type 2) into vertices corresponding to boundary components on $\partial N(k)$ (respectively $\partial N(l)$). First, for these three cases, change E and D by cut and paste or isotopy if necessary to eliminate singular surfaces as previously.
(ii). 1 The Möbius band $\mathcal{M}=D \bigcup_{e_{1}, e_{2}} E$ is properly embedded in $S^{3} \backslash \operatorname{Int} N(k)$. But $\partial \mathcal{M}$ also bounds a Möbius band \mathcal{M}^{\prime} properly embedded in $M_{L}\left(\alpha_{1}\right) \simeq S^{3} \backslash \operatorname{Int} N(l)$: \mathcal{M}^{\prime} is the union of the meridian disc of u of k and a disc on $\partial N(k)$, (see Fig. 5). The union $K=\mathcal{M} \bigcup_{\partial \mathcal{M}} \mathcal{M}^{\prime}$ is a Klein bottle embedded in S^{3}, which is impossible. (ii). 2 There is a Möbius band B in $M_{L}(\alpha) \simeq S^{3}: B$ is the union of the disc $D \subset$ $S^{3} \backslash$ Int $N(k)$, a meridian disc (in fact u or v) of k and a disc of $\partial N(k)$ (see [6], Fig. 4). The disc E in Q has the same boundary as the Möbius band B, then $B \cup E$ is a projective plane embedded in S^{3}, which is impossible.
(ii). 3 Then, by the parity rule, x and y are antiparallel in G_{Q}. As in the previous case, we can build a Möbius band B^{\prime} which is the union of the disc E, a disc on $\partial N\left(k_{\beta}\right)$ and a meridian disc of $N\left(k_{\beta}\right)$. The Möbius band B^{\prime} is properly embedded in $M_{L}\left(\beta_{1}\right) \simeq S^{3}-\operatorname{Int} N\left(l_{\beta}\right)$, and it has the same boundary as D. The projective plane $D \cup B^{\prime}$ is embedded in S^{3}, which is impossible.

References

[1] J. Berge: The knots in $D^{2} \times S^{1}$ which have non-trivial Dehn surgeries that yield $D^{2} \times S^{1}$, Topology and its Appl. 38 (1991), 1-19.
[2] J. Berge: Embedding the exterior of one-tunnel knots and links in the 3-sphere, preprint.
[3] M. Domergue and Y. Mathieu: Noeuds qui ne sont pas dérminés par leur complément dans les 3-variétés à bord, Bull. Soc. Math. France, 119 (1991), 327-341.
[4] D. Gabai: Foliations and the topology of 3-manifolds III, J. Diff. Geometry, 26 (1987).
[5] C.McA. Gordon: Boundary slopes of punctured tori in 3-manifolds, Trans. Amer. Math. Soc. 350 (1998), 1713-1790.
[6] C.McA. Gordon and R.A. Litherland: Incompressible planar surfaces in 3-manifolds, Topology and its Appl. 18 (1984), 121-144.
[7] C.McA. Gordon and J. Luecke: Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415.
[8] C.McA. Gordon and J. Luecke: Reducible manifolds and Dehn surgery, Topology, 35 (1996), 385-409.
[9] Y. Mathieu: Sur les noeuds qui ne sont pas éterminś par leur complément et problèmes de chirurgie dans les variétś de dimension 3 Thèse, Marseille (1990).
[10] H. Seifert: Topology of 3-dimensional fibered spaces, Academic Press, (1980), 360-418.
L.A.T.P, éuipe de topologie U.R.A 0225

CENTRE DE MATHEMATIQUES ET D'INFORMATIQUE, 13453 MARSEILLE Cedex 13, FRANCE
e-mail: elsa.mayrand@cmi.univ-mrs.fr

