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1. Introduction

Between 1970 and 1990 many authors studied the ergodic niexpef abso-
lutely continuous invariant measures for a piecewi&euniformly expanding magd’
of the unit interval ([2], [4], [5], [6], [7], [11], [12] and 4], see also the references
of [10]). First, Lasota and Yorke [6] proved the existencesoEh a measure with den-
sity of bounded variation by making use of the so-called ¢teffrobenius operator
Ly: LY(m) — LY(m) for T defined by
d

Lrg= am gdm
mJr=i)

for g € L'(m), where L1(m) denotes the usual®-space with respect to the Lebesgue
measurem on the unit interval and /{m) fT,l(')gdm denotes the Radon-Nikodym
derivative of the complex valued measuBe — fT,lBgdm. In this case, it can be
shown thatL; also acts on the spaB& , whérg is the totality ohexés in
L(m) with versions of bounded variation.

In what follows, an invariant measure means an invarianbgodity measure, and
the terminology absolutely continuous invariant measareiitten as a.c.i.m. for short.

After [6], a piecewiseC? map T of the interval saitisfying ess ifdT"| > 1 for
some N is called a Lasota-Yorke map (an LY map for short). Thgodic decompo-
sition of an a.c.i.m. is discussed in Li and Yorke [7]. Wag#4] shows that each
ergodic component is decomposed into a finite number of mixiomponents. More
precisely, there exist a finite number of a.c.i.ms ..., up such that any a.c.i.m. can
be represented as an affine combination of them. The suportf eadch n; is de-
composed into a finite number of subseigo, ..., E; y,—1 such thatTE; ; =E; j+1
a.e. (modN ) and the measure-theoretic dynamical systams ;) are mixing,
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where yi; ; = Nijplg,, for j = 1,..., N;. Bowen [2] shows that each mixing compo-
nent 'V, u; ;) is Bernoulli and gives sufficient conditions for th@&  has rique
a.c.im.y and (.u) itself is Bernoulli. We call such a map a Bernoulli Lasotarké
map (a BLY map for short) in the sequel.

The central limit problems of LY maps are studied in [4], [B], [11] and so on.
In particular, for a BLY mapl’ and for a real valued functigh  afunded variation,
we can see that the limit variance

n—1

2
UT(f)ZznimOO%/<;fOTi—n/fd,u> du

exists, whereu is the unique a.c.i.m. In addition, if;(f)? is positive, we can show
the central limit theorem

(1.1)
1 (& 1
i —_ oT' — B —y°/2 =
nILmoofélﬂg m <{\/ﬁor(f) <;f T n/fd,u) < x}) T 7006 dy| =0.

In [5], [9], and [11] the perturbed Perron-Frobenius opansilr ¢ ¢): BV — BV de-
fined by g — Lr(exp(/—1tf)g) play important roles in the study of the limit theo-
rems, wherer is a comlex parameter.tIf is small, the first eiglele Ar(z) of Ly ¢
(the eigenvalue of maximal modulus) depends analyticatly .oWWe note that the limit
variance and the first eigenvalue are related by the formula

_d2/\T

(1.2) or(f)?= -5

)

In this paper we introduce a natural metdc  to the sp&? of piecewiseC?
maps of the unit interval so that the curvatures of the graghsvo maps become
close to each other if maps themselves are close to each iothe€2. Temporarily,
we call d the piecewis&C? metric and the topology induced hy , the piecewise
topology. Our main purpose is to show the stability of theodig properties men-
tioned above under a small perturbation in the piecewigetopology. Precisely we
shall prove the following:

Theorem 1.1. Let Tp be a BLY map satisfyingss infiDTp| > 2. Then there ex-
ists § > 0 such that any piecewis€? map 7 withd(T, To) < 6 is a BLY map.

Theorem 1.2. Let Ty be a BLY map satisfyingss infiDTp| > 2 and let f be
a real valued function of bounded variation. Then there tef§se (0,6) and#p > 0
such that the mapping — Ar(-) from {T € PC? : d(T.To) < &0} into the Fiéchet
space of analytic functions ofr € C: |¢| < fo} is continuous where Az (¢) is the first
eigenvalue of the perturbed Perron-Frobenius operakoi(r).
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The assumptions of Bernoullicity and ess|ibf’| > 2 in these theorems seems to
be very technical at first sight. But we will show by examplbattthey are essential
for the theorems to be valid in the end of Section 4.

Combining the formulas (1.1) and (1.2) with Theorem 1.2, vitaim:

Corollary 1.1. Under the same assumptions &keorem 1.2,7 — o(f)? is a
continuous function of{7 € PC? : d(T.Tp) < &}. In particular, if the central limit
theorem(1.1) holds for { f o 7§}, then so does fo{ f o T"}72, for any T in a
neighborhood ofTy.

The primitive version of Theorem 1.1 was known to the authorlB83. But
in those days it seemed not to be interesting for him. Theepteform of Theo-
rem 1.1 and the assertions in Theorem 1.2 are inspired by stigneasked by Pro-
fessor Hiroshi Sugita of Kyushu University in 1995. It wascerned with the stabil-
ity of the invariant density and the limit central theorendeanthe small deterministic
or random perturbation of one dimensional dynamical systdm general, we do not
expect such a sort of stability. For example, the logistigpriax = 4x(1— x) has a
unique a.c.i.m. with density /Irv/x(1 — x)). But for anye > O there exists a subset
Fe of [4 — ¢, 4] with positive Lebesgue measure such tiat  ax —(X) has no
a.c.im. for anya € F. (see [13]). In contrast with this, any family of LY maps is al-
ways guaranteed to have an a.c.i.m. Therefore, it seemsimgéalnand interesting to
study how invariant densities and their limit theorems deben the parameter change
in the case of the family of LY maps. Especially it seems tletre¢ is no result that
is concerned with the stability of the non degeneracy of thet lvariance before this
work.

In Section 2, we define the piecewis® metric 4 and mention some basic prop-
erties of the metric spaceP(C?, d). The Lasota-Yorke type inequality and the Krylov-
Bogolioubov type inequalty are described in Section 3. TdvenE of these inequalities
are more general than we need, but they must be useful forttiy ®f random it-
erations as in [8]. Section 4 and Section 5 are devoted to tbefg of Theorem 1.1
and Theorem 1.2. which depend heavily on two inequalitiesSéction 3. We shall
give two examples in Section 6, which show that our results wat be obtained by
a direct application of the general perturbation theoryinédr operators and how the
metric d is appropriate to measure the difference between Bysrin the ergodic the-
oretical point of view. Finally in Appendix, we prove the lada-Yorke type inequality
and Krylov-Bogolioubov type inequality for reader’s conience.

2. PiecewiseC?2 metric

First of all we define the spac®C? = PC?[0, 1] of piecewiseC? maps from
the unit interval into itself. Our investigations are cadiout by using the Lebesgue
measuren on [0 1]. Therefore, it will be more convenient to ifyothe usual defini-
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tion of piecewiseC? maps the same as we considet  -space in the case of integrable
functions.

Derinimion 2.1, An almost everywhere defined mé&p ; [0-2]]0, 1] is said to
be a piecewise? map if there exists a partitio® = {[a;_1, a;]}.; of [0, 1] satisfying
the following conditions:

(1) O=ap<---<a =1.

(2) Tl ..a) coincides with aC? map Tj, ,.) almost everywhere on the closed in-
terval [g;_1, a;] for eachi .

(3) P is minimal in the sense of the refinement among all the pamstisatisfying (1)
and (2) above. Namely, if a partitio@ = {[b;_1, bj]}’j:1 satisfies (1) and (2)Q turns
out to be a refinement oP. We call the partition? the defining partition ofl" .

The numberk and the defining partition in the above are unygdetermined by
T. So we often write them ak T( ) ar@(T).

Let 7 andS be piecewis€? maps with defining partition®(7) = {[a;_1, a;] }*
and P(S) = {[b;—1.b;]}'Y). We identify 7 with S if k(') = k(S), & = b;, and
Tl@_va) = Sl@_va) hold fori = 1 ... k(T). In the same way as in the case of
LP-space, we define the spa®&? of piecewiseC? maps by the totality of the equiv-
alent classes under the identification in the above and ve¢ é@&ch equivalent class as
if it is one of its version.

Remark 2.1. If T € PC? is given, it determines the following stuffs.
(&) The defining partitiorP(T).
(b) A family {T;};epr) of C? maps, wherel; J — [0, 1] are theC? extensions to
J of C? version of T |int ;.
(c) The numberk T ) of elements iR (T).
Conversely, if there exist a partitioR = {[a;_1, a;]}2; with 0=ap < --- <@ =1 and
a family of C2 mapsTi, .4 [ai—1,a:] —[0,1],i =1,...,k such that ifk > 2, there
is no C2 map U on f;_1, a;+1] such thatU|[ai—1,m] = T —1.a:] and U|[ai~ai+1] = Tiaaial
then we have an elemefit ¢ PC? so thatP(T) = P.

We would like to consider only elements iRC? whose n-fold iterations can be
defined as elements iRC?.

DeriNniTioN 2.2.  An elementl’ inPC? is said to be nondegenerateI¥T; x (#)0
holds for anyx € J and for anyJ € P(T), whereT, 's are as in Remark 2.1 afF
denotes the derivative of a functiaf

If T € PC? is nondegenerate, it is obvious thaj J:— T,J is a homeomor-
phism for each/ € P(T). Therefore, we can define the -fold iteration Bf as fol-
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lows:
For a while we writeP(T) = {J(i)}.,. For each { i), J(i1), ..., J(in—1)) €
P(T)", we consider the set

T(ios -+ vin—1) = J (o) N Ty J(i) V- N Tyl -+ Tyt T (in1).
If [ JGo,-..,in—1) #0, we put
Sstiowin-1) = T16,—2) *** T1Gio)-

Then Q@ = {J(io, -, in—1)}s(io,....in_)int JGio....in_1)70 TUINS OUL to be a partition of
[0, 1] into closed intervals and determines an elemgnt P®? so thatS,q,.. i, . =
SJGio....in_)- It is natural to denoteS by and call it the -fold iteration Bf Note
that @ is not necessarily the defining partitid?(S) of S since it does not always sat-
isfy the minimality condition (3) in Definition 2.1. For exate consider the map

1 [ 1
Zx+§, ()CE _O,Z>)
1 [1
Tx = 2(x—Z>, (XE_Z,
3 3
Z(X—Z), ()Ce-z, :|)
The defining partition ofT is{J(1) = [0, /4], J(2) = [1/4, 3/4], J(3) = [3/4, 1]}.
From the construction abovd, ,(1 3) =/B 1/4] andJ (2 1) = [¥4, 3/8]. But we see
that Sy 3¢ = 4(x —1/8) and S, 1x = 4(x —1/8). This shows that does not always
satisfy the minimality condition.

For the sake of later convenience, we denSfe 78y for eaehP(7"). The
inverse (7 y*: T77J — J is denoted byr’; ™.

(=Y

Derinimion 2.3. A nondegenerate elemefit s called a Lasota-Yorke mapYa
map for short) if there exists a positive integer  such thatie§D7"V| > 1.

Remark 2.2. If T is a nondegenerate element RC?, so is T" . Conversely, if
T € PC? has a versionl for which we can define: -fold iteratiod” almost ev-
erywhere and7” becomes a version of a nondegenerate elemen®di, then it is
not hard to see tha?" itself is nondegenerate. Thus we canedefinLY map as
an element inPC2 having a versionl" such that theN -fold iteratio™” is defined
almost everywhere]V becomes a version of a nondegenerate elemen®Gi, and
ess infDTV| > 1 holds for someN .

Next we introduce a metric t®?C2. Let T be an element inPC? and P(T) =
{lai-1, a,-]}f:l the defining partition oflf as in Definition 2.1. For any postinteger
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i, define a magl; : [0 1} [0, 1] and nonnegative numbér 7( ) by

T = T[ai71-ai] o Qr,; if 1 <i<k,
' if i >k,

and

i —ai— if 1 <i<k,
l,-(T) - a, a1 - 1
0 if i >k,
wherear;: [0, 1] — [a;—1, a;] is a linear map given byyy ;x = (a; — a;_1)x +a;_1.
For T andS inPC?, we defined :PC? x PC? — R by

d(T. S) = [K(T) = k(S)| + D _IITi = Sillcz + Y _ 11:(T) — Li(S)],

i=1 i=1
where ||F||c- denotes the usual? norm given by

Fllc2 = max |F(x)| + max |DF(x)| + max |D?F(x)|.
1 F |z xe[0’1]| €3] xe[0’1]| €3] xe[0.1]| €3]

It is easy to see that is a metric on the sp#&ug®. We call it the piecewis&? met-
ric. We summarize the basic properties of the metric  as tHewimg proposition.

Proposition 2.1. (1) The metric spac€PC?, d) is separable but not complete.
(2) For a > 0, let PC?%(a) denote the totality of elemen®  iRC? with k(T) > 2
such that

T (a;+) — T(a;—)| + | DT (a;+) — DT (a;—)| + |D?*T(a;+) — D*T(a;—)| > a

holds for eachi  withl <i < k(T)—1, where0 =ag < --- < ayr) = 1 are the division
points as inDefinition 2.1 Then(PC?(a), d) becomes a complete metric space.
(3) If a sequencel;, € PC? converges tal' inPC? asn goes toco, then 7, con-
verges toT almost everywhere. Moregviar any pointx # a;(T) (i =0, 1 ..., k(T)),
there exists a neighborhood of whefe  converged'to Cntopology.

(4) For anya > 0, the set{T € PC?: essinfDT| > a} is an open set inPC2. In
particular, the totality of nondegenerate elements is an open se&tds.

(5) On the subspace consisting of nodegenerate elemeetgan define the map —
T" for any positive integer . But it is not continuous at everyeegeneratel” .

Proof. (1) The separability is an easy consequence of tharakility of the Ba-
nach space@?[0, 1], ||-|/c2). In fact, as a countable dense subset we can take the total-
ity of elementsT inPC? such that the division points; ’s are rational afitla, 1.4]'S
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are polynomials with rational coefficients. The followingagnple shows thatKC?, d)
is not complete. For > 2, consider the sequend@  given by

. 1
x Ifx€[0,§>

1 1
- = if 5-1].
X p Ixe{z,}

ThenT, is a Cauchy sequence AC?. If the limit T exists, the unique candidate is
the identity. But we havég 7, )=2 andT( )= 1. Therefetel’, {;, > ). This implies
that the limit does not exist.

(2) First we note that iff, is a Cauchy sequenceAd?, the number of divi-
sion pointsk {;, ) are independent of (say ) for sufficiently éarg anda; (, ) con-
verges to a point; for each s 0..,k. Therefore we see that there exigtss PC?
such that7, ,DT, ,D?T, converge toT ,DT ,D?T uniformly on any compact set
in [0, 1] \ {ao, a1, ..., ax}, respectively. The example above, however, shows that the
points a; possibly become regular points 6f il (<) k(7). The condition on
PC?(a) removes such a possibility. Therefore we can show thediliof the asser-
tion (2).

The assertions (3), and (4) are easy exercises. For (5), stegjue an example
showing thatT — 72 is not continuous. Consider the maps  afid with> 2
defined by

1 . 1 2 1 1 . 1
X+E IfxE{O,E) <1+;)X+E—; IfxE[O,E)

Tx = 1 , Ty,x= 1 .
—2(x—-1) ifxe {E, 1} —2(x —1) if x € [E’ 1}

Clearly d (T,, T)— 0 asn — oo, But d(T2, T?) > 1 sincek ) = 4 andk ('?) = 3.
O

3. Perturbed Perron-Frobenius operators for LY maps

In the present section, we briefly describe some basic sesuitthe perturbed
Perron-Frobenius operators for LY maps ([10], see also ] H1]). To begin with,
we recall a general definition of the Perron-Frobenius dperdet (X, 5, 1) be a
probability space. For X p < oo, L”(u) denotes the usual” -space willf  -norm
Il - llp.u- Lt T: X — X be a nonsingular transformation, i.€. ByB-measurable
and u(T~1B) = 0 for any B € B with u(B) = 0. The Perron-Frobenius operator
Lzt LYu) — LY(u) for T with respect tou is defined by

d
Lr,g=— d
a8 = g /T LS
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for eachg € L(x), where the right hand side denotes the Radon-Nikodym alérév
of the complex valued measu@ — [,_,, gdp with respect tou. Then it is easy to
show thatLr , is characterized by the identity

(3.1) /(glo T)-g2dp = /g1 Ly ,g2dp

for any g1 € L°(1) and for anyg, € LY(x). The following assertions are the conse-
quences of the identity (3.1) (see [8], [10] for the proof).

Proposition 3.1. (1) Ly, = L7, for any positive intergen .
() L4, ((g10T")g2) = g1L} g2 for any g1 € L>*(u) and for anygs € L(u).
(3) If wis T-invariant, E, (g | T7"B) = (LT ,8) 0 T" for any g € LY(u), where
E,(g | T7"B) is the conditional expectation ¢f  with respect to the suhlgebra
T—"B of B.
(4) For g € LY(u), Lr,,8 =g if and only if g is a density function of a-absolutely
continuous invariant complex valued measure for

Proposition 3.2. Let 2 be an element ir.(x) with » > 0, Ly ,h = h, and
[hdu=1 Putv=hu. For g € L(v) and for a measurable functiop with modu-
lus 1, the following are equivalent to one another.

(i) goT=¢pg in L(v).
(i) Lr.(pg)=¢ in LY(v).
(iii) Lz .(pgh)=gh in L*u).

For a real valued bounded measurable functfon zaadC, the perturbed Perron-
Frobenius operatof.r, ¢(t): LY(u) — LY(u) is defined by

LT,u.f(t)g = LT,u (exp(\/—_ltf)g)

for eachg € L1(x). By the assertion (2) in Proposition 2.1, we see that

n—1
(3.2) Lr,.r(t)'g =L}, (exp <\/—_1th o T") g)

i=0

holds. SinceLy ,, preserves the value of the integral by the equation (3.%&)fahmula
(3.2) yields

n—1

/eXp <\/—_1th o Ti) gdp = /LT,u.f(t)"g dp.
i=0

Therefore one can imagine that the asymptotic behavior efctimaracteristic function
n

of the partial sumz,.:olf oT" asn goes too with respect to the measugen and
the spectral properties of the perturbed Perron-Frobespesators are closesly related.
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Since we work on the unit interval with the Lebesgue measuorghe sequel,
we write Ly instead ofLr, . Since any LY map is nonsingular with eedpto the
Lebesgue measure , we can define the Perron-Frobenius apérait with respect
to m. Moreover if 7" is then -fold iteration of an LY mafy  with defiginpartition
P(T")={J} and T} denotes th€? version of 7"|,, we have

(33) Lg",mg (X) = Z XT}'J(X)|DT}1(Tj_”x)|7lg(TJ_”.X) m-a.e,
JeP(T")

where the notatior?, ™" is the same as we introduced just before Definition 2.3 and
xa denotes the indicator function of the sat . As mentioned imottuction, if T

is an LY map, Ly acts on the spadgeV of measurable functions withiore of
bounded variation as well a&(m). For g € BV we put

\/g = inf {\/g : g is a function of bounded variation which is a versiong)}!,

where \7§ is the total variation ofg™. Then

Igllsv.p = llgllpm + \/g

becomes a Banach norm @&V  for each<l p < oo. Since we havé|g|lcom <
Veg+|gllin for g € BV, we can show||g|lsv.e < ||gllav.co < 2|gllBv.1- Therefore
we employ|/g|lsv.1 @s the norm ofBV and write it byg||sv.

We need some notations in order to describe the Lasota-Yuye inequality,
which plays an important role in the study of the spectralpprties of the perturbed
Perron-Frobenius operators. L&  be an LY map. For simplicite assume that

p=p(T) < 1, wherep is given by ¥p =essiniDT| . Set

2

R=R(T) = DT
= R( )—esssu+m

D?T;(x)

" 1Erryres | (DT, ()

JeP(T)xeJ

We put

Ap=AT") = min m(T"J).

Then we have the following:

Lemma 3.1 (Lasota-Yorke type inequality).Let T be an LY map withh < 1. Let
n be a positive integer. Assume th#, ..., f,—1 are functions of bounded variation
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with modulus not greater thai/ > 1. Then we have

v}

n—1
<2 (1 +Z\/f,-> H'p"\/ ¢
i=0
n—1 1 n—1
+2<<1+Z\/fl> A_+ <2+Z\/ﬁ> nR) H”Hng,m
i=0 " i=0

for any g € BV.

We need another inequality of Krylov-Bogolioubov type. Tesdribe it we intro-
duce the following notations. For each positive integer and P(7"), choose a
point x; € J. We define a bounded linear operafd, BV — BV by

Hng(-x) = Z g_(xl »(J(x)’

JEP(T)

whereg is a version ¢f such that it is right continuous an [@Grid satisfieg (1) =
g (). Note that\/ g =\/g holds. Then we have:

Lemma 3.2 (Krylov-Bogolioubov type inequality). Let 7 be an LY map with
p < 1. Letn be a positive integer. Assume thét ..., f,—1 are functions of bounded
variation with modulus not greater tha®# > 1. Then we have

n—1 n—1
(i) i),
i=0 i=0
n—1
< <5+2nR +22\/f,-> H"p"\/ g
i=0

for any g € BV.

BV

We shall prove Lemma 3.1 and Lemma 3.2 later in Appendix fadeg's conve-
nience.

Remark 3.1. The versions of Lasota-Yorke type inequality and Kvylo
Bogolioubov type inequality are more general than we needhim present work.
But if one considers random iteration of hondegenerate nagps [8], he or she can
recognize that the present forms of these inequalities ayee maseful. In this paper,
we just apply these inequalities to the case whigF fi = - - = f,_1 = expl/—1¢f)
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and f being a real valued element BV . In such a case, we have

\/L'},f(f)g
<2 (14nlleI=m\/ ) 11y \ g

1
+2 ((1 +n|t|e‘1|Hf”oo.m \/f) A_ + (2 +n|t|e"|HfH°°"" \/f) f’lR) eﬂ|l‘||f||oo.m||g||1.m

and

IL7.s(t)g — L'},f(t)nngHBv < (5 + 2R + Zl|t|e\r|\\f||oo.m \/f) (elr\llflloo.mp)n \/g.
We notice that

Ly (01,8 = Z gk LT Xy
JeP(T™)
holds. ThusL? , {J1, is an operator of finite rank, therefore a carhmperator.
This implies thatLy ; { ) is a quasicompact operator B with theeesal spec-
tral radius not greater thaml!l/l~~) Hence the spectrum in the domaifn
|A| > el'll/ll=mp) consists of isolated eigenvalues with finite multiplicitgee [1]).

Our main concern is the following class of LY maps.

Derinimion 3.1, A Lasota-Yorke mag’ is called a Bernoulli Lasota-Yorkapm
(a BLY map for short) if it has a unique a.c.i.mn. = py and the measure-theoretic
dynamical system1(, i) is Bernoulli.

In the following proposition, we enumerate the propertiebY maps and their
perturbed Perron-Frobenius operators which we need inatiee investigations. Proofs
can be found in [4], [5], [8], and [12]. We have to note that thesota-Yorke type
inequality and the Krylov-Bogolioubove type inequalityapl importnat roles in these
references too.

In the sequel,f € BV is real valued.L(V) denotes the Banach space of bounded
linear operators on a Banach spake  with operator norm. Sfnisefixed, we write
L7(t) instead ofLz s £ ).

Proposition 3.3. (1) Let 7 be an LY map and.r the Perron-Frobenius opera-
tor for T. ThenT is Bernoulli if and only ifl is a unique eigenvalue with modulds
of Ly: LY(m) — L(m) and it is simple.
(2) The mappingC >t — Lr(¢) € L(BV) is analytic.
From now on we assume thal' is a BLY map.
(3) For ¢t € R\ {0}, the spectral radius of.7(z) as an element ilC(BV) is less than
1
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(4) There existsr = 7(T, f) > 0 such that the spectral decomposition
(3.4) Lr@) =Ar(t)"Pr(t) + Rr(t)"

satisfying the following properties is valid for amye C with |¢z| < 7.
(4-)) Pr(1)? = Pr(t) and Pr(t)Ry (1) = Ry (t)Pr (1) = O.
(4-ii)) Ar(), Pr(-), and Ry(:) are anlytic in{r : |t| < 7}. Ar(z) is the first eigen-
value i.e. the eigenvalue with maximal modulws L;(r) € £L(BV) and Pr(t) is
the projection onto the one dimensional eigenspace cooredipg to Ay (¢)
(4-iii) There existr > 0 and r’ > 0 with r + r’ < 1 independent of such that
[Ar(t) — 1| < r’ and the spectrum oL;(r) € L(BV) except for the eigenvalue
Ar(t) is contained in thedisc{r : |f| < r}. Moreover Pr(¢r) and Ry (¢)" is written
in terms of the Dunford integral by

1
Pr(t) = M — Lp())"rdA
7 (1) ] (‘H‘:N)( (1))
1
Rr(t)' =——— NN = Lr(1)"td .
(1) 2= Jinin ( (1))

In particular, the spectral radius oRRr(r) € L(BV) is not greater tharn .
(4-iv) hy = Pr(0)1is the density of the unique a.c.i.may of 7 and the following
formulas hold.

d\ d?\
CLO=VL[ rdur and O =107,
dt dt

where o (f)? is the limit variance mentioned in Introduction.

(4-v) If t+ =0 the spectral decompositiof8.4) and the assertior{4-i) are valid for
L7(0) =Ly as an element inC(L(m)).

4. Auxiliary lemmas

We shall prove some lemmas in this section. As a consequerce&an easily
prove Theorem 1.1. But in order to prove Theorem 1.2 we neegk nmyestigations.

Lemma 4.1. Let Tp be an LY map satisfyingss infDTp| > 2 and f a real
valued function of bounded variation. Then there exist- 0, 6, > 0, K > 0, and
0 < a < 1 such that the following assertions are valid whene¥ee PC? andt € C
satisfyd(T, Tp) < 61 and |¢| < 71, respectively.
(1) The spectrum ofLy(¢r) in {\ € C : |A\| > «/2} consists of isolated eigenvalues
with finite multiplicity.

(2 \/LT(t)g < a\/g +K|gllem

holds for anyg € BV.
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Proof. By the definition of the metrid , i 1{, To) is small enoughI is also
an LY map with ess infDTy| > 2. Moreover,p(T), R(T), and A ) which appeared
in the inequalities in Remark 3.1 become closep{d), R(1p), and A ([p), respec-
tively. Hence we can choosg > 0, ;1 > 0, K > 0, and 0< a < 1 with the desired
properties. [l

Next we show a sort of uniform estimate on the total variatidreigenfunctions
of the perturbed Perron-Frobenius operatbgs, Tor  beingectoslp.

Lemma 4.2. Let Tp be an LY map satisfyingss infDT;| > 2 and f a real
valued function of bounded variation. The numbers> 0, 1 > 0, K > 0, and
0 < a < 1 are the same as ihemma 4.1 If Lr(r)g = Ag holds for someg € BV,
T with d(T, To) < 91, t € C with |¢t] < 1, and A € C with |A\| > «, then we have
Vg < Cllg|l.m for some positive constar®  depending @an> 0, §; > 0, K > 0O,
and0 < a < 1 but not ong, T, ¢, and \.

Proof. For the sake of simplicity, we pu/ X 'L;(¢). Applying Lemma 4.1
repeatedly we have

\ Mg
<A tal? \/8 + KXY (M g llam + (AN Rl M 7 2g lum + -+ AT "l m)-

ThereforeMg =¢ implies

_ K27Y
<l \ g+ —5——lgllim-
Ve <ol Ve r sl
Hence the desired inequality holds with k4A~2|/(1 — |2 "tal). O

Now we can prove:

Lemma 4.3. Let Tp be a BLY map satisfyingss infiDTy| > 2. Then there ex-
ist 92 € (0,4,) and r1 € («, 1) such thatd(T, To) < J, implies thatl is the unique
eigenvalue ofLy contained in the regidn\ € C: |A\| > r}.

Proof. Note that the modulus of any eigenvalue Igf is not gredian 1. If
the lemma is not valid, we can choose LY mapsc PC?, functionsg, € BV, and
complex numbers\, # 1 such that

Lngn = Angna ”gn”BV = 17 and |)\n| - 1 (}’l - OO),

where L, =Lt

n *
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In virtue of Helly’s selection theorem, we may assume tharehexistg € BV
and )\ with || = 1 such thatg, — g a.e. and inL(m) and \, — X\ asn — oo by
taking subsequences if necessary. Clearly welggt= \g, where Lo = L.

We claim thatg = 0. First, by Proposition 3.3 (1),= 1, i.e. Log = g sinceTp is
Bernoulli. SinceL, preserves the value of the integration,see

/g,ldm=/L”g,,,dm=)\,,,/g,ldm

for eachn > 1. This yields [ g, dm = 0. Consequently we havé g dm = 0. Since the
eigenspace of.o corresponding to 1 is one dimensional, we can see ghat =0.
On the other hand, from Lemma 4.2, we have

1=lgnllsv = \/gn +lgnllam < (C +1)llgnllzm-

But the claim implies that the right hand side goes to Ozas co. Now we arrive at
a contradiction. O

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Assume th@ is a BLY map. In virtue of the assertion
(1) in Proposition 3.3 and Lemma 4.3, it suffices to show tHiong.

CiLaim. There exist9z € (0, d2) such that ifd {, To) < 43, 1 is a simple eigen-
value of Ly :BV — BYV.

Note that if 1 is not simple, we can choose at least two ergadid.m.’s. Thus if
Claim is not true, we can find sequencEsc PC?, g, € BV, andh, € BV such that

d(Tna TO) —0 (I’l - OO), gnhn = 07

gl‘l 2 07 /gﬂ dm = 17 Lngn :gl17 and hn Z 07 /hn dm = 17 thn :hl‘17

whereL, =Ly, . Since we se§/ g, < C and\/h, < C from Lemma 4.2, we can
apply Helly’s theorem tog, and, . Therefore choosing a subssrpiéf necessary,
we may assume that there exggth € BV such thatg, — g andh, — h a.e. and in
LY(m) asn — oco. Then it is easy to show that

Log=g, Loh=h, and /gdm:/hdmzl,

where Lo = Lr,.
Since Ty is Bernoulli, we conclude thag & &y, wherehg is the density of the
unique a.c.i.m. offy. Hence we must have

2=|gn—hullm — g =nllzm =0, (1 — o0).
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This is a contradiction. O

Corollary 4.1. Let Tp be a BLY map withess infiDTy| > 2 having a unique
a.c.i.m. up with densityho. If T, € PC? converges tolp in PC? asn — oo, then
for any n large enough7, turns out to be a BLY map having a unique a.c.igp.
with densitys, € BV and h, converges tdp a.e. and inL(m).

Proof. There existsig such thatd T,, To) < d3 for any n > no. In addition,
\V h, < C holds for anyn > ngo from Lemma 4.2. Therefore by Helly’s theorem,
any subsequenck, contains a subsequgpnce  converges togserB& a.e. and in
LY(m). Clearly [ gdm =1 and Ly,g = g are true. This implieg #o. Thus we reach
the desired result. O

Remark 4.1. We need the condition ess [ifT;| > 2 to prove Lemma 4.1. From
the proof one can easily recognize that the assertions inmarh.1 are still valid if
Tp is an LY map satisfying

There exists a positive integ¥  such that.es$ifl’ | > 2 and the mapping

(A)

T — TV is continuous affp.

Hence we can see that any result in the present section cabtamex if we replace
the condition ess DTy > 2 by (A).

The rest of the present section is devoted to giving exampleish show that
the conditions Bernoullicity and ess iiidT| > 2 are essential. The following exam-
ple shows that without ess ifDT,| > 2, the Bernoullicity is not necessarily stable by
PC? perturbation.

ExavpLE 4.1. For any sufficiently smak > 0, we set

4 . [ 1—4e
1_46)( IfxE_O,T)
3—4e . [1—4c 1—2¢
—2x +
if xe 7 2 )
fex = 1 (12 3
. — L€
ZX—E IfxE_T,Z)
5 . (3
— + = = X
2x 5 |fx€_4,1}

Note that T, restricted to [}2, 1] is the so-called tent map for anry It easy to see
thatd (., To) — 0 ase — 0. If ¢ > 0 is small enough, we hav&[l — 2¢/2, 1/2] =
[1—2¢/2,1/2) and T.[1/2, 1] = [1/2, 1]. ThereforeT, can not be a BLY.
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On the other hand7p is shown to be a BLY as followsIy restricted to [¥2, 1]
is the tent map. Thus it is mixing. Since it is obvious that @dtnevery point in
[0,1/2] is attracted by the interval [2, 1], T, restricted to [¥2, 1] is the unique mix-
ing component of7p.

If essinf|DTp| > 2 were satisfied, such a phenomenon could not happen by The-
orem 1.1. But we have ess ifdTp| = 2 in the present case.

The assumption of Bernoullicity in Theorem 1.1 means thahas a unique mix-
ing component. Therefore we may regard the assertion inréhed.1 as the stability
on the number of mixing components undBC? perturbation. If T, is an LY map
with more than one mixing components, it is natural to ask thdresuch a stability
result holds or not. More precisely, is there a neghborhdo@ydn the PC? topology
whose members have the same number of mixing components afNext we show
that if we do not impose the Bernoullicity condition dig, we can not obtain the sta-
bility of number of mixing components even if the slope cdioti ess infDTp| > 2.
is satisfied. We recall one of Bowen’s criterion in [2, Theor@] for convenience.

Proposition 4.1 (Bowen [2]). Let T be an LY map with defining partitioR. If
the conditions thaess infiDT| > 2 and m(T"J) — 1 (n — oo) holds for eachJ € P

are satisfiedthen T turns out to be a BLY map.

ExampLE 4.2. For sufficiently smalk > 0 we defineT, by

3(1+2)x if x € |0, %)

:1 1

“3(1l+2)x+1+2 if =, =

( )x if x € _6’3)

. (1 2

TEX— -1 if x € -§,§>

(2 5

—-3(1+ +3— if =, =

31+ 2)x+3—4¢ if x € _3’6)
. (5

31+ 2)x —2— 6¢ if x € 6,1).

Put /(1) =11[Q Ye], J(2) = [1/6,1/3], J(3) = [1/3, 2/3], J(4) = [2/3,5/6], and
J(5) =[5/6, 1). Clearly these intervals form the defining partiti®z.) for any ¢ > 0
and we havel 1., Tp) — 0 ase — 0.

We can easily see thaf[0,1/2] = [0, 1/2], To[1/2,1] = [1/2, 1] and Ty pre-

serves the Lebesgue measute

. Since eg$diff] = 3, Bowen’s criterion implies

that (To, 2m|jp 1/2)) and (o, 2m|p1 /2 1) are mixing componets. Thug has exactly two
mixing components. On the other hand, we can show fhais a BLY map for any
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e > 0 i.e. it has only one mixing component. This means that folLdrmap 7' with
more than one mixing components, we do not always findcan- 0 such that any
element in theep-neighborhood ofl’ has the same number of mixing components as
T even if T satisfies ess inDT| > 2.

It remains to show tha?, (¢ > 0) is BLY. We verify thatm ("J(j)) — 1
(n — o) for eachj =1 2...,5. ForJ (3) this is trivial. We consider (1Y.J(1) =
[0,1/2]1U[1/2, 1/2 +¢). It is easy to see that T([1/2, 1/2 +¢€)) D [1/2, 1] for some
n. Therefore we havag"*1J(1) = [0, 1]. For J (2),J (4), and/ (5) we can obtain the
desired result in the same way. Since.es$lrff.| = 3(1+2) > 2, T, is BLY in virtue
of Bowen’s criterion.

5. Continuity of the first eigenvalue of Lt(t) and Proof of Theorem 1.2

Throughout the sectiorp is a BLY map satisfying the condition ess j@#7p| >
2 unless otherwise stated. The numbersand §; are the same as in Lemma 4.3 and
Claim in Proof of Theorem 1.1, respectively. Recall thatlifT’, {5) < d3, we are in
the following situation. In the regiofA € C : |\| > r1}, there is no spectrum of
Ly € L(BV) except for the simple eigenvalue 1. Thus we can chogsg 0 with
r1 +r; < 1 independent off so that the punctured {isc |A — 1] < rp} \ {1} is
contained in the resolvent set &fr

PutA ={A e C: |\ >r, |A=1] > r2}. We need the following technical lemma.

Lemma 5.1. There exists), € (0, d3) such that

B=sup sup||(M — Lz) Yz < .
T:d(T.To)<da AEA

Proof. We know that the set is contained in the resolvent &dt;0e L(BV)
and

sup||(AM — L7) Y| sy < o
AEA

is valid for each fixedl" withd T, 7o) < d3. Note that we can replace syp, by
sup, , whereQ AN {\; || <2} because of the following reason.
Combining Lemma 4.1 and the fagLr |1, = 1, we have

K
Vitg<a™\ e+ —llgllum

for any T € PC? with d(T, Tp) < 3 < 61. It follows that

K K+2—-«
< .

Lll < Il+1+
L7 By < o 1-a- 1-a
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This yields

L” ||BV K+2—a
Il( )" lsy < Z S T 1-a

if |A]>2.
To obtain the desired result, we have to show that we can ehbos (0, 43) such
that

inf inf inf M —L > 0.
T: d(T To)<62 AeQ g:||g|| sv =1 ”( T)g”BV

If we can not find such @, there existl, € PC?, g, € BV with ||g,|lzv =1, \, €
such that

d(T,,To) — 0, and h, =Q,] —L,)g, —01in BY (n— o),

whereL, =Lz, . Apply Lemma 4.1 tg, =,'h,+ X\, 1L,g,, we have

\/gn < |)‘;1| \/hn + |)\;1|a\/g,1 + K|)‘;1|||gl1||l,m'

This yields

5. Ve < =2 (\/ o+ Kl
. n = 1 |A;1|a n m .

Next, since||g.|[sv = 1, we can apply Helly’s theorem tg, . Thus we may assume
that there exisg € BV and A € Q such thatg, — g a.e. and inL(m) and \, — \
asn — oo. Clearly,

()\nl - Ln)gn - (/\[ - LO)g

a.e. and inL(m) asn — oo, whereLo = Ly,.

On the other hand the left hand side in the above convergesito BV by our
assumption. Hence we sdgg = A\g. Since Lo € £(BV) can not have an eigenvalue
with |\| > ry, the choice ofr, implies g = 0. Combining this fact with the inequality
(5.1), we conclude that/ g, — 0 asn — oo. Consequently we can get

1=lgallsv = \/gn +|gullLm — 0 (n — o0).

This is a contradiction. O

Next we give a uniform bound for the resolvent operators ef flerturbed Perron-
Frobenius operator&r ¢ () with T( Tp) < d4 for anyt with sufficiently small absolute
value.
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Lemma 5.2. There exists, € (0,11) such that ifd(T, Tp) < 04, the setA is
contained in the resolvent set @f;(r) € L(BV) for any t+ € C with |f| < 2. In
particular, we can choose, so that

sup  sup supl|(\ — Lr(1)"*sv < 28
T:d(T,To)<dat:]t|<t2 AEA

holds.

Proof. Recall the following elementary fact (see [3, VI})6]

Let A and B be bounded linear operators on a Banach spgacAssume thatA
is invertible and||(A — B)A~1|| < 1. ThenB is invertible and3~! can be expressed
by B-1=3"" A"1((A - B)A Yy~

We show that we can chooseg so that if [¢| < f,, we can apply this fact tot =
M —Lr andB =X\l —Lr(t) for any A € A. To this end we estimatgLr (1) — Lr| gy
We can easily show that for anye C and for anyg € BV

”( V=1if _ 1)g||1 ( el fllsy _ 1)||g||1,m,

\/ (V72 = 1)g) < (eI — 1) \/ g +]e)(e"1715 — 1) \/ £ l|gl|1m-

Thus we have

H(e\/fltf _ 1)g||BV < (e\lll\fHBv — 1) (1+|t| \/f) llgllsvy =@l gllsv.

Therefore it follows that

I(Lr(@) = Lo)gllsy < |LrlsvlEY™2 = Dellsv < |ILrllsvy@)gllsv-

On the other hand, by Lemma 4.1,dfT (To) < da < 91, we have||Lr|py < K+1in
the same way as in the proof of Lemma 5.1. Hencé if, Tp) < 64 and A € A, we
obtain

[(Lr(t) — L)\ — L)Y sv < || L7|[svy(t)B < (K + 1)y(1)3

in virtue of Lemma 5.1.
Notice that~(¢) | 0 ast | 0. Therefore we can chooseg € (0, 11) so that|:| < #,
implies (K + 1)y(¢)3 < 1/2. Then we have the desired results U

In virtue of Lemma 5.2, we see that df T(Tp) < 04 and |z| < 1, we can define
the projections

Pr(r) = (AT — Lr(1)"tdA,

1
2”\/—_1 /|A—1|:rz)
(M — Ly(r))"tax

(5.2)

QT(I) 271_\/—1 AA:rl)
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by using the Dunford integral. In addition we have
(5.3)
|Pr(0)||sv < 2Br2, || Q7 (1)l sv < 26r2, and || Ry (t)"||sv = | L7 ()" Qr(1)||sv < 26r7™

In particular,

(M = Ly(0)) ™ = (AT = L1)) sy =|(M — L7 (1)) YL — Lr(0))(M — L1)) |y
<23%(K + 1)(t)

and

(5.4) | Pr(t) — Prllsy < 2r2B%(K + 1)(1)
hold. Therefore we can show the following:

Lemma 5.3. There existszz < (0,#;) such that if T < PC? satisfies
d(T,To) < 44, the mapping{st € C : |t| < t3} 2t — Pr(t) € L(BV) is analytic
and dim Py (t)BV =1

Proof. The assertion in analyticity is obvious. Thus we hawdy to prove the
second assertion. Recall the fact thatEif and E, are projections on a Banach space
X satisfying ||E; — Ez| < min(||E1|| 72, || E2||~Y), then dimE X = dim E2X holds.

Therefore if we choose; < t, so small thaty(z3) satisifiesg(K + 1)yy(t3) < 1, we
get the desired result by the inequalities (5.3) and (5.4). U

We have seen that the spectral decomposition (3.4) in Pitapos$.3 is valid si-
multaneously inT  withd T, Tp) < 64 ands with |z| < t3 in the following sense.

Proposition 5.1. Let Ty be a BLY map satisfyingss infiDTy| > 2. Then there
existry > 0, r, > 0, 3 > 0 and 6, > 0 with r{ + r» < 1 such that whenevef € PC?
and r € C satisfyd(T, Tp) < d4 and |t| < 13, the perturbed Perron-Frobenius operator
Lr(t) € L(BV) has the spectral decomposition

Ly ()" = Ar ()" Pr(r) + Ry (2)",

where Pr(¢t) defined by(5.2) is the projection onto the one dimensional eigenspace
corresponding to the first eigenvalue-(¢) of L7(¢t) and Ry (¢) satisfies the estimate in
(5.3). Moreover {A7(-)}r.a(r,m)<s, 1S @ normal family of analytic functions ifr € C :

|t| < 13} satisfying

sup sup [Ar(®)] < 1+rp.
T:d(T,To)<d4t:|t|<t3
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Proof. The proposition is an easy consequence of PropoS8it®rand the obser-
vation in the above. Note that the last assertion followsnfidontel’s theorem. [l

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. LetH be the Fréchet space of analytic functions in
{t :|t] < t3}. We show that{T : d(T,Tp) < 04} 2 T — Ar(-) € H is continuous.
We just prove the continuity at the cent& since we can prove the continuity at the
other points in the same way.

In virtue of Proposition 5.1{\r(-) : d(T, To) < d4} is relatively compact irH. It
remains to show that if,(-) = Az, (-) converges to\(-) uniformly on any compact set
in {r:|t| < t3} asd ([,, To) — 0, we havel(t) = \o(r) for any ¢ with |7| < t3, where
Ao() = Az ().

Let g, € BV satisfy

Ln(t)gn = )\n(t)gm and ”gn”BV = 17

where L, ¢) =Lz, (). By Helly's theorem, we may assume that therstex € BV
such thatg, — g a.e. and inL(m). Thus we haveLo(t)g = A(t)g, where Lo(t) =
Lz,(r). If we can show thatg # 0, |A(r)] < 1 +rp implies this must coincides with
Mo(z) by Lemma 5.2.

On the other hand/ g, < C||g.||1.» is valid for eachn by Lemma 4.2. It follows
that

1= ”gn”BV = \/gn + ||gn||1.m S (C + 1)||gl1||l,m-

at the desired result. O

Thus we sed|g,|l.» > 1/(C +1). Consequentlyl|g||1.» > 1/(C +1). Hence we arrive

Remark 5.1. It is not hard to see that all the results in the presecticse are
true for Tp satisfying the assumption (A) in Remark 5.1

6. Examples

In this section we cite two examples which illustrate how thetric d is appro-
priate to measure the difference between an LY map and ther @lement inPC?
from a viewpoint of the ergodic theory of a.c.i.m.’s.

By Corollary 4.1 if T, converges to a BLY mapp with ess infiDTy| > 2 in the
metricd asn — oo, thenT, is a BLY map for sufficiently large and the invariant
density h, of 7, converges to the invariant density of T, a.e. and inL(m). The
first example shows that even 1, is assumed to be a continudlYsrBap for any
n>0,||T, —Tollco.n (n — o0) does not always imply the convergence of the invariant
density.
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ExampLE 6.1. Consider the following maps with > 4.

. (1
3x |fx€_0,§>,
2 . 1 2
—3()(—5) |fxe-§,§),
2 . (2 1
B(x—s—n> if x e 3_n’;)’
Twx = -
S-D (1), 1 [b
n—3 * n n x ln” 3/’
2 . (1 2
—3(X—§> |fxe-§,§),
2 . [2
B(X—§> |fx€_§,1:|,
[ 1
it 1
3x |x€_0,3>,
2 . (1 2
Tox— —3(x—§> |fx€-§,§),
B(x—g) ifxe_g,l}.

Then || T, — To|lco.m < 3/n. T, is @ BLY map with unique a.c.i.nu, =nmlpg 1/, and
Tp is a BLY with unique a.c.imyug = m. Clearly, p, — do weakly as g — oo0). On
the other hand we can sekT,(Tp) > 3 for n > 4 sincek (, ) =6 andk Tp) = 3.

Next, when one gives a glance at our result, one may considepossibility of
the phenomenon as li, )—o||L7, — Lg|lsv = 0. If such a phenomenon could oc-
cur in general, our results would be no interest and would d&®y e&onsequences of
the general perturbation theory for linear operators. Teéeosd example shows that
limgr,, 7y—o||L7, — Lg|lsv # O in general. This means that the topology induced by
the metricd is not so large that it can make the nfap-~ Ly € L£(BV) continuous
while it is large enough to distinguish the ergodic promrtof a.c.i.m. of7y from
those ofT,, .

ExampLE 6.2. Lete > 0 be small enough. We consider the maps:

31l—-¢€ex+e if x € |0, 1'),

1 . (1 2
Te.x - 3 (x — é) |f X € -§7 §) bl
2 . [2
B(X—g) IfxE -5,1:|.
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Clearly we haved 1., Tp) < 2¢ and we can apply Theorem 1.1 and Theorem 1.2 to
this family. Choosef. = xj0.q € BV. Then

1
(L7, — L) fe(x) = Xpey(x )3(1 o X (3(1x_ 9 3(16_ 6)) ~ 3X0.d (%)

1 1
= mX[eAﬁ?,ez](x) - §X[0,3e] (x)

yields

3—c¢ 2¢
\/((LT LTo)fe) E

it and ||(Lz, — Lz) fellum =

Thus we have

_ te_ 22
3 €+2€) 1  3+e—2¢ 1 (10

_ > = =
L. LT0||BV<3(1_6) 3)1+c 31-)

since || fellsy = 1 +¢€ holds for any smalle > 0. Hence one can not say that our
theorems are easy consequences of the general perturltiagiory of linear operators
in [3, VII-6].

Appendix

We prove Lemma 3.1 and Lemma 3.2 (cf. [1], [6], and [9]). 7&t &dreLY map
with ess infDT| > 1. The notationg, R, and A, are the same as in Section 3. Note
that it is not hard to show that

p(T") < p" and R@")<nR.

Let P, = P(T") be the defining partition off” . For each € P,, g; is an element
in BV specified later. Foi =,0..,n — 1, let f; be an element irBV  satisfying
| filloo.n < H for some H > 1. In what follows if we consider an element BV
we choose a version which is right continuous on [0 1) and defitinuous at 1. For
simplicity, we putF =[]'." £i(T").

We note that in the sequel we use the notations, sup and inf riotelehe supre-
mum and the infimum taken over alle J, respectively. First of all we show that

1 1
(A1) SUp|DT"| < <nR + W}V)) m(J)

holds for anyJ € P,. In fact, by Mean Value Theorem, we have

2 n

)2

1
|DT} (x))| IDT”(y)I

x = ¥ < RI™)m(J) < nRm(J)
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for any x,y € J and for anyJ € P,. Thus we have

su 1 Rm(J) + |nf = R+ 1 (J)
nKm n — | m
WPIoT] = Y o1 = m(T77)
since
m(T}J) = / |DT}|dm < sup|DT} |m(J)
J J
Now we carry out the estimation as follows.

V D Caps F@ DT (1)

JEPy

< 3\ (DT s (1) +

JEP, TJ

> (IF@)| DT} as)gs(a)| + |F(b,)| DT}~ (bs)gs(bs))
JEP,

<3\ (FIDTy|g)) +

(A.2) JEP, U
+ > (IF@))| DT} Mas)gs(an)| + | F(b,)| DT}~ (b1)8s(b,)])

=
<23 \/(FIDT}|gs) +2 ) ( (])/|F||DT”| 1g,|dm)
JeP, J JEP,
:2(2 I+ Z 11J>,
JEP, JEP,

where J = p,, b, ] and\/, denots the total variation od . Note that in the third
inequality in the above, we have used the fact that

[h(@)] + [1(B)] < [h(@) = h(x)| + |h(x) = h®)| + 2h(x)] < \/ h +2/h(x)]
[a.b]

holds for anyx € [a, b].
Next, using\/, F < H""*S7"\/ fi, we have

I < /|F||g,|
n—1

(A.3) <nRH" / lgs] dm + (H" 12\/11 sup|gf|+H"\/gJ> sup(DT7[™Y)

2 n

(DT”)2

m+\/(Fg,)5lJJp(]DT,"|’1)

n—1

<nk" [ Jgsldm B3\ i supies | sup( DTS+ 1\ g
i=0 J
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and
(A.4) 11, < H" Sup(IDTJ| h (J)/|gj|dm.

If we put g; =g for anyJ , then the inequalities (A.3) and (A.4) beeo

(A.5)
n—1

I, <nRH”/|g|dm+H"Z

i=0

Vi (\/g =/ |g|dm) sup(DT}| )

+ann,\/g
J

<nRH”/|g|dm+H" " (nZl\/ff)\/
< H"p" <1+i¥:\/ﬁ>\l/g+<<l+§\/f,> nR+—"z:1\/f,> H"/|g|dm

and
(A.6) 11, < H" SupﬂDTJ"| h / lg|dm < H" (nR + i) / |g| dm.
m(J) An) s

In the above we have used the inequalities ;sup< \/, g + (1/m(J)) [, |g|dm and
(A.1) to obtain the first inequality and the second ineqyaliespectively. (A.1) is also
used in the last inequality. Since the identity

n—1
L (H AT -g) = > Xy F(T DT ) (1)

i=0 JEP,

holds, we obtain the Lasota-Yorke type inequality by cormgn(A.2), (A.5), and
(A.6).

Finally, we putg; =g &, }-g in (A.3) and (A.4), wherex; is a point id chosen
beforehand. Then we have

n—1
(A7) Iy <nRH"0"\/ g +H" "> \/ fi-\[e+H"p"\/
J i= J J

and

(A.8) 11, <H"p"\/ g.
J
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In addition, we have

n—1 n—1
[l ((H ﬁ-(T")> nng> -1 ((H ﬁ(T')> g) dm
i=0 i=0
n—1 )
(A.9) < [ TT1A@ g - o)l am
i=0
<H" > /IgJ —gldm < H"p" > \[g<H"p"\/¢g.
Jjer, JEP, J

Since

n—1 n—1
Ly <<H ﬁ(Tf)) nng> - L; <<H ﬁ(T")) g)
i=0 i=0

= xmyy P IDTHT ) (M) = g(x0))
JEPn

holds, we can reach the Krylov-Bogolioubov type inequalityvirtue of (A.2), (A.7),
(A.8), and (A.9).
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