FINITENESS OF CONFORMAL BLOCKS OVER COMPACT RIEMANN SURFACES

Toshiyuki ABE ${ }^{1}$ and Kiyokazu NAGATOMO ${ }^{2}$

(Received January 8, 2002)

Introduction

We study conformal blocks (the space of correlation functions) over compact Riemann surfaces associated to vertex operator algebras which are the sum of highest weight modules for the underlying Virasoro algebra. Under a fairly general condition, for instance, C_{2}-finiteness, we prove that conformal blocks are finite-dimensional. This, in particular, shows the finiteness of conformal blocks for many well-known conformal field theories including WZNW model and the minimal model.

In [1] we showed that conformal blocks over the projective line associated to a vertex operator algebra (VOA) V are finite-dimensional if modules for V satisfy some finiteness condition. In this paper we generalize these results to conformal blocks over any compact Riemann surfaces. More precisely we will prove that if V-modules of our concern as well as V are C_{2}-finite then corresponding conformal blocks are finitedimensional. The main reason why we need C_{2}-finiteness of V in this case is caused by Weierstrass gaps, i.e., we are not able to find meromorphic differentials with poles of some exceptional orders.

Though in this paper the notion of conformal blocks are defined in a purely mathematical way, the definition goes back to the notion of correlation functions in conformal field theory (CFT) initiated by [4]. CFT's are supposed to have at least two properties, one of which is the finiteness of conformal blocks, and the other is the factorization property; the latter enables us to determine the dimension of conformal blocks by fusion rules (the space of 3-point correlation functions or its dimension). Like other objects in physics every CFT has its own symmetry group (Lie algebra): affine Lie algebras for WZNW model and the Virasoro algebra for the minimal model, for instance. We will study "general" CFT's, where "general" means that the symmetry is described by a VOA. Such CFT's were first proposed and studied by Zhu [21], however two main issues, i.e., finiteness of conformal blocks and the factorization theorem of these CFT's were left open.

We should point out two main differences between our general CFT's and the

[^0]known CFT's mentioned above. Conformal blocks are the space of correlation functions of primary fields and the Virasoro fields. On the one hand, for instance, in WZNW model, the space of states is generated by currents and the Virasoro field of the theory; the currents are primary fields with conformal weight 1 , and the Virasoro field is a quasi-primary field with conformal weight 2 . The Virasoro field is obtained in terms of the currents, and so we only need information on meromorphic functions on a Riemann surface to study conformal blocks. However, in general, we have primary fields of higher conformal weight Δ, and we have to know the geometry of the line bundle $\kappa^{1-\Delta}$ where κ is the canonical line bundle. The minimal model is generated by a conformal weight 2 field (the Virasoro field) and the analysis of the line bundle κ^{-1} is necessary, though it is still not so complicated.

Part of ideas in [19] were generalized to VOA's in [21]: Zhu first generalized the notion of currents and the energy-momentum field to the notion of global vertex operators associated to any primary states and then gave a very general definition of conformal blocks; more precisely, conformal blocks are defined in almost the same way as in [19]. However this definition based on primary fields and the Virasoro field is not convenient because Fourier modes of primary fields and the Virasoro field do not form a Lie algebra. Zhu then introduced so-called quasi-global vertex operators which are defined by using quasi-primary states. The quasi-global vertex operators now form a Lie algebra under a fairly general assumption for V. The point is that we can characterize conformal blocks in terms of quasi-global vertex operators. This is one of the main results in [21].

In many examples of CFT's a key fact for the finiteness of conformal blocks is the finite dimensionality of the space of coinvariants; several examples are known such as WZNW model and the minimal model. The notion in VOA theory corresponding to the finiteness of "coinvariants" is the C_{2}-finiteness condition introduced in [20]. Using the notion of Frenkel-Zhu bimodules [12] the finiteness of fusion rules is proved in [17] for C_{2}-finite modules; more precisely, the weaker condition called B_{1}-finiteness is enough for the finiteness of fusion rules.

In this paper we prove the finiteness of conformal blocks over pointed compact Riemann surfaces associated to C_{2}-finite vertex operator algebras which are sum of highest weight modules of the Virasoro algebra and B_{1}-finite V-modules; we should mention that our notion of B_{1}-finiteness is different from Li's. The method used here basically follows [19], while we work in a fairly general set-up. The proof of finiteness of conformal blocks over compact Riemann surfaces is reduced to finding a nontrivial meromorphic section with poles of specified positions and orders. A main difference between the case of the projective line [1] and the case studied in the paper is that on a general Riemann surface we are not always able to find a meromorphic form which has poles at prescribed points and orders; this point will be elaborated in the paper.

The conformal blocks over pointed projective lines are also studied in [13]. The
definition of conformal blocks looks different from the one of [21] and [1], but their method has a great influence on our work.

In Section 1 we review some basic fact about vertex operator algebras. In Section 2 we recall the notion of C_{n}-finiteness condition ($n \geq 2$) and B_{1}-finiteness condition for modules, and state several known results concerning these finiteness conditions. The notion of conformal blocks introduced in [21] is explained in Section 3; conformal blocks are built on a triple of a compact Riemann surface Σ, a finite set A of distinct points on Σ and V-modules $W^{i}(i \in A)$. We introduce a filtration on the Lie algebra $\mathcal{Q}(\widetilde{\Sigma})$ of all quasi-global vertex operators on a compact Riemann surface Σ. The Lie algebra $\mathcal{Q}(\widetilde{\Sigma})$ acts on the tensor product vector space $W_{A}=\bigotimes_{i \in A} W^{i}$. We define a filtration on W_{A} which makes W_{A} a filtered $\mathcal{Q}(\widetilde{\Sigma})$-module. These filtrations have their origins in [19], but of course they are appropriately generalized to fit our purposes. Section 4 is the core of this paper, where we prove that conformal blocks associated to a C_{2}-finite quasi-primary generated vertex operator algebra and B_{1}-finite V-modules are finite-dimensional; we prove the main theorem by showing the existence of a surjective map $\bigotimes_{i \in A} W^{i} / B_{1}\left(W^{i}\right) \rightarrow \mathrm{gr}_{\bullet} W_{A} / \mathcal{Q}(\widetilde{\Sigma}) W_{A}$. In particular if all modules $W^{i}(i \in A)$ are C_{2}-finite then the corresponding conformal block is finitedimensional. Finally in Section 5 we discuss several examples of C_{2}-finite vertex operator algebras whose irreducible modules are B_{1}-finite.

After we completed the work we learned Buhl's result [3] that any finitely generated weak module for a C_{2}-finite (which is called C_{2} co-finite in [3]) vertex operator algebra is C_{n}-finite for all $n \geq 2$. Therefore our B_{1}-finiteness assumption for modules is not necessary.

1. Vertex operator algebras and their modules

Let V be a vertex operator algebra with the vacuum element 1 and the Virasoro element ω (see [11], [10], [18]), i.e., the vector space V is equipped with countably many bilinear operation $(a, b) \mapsto a(n) b(a, b \in V)$ for any integer n. For any $a \in V$, we denote the vertex operator associated to a by $Y(a, x)=\sum_{n \in \mathbb{Z}} a(n) x^{-n-1}$ where $a(n) \in \operatorname{End}(V)$ is defined by $b \mapsto a(n) b$ for all $b \in V$. The operators $L_{n}:=\omega(n+1)(n \in \mathbb{Z})$ form a representation of the Virasoro algebra on V, and the vector space V is \mathbb{N}-graded with the grading operator L_{0}, i.e., $V=\bigoplus_{n=0}^{\infty} V(n), L_{0} \mid$ $V(n)=n$ id. The operator L_{-1} is assumed to satisfy $(\partial / \partial x) Y(a, x)=Y\left(L_{-1} a, x\right)$, i.e., $-n a(n-1)=\left(L_{-1} a\right)(n)$ for all $a \in V$ and $n \in \mathbb{Z}$.

An element $a \in V$ satisfying $L_{1} a=L_{2} a=0$ is called a primary vector, while an element satisfying only $L_{1} a=0$ is called a quasi-primary vector. Let $\mathcal{P}(V)$ and $\mathcal{Q}(V)$ be the set of all primary and quasi-primary vectors, respectively. We see that those two vector subspaces of V are graded, i.e., $\mathcal{P}(V)=\bigoplus_{n=0}^{\infty} \mathcal{P}(V) \cap V(n)$ and $\mathcal{Q}(V)=$ $\bigoplus_{n=0}^{\infty} \mathcal{Q}(V) \cap V(n)$.

Definition 1.1. A vertex operator algebra V satisfying $V=\sum_{k=0}^{\infty} L_{-1}^{k} \mathcal{Q}(V)$ is called quasi-primary generated.

It is known that V is quasi-primary generated if and only if $V_{1} \subset \mathcal{Q}(V)$ ([6]). For V quasi-primary generated we see that $V=\bigoplus_{k=0}^{\infty} L_{-1}^{k} \mathcal{Q}(V)$ if and only if $L_{-1} V(0)=$ 0 .

Definition 1.2. A weak V-module is a vector space W equipped with a linear map

$$
\begin{aligned}
Y_{W}: V & \rightarrow(\text { End } W)\left[\left[x, x^{-1}\right]\right] \\
a & \mapsto Y_{W}(a, x)=\sum_{n \in \mathbb{Z}} a(n) x^{-n-1}, \quad(a(n) \in \text { End } W)
\end{aligned}
$$

which satisfies the following conditions for all $a, b \in V$ and $w \in W ; Y_{W}(a, x) w \in$ $W((x)), Y_{W}(\mathbf{1}, x)=\mathrm{id}_{W}$, and for all integers $p, q, r \in \mathbb{Z}$,

$$
\begin{align*}
& \sum_{i=0}^{\infty}\binom{p}{i}(a(r+i) b)(p+q-i) w \tag{1.1}\\
= & \sum_{i=0}^{\infty}(-1)^{i}\binom{r}{i}\left(a(p+r-i)(b(q+i) w)-(-1)^{r} b(q+r-i)(a(p+i) w)\right) .
\end{align*}
$$

The identity (1.1) is equivalent to the set of the following two formulas for a, $b \in V$ and $w \in W$ (cf. [18, §4.3]); one is called the associativity formula
(1.2) $(a(-n) b)(-q) w$

$$
=\sum_{i=0}^{\infty}\binom{-n}{i}(-1)^{i}\left(a(-n-i) b(-q+i) w-(-1)^{n} b(-n-q-i) a(i) w\right)
$$

and the other is called the commutator formula

$$
[a(p), b(q)] w=\sum_{i=0}^{\infty}\binom{p}{i}(a(i) b)(p+q-i) w .
$$

By the commutator formula we see that $L_{n}(n \in \mathbb{Z})$ form a representation on W of the Virasoro algebra. Since $L_{-1} a=\left(L_{-1} a\right)(-1) \mathbf{1}=a(-2) \mathbf{1}$ for any $a \in V$ the associativity formula for $(a(-2) \mathbf{1})(q) w$ shows that $\left(L_{-1} a\right)(q) w=-q a(q-1) w$ for all $a \in V$ and $w \in W$.

Definition 1.3. A V-module W is a weak V-module on which L_{0} acts semisimply, i.e., $W=\bigoplus_{\lambda \in \mathbb{C}} W(\lambda), L_{0} \mid W(\lambda)=\lambda$ id, and for fixed $\lambda \in \mathbb{C}, W(\lambda+n)=0$
for all sufficiently large integers n. For $\lambda \in \mathbb{C}$, a nonzero vector w in $W(\lambda)$ is called homogeneous vector of weight λ, and its weight is denoted by $|w|$.

Whenever we write $|w|$ the element w is supposed to be homogeneous of weight $|w|$.

2. Finiteness conditions of vertex operator algebras

We recall the notion of C_{n}-finiteness (see [20] for $n=2$, and [17] for general $n(\geq 2)$). We review the notion of B_{1}-finiteness in [1], and state several results; the most important is that for a C_{2}-finite vertex operator algebra V any B_{1}-finite weak V-module is C_{n}-finite for all $n \geq 2$, which was proved in [1].

Definition 2.1 ([20], [17]). For any positive integer $n(\geq 2)$ we denote by $C_{n}(W)$ the subspace of W, which is linearly spanned by $a(-n) w$ for all $a \in V$ and $w \in W$. A weak V-module W is called C_{n}-finite $(n \geq 2)$ if the vector space $W / C_{n}(W)$ is finite-dimensional.

Since $\left(L_{-1} a\right)(q) w=-q a(q-1) w$ for all $a \in V$ and $w \in W$ we see that $C_{2}(W) \supset$ $C_{3}(W) \supset \cdots \supset C_{n}(W) \supset \cdots$, and that any C_{n}-finite module for some $n \geq 2$ is C_{2}-finite. We now let V be a C_{2}-finite vertex operator algebra:

Proposition 2.2 ([13, Proposition 8]). Let $V=\bigoplus_{n=0}^{\infty} V(n)$ be a vertex operator algebra with $V(0)=\mathbb{C} \mathbf{1}$, and U be a graded subspace such that $V=U \oplus C_{2}(V)$. Then V is linearly spanned by the vectors

$$
\begin{equation*}
\alpha_{1}\left(-n_{1}\right) \alpha_{2}\left(-n_{2}\right) \cdots \alpha_{k}\left(-n_{k}\right) \mathbf{1} \text { for all } \alpha_{i} \in U \text { and } n_{1}>n_{2}>\cdots>n_{k}>0 . \tag{2.1}
\end{equation*}
$$

Let U be a graded subspace such that $V=U \oplus C_{2}(V)$. By Proposition 2.2 we see that the vectors (2.1) for $k \geq n$ belong to $C_{n}(V)$. Suppose that V is C_{2}-finite. Then U is finite-dimensional, and we have:

Proposition 2.3 ([13, Theorem 11]). Let $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} 1$ be a C_{2}-finite vertex operator algebra. Then V is C_{n}-finite for all $n \geq 2$.

Let W be a weak V-module. We denote by $B_{1}(W)$ the subspace of W spanned by $a(-1) w$ for all homogeneous $a \in V$ with positive weight, i.e., $|a|>0$ and all $w \in W$; we note that $B_{1}(W) \supset C_{2}(W)$.

Defintion 2.4. A weak V-module W is called B_{1}-finite if the vector space $W / B_{1}(W)$ is finite-dimensional.

Note 2.5. (1) A B_{1}-finite weak module is called quasirational in [13].
(2) The notion of B_{1}-finiteness is slightly different from Li's one [17].

Note that C_{n}-finite module for $n \geq 2$ is B_{1}-finite. Conversely we get:

Theorem 2.6 ([1]). Let $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} \mathbf{1}$ be a C_{2}-finite vertex operator algebra. Then any B_{1}-finite weak V-module is C_{n}-finite for all $n \geq 2$.

3. Conformal blocks

We recall the definition of conformal blocks and review some properties of them. Most of material in this section except a filtration on quasi-global vertex operators are taken from [21].

Let Σ be a compact Riemann surface and κ be the canonical line bundle on Σ, and let us fix N distinct points $Q_{1}, Q_{2}, \ldots, Q_{N}$ on Σ. For any integer n we denote by $\Gamma\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; \kappa^{n}\right)$ the vector space of global meromorphic sections of κ^{n} with possible poles at $Q_{1}, Q_{2}, \ldots, Q_{N}$.

Definition 3.1. Let Σ be a compact Riemann surface and $Q_{1}, Q_{2}, \ldots, Q_{N}$ be distinct points on Σ. Let z_{i} be local coordinates around the Q_{i} such that $z_{i}\left(Q_{i}\right)=$ 0. A collection of datum $\bar{\Sigma}=\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; z_{1}, z_{2}, \ldots, z_{N}\right)$ is called an N-pointed Riemann surface. An N-pointed Riemann surface $\bar{\Sigma}$ with a set of V modules W^{i} being attached to each point Q_{i}

$$
\begin{equation*}
\widetilde{\Sigma}=\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; z_{1}, z_{2}, \ldots, z_{N} ; W^{1}, W^{2}, \ldots, W^{N}\right) \tag{3.1}
\end{equation*}
$$

is called an N-labeled Riemann surface.

A covering of coordinate charts $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$ of Σ is called a projective structure on Σ if transition functions $z_{\beta} \circ z_{\alpha}^{-1}$ are Möbius transformations for all α, β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset ;$ any Riemann surface has a projective structure. Let $\left\{\left(U_{\alpha}, z_{\alpha}\right)\right\}$ be a projective structure on Σ and $Q_{1}, Q_{2}, \ldots, Q_{N}$ be distinct points of Σ. For each Q_{i} we choose a local coordinate $\left(U_{\alpha}, z_{\alpha}\right)$ such that $Q_{i} \in U_{\alpha}$, and define a new coordinate near Q_{i} by $z_{i}=z_{\alpha}-z_{\alpha}\left(Q_{i}\right)$. Then we obtain an N-pointed Riemann surface $\bar{\Sigma}$: such a $\bar{\Sigma}$ is called projective. The notion of projective N-labeled Riemann surface $\widetilde{\Sigma}$ is defined in the same way.

Let $\bar{\Sigma}=\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; z_{1}, z_{2}, \ldots, z_{N}\right)$ be an N-pointed Riemann surface. We will define a Lie algebra $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$ associated to $\bar{\Sigma}$. Let V be a vertex operator algebra. We set $\widehat{V}=V \otimes \mathbb{C}((t))$ where $\mathbb{C}((t))$ is the ring of formal Laurent power series. It is well known that the commutative associative algebra $\mathbb{C}((t))$ with the derivation $d / d t$ naturally becomes a vertex algebra by

$$
Y(f(t), x) g(t)=\left(e^{x \frac{d}{d t}} f(t)\right) g(t)
$$

The tensor product $\widehat{V}=V \otimes \mathbb{C}((t))$ has a structure of vertex algebra, which is given by

$$
Y(a \otimes f(t), x) b \otimes g(t)=Y(a, x) b \otimes\left(e^{x \frac{d}{d t}} f(t)\right) g(t)
$$

for all $a \otimes f(t)(a \in V, f(t) \in \mathbb{C}((t)))$. The translation operator is $D=L_{-1} \otimes$ $\mathrm{id}+\mathrm{id} \otimes(d / d t)$. We set $\mathfrak{g}(V)=\widehat{V} / D \widehat{V}$. Then it is well known that the 0 -th product on \widehat{V} induces a Lie algebra structure on $\mathfrak{g}(V)$. The important point is that any weak V-module becomes a $\mathfrak{g}(V)$-module by

$$
(a \otimes f(t)) u=\operatorname{Res}_{t=0} Y(a, t) f(t) u
$$

Let $A=\{1,2, \ldots, N\}$, and set $\mathfrak{g}(V)_{A}=\bigoplus_{i \in A} \mathfrak{g}(V)_{(i)}$ where $\mathfrak{g}(V)_{(i)}=\mathfrak{g}(V)$ is a copy of $\mathfrak{g}(V)$. We now define a linear map

$$
j_{\bar{\Sigma}}: \bigoplus_{d=0}^{\infty} V(d) \otimes \Gamma\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; \kappa^{1-d}\right) \longrightarrow \mathfrak{g}(V)_{A}
$$

by sending $a \otimes f$ to $\sum_{i \in A} a \otimes f_{i}(t)$ for each $a \in V(d)$ and $f \in \Gamma\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N}\right.$; κ^{1-d}), where $\iota_{z_{i}} f\left(z_{i}\right)=\sum_{n \in \mathbb{Z}} c_{n} z_{i}^{n}$ is the Laurent series expansion of the meromorphic function $f\left(z_{i}\right)$ near Q_{i} given by $f=f\left(z_{i}\right)\left(d z_{i}\right)^{-|a|+1}$, and $f_{i}(t)=\sum_{i \in \mathbb{Z}} c_{i} t^{i} \in \mathbb{C}((t))$. We denote the image of $j_{\bar{\Sigma}}$ by $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$;

$$
\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}=j_{\bar{\Sigma}}\left(\bigoplus_{d=0}^{\infty} V(d) \otimes \Gamma\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; \kappa^{1-d}\right)\right) .
$$

Proposition 3.2 ([21]). If $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} \mathbf{1}$ is a quasi-primary generated vertex operator algebra and $\bar{\Sigma}$ is projective, then $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$ is a Lie subalgebra of the Lie algebra $\mathfrak{g}(V)_{A}$.

Let $\widetilde{\Sigma}=\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; z_{1}, z_{2}, \ldots, z_{N} ; W^{1}, W^{2}, \ldots, W^{N}\right)$ be an N-labeled Riemann surface. We set $W_{A}=\bigotimes_{i \in A} W^{i}$. We denote by $\rho_{Q_{i}}$ the action of $\mathfrak{g}(V)_{i}$ on the i-th component of W_{A}, and set $\rho_{\tilde{\Sigma}}=\bigoplus_{i \in A} \rho_{Q_{i}}$; the Lie algebra $\mathfrak{g}(V)_{\Sigma}$ acts on W_{A}, and so the Lie subalgebra $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$. In other words we have a homomorphism $\rho_{\tilde{\Sigma}}: \mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }} \rightarrow \operatorname{End}\left(W_{A}\right)$.

We now set

$$
\mathcal{Q}(\widetilde{\Sigma})=\rho_{\bar{\Sigma}}\left(j_{\bar{\Sigma}}\left(\bigoplus_{d=0}^{\infty} \mathcal{Q}(V)(d) \otimes \Gamma\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; \kappa^{1-d}\right)\right)\right) \subset \operatorname{End}\left(W_{A}\right) .
$$

An element in $\mathcal{Q}(\widetilde{\Sigma})$ is called a quasi-global vertex operator. If V is quasi-primary generated and $\widetilde{\Sigma}$ is projective, then $\mathcal{Q}(\widetilde{\Sigma})=\rho_{\tilde{\Sigma}}\left(\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}\right)$ is a Lie algebra by Proposition 3.2. For any $a \otimes f$ we often denote $\rho_{\bar{\Sigma}}\left(j_{\bar{\Sigma}}(a \otimes f)\right)$ by $a(f, \widetilde{\Sigma})$ for simplicity.

The vector space W_{A} is a module for the Lie algebra $\mathcal{Q}(\widetilde{\Sigma})$. We denote the space of coinvariants $W_{A} / \mathcal{Q}(\widetilde{\Sigma}) W_{A}$ by $\mathcal{Q} \mathcal{V}(\widetilde{\Sigma})$.

If a is a primary vector, the quasi-global vertex operator $a(f, \widetilde{\Sigma})$ is called a global vertex operator because it satisfies the transformation law as if it were $(1-|a|)$-differentials under coordinate changes. Let $\mathcal{G}(\widetilde{\Sigma})$ be the vector subspace of $\operatorname{End}\left(W_{A}\right)$ spanned by all global vertex operators and quasi-global vertex operators $\omega(f, \widetilde{\Sigma})$ for all meromorphic vector fields $f \in \Gamma\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; \kappa^{-1}\right)$. Then the space of covacua is defined to be $\mathcal{V}(\widetilde{\Sigma})=W_{A} / \mathcal{G}(\widetilde{\Sigma}) W_{A}$. A main ingredient of this paper, the space of vacua or the conformal block associated to the N-labeled Riemann surface $\widetilde{\Sigma}$, is defined to be $\mathcal{V}^{\dagger}(\widetilde{\Sigma})=\operatorname{Hom}_{\mathbb{C}}\left(W_{A} / \mathcal{G}(\widetilde{\Sigma}) W_{A}, \mathbb{C}\right)$.

This definition of the space of covacua or the conformal block is not convenient because in general $\mathcal{G}(\widetilde{\Sigma})$ is not a Lie subalgebra. However, due to the following theorem of Zhu, it suffices for us to consider the Lie algebra $\mathcal{Q}(\widetilde{\Sigma})$.

Theorem 3.3 ([21, Theorem 5.2]). Let $V=\bigoplus_{n=0}^{\infty} V(n)$ be a vertex operator algebra with $V(0)=\mathbb{C} \mathbf{1}$, and $\widetilde{\Sigma}$ a projective N-labeled Riemann surface. Suppose that V is a sum of highest weight modules for the Virasoro algebra. Then $\eta \in\left(W_{A}\right)^{*}$ belongs to $\mathcal{V}^{\dagger}(\widetilde{\Sigma})$ if and only if $\eta\left(\mathcal{Q}(\widetilde{\Sigma}) W_{A}\right)=0$, i.e., there is a natural isomorphism as vector spaces

$$
\mathcal{V}^{\dagger}(\widetilde{\Sigma}) \cong \mathcal{Q} \mathcal{V}(\widetilde{\Sigma})^{*}
$$

where $\mathcal{V}^{\dagger}(\widetilde{\Sigma})$ is identified with the subset $\left\{\eta \in\left(W_{A}\right)^{*} \mid \eta\left(\mathcal{G}(\widetilde{\Sigma}) W_{A}\right)=0\right\}$ of $\left(W_{A}\right)^{*}$.
In Section 4 the filtration on $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$ being introduced here plays a very important role. Let us start with an N-pointed Riemann surface $\bar{\Sigma}=\left(\Sigma ; Q_{1}, Q_{2}, \ldots, Q_{N} ; z_{1}, z_{2}\right.$, $\left.\ldots, z_{N}\right)$. For a given meromorphic differential f on Σ whose poles are located at Q_{1}, Q_{2}, \ldots, Q_{N} with order $a_{1}, a_{2}, \ldots, a_{N}$, we define the order of f by

$$
\operatorname{ord} f=\max \left\{a_{1}, a_{2}, \ldots, a_{N}\right\}
$$

The filtration $\mathcal{F}_{p} \mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}(p \in \mathbb{N})$ on $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$ is defined by

$$
\begin{equation*}
\mathcal{F}_{p} \mathfrak{g}(V)_{\bar{\Sigma}}^{o u t}=\operatorname{span}_{\mathbb{C}}\left\{j_{\bar{\Sigma}}(a \otimes f)| | a \mid-1+\operatorname{ord} f \leq p\right\} \tag{3.2}
\end{equation*}
$$

Then the Lie algebra $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$ becomes a filtered Lie algebra.
We next define a filtration on $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$-module W_{A}. We first recall that any V-module W is a direct sum of V-modules of the form $\bigoplus_{d=0}^{\infty} W\left(\lambda_{i}+d\right)(i \in I)$ with lowest weight λ_{i} such that $\lambda_{i}-\lambda_{j} \notin \mathbb{Z}$ for some index set I. We set $W_{d}=$ $\bigoplus_{i \in I} W\left(\lambda_{i}+d\right)$ so that $W=\bigoplus_{d=0}^{\infty} W_{d}$. The filtration $\mathcal{F}_{p} W_{A}(p \in \mathbb{N})$ on W_{A} is defined by

$$
\mathcal{F}_{p} W_{A}=\bigoplus_{0 \leq d \leq p} W_{A, d}, \quad W_{A, d}=\sum_{d_{1}+\cdots+d_{N}=d} W_{d_{1}}^{1} \otimes \cdots \otimes W_{d_{N}}^{N}
$$

The $\mathfrak{g}(V)_{\Sigma}^{\text {out }}$-module W_{A} becomes a filtered $\mathfrak{g}(V)_{\bar{\Sigma}}^{\text {out }}$-module by this filtration.
Let $\mathcal{F}_{p} \mathcal{Q V}(\widetilde{\Sigma})(p \in \mathbb{N})$ be the induced filtration on $\mathcal{Q V}(\widetilde{\Sigma})$, i.e.,

$$
\mathcal{F}_{p} \mathcal{Q V}(\widetilde{\Sigma}):=s\left(\mathcal{F}_{p} W_{A}\right)=\left(\mathcal{F}_{p} W_{A}+\mathcal{Q}(\widetilde{\Sigma}) W_{A}\right) / \mathcal{Q}(\widetilde{\Sigma}) W_{A},
$$

where s is the natural projection $s: W_{A} \rightarrow \mathcal{Q} \mathcal{V}(\widetilde{\Sigma})$. We have the canonical surjection

$$
\pi: W_{A}=\bigoplus_{p=0}^{\infty} W_{A, p} \longrightarrow \operatorname{gr} \cdot \mathcal{Q} \mathcal{V}(\widetilde{\Sigma}):=\bigoplus_{p=0}^{\infty} \operatorname{gr}_{p} \mathcal{Q} \mathcal{V}(\widetilde{\Sigma})
$$

defined by $\pi(w)=s(w)+\mathcal{F}_{p-1} \mathcal{V}(\widetilde{\Sigma}) \in \operatorname{gr}_{p} \mathcal{V}(\widetilde{\Sigma})$ for $w \in W_{A, p}$, where $\operatorname{gr}_{p} \mathcal{Q} \mathcal{V}(\widetilde{\Sigma}):=$ $\mathcal{F}_{p} \mathcal{Q V}(\widetilde{\Sigma}) / \mathcal{F}_{p-1} \mathcal{Q} \mathcal{V}(\widetilde{\Sigma})$.

4. Finiteness of conformal blocks

We will prove the finiteness of conformal blocks over projective N-labeled Riemann surfaces $\widetilde{\Sigma}: \widetilde{\Sigma}=\left(\Sigma ; Q_{1}, \ldots, Q_{N} ; z_{1}, \ldots, z_{N} ; W^{1}, \ldots, W^{N}\right)$. For a proof we basically follow the argument in [1]; however, we need to remedy difficulties arising from the lack of global meromorphic sections with lower order poles of κ^{1-n} for positive integer n, i.e., Weierstrass gaps, which do not appear in the case of the projective line.

In [1] we explicitly constructed global meromorphic sections of $\kappa^{1-n}(n \geq 1)$ for the canonical bundle κ of the projective line with poles of desired orders at a prescribed point, and are holomorphic elsewhere. By Riemann-Roch theorem for a compact Riemann surface Σ, there exists a global meromorphic section which has a pole at $Q \in \Sigma$, and is holomorphic on $\Sigma \backslash\{Q\}$; however in general the order is large so that we are not able to find such a meromorphic section with lower order poles at Q.

Lemma 4.1. Let Σ be a compact Riemann surface of genus g. We fix a point $Q \in \Sigma$ and a positive integer $n \in \mathbb{Z}_{>0}$.
(1) There exists a nontrivial global meromorphic section f of κ^{1-n} which has a pole at Q and is holomorphic on $\Sigma \backslash\{Q\}$.
(2) Let ν be the order of the pole at Q of the global meromorphic section f in (1). Set $M=\nu+2 g$. Then for any $m \geq M$, there exists a global meromorphic section of κ^{1-n} which has a pole of order m at Q and is holomorphic on $\Sigma \backslash\{Q\}$.

Proof. The assertion (1) is found in [7, Theorem 29.16, page 225] or it is directly proved by using Riemann-Roch theorem. By Weierstrass gap theorem ([2, page 202]), for any $i \in \mathbb{N}$ there exists a meromorphic function h on Σ such that h has a pole of order $i+2 g$ at Q and is holomorphic of $\Sigma \backslash\{Q\}$. Then $h f$ has a pole at Q of order $2 g+\nu+i$.

Let U be a subspace of V, which is linearly spanned by finitely many homogeneous quasi-primary vectors. Let r_{U} be the maximum of the weights of homogeneous vectors of U. Using Lemma 4.1 we can find a positive integer M_{U} such that for any $n \leq r_{U}, m \geq M_{U}$ and $i \in A$, there exists a global meromorphic section over κ^{1-n} which has a pole of order m at Q_{i} and is holomorphic on $\Sigma \backslash\left\{Q_{i}\right\}$.

We denote by $C_{m}(U, W)(m \geq 2)$ the subspace of W which is linearly spanned by $a(-n) w$ for all $a \in U, w \in W$ and $n \geq m$.

Lemma 4.2. Let $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} \mathbf{1}$ be a quasi-primary generated vertex operator algebra. Let U be a subspace of V spanned by finitely many quasiprimary vectors. Then for any $i \in A$ the set $W^{1} \otimes \cdots \otimes C_{M_{U}}\left(U, W^{i}\right) \otimes \cdots \otimes W^{N}$ is in the kernel of the surjective linear map $\pi: W_{A} \rightarrow \mathrm{gr}, \mathcal{Q V}(\widetilde{\Sigma})$. In particular, the map π induces a surjective linear map

$$
\pi: W^{1} / C_{M_{U}}\left(U, W^{1}\right) \otimes \cdots \otimes W^{N} / C_{M_{U}}\left(U, W^{N}\right) \longrightarrow \operatorname{gr} . \mathcal{Q} \mathcal{V}(\widetilde{\Sigma})
$$

Proof. It suffices to show that for a homogeneous $a \in U$

$$
\pi\left(w_{1} \otimes \cdots \otimes a(-m) w_{i} \otimes \cdots \otimes w_{N}\right)=0 \text { for all } w_{i} \in W_{d_{i}}^{i} \text { and } m \geq M_{U}
$$

For any $m \geq M_{U}$, there exists $f \in \Gamma\left(\Sigma ; Q_{i} ; \kappa^{1-|a|}\right)$ whose Laurent series expansion is $\iota_{z_{i}} f=z_{i}^{-m}+\sum_{l>-m} c_{l} z_{i}^{l}$ at Q_{i}. Then we see that

$$
\begin{aligned}
& a(f, \widetilde{\Sigma})\left(w_{1} \otimes \cdots \otimes w_{N}\right) \\
& =w_{1} \otimes \cdots \otimes a(-m) w_{i} \otimes \cdots \otimes w_{N}+\sum_{l>-m} c_{l} w_{1} \otimes \cdots \otimes a(l) w_{i} \otimes \cdots \otimes w_{N} \\
& \quad+\sum_{\substack{j \in A \\
j \neq i}} w_{1} \otimes \cdots \otimes\left(\operatorname{Res}_{z_{j}} Y\left(a, z_{j}\right) \iota_{z_{j}} f\right) w_{j} \otimes \cdots \otimes w_{N} \\
& = \\
& w_{1} \otimes \cdots \otimes a(-m) w_{i} \otimes \cdots \otimes w_{N}+\text { lower weight (degree) terms } \in \mathcal{Q}(\widetilde{\Sigma}) W_{A},
\end{aligned}
$$

where we have used the fact that f is holomorphic at $Q_{j}(j \neq i)$. This implies that

$$
w_{1} \otimes \cdots \otimes a(-m) w_{i} \otimes \cdots \otimes w_{N} \in \mathcal{F}_{\sum d_{i}+|a|+m-2} W_{A}+\mathcal{Q}(\widetilde{\Sigma}) W_{A} .
$$

Since $w_{1} \otimes \cdots \otimes a(-m) w_{i} \otimes \cdots \otimes w_{N} \in W_{A, \sum d_{i}+|a|+m-1}$, this element belongs to the kernel of the map π.

Let U be a graded subspace of V such that $V=U \oplus C_{2}(V)$. Recall that V is linearly spanned by vectors $\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{r}\left(-n_{r}\right) \mathbf{1}\left(\alpha_{i} \in U\right)$ with $n_{1}>\cdots>n_{r}>0$. For any positive integers m and q, we set
$C_{m, q}(W)=\left\{\left(\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{r}\left(-n_{r}\right) \mathbf{1}\right)(-p) w \mid m \geq n_{1}>\cdots>n_{r}>0, \alpha_{i} \in U, p \geq q\right\}$.

Lemma 4.3. Let m, q be positive integers. Then $C_{q}(W) \subset C_{m, q}(W)+C_{m}(U, W)$.
Proof. By Proposition 2.2 it suffices to show that for any $\alpha_{i} \in U$ and $n_{1}>\cdots>$ $n_{r}>0$

$$
\begin{equation*}
\left(\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{r}\left(-n_{r}\right) \mathbf{1}\right)(-p) w \in C_{m, q}(W)+C_{m}(U, W) \tag{4.1}
\end{equation*}
$$

for all $p \geq q$; we can assume that $n_{1}>m$ by definition of $C_{m, q}(W)$.
We now see that

$$
(\alpha(-n) \mathbf{1})(-p) w=(-1)^{p-1}\binom{-n}{p-1} \alpha(-n-p+1) w \in C_{m}(U, W) \text { for all } \alpha \in U
$$

This proves the case $r=1$. Suppose that (4.1) holds for any $r<r_{0}$ for some $r_{0} \geq 2$. We set $\beta=\alpha_{2}\left(-n_{2}\right) \cdots \alpha_{r_{0}}\left(-n_{r_{0}}\right) \mathbf{1}$, and use the associativity formula (1.2) to get

$$
\begin{aligned}
& \left(\alpha_{1}\left(-n_{1}\right) \beta\right)(-p) w \\
= & \sum_{i=0}^{\infty}\binom{-n_{1}}{i}(-1)^{i}\left(\alpha_{1}\left(-n_{1}-i\right) \beta(-p+i) w-(-1)^{n_{1}} \beta\left(-n_{1}-p-i\right) \alpha_{1}(i) w\right) .
\end{aligned}
$$

Then the first and the second terms of the right hand side belong to $C_{m}(U, V)$ and $C_{m, q}(W)+C_{m}(U, W)$, respectively, where we have used inductive hypothesis to the second term.

Lemma 4.4. Let m be a positive integer. For any $a \in V(|a| \geq 1)$ and $w \in W$ we have $a(-q) w \in C_{m}(U, W)$ for all q such that $q \geq m|a|$.

Proof. If $|a|=1$ then $a \in U$ because $V(1) \cap C_{2}(V)=\{0\}$. Hence $a(-q) w \in$ $C_{m}(U, W)$ for any $q \geq m(=|a| m)$. Suppose that $|a|>1$. If $a \in U$ then $a(-q) w \in$ $C_{m}(U, W)$ for any $q \geq|a| m(>m)$. We can now assume that $a \in C_{2}(V)$. Suppose that $(0 \neq) a=b^{\prime}(-2) c$ for some b^{\prime} and c. Then $a=\left(L_{-1} b^{\prime}\right)(-1) c=b(-1) c$ and $1 \leq|b| \leq|a|,|c|<|a|$.

By the associativity formula we have

$$
a(-q) w=(b(-1) c)(-q) w=\sum_{i=0}^{\infty}(b(-1-i) c(-q+i) w+c(-1-q-i) b(i) w)
$$

for any $q \in \mathbb{Z}$. Since $q \geq|a| m>|c| m$, using inductive hypothesis to the element c, we see that $c(-1-q-i) b(i) w \in C_{m}(U, W)$ for $i \geq 0$. We will show that $b(-1-i) \times$ $c(-q+i) w \in C_{m}(U, W)$ for any $q \geq|a| m$ and $i \geq 0$. If $i \geq|b| m$ then $b(-1-i) \times$ $c(-q+i) w \in C_{m}(U, W)$ for any $q \in \mathbb{Z}$ by inductive hypothesis. Otherwise, i.e., $i<$
$|b| m$, recall the commutator formula

$$
b(-1-i) c(-q+i) w=c(-q+i) b(-1-i) w+\sum_{j=0}^{\infty}\binom{-1-i}{j}(b(j) c)(-1-q-j) w
$$

Now since $q-i \geq|a| m-|b| m+1=(|a|-|b|) m+1=|c| m+1>|c| m$, using inductive hypothesis we see that the first term $c(-q+i) b(-1-i) w$ belongs to $C_{m}(U, W)$. Finally since $|a|>|b(j) c|$ for any $j \geq 0$, inductive hypothesis shows that $(b(j) c)(-1-q-j) \times$ $w \in C_{m}(U, W)$.

Proposition 4.5. Let $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} 1$ be a C_{2}-finite vertex operator algebra, and U be a finite dimensional graded subspace of V such that $V=U \oplus$ $C_{2}(V)$. Let m be a positive integer. Then there exists a positive integer k such that $C_{k}(W) \subset C_{m}(U, W)$.

Proof. By Lemma 4.3 we know that $C_{k}(W) \subset C_{m, k}(W)+C_{m}(U, W)$ for any positive integer k. Then it suffices to show that there exists a positive integer k such that $C_{m, k}(W) \subset C_{m}(U, W)$. Let s_{U} be the maximum of the weights of homogeneous elements in U. For any $\alpha_{i} \in U(1 \leq i \leq r)$ and $m \geq n_{1}>\cdots>n_{r}>0$ we see that

$$
\begin{aligned}
\left|\alpha_{1}\left(-n_{1}\right) \cdots \alpha_{r}\left(-n_{r}\right) \mathbf{1}\right| & =\sum_{i=1}^{r}\left(\left|\alpha_{i}\right|-1\right)+\sum_{i=1}^{r} n_{i} \\
& \leq r\left(s_{U}-1\right)+\sum_{i=1}^{r}(m-i+1)=-\frac{1}{2} r^{2}+r\left(s_{U}+m-\frac{1}{2}\right),
\end{aligned}
$$

which is bounded from above by some positive integer $k_{0} \geq\left(s_{U}+m-1 / 2\right)^{2} / 2$. We note that the constant k_{0} depends only on m and U. Setting $k=k_{0} m$ we get $C_{m, k}(W) \subset C_{m}(U, W)$ by Lemma 4.4 because any element in $C_{m, k}(W)$ is a linear combination of $a(-p) w$ for $|a| \leq k_{0}, w \in W$ and $p \geq k(\geq m|a|)$.

Proposition 4.6. Let $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} 1$ be a C_{2}-finite vertex operator algebra and W a weak V-module. If the module W is B_{1}-finite then $W / C_{m}(U, W)$ is finite-dimensional for any $m>0$.

Proof. By Proposition 4.5 there exists a positive integer k such that $C_{k}(W) \subset$ $C_{m}(U, W)$. Since V is C_{2}-finite and W is B_{1}-finite, W is C_{k}-finite by Theorem 2.6. Thus $W / C_{k}(W)$ is finite-dimensional, and so is $W / C_{m}(U, W)$.

Theorem 4.7. Let $V=\bigoplus_{n=0}^{\infty} V(n), V(0)=\mathbb{C} 1$ be a quasi-primary generated, C_{2}-finite vertex operator algebra such that V is a sum of highest weight modules for the Virasoro algebra, and let $\widetilde{\Sigma}=\left(\Sigma ; Q_{1}, \ldots, Q_{N} ; z_{1}, \ldots, z_{N} ; W^{1}, \ldots, W^{N}\right)$ be a
projective N-labeled Riemann surface. If all V-modules $W^{i}(i \in A)$ are B_{1}-finite, then the conformal block $\mathcal{V}^{\dagger}(\widetilde{\Sigma})$ is finite-dimensional.

Proof. Let U be a finite-dimensional graded subspace of V such that $V=U \oplus$ $C_{2}(V)$. Since V is quasi-primary generated any vectors from U are linear combinations of $L_{-1}^{i} a$ for some $i \in \mathbb{N}$ and quasi-primary vectors a. Then we can further assume that any elements of U are quasi-primary because $L_{-1} a=a(-2) \mathbf{1} \in C_{2}(V)$ for any $a \in V$.

By Theorem 3.3 it suffices to prove that $\mathcal{Q} \mathcal{V}(\widetilde{\Sigma})$ is finite-dimensional. We set $M=$ $M_{U}>0$. The constant M_{U} is defined in the paragraph just before Lemma 4.2; recall that in order to define M_{U} we assume that U is linearly spanned by quasi-primary vectors. By Proposition $4.6 W^{i} / C_{M}\left(U, W^{i}\right)$ is finite-dimensional for any $i \in A$. Thus Lemma 4.2 shows that gr. $\mathcal{Q V}(\widetilde{\Sigma})$ is finite-dimensional and so is $\mathcal{Q V}(\widetilde{\Sigma})$.

5. Examples

We present several examples of C_{2}-finite vertex operator algebras; affine vertex operator algebras (with positive integral level k), Virasoro vertex operator algebras (with minimal central charge $c_{p, q}$) and lattice vertex operator algebras. We will prove that all irreducible modules for these vertex operator algebras are B_{1}-finite. Then we see that those modules are all C_{2}-finite by Theorem 2.6. In fact C_{2}-finiteness for irreducible modules for affine and Virasoro vertex operator algebra is well known (cf. [5] for affine case, and [9] for Virasoro case). The C_{2}-finiteness for irreducible modules for lattice vertex operator algebras seems to be known, though we are not able to find any published material so far.

In order to prove the B_{1}-finiteness in the Virasoro case we follow the same argument being used in the proof of C_{2}-finiteness, however, we will see that verifying B_{1}-finiteness is much easier than C_{2}-finiteness.

Example 5.1 (Affine vertex operator algebras). Let $\hat{\mathfrak{g}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{g} \oplus \mathbb{C} c \oplus \mathbb{C} d$ be an affine Lie algebra where \mathfrak{g} is a finite-dimensional simple Lie algebra. We denote by $\left\{\Lambda_{0}, \ldots, \Lambda_{n}\right\}$ the set of fundamental weights for $\hat{\mathfrak{g}}$, and by P_{+}^{k} the set of all level k dominant integral weights. We denote the irreducible highest weight module of $\hat{\mathfrak{g}}$ with highest weight Λ by $L(\Lambda)$. It is known that if $k \neq-h^{\vee}, 0$ where h^{\vee} is the dual Coxeter number of $\hat{\mathfrak{g}}$, then $L_{k}=L\left(k \Lambda_{0}\right)$ is a vertex operator algebra. Moreover, if k is a positive integer any irreducible L_{k}-module is realized as an irreducible $\hat{\mathfrak{g}}$-module $L(\Lambda)$ for some $\Lambda \in P_{+}^{k}$ (see [12]). The C_{2}-finiteness of L_{k} is known ([20], [5]).

We now prove the B_{1}-finiteness of irreducible L_{k}-modules. Since $L(\Lambda)$ is linearly spanned by vectors $a_{1}\left(-n_{1}\right) \cdots a_{r}\left(-n_{r}\right) v$ with $n_{i}>0, a_{i} \in L_{k}(1)(\cong \mathfrak{g})$ and $v \in V_{\Lambda}$, where V_{Λ} is the irreducible highest weight module for \mathfrak{g} with the highest weight $\bar{\Lambda}$ and highest weight vector $v_{\bar{\Lambda}}$, where $\bar{\Lambda}$ is the classical part of Λ. We now see that $L(\Lambda)=V_{\Lambda}+B_{1}(L(\Lambda))$, and that $L(\Lambda)$ is B_{1}-finite because V_{Λ} is finite-dimensional.

Example 5.2 (Lattice vertex operator algebras). Let L be an even lattice of finite rank with a positive definite symmetric \mathbb{Z}-bilinear form $\langle\cdot \mid \cdot\rangle$. We set $\mathfrak{h}=\mathbb{C} \otimes_{\mathbb{Z}} L$ and $\hat{\mathfrak{h}}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathbb{C} \mathfrak{h} \oplus \mathbb{C} K$; the latter is the affinization of the abelian Lie algebra \mathfrak{h}. Let L° be the dual lattice of L, and $\mathbb{C}\left[L^{\circ}\right]=\bigoplus_{\beta \in L^{\circ}} \mathbb{C} e_{\beta}$ be the twisted group algebra of L° with some cocycle which represents a central extension of L°. For any subset M of L° we write $\mathbb{C}[M]=\bigoplus_{\beta \in M} \mathbb{C} e_{\beta}$, and set $V_{M}=U\left(\hat{\mathfrak{h}}^{-}\right) \otimes \mathbb{C}[M]$ where $\hat{\mathfrak{h}}^{-}=$ $t^{-1} \mathbb{C}\left[t^{-1}\right] \otimes_{\mathbb{C}} \mathfrak{h}$ is a Lie subalgebra of $\hat{\mathfrak{h}}$. We note that the Lie algebra $\hat{\mathfrak{h}}$ canonically acts on V_{M}. Then it is known that V_{L} is a vertex operator algebra, and that $V_{\lambda+L}$ for $\lambda \in L^{\circ}$ give all irreducible V_{L}-modules (see [11]). The vertex operator associated to $e_{\alpha}(\alpha \in L)$ is

$$
Y\left(e_{\alpha}, x\right)=\exp \left(\sum_{n=1}^{\infty} \frac{\alpha(-n)}{n} x^{n}\right) \exp \left(-\sum_{n=1}^{\infty} \frac{\alpha(n)}{n} x^{-n}\right) e_{\alpha} x^{\alpha(0)}, \quad \alpha(n)=t^{n} \otimes \alpha
$$

where e_{α} acts on $\mathbb{C}\left[L^{\circ}\right]$ by the left multiplication, and the action of $x^{\alpha(0)}$ on $V_{L^{\circ}}$ is defined by $x^{\alpha(0)}\left(u \otimes e_{\mu}\right)=x^{\langle\alpha \mid \mu\rangle}\left(u \otimes e_{\mu}\right)$ for all $\mu \in L^{\circ}$ and $u \in U\left(\hat{\mathfrak{h}}^{-}\right)$.

We now prove that for any $\lambda \in L^{\circ}$ the irreducible V_{L}-module $V_{\lambda+L}$ is B_{1}-finite. We set $\Gamma_{\lambda}=\{\beta \in L \mid\langle\beta-\alpha \mid \alpha+\lambda\rangle<0$ for any $\alpha \in L$ such that $\alpha \neq \beta,-\lambda\}$. The following lemma is due to H. Shimakura.

Lemma 5.3. Let $\lambda \in L^{\circ}$. Then Γ_{λ} is a finite set.
Proof. Let ϕ be the translation map on L° defined by $\phi(\gamma)=\gamma+\lambda$. We see that $\Gamma_{\lambda}=\{\beta \in L \mid\langle\delta \mid \beta+\lambda-\delta\rangle<0$ for any $\delta \in L$ such that $\delta \neq 0, \lambda+\beta\}$, and that

$$
\phi\left(\Gamma_{\lambda}\right)=\{\gamma \in \lambda+L \mid\langle\delta \mid \gamma-\delta\rangle<0 \text { for any } \delta \in L \text { such that } \delta \neq 0, \gamma\}
$$

Let $\alpha_{1}, \ldots, \alpha_{l}$ be a basis of L, and let $\Lambda_{1}, \ldots, \Lambda_{l}$ be the basis of L° such that $\left\langle\Lambda_{i} \mid \alpha_{j}\right\rangle=\delta_{i j}$. Let $\gamma \in \phi\left(\Gamma_{\lambda}\right)$ and $\gamma \neq \pm \alpha_{i}(1 \leq i \leq l)$. By the definition of $\phi\left(\Gamma_{\lambda}\right)$ we have $\left\langle\gamma-\left(\pm \alpha_{i}\right) \mid \pm \alpha_{i}\right\rangle<0(i=1, \ldots, l)$, and we see that $\gamma \in\left\{\sum_{i=1}^{l} m_{i} \Lambda_{i} \mid\right.$ $m_{i} \in \mathbb{Z}$ and $\left|m_{i}\right| \leq\left\langle\alpha_{i} \mid \alpha_{i}\right\rangle$ for any $\left.i\right\}$. Therefore, $\phi\left(\Gamma_{\lambda}\right)$ is a finite set, and so is Γ_{λ}.

We see that $V_{\lambda+L}=\sum_{\alpha \in L} \mathbb{C} e_{\lambda+\alpha}+B_{1}\left(V_{\lambda+L}\right)$, and for any $\alpha, \beta \in L$ we have $e_{\beta-\alpha}(-\langle\beta-\alpha \mid \lambda+\alpha\rangle-1) e_{\lambda+\alpha}= \pm e_{\lambda+\beta}$. Hence we find that $V_{\lambda+L}=\sum_{\alpha \in \Gamma_{\lambda}} \mathbb{C} e_{\lambda+\alpha}+$ $B_{1}\left(V_{\lambda+L}\right)$. Then Lemma 5.3 shows that $V_{\lambda+L}$ is B_{1}-finite.

Example 5.4 (The Virasoro vertex operator algebras). Let Vir $=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} L_{n} \oplus \mathbb{C} C$ be the Virasoro algebra. Let $M(c, h)$ be the Verma module for the Virasoro algebra with a highest weight $h \in \mathbb{C}$ and central charge $c \in \mathbb{C}$. We denote by $v_{h, c}$ the highest weight vector, i.e., $v_{h, c}$ satisfies $L_{n} v_{h, c}=\delta_{n, 0} h v_{h, c}(n \geq 0)$ and $C v_{h, c}=c v_{h, c}$. The Verma module $M(c, h)$ is a rank one free $U\left(\mathcal{V i r}^{-}\right)$-module with the generator $v_{h, c}$
where \mathcal{V} ir $r^{-}=\bigoplus_{n \in \mathbb{Z}_{>0}} \mathbb{C} L_{-n}$. Let $L(c, h)$ be the irreducible quotient of $M(c, h)$. Then it is known that $L(c, 0)$ is a vertex operator algebra.

Let p, q be coprime positive integers. We set $c_{p, q}=1-6(p-q)^{2} / p q$. For any integers r and s such that $1 \leq r<q, 1 \leq s<p$ we denote $h_{p, q ;, s}=$ $\left((r p-s q)^{2}-(p-q)^{2}\right) / 4 p q$. Then any irreducible $L\left(c_{p, q}, 0\right)$-module is isomorphic to $L\left(c_{p, q}, h_{p, q ;, s}\right)$. We prove:

Proposition 5.5. $L\left(c_{p, q}, 0\right)$ is C_{2}-finite and any irreducible $L\left(c_{p, q}, 0\right)$-module $L\left(c_{p, q}, h_{p, q r, s}\right)$ is B_{1}-finite.

In order to prove the proposition we recall several properties of singular vectors v in $M\left(c_{p, q}, h_{p, q ;, s}\right)$, i.e., $L_{n} v=v$ for $n>0$. It is known that for any positive integers r and s satisfying $1 \leq r<q$ and $1 \leq s<p$ there exists a unique singular vector $u_{r, s} \in M\left(c_{p, q}, h_{p, q ; r, s}\right)$ such that $L_{0} u_{r, s}=\left(h_{p, q ; r, s}+r s\right) u_{r, s}$ up to scalar multiples. The explicit form of the singular vector is not known, but we have a partial formula which expresses this singular vector as explained below.

Let us fix central charge $c=c_{p, q}$ and highest weight $h=h_{p, q ; r, s}$. We set $\mathcal{V}_{i r} \leq-3=$ $\bigoplus_{n \geq 3} \mathbb{C} L_{-n}$. The set \mathcal{V} ir S $^{\leq-3}$ is a Lie subalgebra of \mathcal{V} ir. We define a linear isomorphism $\phi: \mathbb{C}[x, y] \rightarrow M(c, h) / \mathcal{V} i r{ }^{\leq-3} M(c, h)$ by

$$
x^{i} y^{j} \longmapsto L_{-2}^{j} L_{-1}^{i} v_{h_{r, s}, c}+\mathcal{V}_{i r} r^{\leq-3} M(c, h) .
$$

Let $f: M(c, h) \rightarrow M(c, h) / \mathcal{V} r^{\leq-3} M(c, h)$ be the canonical projection. We define $\pi=$ $\phi^{-1} \circ f$. The following proposition is proved in [8]:

Proposition 5.6. Let $c=c_{p, q}$ and $h=h_{p, q ; r, s .}$ Let $u_{r, s} \in M(c, h)$ be the singular vector such that $L_{0} u_{r, s}=(h+r s) u_{r, s}$. Then $\pi\left(u_{r, s}\right)=\alpha F_{r, s}(x, y ; p / q)$ for some nonzero constant α, where $F_{r, s}(x, y ; t)$ is a polynomial of $\mathbb{C}\left[x, y, t, t^{-1}\right]$ given by

$$
F_{r, s}(x, y ; t)^{2}=\prod_{k=0}^{r-1} \prod_{l=0}^{s-1}\left(x^{2}-\left\{(r-2 k-1) t^{1 / 2}-(s-2 l-1) t^{-1 / 2}\right\}^{2} y\right)
$$

We now can prove Proposition 5.5.
Proof of Proposition 2.2. The canonical projection $\psi: M(c, h) \rightarrow L(c, h)$ maps the subspace $\mathcal{V}_{\text {ir }} \leq-3 M(c, h)$ into $C_{2}(L(c, h))$. Any singular vectors in $M(c, h)$ are in the kernel of this map. We note that $h_{p, q ; r, s}=h_{p, q ; q-r, p-s}$, in particular, there exists a singular vector $u_{q-r, p-s}$ such that $L_{0} u_{q-r, p-s}=(h+(p-s)(q-r)) u_{q-r, p-s}$. We see that the composition of ϕ and ψ induces a surjective linear map

$$
\begin{equation*}
\psi: \mathbb{C}[x, y] /\left(F_{r, s}(x, y ; p / q), F_{q-r, p-s}(x, y ; p / q)\right) \longrightarrow L(c, h) / C_{2}(L(c, h)) . \tag{5.1}
\end{equation*}
$$

First we find that $F_{1,1}(x, y ; p / q)=x$ and $F_{q-1, p-1}(x, y ; p / q) \equiv \alpha^{\prime} y^{(p-1)(q-1) / 2}$
$\bmod (x)$ for some nonzero $\alpha^{\prime} \in \mathbb{C}$. Thus $\mathbb{C}[x, y] /\left(F_{1,1}(x, y ; p / q), F_{q-1, p-1}(x, y ; p / q)\right)$ is finite-dimensional. So $L(c, 0)$ is C_{2}-finite.

Finally we prove that any irreducible module $L(c, h)$ is B_{1}-finite. We find that the surjective map (5.1) induces a surjective map

$$
\mathbb{C}[x, y] /\left(y, F_{r, s}(x, y ; p / q), F_{q-r, p-s}(x, y ; p / q)\right) \rightarrow L(c, h) / B_{1}(L(c, h))
$$

Since

$$
\mathbb{C}[x, y] /\left(y, F_{r, s}(x, y ; p / q), F_{q-r, p-s}(x, y ; p / q)\right) \cong \mathbb{C}[x] /\left(x^{r s}, x^{(q-r)(p-s)}\right)
$$

is finite-dimensional we see that $L(c, h)$ is B_{1}-finite for any $1 \leq r<q$ and $1 \leq s<p$.

References

[1] T. Abe and K. Nagatomo: Finiteness of conformal blocks over the projective line, to appear in Fields Institute Communications.
[2] L. Bers: Riemann Surfaces, Courant Institute of Mathematical Sciences, New York University, 1958.
[3] G. Buhl: A spanning set for VOA modules, math. J. Algebra 254 (2002), 125-151.
[4] A. Belavin, A. Polyakov and A.B. Zamolodchikov: Infinite conformal symmetries in twodimensional quantum field theory, Nucl. Phys. B241 (1984), 333-380.
[5] C. Dong, H. Li and G. Mason: Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), 1-56.
[6] C. Dong, Z. Lin and G. Mason: On vertex operator algebra as $s l_{2}$-modules, in Groups, Difference Sets, and the Monster, K.T. Arasu et al. editors, Walter de Gruyter, Berlin, New York, 1996.
[7] O. Forster: Lectures on Riemann Surfaces, Graduate Texts in Mathematics 81 Springer-Verlag New York, 1981.
[8] B. Feigin and D. Fuchs: Verma modules over the Virasoro algebra, Lecture Notes in Math., 1060 (1984), 230-245.
[9] B. Feigin and D. Fuchs: Cohomology of some nilpotent subalgebras of the Virasoro and KacMoody Lie algebras, J. Geom. Phys. 5 (1988), 209-235.
[10] I. Frenkel, Y.-Z. Huang and J. Lepowsky: On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993).
[11] I. Frenkel, J. Lepowsky and A. Meurman: Vertex Operator Algebras and the Monster, Pure and Appl. Math. 134, Academic Press, Boston, 1988.
[12] I. Frenkel and Y.-C. Zhu: Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.
[13] M.R. Gaberdiel and A. Neitzke: Rationality, quasirationality and finite W-algebras, hepth/0009235v2.
[14] R.C. Gunning: Lectures on Riemann surfaces, Princeton University Press, Princeton, NJ, 1996.
[15] V. Kac: Vertex algebra for beginners, Second Edition, University LECTURE series $\mathbf{1 0}$ AMS, 1998.
[16] M. Karel and H.-S. Li: Certain generating subspaces for vertex operator algebras, J. Algebra 217 (1999), 393-421.
[17] H.-S. Li: Some finiteness properties of regular vertex operator algebras, J. Algebra 212 (1999), 495-514.
[18] A. Matsuo and K. Nagatomo: Axioms for a Vertex Algebra and the Locality of Quantum Fields, MSJ Memoirs, Mathematical Society of Japan (1999).
[19] A. Tsuchiya, K. Ueno and Y. Yamada: Conformal field theory on universal family of stable curves with gauge symmetries, in Integrable Systems in Quantum Field Theory and Statistical Mechanics, Advanced Studies on Pure Math. 19 Academic Press, Boston, (1989), 459-566.
[20] Y.-C. Zhu: Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.
[21] Y.-C. Zhu: Global vertex operators on Riemann surfaces, Commun. Math. Phys. 165 (1994), 485-531.

Toshiyuki Abe
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology Osaka University
Toyonaka, Osaka 560-0043, Japan
Current address:
Graduate School of Mathematical Sciences
University of Tokyo
Komaba 3-8-1, Tokyo, 153-8914, Japan
e-mail: abe@ms.u-tokyo.ac.jp
Kiyokazu Nagatomo
Department of Pure and Applied Mathematics
Graduate School of Information Science and Technology Osaka University
Toyonaka, Osaka 560-0043, Japan
e-mail: nagatomo@math.sci.osaka-u.ac.jp

[^0]: ${ }^{1}$ Supported by JSPS Research Fellowships for Young Scientists.
 ${ }^{2}$ Supported in part by Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

