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1. Introduction

Let gcd, y) denote the greatest common divisor of integers  andefine
functions X andSy orZ? by

1 if gedkx,y)=1
@ Xlr ) = { 0, if gedgx,y)> 1,
1 N
@ Su(x,y) =45 D Xx+m,y+m'), NeN.
m,m’=1

The following number-theoretic limit theorem is due to Dhiet [4] (cf. [6, Theo-
rem 332]):

(3) lim SN(x,y):%, (-xvy)EZZ‘
N—o0 i

Regarding (3) as a law of large numbers (LLN for short), it &unal to ask if a cen-
tral limit theorem (CLT for short) holds foX . That is, for $afently large N , is the
scaled function

4 Yy(x,y) =N (SN(X’ y) — %)

approximately normally “distributed”? Here we consideristdbution” of Yy, at the
suggestion of [2], [5] and [9], as follows: If the limit

M
1
5 lim — ex( —1tY m,m'), t € R,
5) Jim 3 exp(V=Le Yy nom')
m,m’=1
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A

0

Fig. 1. The “distributions” ofY210 (left) and Y»11 (right).

0

Fig. 2. The “distribution” ofY2311.

exists and it coincides with the characteristic functionsofe probability distribution
on R, then we call it the “distribution” ofYy .

In order to sketch the “distribution” ofy , we made some numEriexperiments
to compute the relative frequency distribution X3 x, ¢ ) by pickrandom 16 sam-
ples of ,y) from a big squard0, 1,..., M = 231 — 1}2 c Z2. (In this numerical
experiment, we used the pseudo-random number generatooged by [20].)

For eachN , a “distribution” surely appears, however it siyadepends o . For
example, the left picture of Fig. 1 shows the “distributionf’ Y210, which looks like a
Gaussian distribution (the variance is approximately & 26~2%), but if we increaseV
by 1, that is,N = 211, then the “distribution” becomes as fHated by the right pic-
ture of Fig. 1, which is far from Gaussian (the variance isragimately 1 23x 1071).
Thus, the “distribution” ofYy does not converge by simplyilggt N — oco. On the
other hand, we can find very close “distributions”. For exlmpms we see in Fig. 2,
the “distribution” of Y311 (the variance is approximately. 1 2110~1) is very close to
that of Yo11.

Then, our aim of this paper is to give a complete descriptibthis mysterious
behavior ofYy whenV — oc.

To this end, we discovered that the formulation by meanshefring of finite in-
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tegral adelesZ (see Definition 1 below), which is a well-known compactifioatof Z
in number theory, is indispensable.

SinceZ is a compact group with respect to addition, there exists igugnnor-
malized Haar measura on Z. We first extendX Sy and’y to random variables
on the probability spaceZ{Z, \?) (Definitions 2 and 3). Of course, the distributions of
those extended random variables coincide with the “distioins” of the original func-
tions onZ? in the sense of (5) (Theorem 1), respectively. This extensiakes indi-
rect probabilistic discussions, such as (3) and (5), intd aad straightforward proba-
bilistic ones, and hence it enables us to use all tools peavioly probability theory.

In Theorem 4, we formulate Dirichlet’s theorem (3) in thiarfrework as a rigor-
ous strong LLN. By this result, it becomes clear that (3) ist ja cross-section of the
LLN intersected withZ? (cf. [12]).

Next, we study the limit behavior ofy , our main target. To ni@mtour main
result, Theorem 6, we must introduce a quotient @}gv of Z. Z/~ can be said as
the ring obtained by completing by a metric

~ > 1
(6) d(x, y) = Z El{x?_ﬁy(modp,-)}a X, y€ Za
i=1

where {p;}?2, is the sequence of all prime numbers in the increasing o(ffer. the
precise definition ofi/N as a quotient ring, see Definition 5.) We then describe com-
pletely the set of all limit points of Yy }3%, in L2(Z2, \?) by parametrizing them con-
tinuously in terms of elements cﬁ/~ (Theorem 6). Thus, the notion of adeles is es-
sentially needed in this theorem.

According to Theorem 6, the phenomena seen in Fig. 1 and FageZxplained
in the following way: Since 210 and 211 are far away from eattteoin the metric of
Z/~, the corresponding distributions are quite different, ba bther hand, since 211
and 2311 are close to each other in the metri(i;bfv, the corresponding distributions
look very similar. Indeed, we have

210=2-3-5-7 = p1p2papa
211=2-3-5-7+1=pipopapa+1,
2311=2-3-5-7-11+ 1 =pipop3paps+1,

SO thatﬁ(ZlQ 211) = 1, which is equal to the diameter%fw, while 3(21], 2311) =
Y1 L211£2311 (modp, 3271 = Does 2 = 274

Furthermore, according to Theorem 6 and Theorem 7 (IlNib N, # 0 and
Ny — 0in Z/~, thenYy, converges to 0 il%(Z2, A2). This explains thafzyo has a
very small variance, since 210 is close to Oilyiw (ﬁ(ZlQ 0)=2%.

Remark 1. We here give a couple of philological notes: The function, y) de-
fined by (1) is one of the instances from the class of two-tdeianultiplicative func-
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tions introduced by [3], in which Dirichlet’s theorem (3) sv@resented as one of the
consequences of a general mean value theorem for the fosctib that class. The
method of compactification o¥. for the investigation of the mean value or distribu-
tion problems of arithmetic functions was initiated by [18hd it has been studied by
several papers and books, such as [7, 10, 11, 12, 14, 18].

We would like to thank the referee for letting us know thesknences.

2. Basic notions and summary of theorems

Let us introduce our basic framework and the theorems addain this paper.
Proofs will be given later.
For a primep , thep -adic metrid, is defined by

dp(x,y) =inf {p™; p" [x —y)}, x, yeZ

The completion ofZ by d, is denoted byZ,. By extending the algebraic operations
‘+" and ‘x’ in Z continuously to those iiZ,, the compact metric spac&(, d,) be-
comes a ring, called the ring gf -adic integers. In particu{@,, d,) is a compact
abelian group with respect to ‘+'. According to the genetedry of compact groups
(for instance, [17, Theorem 5.14]), there is a unique nomadl Haar measurg ,with
respect to ‘+' on the measurable spa@,.(B(Z,)), where B(Z,) denotes the Borel
field of Z,.

Derinmion 1. (i) Let {pi}2, 2 = p1 < p2 < --- , be the sequence of all
primes.
(i) Put

z=12n. r=]]*-
i=1 i=1
Forx = (x;),y = (v )€ Z, we define
. - 1 . .
d(x,y) = Z > (xi, yi)s x+ty =ty xy = (xiyi).
i=1

By these definitionsZ becomes a ring, callethe ring of finite integral adeles(i, d)
is again a compact metric space, and both ‘+’ and are continuous. In particular,
(Z,d) is a compact abelian group with respect to ‘+' and its noieal Haar measure
is nothing butA.

In the modern number theorgdelesare treated in much more abstract way than
they are presented here. For details, see [8, Chapter bi.Z; and Z, [21, Chap-
ter 9] is a good reference.
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RemARk 2. Throughout the present papep, is always a prime. For the sa
of simple notations, we often writ§:p f(p) or H,, f(p) instead of >, f(p:) or

[1;5, £ (pi), respectivelyy" _ f(p) meansy i, f(p:), etc.

DeriNniTion 2. (i) We identify Z with the diagonal sef{(n,n,...) € Z x Z X
(i) For Nom >2 andk € {0,1,...,m — 1}, we definemZ +k := {mx +k; x € Z}.
Then we haveZ = UZ’:Bl(mZ + k), which is a disjoint union (Lemma 3 (iii) in Sec-

Al

tion 3). So, forx € Z andN > m > 2, there exists a unique € {0, 1,...,m — 1}

such thatxr — k € mZ. This k is denoted by« moa . Forn = 1, we always set
x modm := 0. Obviously, ifx € Z, this definition coincides with the usual modulo
operation.

(iii) For x, y € Z, we define

@) gedi, y):=sugm € N; (x modm ) =(y modn ) =0.

Obviously, forx ,y € Z, this definition coincides with the usual gcd.
Remark 3. It is easy to see that(Z) = 0.

Derinimion 3. We define random variable§ Sy aig @A by

_J1 ifgedk,y)=1
X(’W)"{o if ged(e, y)> 1,
1 N
Sn(x,y) :=m X(x+m,y+n), N €N,
m,n=1

6
Yn(x,y) =N (SN(x, y) — F) , NeN.

Obviously, forx ,y € Z, these definitions coincide with the original functions, ((3)
and (4).

As is naturally expected, the distributions ®f Sy  ard coircidth the “dis-
tributions” of the original functions oiZ? in the sense of (5), respectively. Namely, we

have:

Theorem 1 (Section 6). Let U = X, = Sy or = Yy. Then for eachr € R, it
holds that

6) M@n@% zM: exp(\/—_ltU(m,m’)) =gV [exp(\/—_ltU(x,y))] .
m,m’=1
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Here (and hereaftey EY stands for the expectation with respect Xt

In other words, although\?(Z?) = 0 (Remark 3), the distributions ok Sy
and Yy , which are realized orZ¢, \?), can be seen by observing their behaviors on a
large squarg(0, 1,..., M — 1} C 7Z2.

Theorem 2 (Section 3). It holds thatEX'[X] = 6/x2.

Let {S(n); (m, n) € Z2} be the shift transformations o3, B(Z2), \?) defined
by
s 72 5 (x,y)— (x+m,y+n)e 72
Then Z(m,n) is 6(22)_measurab|ez(0<0) - |dent|ty, E(nun) ° 2(/"’."}) — 2(/11+n1”n+n,/), and

it preserves\?, i.e.,

A2 (2<'"~">*1(r)) =)2T), W(m.n) € 72, VT € B(Z2).
Theorem 3 (Section 4). {0 ; (m, n) € Z?} is ergodic.

Theorem 2 and Theorem 3 imply an LLN fof x,(y ), Theorem 4 belowjcivh
is a natural probability-theoretic extension of Dirictdetheorem (3).

Theorem 4. For M\-a.e.(x, y) € Z2, we have

6

©) Jm_Sy(ey) =EV[X]= .

In contrast to Dirichlet’s limit theorem (3), there are egtienal points £, y )e 72
for which (9) does not hold (Remark 7 in Section 4).

DeriniTion 4 (Frequently used arithmetic functions). () Let N — {-1,0, 1}
be the Mobius function, i.e.,

17 (n = 1)7
w(n) =< 0, @m > 2, m? | n),
(=1), (n is the product oft distinct primes)

(i) Let ¢: N — N be the Euler function, i.e¢(n) denotes the number of positive in-
tegers not exceeding and relatively primento . In other woe¢ds) = ijl X(n, j).

(iii) Define a functionp,: Z — {0, 1} by

1, (x modk =0)

pr(x) =1 5(x) = { 0. (x modk > 0) keN, x e Z.
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Next, we consider the CLT-scaling limit of x(y ), that is, thenit behavior of
Yn(x, y). We have the following explicit expression.

Theorem 5 (Section 5). Let N € N. As an equality inL2(Z2, A?), or as an
equality for each(x, y) € Z? with max(x, y)> 0, the following holds

Yn(x,y) :_Z :“Et”) ((N"’X) mod u X modu)

u=1 u u
(10) _Zu(u) ((N+y) modu _ymodu)
u=1 u u u
1o (N+x)modu x modu
+ 33 (2 mode _ xmodu)

u=1

o (N +y) modu Y mod u
u u '

For (x, y) € Z? with max(x, y) < 0, (10) holds if we replace its last infinite sum by

im %ZM(”) ((N+x) modu _xmodu)

M_”N u u
with 32, e #()=0, ueM
> uen Hu)/u—0 % ((N + y) mod u Y mOst) .
u u

Remark 4. In the numerical experiments in Section 1, we used thet-tighd
side of (10) to evaluat&y x(y ) to save the computation time. Qfre®, we cannot

compute the infinite sums of (10), instead, we approximalteant bnyggo.

Let us write the right-hand side of (10) asT (x; N) — T(y; N) + R(x, y; N), i.e.,

(11) ~T(x;N) = _i uiu) ((N +x)modu  x modu> ’

u u
u=1

(12) R(x,y;N) = % > pu)
u=1

((N +x)modu  x modu)
u

u

" ((N+y) modu y modu)

u u

Then asN — oo, we haveR ¢,y N )— 0 in L%(Z2 \?), but —T(-; N) does not
converge, and hencéy  does not, either.

Derinimion 5. (i) For z, 2/ € Z, we define an equivalence relation

z~z7 < Vp: prime ¢—z)modp =Q
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For eachz € Z, we let [z] denote the equivalence class to which belongs. Wdow
Z/~ with the quotient topology, by whicfZ/~ becomes again a compact metrizable
ring. One of the metrics that are consistent with the topplisg

(13) dd.[D = Y 27 A~ pplr =) xyel
i=1

(i) For eachz € Z, we define—T(x;z) by replacingN in (11) byz . Ifz ~ 2/,
we see—T(x;z) = —T(x;z’) (Lemma 11 (i) in Section 7), and hence we write it as

=T (x; [2].
Now, the following theorem completely describes the liméhhavior of Yy .

Theorem 6 (Section 7.1). The set of all limit points of{Yy(x,y)}%, in
L2(Z2, \?) is

(14) {-T(x;[d) - Tl [ € Z/~}.
Moreover it holds that for eachz] € Z/N,

lim Yy, y)= —T@;[) - T, in L2(Z2 )2
[N]—=[d] inZ/~
with [N]#[z]

Since N is dense ini/N (Lemma 1 in Section 3), we can léty  converge to
any limit point of (14). About the random variableT(-;z), the following facts are
known.

Theorem 7 (Section 7.2). () —=T(x;[z]) =0, X-a.e.x, if and only ifz ~ Q.

(i) The mappingZ/~> [z] — T(-;[2]) € LXZ, ) is continuous and injective.
(iii) If N € N, it holds that forX\-a.e.x orx €{0,1, 2...},

—T(x;N):—ZT(x+m 1) = ZH( p”(X+m)> N%.

m=1 p
In particular, if x € N, we have
o ¢rtl) 6
—T(x,l)— x+1 - -

(iv) The distribution of—7'(x; 1) is continuous but it is singular with respect to the
Lebesgue measure.
(v) For N €N, the distribution of—T(x; N) is supported by a compact set.
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Remark 5. As a hy-product, we can refine the following limit theorem:

(15) lim = ., meN.

In [9, Chapter 4 section 2], we can find (15) far = 0, from whidb) easily fol-
lows for anym € N. According to Theorem 7 (iii), the adelic counterpart ofsthimit
theorem is the following LLN:

M-1
__ZT(x+m 1)=— ZH< Pp(x+m)) 7_{__62_’0

m=0 m=1 p
asM — oo, A-a.e.x.

This LLN follows from the ergodicity of the ShifZ. > x — (x+1) € Z, which is shown

similarly as Theorem 3, and from the faet[—7'(-;1)] = 0. So, the usual CLT-scaling

g|ves{ M~12 Zm -0 T(x +m; 1)} men, but its limit is degenerate. The proper scaling
s “doing nothing”, that is,

M—-1
(16) {—ZT(x+m;1)} ,
MeN

m=0

which has now uncountably many limit distributions. Indeddheorem 7 (iii) shows
that the sequence (16) is nothing but T (x; M); M € N}, hence the set of all limit
points of (16) inL?(Z, \) is {~T(-;[z]); [d € Z/~} by Lemma 11 in Section 7.

3. Preliminary lemmas

In this section, we prove some fundamental propertie@mnd A
Lemma 1. N :={(n,n,...) €Z;n € N} is dense inZ.

Proof. The Chinese remainder theorem ([6, Theorem 121]Jiémghat for any

k € N and anyny,...,n; € N, there exists» € N such thatn =n; mog j =
., k. This means thalY’ is dense inZ x Z x --- with respect to the metrid

U

As we identify Z with Z' :={(n,n,...) € Zine 7} (Definition 2 (i)) by a bijec-
tion Z>n — (n,n,...) € Z’, Lemma 1 implies thaZ is a dense subring dZ. Thus
Z is a compactification ofZ.

Lemma 2. (i) Letp be a prime andji € N. Thenp/Z, is closed and open.
(i) Let p, ¢ be distinct primes ang € N. Then we havey’/Z, = Z,.
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Proof. (i) It is easy to see thagt/Z, = {x € Z,; d,(x,0) < p~/}, and hence
it is closed. Sinced, {, O {p™*;a=0,1...,00} for anyx € Z,, we may write
plZ,={x €Z,;d,(x,0) < p~/*1}, which implies it is open.

(i) p'Z, c z, is obvious, so let us prove’/Z, > Z,. To this end, it is enough
to show that there is am € Z, such thatp/x = 1. For anyz € N, there exists an
Xxn € N such thatx,,p/ =1 mod;” . Then for any > m, we have £, — x,)p’/ =
0 mod ¢™ . Since gcgf/, g™ ) = 1, we seg — x,, = 0 mod g™, which means that
{xn}22, is a Cauchy sequence if,. Then puttingx := lim,_ x,,, we havep/x =1
in Zg. U

Lemma 3. LetmeNandke{0,1,...,m—1}.
(i) The set(m2+k) is closed and open.
(i) pm:Z — {0, 1} is continuous.
(iii) Z =l (mZ + k), which is a disjoint union.

Proof. (i) Letm = Hp p be the factorization ofn into primes, where
ap(m) = 0 except for finitely many primep . Then, Lemma 2 implieatth

mz = HmZ,, = H pa”(m)Zp,
p p

and that eachoaﬂ(’")Z,, is closed and open. Therefore,Z is also closed and open
in Z. Finally, since the shifZ > x — (x +k) € Z is a homeomorphismmZ + k) is
also closed and open.

(i) Since (i) implies thatp,,}({1}) = mZ is closed and open, the statement is obvious.
(iii) From the denseness df in 7, and from the continuity and closedness of the
mappingx — mx +k, it follows thatmZ +k = mZ + k. SinceZ = Uk'”zgl(mZ +k),
this implies

m—1
~

Z=J(mZ+k).

k=0

Next we check the disjointness of this union. ket> 2 andk k" € {0,...,m — 1}
be distinct integers. By ()A :={Z+k)N(mZ+k') is open. IfA #0, thenZN A # 0,
becauseZ is dense inZ. But then, taking arl € Z N A, we see from the observation
of (i) that

dy(l —k,0)< p~ g (1 -k, 0)< p~™  VYp: prime

This implies thatp®») | k — k' for each primep , that isy | k — k’, which is impos-
sible. ThusA should be empty. [l
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Corollary 1. For any! € Z, the mapping

I~ (I +x) modm
L v A PR

ZBx E[Ov:l-)

is continuous.

Lemma 4. For anyk € Z\ {0} and anyA € B(Z), we havekA € B(Z) and

(17) A@Aﬁw%AM)

Proof. SinceZ is complete separable metric space and the hapx — kx € Z
is one-to-one and measurable, we have € B(Z) (cf. [16, Chapter | Theorem 3.9]).
Let v be a Borel probability measure dh defined by

A(kA)
A(k(Z)’

v(A) = A€ B(Z).

Thenv is clearly shift invariant, and hence = ), so thatA(kA) = /\(|k|Z)/\(A). By
Lemma 3 and the shift invariance of we see

[k|—1
L=X(@) = 3 A(KZ +i) = kIA(K1Z),

from which, (17) immediately follows. U

Proof of Theorem 2.  Since ged(y ) =1 if and onlyxf med# 0 or y mod
p # 0 for any primep , we see

(18) X, y) =] = pp(x)pp()).-

P

Therefore, noting thaE*[p,] = )\(pZ) =1/p by Lemma 4, we have

ENIX] = [TEY (1 pp()pp(3)]

P

= H (1 - EA[pll]z)

)
~ 1\ _ 1 _86
—1}(1—;)-@—;- 0
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Since Z is compact andZ is dense inZ (Lemma 1), each continuous function
defined onZ is uniquely determined by the valugsn, @, ...) =: f(n) on Z.

Lemma 5. (i) Let f: 7 — C be a continuous function. Thehf (n)}nez is an
almost periodic sequencee.,

(19) Ve >0, 3y, mo € N such that <e, Vne€elZ.

lo
f)—f < mod [ p:"°>
i=1

(i) Converselyif {f(n)}nez is an aImostheriodic sequendee.,~it satisfies(19), then
there exists a unique continuous functigh Z — C such that f(n) = f(n) for each
n € 7.

Proof. (i) Obvious by the definition of the metric .
(i) If fis a periodic sequence with period: € N, it is of the form f @) =
S f@pm(n — i), n € Z. Then f(x) := S, f(D)pm(x — i), x € Z, is the con-
tinuous function with the propertﬂz = f. Note that a generaf satisfying (19) is a
uniformly convergent limit of a sequence of periodic sequésn and hence it has again
a continuous extensiolf. SinceZ is densely embedded i@, the uniqueness of is
obvious. U

For a periodic sequencgg(n)},cz with period m and its unique continuous ex-
tensiong(x), it is easy to see that

m

(20) [ 3@ =300 [ ot = m (e
n=1
155 4= im 23" gt
n=1 n=1

In general, we have the following lemma.

Lemma 6. If f: 7 — C is continuousthen

no+N—1

(21) / FOA(@dx) = lim_ 1 > fn). VnoeZ.

n=ng

The convergence is uniform iy € Z.

Proof. Letf :Z — C be continuous and sef,,(x) = f(no + x), no € Z. By
the uniform continuity of f , a family{ f,,;no € Z} satisfy (19). For simplicity set
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m =[], p. Then we see for any, € Z,

] [ﬁ1o(x)x(dx)— / Foo (x mOdm )A (dx)] < e,
7 VA
l N—-1 N 1
N D Faoln) = Z fro(nmodm) <&, VN €N,

n=0
By (20),
m—1

/ frolr modm W (dx) = = 2l

Also, by a simple calculation

N— m—1 (N—1) modm
%Z Fuolnt modm) :% (LN MY Y fno(r))
n=0 r=0 r=0
— m—1
%Z fo(r) — ( w> 3" fuolr)
r=0
1 (N—1) modm
v Z; For).

In the above and in what follows, the symbpl| stands for the largest integer not
exceedingr € R.
From these, it follows that

1= 2
‘/zf (x modm )X (dx) — 5 2; fuo(n modm )| < Nm||f||m.

Therefore, choosing avy € N so large that (2No)m|| f||~ < €, we have that for any
N > Ng and anyng € N,

< 3. 0

‘ notN—1

/ FONE) ~ 5 D )

n=ng

Remark 6. As a matter of fact, (21) is a consequence of the followiegegal
theorem:Let G be a compact groypand letx € G. Then if the sequencegx"}>2,
is dense inG, it is uniformly distributed that is N~ 4., converges weakly to
the normalized Haar measure ¢f &6 — oco. For details, see [13, Chapter 4 Theo-
rem 4.2].
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Corollary 2. If f: 72 — C is continuousthen

|Gt = im <z 3 fnn). Vomn € 22

mi<m<myp+N—1,
n<n<m+N-—-1

The convergence is uniform i1, n1) € Z2.

4. Ergodicity and LLN

In this section, we prove Theorem 3, the ergodicity of thetspt ") ; (m, n) €
72}. Here, we show the followinglf T' € B(Z?) is -invariant i.e.,

A2 (r A z<"w>*l(r)) =0, V(m,n)eZ2

where A stands for the symmetric differendben A3(I') =0 or 1.
STEP 1. For anyF € LY(Z?, \?), we have

N
. 1 _ =)\ . =
(22) Jim 2 E F(- +m,x+n) =EN[F] in LY(Z? )\?).

m,n=1

To show this, for any > 0, take a continuous functiofi, so thatEA2[|F —Fl<e.
By Corollary 2,

N

1 e

Nli‘nooNz E lFE(X+m7y+n)_E [FE(X+'7y+*)]
m,n=

=EN[F.], V(x,y)eZ2

By virtue of the bounded convergence theorem, this connemydakes place also in
LY(Z?, \?). By the property ofF.,

AZ 1 N 1 N
_2ZF('+mv*+n)_mZFE('+m7*+n)
m,n=1 m,n=1
1 N
N_Z [|[F(- +m, x+n)— F(- +m,*+n)|| <
m,n=1
Consequently,
\2 1 N 32
mZF(-+m,*+n)—E [F]
m,n=1
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N
1 2
<2:+EN || = E S+ +n)—E*
<2+E [NZ Fe( m.*+n) — BT [F] first?—»oo 0,
m,n=1 seconde—0

which implies (22).
STEP 2. By Step 1, for anyI” € B(Z?), we see

N
. 1 _\2 . >
NI[noom E_llp(- +m,x+n) = () in LY(Z% N?).

If T is X-invariant, then

1r(' +m, * +n) =1ro Z(’"-")(.’ *)
= 1):;(;;;‘;1)—1(1—*)( %) =1p(-, %), \2-a.s,

and hence,

N
1
= > Ip(-+mox+n)=1p(-, %) N-as.

m,n=1
Therefore we havdr(-, x) = A?(T"), A®>-a.s., which implies that?(TI") € {0, 1}. O

By the individual ergodic theorem (cf. [19, Theorem 6.1.8[heorem 2 and The-
orem 3 imply an LLN forX §, y ), that is, Theorem 4.

RemArRk 7. There exist manyx(y ¥ 72 for which (9) does not hold. The fol-
lowing is one of such examples: Lgt NxN — N be an injective mapping. For each
N € N, we consider a system of equations

(x + m) modpf(,,,',,) =0,

=1.2....N
(y +n)mod psemny =0, mn=ha. N,

with unknown variable X, y )¢ Z2. By the Chinese remainder theorem, the solution
(x.y), say Gv.yy ), uniquely exists in the sdtl, 2 ... ][ - s }t? Let [xy]
and [yxy] be the equivalence classesﬁvw to which xy andyy belong, respectively
(see Definition 5). It is easy to see by the definition of therimetl3) that the se-
quence{([xn].[yal) } 3=, iS convergent in Z/N)Z. Let (ts0, yoo) € Z2 be one of the
representatives of the equivalence class to wHiln],[ya]) }3; converges. Then it
holds that

(xoo + m) mOd P f(m.,n) = 0’

m,n € N.
(yoo +}’l) mod Pfmn) = 0,

Clearly, we haveX X, tm, yoo +n) =0, m,n € N, and so0,Sy £, Yoo) =0, N € N.
Thus we have iR oo Sy(Xoo, Yoo) = 0 # 6/72.
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5. Explicit formula for Sy

In this section, we prove Theorem 5.

Let
(23) X063 = [ (@= pp@)ep())
P<pL
(24) Sn.o(x,y) :—— Z Xp(x +m,y+n),
m,n=1
and let
(25) My ={u=pi*---pj*eN;0<ai,...,ar <L}.
Lemma 7.
(26) Sn(x,y) :Llim Sv..(x,y) (pointwise convergenie
_ wu) 1 w(u) ((N+x)modu x modu
SN‘L(xa )’) - Z l/lz N Z u u u
ueM, ueM,
1 u N +y) modu mod u
27) __Zu()<( y) Y )
u u u
ueMy
1 (N+x)modu x modu
+ R —
N2 “EZM ) ( u u )

» (N +y) modu Y mod u
u u '

Proof. (26) is obvious. Next,

Sn.r(x,y)
1 N
=~z 2 1] (1= pplc+m)py(y+n)
1
SP I (O VD S PR Ao RA Y
m,n=1

r=1 1<i1<---<i, <L

pp,-l(y +n)-- *Ppi, (y+ ”))

N L
iz Z <1 +Z Z (_1)rp17i1”'17i,- (-x + m)pPil”']?i,- (y + I’l))

r=1 1<i1<---<i, <L
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N
Zé S w)pu(x +m)pu(y +n)

m,n=lu|py---py

= Z M(u)(%ﬁ:pu(x+m)> (%ipu()”f’?))-

ulp1--pr m=1 n=1

Here we have

1< 1| N +x modu
29 D e
_1 /N+x modu_(N+x)m0du
N u u
211 (N+x)m0du_xm0du
“u N u u ’
so that
_ 1 1 /(N+x)modu x modu
Sunte)= 30 u (5 - (HEEmesr - xmedt))
ulpr-pL
y 1 1 (N+y)m0du_ym0du
u N u u
_ Z M_i Z w(w) ((N +x) modu_xmodu
B u? N u u u
ulp1pL ulp1-pr
1 Z w(w) (N +y)modu _ymodu
N u u u
u|p1-pr
1 N+x)modu x modu
rop Xt (Pmetk _ xmedn)

u|p1-pr

" ((N+y) modu y modu)
u u
= the right-hand side of (27) O
5.1. Convergence for X,y) € Z2. We here prove thatv Sy x(y ) 6/7?)
converges to the right-hand side of (10) As— .
If u>|x|,

X if x>0,
x modu = .
x+u if x <O,
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so that ifu > N +|x|, we have

(N+x)modu xmodu N
- _;_1N2x*>0’

u u

wherex™ := (—x) vV 0. Hence, (27) is rewritten as

SN.L(xv y) = Z %

ueM,

1 [ Z 1(u) ((N +x)modu  x modu

u
ue€M,; N[1,N+|x|]

)
+N Z %— ( )>1N>x—>0:|
)

uEM;N(N+|x|,00) L:GMLH(N+|x| 00)

1 ww) (N +y)modu ymodu
L2

u
ueMN[1,N+|yl[]

v B

) 1N>y—>0:|
uEM;N(N+|y|,00) uEMLﬂ(N+|y| 00)

1 d d
+W{ Z M(u)((N+xlmo u xmo u)

u
ueM_N[L,N+|x|V]y|]

u u

" ((N+y) modu modu)

PN
u€MLN(N+[x[V|y|,00)

- N( Z # ) (Av>2->0* Iy>y->0)

u€MN(N+|x|V|y],00)

+ ( Z ,LL(M))]-NZX—>01NZY_>0:|

u€MN(N+|x|V|y],00)

Z M _ iTN L(x) — L TN (y)+ ! RN L(x, ).
ueMy

Here we note that

Z @ = % (absolute convergence)
u

——= =0 (conditional convergence)
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and
Z M — 0 asL — oo,
ueM, u
Z ww) =0, VL.
ueM,

If, generally, M N so that}_ ., u(u)=0 and}_ . u(u)/u — 0, then, fork € N

Z @:ZM_ Z U(u) ZM(”) ZU(“)
u

ueMN(K,00) u ueM ueMN[1,K] u<Kk u>K
Sy =d pw) - Y pw) = =D plw).
ueMN(K,o0) ueM ueMN[1,K] u<kK
Therefore

lim TN‘L()C)
L—oo

_ Z w(u) ((N+x)m0du_xm0du>
|

u u

u<N+|x
u u
+ N Z ,U,( ) ( Z #)1N2x—>0
u>N+|x| u>N+|x|
+
— im Zu(u) <(N x) modu_xmodu>’

K—o0o u u u

u=1
lim Ry (x,y)
L—oo

_ Z () ((N+x) modu_xmodu)

u u
u<N+x|V|y|

u u

" <(N+y) modu y modu)

+NZ Y %_N( > %)(1N2x—>0+1'v2>“>0)

u>N+x|V|y| u>N+|x|V]y|

_( Z M(u)>1N2x—>01N2}'_>O

u<N+|x|V|y|
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K
Jm_ 3t

((N +x)modu  x modu)
u=1

u u

if max(x, y) > 0,

o (N +y) modu Y mod u
u u

. (N +x)modu  x modu
lim -
M,"N %M(u) ( u u
with 33, cpg u()=0, "
S 1) /u—0 % ((N *y)modu _y mOd”> if max(x, y) <0,
u u

so that, we have that

Sn(x,y) :% - %Z /“Li“) <(N+x) modu  x modu)

u u
u=1

1 <= pu(u) ((N+y)modu ymodu
3 (g

u u
u=1

= d d
+$ZM(U) <(N+x3tm0 u  x mo u)

u
u=1

o (N +y) modu Y mod u
u u ’

where, when max(, y X O, the last series of the right-hand side should be undeistoo
as above. O

Remark 8. The convergence - p(u)/u = 0, which we used in the above
proof, is equivalent to the prime number theorem. See [1p@hndl section 7].

5.2. Convergence inL2(Z2,1%). We prove thatSy, converges t&y  in
L?(Z?, )\?) as L — oo, by showing several lemmas below.

Lemma 8. For u, v € N and z € Z, we have

£ K(z+x) modu  x modu) <(Z+x) modv  x modu)}

u u v v
_ (u,v) zmod (, v) 1 zmod [, v)
S {uvl ) ( D ) ’

where the expectatioB* works onx, and

(u, v) = gcdl, v)
{u, v} =lcm(u, v) =the leastcommonmultiple of u andv .
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Proof. We divide the proof into four steps.
Step 1. Fora,b,c € N with (b,c) =1 and forx € Z, it holds that

(29) ab 2h

b—
}Z (x +sac) modab _x moda + b—1
b
s=0
Since ¢, c) =1, by a similar argument of [6, Theorem 56], we have

{(x +sac)modab ;s =Q 1...,b— 1}
={(x +sa)modab ;s =Q 1...,b—1}.

Thus, it is enough to prove (29) only far = 1. Moreover, we have

{(x +sa) modab ;s =Q...,b -1}
={(x+a+sa)modab ;s =Q...,b—1},

so that we have only to prove (29) for =,Q.1.,a — 1. But then, fors =
0,1...,b—1, we have £ +a )modb = *a , consequently,

122 x+sa)m0dab 122 ,b-1

b Z; b Z; 2b

Thus (29) is valid.
STEP 2. By Step 1, it is easy to see that for b, ¢ € N with (b,¢) =1 andx ,
z €7,

= b ab
1 ((Z+x) moda xmoda)
= — .

1 <§ (z + x +sac) modab B (x +sac) modab>
a

a a

Therefore, for any periodic functiof 7 — R with periodac , we have

EA [((Z+x) modab  x modab) fa )}

ab ab

}SEA [((Z +x +sac) modab  (x +sac) modab
b

ab ab ) flet s"c)}

£ l} bil ((Z +x +sac) modab  (x +sac) modab) f(x)]

b e ab ab

_ }E)‘ (z +x) moda X moda
b a

fx )}
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STEP 3. Seta ={,v),b =u/a, c:=v/a and f to be

_(z+x)modv  x modv

flx) =

v v

Then Step 2 implies that

A [((z+x) modu  x modu) ((z +x)modv  x modv)}

u u v v
=E* [((Z +x) modab X modab> ((z +x) modac X modae)}
ab ab ac ac
_ }EA {((Z +x)moda  x moda) <(z +x) modac  x modae)}
b a a ac ac ’

By letting » andc in Step 2 be and 1, respectively, we see thafasieline above
is equal to

iEA [((Z+x) moda  x moda) ((z+x) moda  x moda)}

be a a a a

1
= _E>‘
bc

(30)

a a

((z+x) moda  x moda)j

STEP 4. By Corollary 1, the integrand of the right-hand side of)(89 continu-
ous, and it is periodic with period . Therefore (20) implibsit

a—1

2
(30) :%Zb_lc <(Z+s)am0da B 2)

s=0

1 2
< zmoda zmoda
a 1: m[?d"+%<l+ a — 1 1: mf,)d"“iZl

1
T+
Q|
i
1l
o

a—1 2 2
11 zmoda zmoda
= bed <( P ) Li<a—(z: moda) * (1 - a ) Li>ao m0d“)>
s=0
11 (/zmoda\? - moda '\ ?
= <(zm0 a) (a—(zmoda))+(l—zm0 a) (ZmOda)>
ca a a
m

=
A\l

oda ( zmoda)
= — 1_
be a a

_ (u,v) zmod @, v) 1 zmod (, v)
_{u, v} (u,v) ( B (u, v) )
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Lemma 9. For any bounded functiord : N — R, it holds that

Z “L{(Z)ﬁzﬂ'ﬂ“ )| _Z Iu(n)IIH(n)I I (1+ 2) < oo

u,v=1 pin
u(u)u(v) Iu(n)IH (n) ( 2 )
H((u,v) = .
o R

Proof. The first identity is seen in the following way:

u,v=1

|(nu’)p(n0’)|
—Z > “”2”(”‘;,’;;’ 1)

=1’ v eN;
(' v")=1

_ () ) (V)|
Z Z nz(u’v’)z |H(n)|
n=1 y' ' €N;
(u',v")=1,

(n.u’)=1,
(n,v')=1

[because d,u’) > 1 implies p(nu’) = 0, and ¢, u’) = 1 implies
p(nu’) = pln) ('),

0o
N\ eM)[H ()| |pu'v")|
U S QLGN S0

n=1 u' v eN;
(' 0)=1,@,u'v")=1

[becauser(, W) = (1,0) = L (n, ') = 1,}
I

5 I HO) u(n)l|H(n)| LG IE T
n=1

23AYA
u' v eN (MU)

[becauseb(’ v') > 1 implies p(u’v') = 0,]

Z (”)||H(”)|Z|U(m)| Lomyet Z 1

n=1 m=1 u' W' EN;

u’v’:m

|u(n)’UZH(n)| 3 |Mn(1”21)| Lo myrd(m),

m=1

M

=
1
=
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where

d(m):= > 1=the number of divisors of.
u' v’ eN;
u/u/=m
Since the arithmetic functiom: — |u(m)|1 my=1d(m) is multiplicative with value 1 at
m =1, and since

i Iu’in:)ld(m) < oo,
m=1

we can apply [6, Theorem 286] to get

the last line of (31) = “IAWI Ty (1 . 21(:1,?:1)
n

n=1 p p

_\- e[ H @) 2
]

n=1 pin

For -y (u(u)p(v) /{u, v}*)H((u, v)), a similar argument works. ]

Lemma 10. (i) For eachz e Z,

i Miu) ((z +x) modu  x m:du) = T(x:2)

u
u=1

is convergent inL2(Z, \), and the mappindZ > z — T(-;z) € L¥Z, \) is continuous.
(i) For eachN €N,

i/‘(”) ((N +x) modu X modu) ((N+y) modu Yy modu)

u u u u
u=1

= NR(x, y;N)
is convergent inL2(Z2, A2), and limy_,. EX’[R(x, y; N)?] = 0.

Proof. (i) Fix anyz € Z. For finite setsL and M such thatL ¢ M C N,
Lemma 8 and Lemma 9 imply that

£ KZ Miu) <(z +x)umodu x m;du)

ueM

oy ,uiu) <(z +x)umodu x m:du»T

u€l




THE BEHAVIOR OF CLT-SCALING LimiT 969

2
E’\[( (i) ((z+x)m0du_xmodu)> }
ll@%\L u u u

Z M(”)M(U)E)\ [((Z +x)modu  x modu)

uv u u
u,vEM\L

" ((z+x) modv  x modv)}

v v

Z w()p() (u,v) zmod @, v) (1 ~ zmod (, v))

u,vEM\L uv {I/l, U} (I/t, U) (Ll, U)
1 |p@)p(v)|
S 4 Z w02
u veM\L
<3 ¥ Mo asrn
u ,EN\L

From this, the convergence of

u u

= u(u) ((z+x)modu  x modu
> =)

u=1

in L%(Z, \) follows.
Next, we show the continuity of = z — T(-;z) € L¥(Z, \). For anyw € Z, we
havew modd + mod = (x + w) modu (modu ), and hence

EM(T(x; ') — T(x; 2))°]

= i (u) ((z' +x) mod (+)mod 2
—U|E>T]OOE)\ (;U‘uuu (Z xl/l - = u)) :|
= i p1(u) ((x +2z') modu (x+z) modu\ )’
= gm e (252 (7 )]
2
(32) :U”Lnoo EXA <Z pe(ue) <(x+z —uz) mod u xm;)du>) }
u<U

[ becausel is shift-invariant, |

E/\[(i uiu) ((x+z’ —uz) modu  x m:du)>2}

u=1
_ N M)p) (& —z) mod @, v) <1 _ (' —z)mod @, v))
{u, v}? (u, v) (u, v)

u,veEN
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Z |/1,(I’l)| (' —z) modn (1_ (7' —z’)qmodn) H (1_ 32)

n=1 pin p

[by Lemma 9.

Now let {z®)}e, c Z be such a sequence that:*), z) — 0 ask — oco. Then for any
n € N, we see lim_..((z® — z) modn)/n = 0. Therefore the bounded convergence
theorem implies that

Jim EM(T(x;2W) — T(x;2)] =0,

which shows the desired continuity.
(i) Fix any N € N. For any finite sefL and M such thatl. ¢ M C N, by using
Lemma 8 and Lemma 9, we have

EAZ[(ZM(“) ((N +x)modu  x modu) <(N+y) modu modu)

ueM u u u u
(N+x)modu  xmodu\ ((N+y)modu ymodu\\>
_%M(u)( )mod_ o) (0 modu_ y mod ) )
= > unEE K(N +x)modu  x modu)
u,veEM\L u u 5
(N+x)modv x moduv
) ( v B v )}
= (u.v) Nmod @, v) (. N mod (u,v) 2
= 3 oty (oo Nmodleu) (; N rod.0)))
= N2 p(u)p(v) <(u, v) N mod (@, v) (1_ N mod (u, U))>2
u,vEM\L {u, v}? (u, v) (u, v)
=7 u,v%\IL {M,U}Z
< NN H@r® o as N
{u, v}? '

This shows the convergence of

iﬂ(u) ((N+x) modu  x modu) ((N+y) modu y modu)

u u u u
u=1

in L2(Z2, A?). Moreover, the above computation shows that

EN[R(x, y; N)?]
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-y 11(u)p(v) ((u, v) N mod (u,v)<1_ N mod (u,v)>)2

=t {u,v}? N (u, v) (u, v)
) 2
-3 Iu(rzz)| (lN modn <1_ N modn>) I <1_ 32>
—~ n N n n oin p
[by Lemma 9]
— 0 asN — oo. O

6. Coincidence of “distribution” and distribution

In this section, we prove Theorem 1. But we deal with the cése Sy=only,
because the other cases easily follow from this case.

Let Py, be a probability measure oiN(P(N)), P(N) being the set of all subsets
of N, defined by

Pu(A) = %#A N{1,....M}, AecPN).

We let E,, denote the expectation with respectRy . Finally, &t := Py, ® Py and
E2, := EPx
o .
Since we have

X (x, y) = Xi(x, )| = X0(x, y) (1 - I[ - pp(x)pp(y))>

pP>pL

<Y pp@pp(),

pP>pL

we see that

A

N
1
ISw(x,9) = Swe (. M < 15 D0 X+, y+n) = Xa(a+m,y +n)

m,n=1

1o 1o
Z <N pr(x +m)> <N pr(y +I’l)> .
n=1

p>pL m=1

IA

Hence

E12l/1 |:e\/7_115N(x,y):| _ E12l/1 |:e\/7_1tSN_L(x.y):| ’ S E12l/1 I: ’e\/f_lISN(x,y) _ e\/f_ltSN_L(x.y)‘ :|

< |t|ES [1Sn(x, ¥) — Sw.r(x, y)|]

N 2
<l <EM %pr(ﬂm)b

P>pL m=1
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=l Y <%iEM [PP(”W)Z

pP>pL m=1

<ItIZ < N+1)’

1’>17L

where the last line comes frorIEM[p,,(x +m)] < (1/p)(X +m/M) (cf. (28)). On the
other hand, sinceSy ; is continuous @% Lemma 6 implies that

lim E2, { J—_lzsN.L(x,y)} =g {ew—_lzsN.L(x,y)} .

M—o0
Since Sy . converges t6y  iL2(Z2, \2) as L — oo (Section 5.2), it is clear that

E)\2 |:e\/7_lISN'L(X"V):| N E)\2 |:e\/7_lfSN(X,_V)i| a.SL — 00.

Therefore, collecting all the above, we see

lim sup E3, {e\/f_lfSN(x,y)} _ N |:e\/_ltSN(x,y):|’
M—)oo
< |t| Z — + EA [ EISN-L(X’}')} _E)\2 [eﬂtSN(x.}')} N 0’
p>PL L—oo
which completes the proof. O

7. Limit distributions of CLT scaling

In Lemma 10 (i), we showed the continuity &> z — T(-;z) € L%(Z, X). About
T(-;z), we further assert the following lemma.

Lemma 11. () Forz, 7/ € Z,

T(-:2)=T(-;7) in LAZ, A)?zw’.
I

(i) For {z(")},‘ﬁl CZ andz € Z, the following three statements are equivalent
@ limg oo [|T(- ;Z(k)) —T(- ;Z)HLZ(’Z\,)\) =0.
(b) For any prime p, there existsk, € N such that(z® — z) modp = Ofor all
k>kp,.
©) limioo[z®]1=1[2] in Z/~.

Proof. (i) is a special case of the equivalence between (@)(bnfor z*) =7/
Z (¥k) and z € Z. Therefore we prove only (ii).
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First, by (32) and noting that

2 2
0<H(1——2)SH(1——2) <1 VneN,
p p p

pin

we have

H< >Z|u(n)|(z—z’) mod n <1_ (z—z’zlmodn)

P n=1
(33) < ”T(’Z)_ T(izl)HLZ(’Z A)

< Z Iu(n)l (Z—z)modn <1_ (z—172) modn> ‘

n

Proof of (a)= (b). (33) implies for any primep that

IT(-52®) = 1(- 'Z)||L2(Z b
1 (=Y —2) modp <1_ W —2) modp) <1_£)
= p? p p Pp?

1 2
?((z(k) —7) modp)]_;[ (1 - ?) )

Therefore (a) implies that lim. .. (z% — z) mod p =0 for any primep . From this, (b)
easily follows.

P

Y

Proof of (b)=- (a). Conversely, assume (b). Let ¢z --q., whereg; < --- <
qr are primes. Then

Jko € N such that £ —z)modg; =Q Vk >ko, 1<Vi<L.
Sincegqs, ..., q, are clearly co-prime to each other, we have
(z® —z) modn =Q Vk > ko.
Therefore, for any: € N with |u(n)| = 1, we have
kILmOO(z(k) —z)modn =Q

By the bounded convergence theorem, we see

lim

k—o00

i |u(n)| z® — z) modn <1_ (z® —2) mOdn> -0

n? n n
n=1
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which shows (a) with the help of (33).

Proof of (b)= (c). For anye > O, takeL € N so that 2% < ¢. Let v, =
max,<,, k,. Then ifk > v, % —z) modp =0 forp < p,. Thus ifk > v,

AV, <> 27i=2"

i>L
whered is the metric of2/~ defined by (13). This means that (b) implies (c).

Proof of ()= (b). (c) means that for each prime , limw p,(z® —z) = 1.
From this (b) follows. U

7.1. Proof of Theorem 6. Let z € Z and a sequencéN,}, C N be such
that [Ny] # [z] and [Nx] — [z] in Z/~ ask — oc. Then by Lemma 11 (ii),
we have lim_ . T(x; Ny) = T(x;[z]) in LZ(Z A). And by Lemma 10 (ii), we have
limi—oo R(x, y; Ni) = 0 in L2(Z2, A2). Therefore Theorem 5 implies that

Jim Yy () = =T(x ) - T(i[) in L2(Z2, )2).

Now, from Lemma 1 it follows that for any € Z, there exists a sequence
{N}2, of distinct positive integers such that, — z in 7 ask — co. Then we have
[N — [4] € Z/N ask — oo. Conversely, by compactness ﬁt/w for any sequence
{Ny}2, of distinct positive integers, there exists a subsequeée}s, C {Ni}ed,
such that [V, ]— [z] for some k]e Z/N. From these facts, Theorem 6 follows.[]

7.2. Proof of Theorem 7. Theorem 7 (i) and (ii) are clear from Lemma 11.
Since we can show

lim _Z VEIITEL) = EA [ V=T (- 1)} teR,

N—oo N
n=1

in a similar way as Theorem 1, Theorem 7 (iv) is reduced to thsults of [5]
and [9]. Theorem 7 (v) is clear from Theorem 7 (iii). So, we éaanly to show The-
orem 7 (iii).
We know by Theorem 5,
Yn(x,y)=—=T(x;N)—T(y;N)+R(x, y; N)

as an identity inL2(Z2, \2). Integrating both sides by (dy), we have

_T(N) = /Z Ya(x, YA (dy)
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[because/A T(y; N)A(dy) = /A R(x, y; N)\(dy) = O}
Z Z

N
= [ <$ S TT @ oo +mipy (o m) - %) A(dy)

m,n=1 p
[by (18)]
: ( ST (1 p,,(x+m)/pp(y+n)A(dy)) - %)
m,n=1 p &
+m 6
= <N2 n;ll;[ < pP('x )) F)
_ ZH (1 pp(x +m)> N%_
m=1 p

In particular, settingv =1, we have

—T(x;1) :H (1_ M) _ %
p

p

Consequently, we have T (x; N) = — SN T(x +m; 1). O

(1]
(2]
7
(5]
(6l
(7]

(8]
19
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