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1. Introduction

Let gcd( ) denote the greatest common divisor of integers and. Define
functions and onZ2 by

( ) :=

{
1 if gcd( ) = 1
0 if gcd( )> 1

(1)

( ) :=
1

2

∑

′=1

( + + ′) ∈ N(2)

The following number-theoretic limit theorem is due to Dirichlet [4] (cf. [6, Theo-
rem 332]):

(3) lim
→∞

( ) =
6
π2

( ) ∈ Z2

Regarding (3) as a law of large numbers (LLN for short), it is natural to ask if a cen-
tral limit theorem (CLT for short) holds for . That is, for sufficiently large , is the
scaled function

(4) ( ) :=

(
( ) − 6

π2

)

approximately normally “distributed”? Here we consider “distribution” of , at the
suggestion of [2], [5] and [9], as follows: If the limit

(5) lim
→∞

1
2

∑

′=1

exp
(√

−1 ( ′)
)

∈ R
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0 0

Fig. 1. The “distributions” of 210 (left) and 211 (right).

0

Fig. 2. The “distribution” of 2311.

exists and it coincides with the characteristic function ofsome probability distribution
on R, then we call it the “distribution” of .

In order to sketch the “distribution” of , we made some numerical experiments
to compute the relative frequency distribution of ( ) by picking random 107 sam-
ples of ( ) from a big square{0 1 . . . = 231 − 1}2 ⊂ Z2. (In this numerical
experiment, we used the pseudo-random number generator proposed by [20].)

For each , a “distribution” surely appears, however it sharply depends on . For
example, the left picture of Fig. 1 shows the “distribution”of 210, which looks like a
Gaussian distribution (the variance is approximately 6 26×10−3), but if we increase
by 1, that is, = 211, then the “distribution” becomes as illustrated by the right pic-
ture of Fig. 1, which is far from Gaussian (the variance is approximately 1 23×10−1).
Thus, the “distribution” of does not converge by simply letting → ∞. On the
other hand, we can find very close “distributions”. For example, as we see in Fig. 2,
the “distribution” of 2311 (the variance is approximately 1 21× 10−1) is very close to
that of 211.

Then, our aim of this paper is to give a complete description of this mysterious
behavior of when → ∞.

To this end, we discovered that the formulation by means ofthe ring of finite in-
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tegral adelesẐ (see Definition 1 below), which is a well-known compactification of Z

in number theory, is indispensable.
Since Ẑ is a compact group with respect to addition, there exists a unique nor-

malized Haar measureλ on Ẑ. We first extend , and to random variables
on the probability space (̂Z2 λ2) (Definitions 2 and 3). Of course, the distributions of
those extended random variables coincide with the “distributions” of the original func-
tions on Z2 in the sense of (5) (Theorem 1), respectively. This extension makes indi-
rect probabilistic discussions, such as (3) and (5), into real and straightforward proba-
bilistic ones, and hence it enables us to use all tools provided by probability theory.

In Theorem 4, we formulate Dirichlet’s theorem (3) in this framework as a rigor-
ous strong LLN. By this result, it becomes clear that (3) is just a cross-section of the
LLN intersected withZ2 (cf. [12]).

Next, we study the limit behavior of , our main target. To mention our main
result, Theorem 6, we must introduce a quotient ringẐ/∼ of Ẑ. Ẑ/∼ can be said as
the ring obtained by completingZ by a metric

(6) ˜( ) :=
∞∑

=1

1
2

1{ 6≡ (mod )} ∈ Z

where { }∞=1 is the sequence of all prime numbers in the increasing order.(For the
precise definition of̂Z/∼ as a quotient ring, see Definition 5.) We then describe com-
pletely the set of all limit points of{ }∞=1 in 2(Ẑ2 λ2) by parametrizing them con-
tinuously in terms of elements of̂Z/∼ (Theorem 6). Thus, the notion of adeles is es-
sentially needed in this theorem.

According to Theorem 6, the phenomena seen in Fig. 1 and Fig. 2are explained
in the following way: Since 210 and 211 are far away from each other in the metric of
Ẑ/∼, the corresponding distributions are quite different, on the other hand, since 211
and 2311 are close to each other in the metric ofẐ/∼, the corresponding distributions
look very similar. Indeed, we have

210 = 2· 3 · 5 · 7 = 1 2 3 4

211 = 2· 3 · 5 · 7 + 1 = 1 2 3 4 + 1

2311 = 2· 3 · 5 · 7 · 11 + 1 = 1 2 3 4 5+ 1

so that˜(210 211) = 1, which is equal to the diameter ofẐ/∼, while ˜(211 2311) =∑∞
=1 1{2116≡2311 (mod )}2− =

∑∞
=5 2− = 2−4.

Furthermore, according to Theorem 6 and Theorem 7 (i), ifN ∋ 6= 0 and
→ 0 in Ẑ/∼, then converges to 0 in 2(Ẑ2 λ2). This explains that 210 has a

very small variance, since 210 is close to 0 inẐ/∼ (˜(210 0) = 2−4).

REMARK 1. We here give a couple of philological notes: The function () de-
fined by (1) is one of the instances from the class of two-variable multiplicative func-
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tions introduced by [3], in which Dirichlet’s theorem (3) was presented as one of the
consequences of a general mean value theorem for the functions of that class. The
method of compactification ofZ for the investigation of the mean value or distribu-
tion problems of arithmetic functions was initiated by [15], and it has been studied by
several papers and books, such as [7, 10, 11, 12, 14, 18].

We would like to thank the referee for letting us know these references.

2. Basic notions and summary of theorems

Let us introduce our basic framework and the theorems obtained in this paper.
Proofs will be given later.

For a prime , the -adic metric is defined by

( ) := inf
{ − ; | ( − )

}
∈ Z

The completion ofZ by is denoted byZ . By extending the algebraic operations
‘+’ and ‘×’ in Z continuously to those inZ , the compact metric space (Z ) be-
comes a ring, called the ring of -adic integers. In particular, (Z ) is a compact
abelian group with respect to ‘+’. According to the general theory of compact groups
(for instance, [17, Theorem 5.14]), there is a unique normalized Haar measureλ with
respect to ‘+’ on the measurable space (Z B(Z )), whereB(Z ) denotes the Borel
field of Z .

DEFINITION 1. (i) Let { }∞=1, 2 = 1 < 2 < · · · , be the sequence of all
primes.
(ii) Put

Ẑ :=
∞∏

=1

Z λ :=
∞∏

=1

λ

For = ( ), = ( )∈ Ẑ, we define

( ) :=
∞∑

=1

1
2

( ) + := ( + ) := ( )

By these definitions,̂Z becomes a ring, calledthe ring of finite integral adeles. (Ẑ )
is again a compact metric space, and both ‘+’ and ‘×’ are continuous. In particular,
(Ẑ ) is a compact abelian group with respect to ‘+’ and its normalized Haar measure
is nothing butλ.

In the modern number theory,adelesare treated in much more abstract way than
they are presented here. For details, see [8, Chapter III]. For Z and Ẑ, [21, Chap-
ter 9] is a good reference.
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REMARK 2. Throughout the present paper, is always a prime. For the sake
of simple notations, we often write

∑
( ) or

∏
( ) instead of

∑∞
=1 ( ) or

∏∞
=1 ( ), respectively.

∑
≤ ( ) means

∑
=1 ( ), etc.

DEFINITION 2. (i) We identify Z with the diagonal set{( . . .) ∈ Z × Z ×
· · · } ⊂ Ẑ.
(ii) For N ∋ ≥ 2 and ∈ {0 1 . . . − 1}, we define Ẑ + := { + ; ∈ Ẑ}.
Then we havêZ =

⋃ −1
=0 ( Ẑ + ), which is a disjoint union (Lemma 3 (iii) in Sec-

tion 3). So, for ∈ Ẑ and N ∋ ≥ 2, there exists a unique ∈ {0 1 . . . − 1}
such that − ∈ Ẑ. This is denoted by mod . For = 1, we always set

mod := 0. Obviously, if ∈ Z, this definition coincides with the usual modulo
operation.
(iii) For , ∈ Ẑ, we define

(7) gcd( ) := sup{ ∈ N ; ( mod ) = ( mod ) = 0}

Obviously, for , ∈ Z, this definition coincides with the usual gcd.

REMARK 3. It is easy to see thatλ(Z) = 0.

DEFINITION 3. We define random variables , and onẐ2 by

( ) :=

{
1 if gcd( ) = 1
0 if gcd( )> 1

( ) :=
1

2

∑

=1

( + + ) ∈ N

( ) :=

(
( ) − 6

π2

)
∈ N

Obviously, for , ∈ Z, these definitions coincide with the original functions (1), (2)
and (4).

As is naturally expected, the distributions of , and coincide with the “dis-
tributions” of the original functions onZ2 in the sense of (5), respectively. Namely, we
have:

Theorem 1 (Section 6). Let = , = or = . Then for each ∈ R, it
holds that

lim
→∞

1
2

∑

′=1

exp
(√

−1 ( ′)
)

= Eλ
2
[
exp

(√
−1 ( )

)]
(8)
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Here (and hereafter) Eλ
2

stands for the expectation with respect toλ2.

In other words, althoughλ2(Z2) = 0 (Remark 3), the distributions of ,
and , which are realized on (Ẑ2 λ2), can be seen by observing their behaviors on a
large square{0 1 . . . − 1}2 ⊂ Z2.

Theorem 2 (Section 3). It holds thatEλ
2
[ ] = 6/π2.

Let { ( ) ; ( ) ∈ Z2} be the shift transformations on (Ẑ2 B(Ẑ2) λ2) defined
by

( ) : Ẑ2 ∋ ( ) 7→ ( + + ) ∈ Ẑ2

Then ( ) is B(Ẑ2)-measurable, (0 0) = identity, ( ) ◦ ( ′ ′) = ( + ′ + ′), and
it preservesλ2, i.e.,

λ2
(

( )−1
( )
)

= λ2( ) ∀( ) ∈ Z2 ∀ ∈ B
(
Ẑ2
)

Theorem 3 (Section 4). { ( ) ; ( ) ∈ Z2} is ergodic.

Theorem 2 and Theorem 3 imply an LLN for ( ), Theorem 4 below, which
is a natural probability-theoretic extension of Dirichlet’s theorem (3).

Theorem 4. For λ2-a.e.( ) ∈ Ẑ2, we have

(9) lim
→∞

( ) = Eλ
2

[ ] =
6
π2

In contrast to Dirichlet’s limit theorem (3), there are exceptional points ( )∈ Ẑ2

for which (9) does not hold (Remark 7 in Section 4).

DEFINITION 4 (Frequently used arithmetic functions). (i) Letµ : N → {−1 0 1}
be the Möbius function, i.e.,

µ( ) :=





1 ( = 1)
0 (∃ ≥ 2 2 | )
(−1) ( is the product of distinct primes)

(ii) Let φ : N → N be the Euler function, i.e.,φ( ) denotes the number of positive in-
tegers not exceeding and relatively prime to . In other words, φ( ) =

∑
=1 ( ).

(iii) Define a functionρ : Ẑ → {0 1} by

ρ ( ) := 1 bZ( ) =

{
1 ( mod = 0)
0 ( mod > 0)

∈ N ∈ Ẑ
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Next, we consider the CLT-scaling limit of ( ), that is, the limit behavior of
( ). We have the following explicit expression.

Theorem 5 (Section 5). Let ∈ N. As an equality in 2(Ẑ2 λ2), or as an
equality for each( ) ∈ Z2 with max( )≥ 0, the following holds:

( ) = −
∞∑

=1

µ( )
(

( + ) mod − mod
)

−
∞∑

=1

µ( )
(

( + ) mod − mod
)

(10)

+
1

∞∑

=1

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

For ( ) ∈ Z2 with max( )< 0, (10) holds if we replace its last infinite sum by

lim
MրN

with
P

∈M
µ( )=0P

∈M
µ( )/ →0

1 ∑

∈M

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

REMARK 4. In the numerical experiments in Section 1, we used the right-hand
side of (10) to evaluate ( ) to save the computation time. Of course, we cannot
compute the infinite sums of (10), instead, we approximated them by

∑3900
=1 .

Let us write the right-hand side of (10) as− ( ; ) − ( ; ) + ( ; ), i.e.,

− ( ; ) := −
∞∑

=1

µ( )
(

( + ) mod − mod
)

(11)

( ; ) :=
1

∞∑

=1

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

(12)

Then as → ∞, we have ( ; )→ 0 in 2(Ẑ2 λ2), but − ( · ; ) does not
converge, and hence does not, either.

DEFINITION 5. (i) For , ′ ∈ Ẑ, we define an equivalence relation

∼ ′ ⇐⇒ ∀ : prime ( − ′) mod = 0
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For each ∈ Ẑ, we let [ ] denote the equivalence class to which belongs. We endow
Ẑ/∼ with the quotient topology, by whicĥZ/∼ becomes again a compact metrizable
ring. One of the metrics that are consistent with the topology is:

(13) ˜([ ] [ ]) :=
∞∑

=1

2− (1− ρ ( − )) ∈ Ẑ

(ii) For each ∈ Ẑ, we define− ( ; ) by replacing in (11) by . If ∼ ′,
we see− ( ; ) = − ( ; ′) (Lemma 11 (i) in Section 7), and hence we write it as
− ( ; [ ]).

Now, the following theorem completely describes the limit behavior of .

Theorem 6 (Section 7.1). The set of all limit points of{ ( )}∞=1 in
2(Ẑ2 λ2) is

(14) {− ( ; [ ]) − ( ; [ ]) ; [ ] ∈ Ẑ/∼}

Moreover, it holds that for each[ ] ∈ Ẑ/∼,

lim
[ ]→[ ] in bZ/∼

with [ ] 6= [ ]

( ) = − ( ; [ ]) − ( ; [ ]) in 2(Ẑ2 λ2)

Since N is dense inẐ/∼ (Lemma 1 in Section 3), we can let converge to
any limit point of (14). About the random variable− ( · ; ), the following facts are
known.

Theorem 7 (Section 7.2). (i) − ( ; [ ]) = 0, λ-a.e. , if and only if ∼ 0.
(ii) The mappinĝZ/∼∋ [ ] 7→ ( · ; [ ]) ∈ 2(Ẑ λ) is continuous and injective.
(iii) If ∈ N, it holds that forλ-a.e. or ∈ {0 1 2 . . .},

− ( ; ) = −
−1∑

=0

( + ; 1) =
∑

=1

∏(
1− ρ ( + )

)
− 6

π2

In particular, if ∈ N, we have

− ( ; 1) =
φ( + 1)

+ 1
− 6
π2

(iv) The distribution of− ( ; 1) is continuous, but it is singular with respect to the
Lebesgue measure.
(v) For ∈ N, the distribution of− ( ; ) is supported by a compact set.
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REMARK 5. As a by-product, we can refine the following limit theorem:

(15) lim
→∞

1 ∑

=1

φ( + )
+

=
6
π2

∈ N

In [9, Chapter 4 section 2], we can find (15) for = 0, from which (15) easily fol-
lows for any ∈ N. According to Theorem 7 (iii), the adelic counterpart of this limit
theorem is the following LLN:

− 1
−1∑

=0

( + ; 1) =
1 ∑

=1

∏(
1− ρ ( + )

)
− 6
π2

→ 0

as → ∞ λ-a.e.

This LLN follows from the ergodicity of the shift̂Z ∋ 7→ ( +1) ∈ Ẑ, which is shown
similarly as Theorem 3, and from the factEλ[− ( · ; 1)] = 0. So, the usual CLT-scaling
gives {− −1/2∑ −1

=0 ( + ; 1)} ∈N, but its limit is degenerate. The proper scaling
is “doing nothing”, that is,

(16)

{
−

−1∑

=0

( + ; 1)

}

∈N

which has now uncountably many limit distributions. Indeed, Theorem 7 (iii) shows
that the sequence (16) is nothing but{− ( ; ) ; ∈ N}, hence the set of all limit
points of (16) in 2(Ẑ λ) is {− ( · ; [ ]) ; [ ] ∈ Ẑ/∼} by Lemma 11 in Section 7.

3. Preliminary lemmas

In this section, we prove some fundamental properties onẐ and λ.

Lemma 1. N′ := {( . . .) ∈ Ẑ ; ∈ N} is dense inẐ.

Proof. The Chinese remainder theorem ([6, Theorem 121]) implies that for any
∈ N and any 1 . . . ∈ N, there exists ∈ N such that = mod , =

1 . . . . This means thatN′ is dense inZ × Z × · · · with respect to the metric .

As we identify Z with Z′ := {( . . .) ∈ Ẑ ; ∈ Z} (Definition 2 (i)) by a bijec-
tion Z ∋ 7→ ( . . .) ∈ Z′, Lemma 1 implies thatZ is a dense subring of̂Z. Thus
Ẑ is a compactification ofZ.

Lemma 2. (i) Let be a prime and ∈ N. Then Z is closed and open.
(ii) Let , be distinct primes and ∈ N. Then we have Z = Z .
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Proof. (i) It is easy to see that Z = { ∈ Z ; ( 0) ≤ − }, and hence
it is closed. Since ( 0)∈ { − ; = 0 1 . . . ∞} for any ∈ Z , we may write

Z = { ∈ Z ; ( 0)< − +1}, which implies it is open.
(ii) Z ⊂ Z is obvious, so let us prove Z ⊃ Z . To this end, it is enough
to show that there is an ∈ Z such that = 1. For any ∈ N, there exists an

∈ N such that = 1 mod . Then for any > , we have ( − ) =
0 mod . Since gcd( ) = 1, we see − = 0 mod , which means that
{ }∞=1 is a Cauchy sequence inZ . Then putting := lim→∞ , we have = 1
in Z .

Lemma 3. Let ∈ N and ∈ {0 1 . . . − 1}.
(i) The set( Ẑ + ) is closed and open.
(ii) ρ : Ẑ → {0 1} is continuous.
(iii) Ẑ =

⋃ −1
=0 ( Ẑ + ), which is a disjoint union.

Proof. (i) Let =
∏

α ( ) be the factorization of into primes, where
α ( ) = 0 except for finitely many primes . Then, Lemma 2 implies that

Ẑ =
∏

Z =
∏

α ( )Z

and that each α ( )Z is closed and open. Therefore,Ẑ is also closed and open
in Ẑ. Finally, since the shift̂Z ∋ 7→ ( + ) ∈ Ẑ is a homeomorphism, (Ẑ + ) is
also closed and open.
(ii) Since (i) implies thatρ−1({1}) = Ẑ is closed and open, the statement is obvious.
(iii) From the denseness ofZ in Ẑ, and from the continuity and closedness of the
mapping 7→ + , it follows that Z + = Ẑ + . SinceZ =

⋃ −1
=0

(
Z +

)
,

this implies

Ẑ =
−1⋃

=0

(
Ẑ +

)

Next we check the disjointness of this union. Let≥ 2 and , ′ ∈ {0 . . . − 1}
be distinct integers. By (i), := (Ẑ+ )∩ ( Ẑ+ ′) is open. If 6= ∅, thenZ∩ 6= ∅,
becauseZ is dense inẐ. But then, taking an ∈ Z ∩ , we see from the observation
of (i) that

( − 0) ≤ −α ( ) ( − ′ 0) ≤ −α ( ) ∀ : prime

This implies that α ( ) | − ′ for each prime , that is, | − ′, which is impos-
sible. Thus should be empty.
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Corollary 1. For any ∈ Z, the mapping

Ẑ ∋ 7→ ( + ) mod ∈ [0 1)

is continuous.

Lemma 4. For any ∈ Z \ {0} and any ∈ B(Ẑ), we have ∈ B(Ẑ) and

(17) λ( ) =
1
| |λ( )

Proof. SinceẐ is complete separable metric space and the mapẐ ∋ 7→ ∈ Ẑ

is one-to-one and measurable, we have∈ B(Ẑ) (cf. [16, Chapter I Theorem 3.9]).
Let ν be a Borel probability measure on̂Z defined by

ν( ) =
λ( )

λ
(
| |Ẑ

) ∈ B
(
Ẑ
)

Then ν is clearly shift invariant, and henceν = λ, so thatλ( ) = λ(| |Ẑ)λ( ). By
Lemma 3 and the shift invariance ofλ, we see

1 = λ
(
Ẑ
)

=
| |−1∑

=0

λ
(
| |Ẑ +

)
= | |λ

(
| |Ẑ

)

from which, (17) immediately follows.

Proof of Theorem 2. Since gcd( ) = 1 if and only if mod6= 0 or mod
6= 0 for any prime , we see

(18) ( ) =
∏(

1− ρ ( )ρ ( )
)

Therefore, noting thatEλ[ρ ] = λ( Ẑ) = 1/ by Lemma 4, we have

Eλ
2

[ ] =
∏

Eλ
2[

1− ρ ( )ρ ( )
]

=
∏(

1− Eλ[ρ ]2)

=
∏(

1− 1
2

)
=

1
ζ(2)

=
6
π2
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Since Ẑ is compact andZ is dense inẐ (Lemma 1), each continuous function
defined onẐ is uniquely determined by the values ( . . .) =: ( ) on Z.

Lemma 5. (i) Let : Ẑ → C be a continuous function. Then{ ( )} ∈Z is an
almost periodic sequence, i.e.,

(19) ∀ε > 0 ∃ 0 0 ∈ N such that

∣∣∣∣∣ ( ) −
(

mod
0∏

=1

0

)∣∣∣∣∣ < ε ∀ ∈ Z

(ii) Conversely, if { ( )} ∈Z is an almost periodic sequence, i.e., it satisfies(19), then
there exists a unique continuous function˜ : Ẑ → C such that˜( ) = ( ) for each
∈ Z.

Proof. (i) Obvious by the definition of the metric of̂Z.
(ii) If is a periodic sequence with period ∈ N, it is of the form ( ) =∑

=1 ( )ρ ( − ), ∈ Z. Then ˜( ) :=
∑

=1 ( )ρ ( − ), ∈ Ẑ, is the con-
tinuous function with the propertỹ |Z = . Note that a general satisfying (19) is a
uniformly convergent limit of a sequence of periodic sequences, and hence it has again
a continuous extensioñ . SinceZ is densely embedded in̂Z, the uniqueness of̃ is
obvious.

For a periodic sequence{ ( )} ∈Z with period and its unique continuous ex-
tension˜( ), it is easy to see that

∫bZ ˜( )λ ( ) =
∑

=1

( )
∫bZ ρ ( − )λ ( )(20)

=
1 ∑

=1

( ) = lim
→∞

1 ∑

=1

( )

In general, we have the following lemma.

Lemma 6. If : Ẑ → C is continuous, then

(21)
∫bZ ( )λ ( ) = lim

→∞

1 0+ −1∑

= 0

( ) ∀ 0 ∈ Z

The convergence is uniform in0 ∈ Z.

Proof. Let : Ẑ → C be continuous and set 0( ) = ( 0 + ), 0 ∈ Z. By
the uniform continuity of , a family{ 0; 0 ∈ Z} satisfy (19). For simplicity set
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:=
∏

0

=1
0 . Then we see for any0 ∈ Z,

∣∣∣∣
∫bZ 0( )λ ( ) −

∫bZ 0 ( mod )λ ( )

∣∣∣∣ ≤ ε

∣∣∣∣∣
1

−1∑

=0
0( ) − 1

−1∑

=0
0( mod )

∣∣∣∣∣ < ε ∀ ∈ N

By (20),

∫bZ 0( mod )λ ( ) =
1

−1∑

=0
0( )

Also, by a simple calculation

1
−1∑

=0
0( mod ) =

1
(⌊ − 1⌋ −1∑

=0
0( ) +

( −1) mod∑

=0
0( )

)

=
1

−1∑

=0
0( ) − 1

(
1

+
( − 1) mod

) −1∑

=0
0( )

+
1

( −1) mod∑

=0
0( )

In the above and in what follows, the symbol⌊ ⌋ stands for the largest integer not
exceeding ∈ R.

From these, it follows that

∣∣∣∣∣

∫bZ 0 ( mod )λ ( ) − 1
−1∑

=0
0( mod )

∣∣∣∣∣ ≤
2 ‖ ‖∞

Therefore, choosing an 0 ∈ N so large that (2/ 0) ‖ ‖∞ < ε, we have that for any
≥ 0 and any 0 ∈ N,

∣∣∣∣∣

∫bZ ( )λ ( ) − 1 0+ −1∑

= 0

( )

∣∣∣∣∣ < 3ε

REMARK 6. As a matter of fact, (21) is a consequence of the following general
theorem:Let be a compact group, and let ∈ . Then, if the sequence{ }∞=1

is dense in , it is uniformly distributed, that is, −1∑
=1 δ converges weakly to

the normalized Haar measure of as → ∞. For details, see [13, Chapter 4 Theo-
rem 4.2].
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Corollary 2. If : Ẑ2 → C is continuous, then

∫bZ2

( )λ2 ( ) = lim
→∞

1
2

∑

1≤ ≤ 1+ −1
1≤ ≤ 1+ −1

( ) ∀( 1 1) ∈ Z2

The convergence is uniform in( 1 1) ∈ Z2.

4. Ergodicity and LLN

In this section, we prove Theorem 3, the ergodicity of the shift { ( ) ; ( ) ∈
Z2}. Here, we show the following:If ∈ B(Ẑ2) is -invariant, i.e.,

λ2
(

△ ( )−1
( )
)

= 0 ∀( ) ∈ Z2

where△ stands for the symmetric difference, then λ2( ) = 0 or 1.
STEP 1. For any ∈ 1(Ẑ2 λ2), we have

(22) lim
→∞

1
2

∑

=1

( · + ∗ + ) = Eλ
2

[ ] in 1(Ẑ2 λ2)

To show this, for anyε > 0, take a continuous functionε so thatEλ
2
[| − ε|] < ε.

By Corollary 2,

lim
→∞

1
2

∑

=1

ε( + + ) = Eλ
2

[ ε( + · + ∗)]

= Eλ
2

[ ε] ∀( ) ∈ Ẑ2

By virtue of the bounded convergence theorem, this convergence takes place also in
1(Ẑ2 λ2). By the property of ε,

Eλ
2

[ ∣∣∣∣∣
1

2

∑

=1

( · + ∗ + ) − 1
2

∑

=1

ε( · + ∗ + )

∣∣∣∣∣

]

≤ 1
2

∑

=1

Eλ
2[ | ( · + ∗ + ) − ε( · + ∗ + )|

]
< ε

Consequently,

Eλ
2

[ ∣∣∣∣∣
1

2

∑

=1

( · + ∗ + ) − Eλ
2

[ ]

∣∣∣∣∣

]
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≤ 2ε + Eλ
2

[ ∣∣∣∣∣
1

2

∑

=1

ε( · + ∗ + ) − Eλ
2

[ ε]

∣∣∣∣∣

]
→

first →∞
secondε→0

0

which implies (22).
STEP 2. By Step 1, for any ∈ B(Ẑ2), we see

lim
→∞

1
2

∑

=1

1 ( · + ∗ + ) = λ2( ) in 1
(
Ẑ2 λ2

)

If is -invariant, then

1 ( · + ∗ + ) = 1 ◦ ( )( · ∗)

= 1 ( )−1( )( · ∗) = 1 ( · ∗) λ2-a.s.

and hence,

1
2

∑

=1

1 ( · + ∗ + ) = 1 ( · ∗) λ2-a.s.

Therefore we have1 ( · ∗) = λ2( ), λ2-a.s., which implies thatλ2( ) ∈ {0 1}.

By the individual ergodic theorem (cf. [19, Theorem 6.1.8]), Theorem 2 and The-
orem 3 imply an LLN for ( ), that is, Theorem 4.

REMARK 7. There exist many ( )∈ Ẑ2 for which (9) does not hold. The fol-
lowing is one of such examples: Let :N×N → N be an injective mapping. For each

∈ N, we consider a system of equations

( + ) mod ( ) = 0
( + ) mod ( ) = 0

= 1 2 . . .

with unknown variable ( )∈ Z2. By the Chinese remainder theorem, the solution
( ), say ( ), uniquely exists in the set{1 2 . . .

∏
=1 ( )}2. Let [ ]

and [ ] be the equivalence classes inẐ/∼ to which and belong, respectively
(see Definition 5). It is easy to see by the definition of the metric (13) that the se-
quence{([ ] [ ]) }∞=1 is convergent in (̂Z/∼)2. Let ( ∞ ∞) ∈ Ẑ2 be one of the
representatives of the equivalence class to which{([ ] [ ]) }∞=1 converges. Then it
holds that

( ∞ + ) mod ( ) = 0
( ∞ + ) mod ( ) = 0

∈ N

Clearly, we have (∞ + ∞ + ) = 0, , ∈ N, and so, (∞ ∞) = 0, ∈ N.
Thus we have lim→∞ ( ∞ ∞) = 0 6= 6/π2.
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5. Explicit formula for SN

In this section, we prove Theorem 5.
Let

( ) :=
∏

≤

(
1− ρ ( )ρ ( )

)
(23)

( ) :=
1

2

∑

=1

( + + )(24)

and let

M := { = α1
1 · · · α ∈ N ; 0 ≤ α1 . . . α ≤ }(25)

Lemma 7.

( ) = lim
→∞

( ) (pointwise convergence)(26)

( ) =
∑

∈M

µ( )
2

− 1 ∑

∈M

µ( )
(

( + ) mod − mod
)

− 1 ∑

∈M

µ( )
(

( + ) mod − mod
)

(27)

+
1

2

∑

∈M

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

Proof. (26) is obvious. Next,

( )

=
1

2

∑

=1

∏

≤

(
1− ρ ( + )ρ ( + )

)

=
1

2

∑

=1

(
1 +
∑

=1

∑

1≤ 1<···< ≤
(−1) ρ

1
( + ) · · ·ρ ( + )

ρ
1
( + ) · · ·ρ ( + )

)

=
1

2

∑

=1

(
1 +
∑

=1

∑

1≤ 1<···< ≤
(−1) ρ

1··· ( + )ρ
1··· ( + )

)
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=
1

2

∑

=1

∑

| 1···
µ( )ρ ( + )ρ ( + )

=
∑

| 1···
µ( )

(
1 ∑

=1

ρ ( + )

)(
1 ∑

=1

ρ ( + )

)

Here we have

1 ∑

=1

ρ ( + ) =
1 ⌊ + mod ⌋

(28)

=
1
(

+ mod − ( + ) mod
)

=
1 − 1

(
( + ) mod − mod

)

so that

( ) =
∑

| 1···
µ( )

(
1 − 1

(
( + ) mod − mod

))

×
(

1 − 1
(

( + ) mod − mod
))

=
∑

| 1···

µ( )
2 − 1 ∑

| 1···

µ( )
(

( + ) mod − mod
)

− 1 ∑

| 1···

µ( )
(

( + ) mod − mod
)

+
1

2

∑

| 1···
µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

= the right-hand side of (27)

5.1. Convergence for (x y) ∈ Z2. We here prove that ( ( )− 6/π2)
converges to the right-hand side of (10) as→ ∞.

If > | |,

mod =

{
if ≥ 0

+ if < 0



962 H. SUGITA AND S. TAKANOBU

so that if > + | |, we have

( + ) mod − mod
= − 1 ≥ −>0

where − := (− ) ∨ 0. Hence, (27) is rewritten as

( ) =
∑

∈M

µ( )
2

− 1
[ ∑

∈M ∩[1 +| |]

µ( )
(

( + ) mod − mod
)

+
∑

∈M ∩( +| | ∞)

µ( )
2

−
( ∑

∈M ∩( +| | ∞)

µ( )
)

1 ≥ −>0

]

− 1
[ ∑

∈M ∩[1 +| |]

µ( )
(

( + ) mod − mod
)

+
∑

∈M ∩( +| | ∞)

µ( )
2

−
( ∑

∈M ∩( +| | ∞)

µ( )
)

1 ≥ −>0

]

+
1

2

[ ∑

∈M ∩[1 +| |∨| |]
µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

+ 2
∑

∈M ∩( +| |∨| | ∞)

µ( )
2

−
( ∑

∈M ∩( +| |∨| | ∞)

µ( )
)

(1 ≥ −>0 + 1 ≥ −>0)

+

( ∑

∈M ∩( +| |∨| | ∞)

µ( )

)
1 ≥ −>01 ≥ −>0

]

=:
∑

∈M

µ( )
2

− 1
( ) − 1

( ) +
1

2
( )

Here we note that

∞∑

=1

µ( )
2

=
6
π2

(absolute convergence)

∞∑

=1

µ( )
= 0 (conditional convergence)
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and

∑

∈M

µ( ) → 0 as → ∞
∑

∈M

µ( ) = 0 ∀

If, generally,M ր N so that
∑

∈M µ( ) = 0 and
∑

∈M µ( )/ → 0, then, for ∈ N

∑

∈M∩( ∞)

µ( )
=
∑

∈M

µ( ) −
∑

∈M∩[1 ]

µ( ) → −
∑

≤

µ( )
=
∑

>

µ( )

∑

∈M∩( ∞)

µ( ) =
∑

∈M

µ( ) −
∑

∈M∩[1 ]

µ( ) → −
∑

≤
µ( )

Therefore

lim
→∞

( )

=
∑

≤ +| |

µ( )
(

( + ) mod − mod
)

+
∑

> +| |

µ( )
2 −

( ∑

> +| |

µ( )
)

1 ≥ −>0

= lim
→∞

∑

=1

µ( )
(

( + ) mod − mod
)

lim
→∞

( )

=
∑

≤ +| |∨| |
µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

+ 2
∑

> +| |∨| |

µ( )
2

−
( ∑

> +| |∨| |

µ( )
)(

1 ≥ −>0 + 1 ≥ −>0

)

−
( ∑

≤ +| |∨| |
µ( )

)
1 ≥ −>01 ≥ −>0
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=





lim
→∞

∑

=1

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

if max( ) ≥ 0

lim
MրN

with
P

∈M
µ( )=0P

∈M
µ( )/ →0

∑

∈M

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

if max( )< 0

so that, we have that

( ) =
6
π2 − 1

∞∑

=1

µ( )
(

( + ) mod − mod
)

− 1
∞∑

=1

µ( )
(

( + ) mod − mod
)

+
1

2

∞∑

=1

µ( )

(
( + ) mod − mod

)

×
(

( + ) mod − mod
)

where, when max( )< 0, the last series of the right-hand side should be understood
as above.

REMARK 8. The convergence
∑∞

=1µ( )/ = 0, which we used in the above
proof, is equivalent to the prime number theorem. See [1, Chapter II section 7].

5.2. Convergence in L2(Ẑ2 2). We prove that converges to in
2(Ẑ2 λ2) as → ∞, by showing several lemmas below.

Lemma 8. For , ∈ N and ∈ Ẑ, we have

Eλ
[(

( + ) mod − mod
)(

( + ) mod − mod
)]

=
( )
{ }

mod ( )
( )

(
1− mod ( )

( )

)

where the expectationEλ works on , and

( ) = gcd( )

{ } = lcm( ) = the leastcommonmultiple of and .
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Proof. We divide the proof into four steps.
STEP 1. For , , ∈ N with ( ) = 1 and for ∈ Ẑ, it holds that

(29)
1

−1∑

=0

( + ) mod
=

mod
+

− 1
2

Since ( ) = 1, by a similar argument of [6, Theorem 56], we have

{( + ) mod ; = 0 1 . . . − 1}
= {( + ) mod ; = 0 1 . . . − 1}

Thus, it is enough to prove (29) only for = 1. Moreover, we have

{( + ) mod ; = 0 . . . − 1}
= {( + + ) mod ; = 0 . . . − 1}

so that we have only to prove (29) for = 0 1. . . − 1. But then, for =
0 1 . . . − 1, we have ( + ) mod = + , consequently,

1
−1∑

=0

( + ) mod
=

1
−1∑

=0

+
= +

− 1
2

Thus (29) is valid.
STEP 2. By Step 1, it is easy to see that for , ,∈ N with ( ) = 1 and ,

∈ Ẑ,

1
( −1∑

=0

( + + ) mod − ( + ) mod
)

=
1
(

( + ) mod − mod
)

Therefore, for any periodic function :̂Z → R with period , we have

Eλ
[(

( + ) mod − mod
)

( )

]

=
1

−1∑

=0

Eλ
[(

( + + ) mod − ( + ) mod
)

( + )

]

= Eλ
[

1
−1∑

=0

(
( + + ) mod − ( + ) mod

)
( )

]

=
1

Eλ
[(

( + ) mod − mod
)

( )

]
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STEP 3. Set := ( ), := / , := / and to be

( ) :=
( + ) mod − mod

Then Step 2 implies that

Eλ
[(

( + ) mod − mod
)(

( + ) mod − mod
)]

= Eλ
[(

( + ) mod − mod
)(

( + ) mod − mod
)]

=
1

Eλ
[(

( + ) mod − mod
)(

( + ) mod − mod
)]

By letting and in Step 2 be and 1, respectively, we see that thelast line above
is equal to

1
Eλ
[(

( + ) mod − mod
)(

( + ) mod − mod
)]

(30)

=
1

Eλ
[(

( + ) mod − mod
)2
]

STEP 4. By Corollary 1, the integrand of the right-hand side of (30) is continu-
ous, and it is periodic with period . Therefore (20) implies that

(30) =
1

−1∑

=0

1
(

( + ) mod −
)2

=
1 1

−1∑

=0

(
mod

1 mod + <1 +

(
mod − 1

)
1 mod + ≥1

)2

=
1 1

−1∑

=0

((
mod

)2

1 < −( mod ) +

(
1− mod

)2

1 ≥ −( mod )

)

=
1 1

((
mod

)2

( − ( mod )) +

(
1− mod

)2

( mod )

)

=
1 mod

(
1− mod

)

=
( )
{ }

mod ( )
( )

(
1− mod ( )

( )

)
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Lemma 9. For any bounded function : N → R, it holds that

∞∑

=1

|µ( )µ( )|
{ }2 | (( ))| =

∞∑

=1

|µ( )|| ( )|
2

∏

∤

(
1 +

2
2

)
<∞

∞∑

=1

µ( )µ( )
{ }2 (( )) =

∞∑

=1

|µ( )| ( )
2

∏

∤

(
1− 2

2

)

Proof. The first identity is seen in the following way:

∞∑

=1

|µ( )µ( )|
{ }2

| (( ))|

=
∞∑

=1

∑

′ ′∈N;
( ′ ′)=1

|µ( ′)µ( ′)|
2( ′ ′)2

| ( )|

=
∞∑

=1

∑

′ ′∈N;
( ′ ′)=1
( ′)=1
( ′)=1

|µ( )2µ( ′)µ( ′)|
2( ′ ′)2

| ( )|

[
because ( ′) > 1 implies µ( ′) = 0, and ( ′) = 1 implies
µ( ′) = µ( )µ( ′),

]

=
∞∑

=1

|µ( )|| ( )|
2

∑

′ ′∈N;
( ′ ′)=1 ( ′ ′)=1

|µ( ′ ′)|
( ′ ′)2

(31)

[
because ( ′) = ( ′) = 1 ⇐⇒

iff
( ′ ′) = 1,

]

=
∞∑

=1

|µ( )|| ( )|
2

∑

′ ′∈N

|µ( ′ ′)|
( ′ ′)2

1( ′ ′)=1

[
because (′ ′) > 1 impliesµ( ′ ′) = 0,

]

=
∞∑

=1

|µ( )|| ( )|
2

∞∑

=1

|µ( )|
2 1( )=1

∑

′ ′∈N;
′ ′=

1

=
∞∑

=1

|µ( )|| ( )|
2

∞∑

=1

|µ( )|
2

1( )=1 ( )
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where

( ) :=
∑

′ ′∈N;
′ ′=

1 = the number of divisors of

Since the arithmetic function 7→ |µ( )|1( )=1 ( ) is multiplicative with value 1 at
= 1, and since

∞∑

=1

|µ( )|
2

( ) <∞

we can apply [6, Theorem 286] to get

the last line of (31) =
∞∑

=1

|µ( )|| ( )|
2

∏(
1 +

21( )=1
2

)

=
∞∑

=1

|µ( )|| ( )|
2

∏

∤

(
1 +

2
2

)

For
∑∞

=1(µ( )µ( )/{ }2) (( )), a similar argument works.

Lemma 10. (i) For each ∈ Ẑ,

∞∑

=1

µ( )
(

( + ) mod − mod
)

=: ( ; )

is convergent in 2(Ẑ λ), and the mappinĝZ ∋ 7→ ( · ; ) ∈ 2(Ẑ λ) is continuous.
(ii) For each ∈ N,

∞∑

=1

µ( )

(
( + ) mod − mod

)(
( + ) mod − mod

)

=: ( ; )

is convergent in 2(Ẑ2 λ2), and lim →∞ Eλ
2
[ ( ; )2] = 0.

Proof. (i) Fix any ∈ Ẑ. For finite setsL and M such thatL ⊂ M ⊂ N,
Lemma 8 and Lemma 9 imply that

Eλ
[(∑

∈M

µ( )
(

( + ) mod − mod
)

−
∑

∈L

µ( )
(

( + ) mod − mod
))2 ]
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= Eλ
[( ∑

∈M\L

µ( )
(

( + ) mod − mod
))2 ]

=
∑

∈M\L

µ( )µ( )
Eλ
[(

( + ) mod − mod
)

×
(

( + ) mod − mod
)]

=
∑

∈M\L

µ( )µ( ) ( )
{ }

mod ( )
( )

(
1− mod ( )

( )

)

≤ 1
4

∑

∈M\L

|µ( )µ( )|
{ }2

≤ 1
4

∑

∈N\L

|µ( )µ( )|
{ }2 → 0 asL ր N

From this, the convergence of

∞∑

=1

µ( )
(

( + ) mod − mod
)

in 2(Ẑ λ) follows.
Next, we show the continuity of̂Z ∋ 7→ ( · ; ) ∈ 2(Ẑ λ). For any ∈ Ẑ, we

have mod + mod ≡ ( + ) mod (mod ), and hence

Eλ[( ( ; ′) − ( ; ))2]

= lim
→∞

Eλ
[(∑

≤

µ( )
(

( ′ + ) mod − ( + ) mod
))2 ]

= lim
→∞

Eλ
[(∑

≤

µ( )
(

( + ′) mod − ( + ) mod
))2 ]

= lim
→∞

Eλ
[(∑

≤

µ( )
(

( + ′ − ) mod − mod
))2 ]

(32)

[ becauseλ is shift-invariant, ]

= Eλ
[( ∞∑

=1

µ( )
(

( + ′ − ) mod − mod
))2 ]

=
∑

∈N

µ( )µ( )
{ }2

( ′ − ) mod ( )
( )

(
1− ( ′ − ) mod ( )

( )

)
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=
∞∑

=1

|µ( )|
2

( ′ − ) mod
(

1− ( ′ − ) mod
)∏

∤

(
1− 2

2

)

[
by Lemma 9

]

Now let { ( )}∞=1 ⊂ Ẑ be such a sequence that (( ) ) → 0 as → ∞. Then for any
∈ N, we see lim→∞(( ( ) − ) mod )/ = 0. Therefore the bounded convergence

theorem implies that

lim
→∞

Eλ
[
( ( ; ( )) − ( ; ))2

]
= 0

which shows the desired continuity.
(ii) Fix any ∈ N. For any finite setL and M such thatL ⊂ M ⊂ N, by using
Lemma 8 and Lemma 9, we have

Eλ
2
[(∑

∈M

µ( )

(
( + ) mod − mod

)(
( + ) mod − mod

)

−
∑

∈L

µ( )

(
( + ) mod − mod

)(
( + ) mod − mod

))2 ]

=
∑

∈M\L

µ( )µ( )Eλ
[(

( + ) mod − mod
)

×
(

( + ) mod − mod
)]2

=
∑

∈M\L

µ( )µ( )

(
( )
{ }

mod ( )
( )

(
1− mod ( )

( )

))2

= 2
∑

∈M\L

µ( )µ( )
{ }2

(
( ) mod ( )

( )

(
1− mod ( )

( )

))2

≤ 2
∑

∈M\L

|µ( )µ( )|
{ }2

≤ 2
∑

∈N\L

|µ( )µ( )|
{ }2 → 0 asL ր N

This shows the convergence of

∞∑

=1

µ( )

(
( + ) mod − mod

)(
( + ) mod − mod

)

in 2(Ẑ2 λ2). Moreover, the above computation shows that

Eλ
2

[ ( ; )2]
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=
∑

∈N

µ( )µ( )
{ }2

(
( ) mod ( )

( )

(
1− mod ( )

( )

))2

=
∞∑

=1

|µ( )|
2

(
mod

(
1− mod

))2∏

∤

(
1− 2

2

)

[
by Lemma 9,

]

→ 0 as → ∞

6. Coincidence of “distribution” and distribution

In this section, we prove Theorem 1. But we deal with the case =only,
because the other cases easily follow from this case.

Let be a probability measure on (N P(N)), P(N) being the set of all subsets
of N, defined by

( ) =
1

# ∩ {1 . . . } ∈ P(N)

We let E denote the expectation with respect to . Finally, let2 := ⊗ and
E2 := E

2
.

Since we have

| ( ) − ( )| = ( )

(
1−

∏

>

(
1− ρ ( )ρ ( )

)
)

≤
∑

>

ρ ( )ρ ( )

we see that

| ( ) − ( )| ≤ 1
2

∑

=1

| ( + + )− ( + + )|

≤
∑

>

(
1 ∑

=1

ρ ( + )

)(
1 ∑

=1

ρ ( + )

)

Hence
∣∣∣∣E

2
[ √

−1 ( )
]
− E2

[ √
−1 ( )

]∣∣∣∣ ≤ E2

[ ∣∣∣
√
−1 ( ) −

√
−1 ( )

∣∣∣
]

≤ | |E2 [ | ( ) − ( )|
]

≤ | |
∑

>

(
E

[
1 ∑

=1

ρ ( + )

])2
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= | |
∑

>

(
1 ∑

=1

E
[
ρ ( + )

]
)2

≤ | |
∑

>

1
2

(
1 +

+ 1
2

)2

where the last line comes fromE [ρ ( + )] ≤ (1/ )(1 + / ) (cf. (28)). On the
other hand, since is continuous on̂Z2, Lemma 6 implies that

lim
→∞

E2
[ √

−1 ( )
]

= Eλ
2
[ √

−1 ( )
]

Since converges to in 2(Ẑ2 λ2) as → ∞ (Section 5.2), it is clear that

Eλ
2
[ √

−1 ( )
]
→ Eλ

2
[ √

−1 ( )
]

as → ∞

Therefore, collecting all the above, we see

lim sup
→∞

∣∣∣∣E
2
[ √

−1 ( )
]
− Eλ

2
[ √

−1 ( )
]∣∣∣∣

≤ | |
∑

>

1
2

+

∣∣∣∣E
λ2
[ √

−1 ( )
]
− Eλ

2
[ √

−1 ( )
]∣∣∣∣ →

→∞
0

which completes the proof.

7. Limit distributions of CLT scaling

In Lemma 10 (i), we showed the continuity of̂Z ∋ 7→ ( · ; ) ∈ 2(Ẑ λ). About
( · ; ), we further assert the following lemma.

Lemma 11. (i) For , ′ ∈ Ẑ,

( · ; ) = ( · ; ′) in 2(Ẑ λ) ⇐⇒
iff

∼ ′

(ii) For { ( )}∞=1 ⊂ Ẑ and ∈ Ẑ, the following three statements are equivalent:
(a) lim →∞ ‖ ( · ; ( )) − ( · ; )‖ 2(bZ λ) = 0.

(b) For any prime , there exists ∈ N such that( ( ) − ) mod = 0 for all
≥ .

(c) lim →∞[ ( )] = [ ] in Ẑ/∼.

Proof. (i) is a special case of the equivalence between (a) and (b) for ( ) = ′ ∈
Ẑ (∀ ) and ∈ Ẑ. Therefore we prove only (ii).
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First, by (32) and noting that

0<
∏(

1− 2
2

)
≤
∏

∤

(
1− 2

2

)
≤ 1 ∀ ∈ N

we have

∏(
1− 2

2

) ∞∑

=1

|µ( )|
2

( − ′) mod
(

1− ( − ′) mod
)

≤ ‖ ( · ; ) − ( · ; ′)‖2
2(bZ λ)

(33)

≤
∞∑

=1

|µ( )|
2

( − ′) mod
(

1− ( − ′) mod
)

Proof of (a)⇒ (b). (33) implies for any prime that

‖ ( · ; ( )) − ( · ; )‖2
2(bZ λ)

≥ 1
2

( ( ) − ) mod
(

1− ( ( ) − ) mod
)∏(

1− 2
2

)

≥ 1
4
(( ( ) − ) mod )

∏(
1− 2

2

)

Therefore (a) implies that lim→∞( ( ) − ) mod = 0 for any prime . From this, (b)
easily follows.

Proof of (b)⇒ (a). Conversely, assume (b). Let :=1 · · · , where 1 < · · · <
are primes. Then

∃ 0 ∈ N such that (( ) − ) mod = 0 ∀ ≥ 0 1 ≤ ∀ ≤

Since 1 . . . are clearly co-prime to each other, we have

( ( ) − ) mod = 0 ∀ ≥ 0

Therefore, for any ∈ N with |µ( )| = 1, we have

lim
→∞

( ( ) − ) mod = 0

By the bounded convergence theorem, we see

lim
→∞

∞∑

=1

|µ( )|
2

( ( ) − ) mod
(

1− ( ( ) − ) mod
)

= 0
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which shows (a) with the help of (33).

Proof of (b) ⇒ (c). For anyε > 0, take ∈ N so that 2− < ε. Let ν :=
max ≤ . Then if ≥ ν , ( ( ) − ) mod = 0 for ≤ . Thus if ≥ ν ,

˜([ ( )] [ ]) ≤
∑

>

2− = 2− < ε

where˜ is the metric ofẐ/∼ defined by (13). This means that (b) implies (c).

Proof of (c)⇒ (b). (c) means that for each prime , lim→∞ ρ ( ( ) − ) = 1.
From this (b) follows.

7.1. Proof of Theorem 6. Let ∈ Ẑ and a sequence{ }∞=1 ⊂ N be such
that [ ] 6= [ ] and [ ] → [ ] in Ẑ/∼ as → ∞. Then by Lemma 11 (ii),
we have lim→∞ ( ; ) = ( ; [ ]) in 2(Ẑ λ). And by Lemma 10 (ii), we have
lim →∞ ( ; ) = 0 in 2(Ẑ2 λ2). Therefore Theorem 5 implies that

lim
→∞

( ) = − ( ; [ ]) − ( ; [ ]) in 2(Ẑ2 λ2)

Now, from Lemma 1 it follows that for any ∈ Ẑ, there exists a sequence
{ }∞=1 of distinct positive integers such that → in Ẑ as → ∞. Then we have
[ ] → [ ] ∈ Ẑ/∼ as → ∞. Conversely, by compactness ofẐ/∼, for any sequence
{ }∞=1 of distinct positive integers, there exists a subsequence{ }∞=1 ⊂ { }∞=1

such that [ ]→ [ ] for some [ ]∈ Ẑ/∼. From these facts, Theorem 6 follows.

7.2. Proof of Theorem 7. Theorem 7 (i) and (ii) are clear from Lemma 11.
Since we can show

lim
→∞

1 ∑

=1

√
−1 ( ;1) = Eλ

[ √
−1 ( · ;1)

]
∈ R

in a similar way as Theorem 1, Theorem 7 (iv) is reduced to the results of [5]
and [9]. Theorem 7 (v) is clear from Theorem 7 (iii). So, we have only to show The-
orem 7 (iii).

We know by Theorem 5,

( ) = − ( ; ) − ( ; ) + ( ; )

as an identity in 2(Ẑ2 λ2). Integrating both sides byλ ( ), we have

− ( ; ) =
∫bZ ( )λ ( )
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[
because

∫bZ ( ; )λ ( ) =
∫bZ ( ; )λ ( ) = 0

]

=
∫bZ (

1
2

∑

=1

∏(
1− ρ ( + )ρ ( + )

)
− 6
π2

)
λ ( )

[
by (18)

]

=

(
1

2

∑

=1

∏(
1− ρ ( + )

∫bZ ρ ( + )λ ( )

)
− 6
π2

)

=

(
1

2

∑

=1

∏(
1− ρ ( + )

)
− 6
π2

)

=
∑

=1

∏(
1− ρ ( + )

)
− 6

π2

In particular, setting = 1, we have

− ( ; 1) =
∏(

1− ρ ( + 1)
)
− 6
π2

Consequently, we have− ( ; ) = −∑ −1
=0 ( + ; 1).
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