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1. Introduction

Recently, several local moves of knots and links were defaradl studied actively
in many papers, for example [2], [5], [7], and [8].

In this paper, we define a new local move on knot diagram callédilnor move
of order n or simply anM,-move Namely, letk be an oriented knot in an ori-
ented 3-spacek® and let B® be a 3-ball inR® such thatk N B® is the tangle illus-
trated in Fig. 1. The transformation from Fig. 1(a) to 1(b)caled anM,-move and
that from Fig. 1(b) to 1(a) is called am/, -move. Furthermore am{, -move means
either an M;-move or anM, -move. For two knotsk k' in R3, k is said to be
M, -equivalent tok’ or k andk’ are said to beM, equivalentif k can be transformed
into ¥’ by a finite sequence a#Z, -moves, [5].

In [6], Milnor introduced the Milnor link. Namely a link. is diad the Milnor
link if L is transformed into a trivial link by anM,-move. Now we generalize this
move to anM, -move for any positive integer> @).

Almost local moves known up to the present change the knoordidm, [1]. But
we will see that anM, -move does not change the knot cobordismafy integer
n (> 2), see Proposition.

In Section 2, we study a relation between the Alexander motyals of
M,-equivalent knots and a property 8, -equivalence of knot$ prove Theorems 1
and 2.

A relation of Alexander polynomials of cobordant knots wasown in [1]. The
result we obtain in Theorem 1 is more concrete than that off¢i]cobordant knots
which are M, -equivalent. Theorems 1 and 2 give a classificatfonobordant knots
by an M, -move.

For a knotk ,A; () means the Alexander polynomialkof

Theorem 1. For two knotsk, ¥’ and an integem > 2, if k is M,-equivalent to
k', then

[T{@— o = (=" H@ = o = (=) }Au0)

i=1
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for some integers, u, v, p;, qi,rj ands;, 0< p;, gi, rj, s; <n, pi+tq; =rj+s; =n.

Theorem 2. For two knotsk, k€’ and an integern > 2, let k be M, -equivalent
to k. Thenk is notM,, -equivalent t&’ for any integerm (#n) > 2.

A knot k is a ribbon knot ifk bounds a singular disk with only salled ribbon
singularities, Fig. 2. Moreover it is easily seen that iskbon knot if and only ifk
(c R3[0]) bounds a non-singular locally flat disk which does novéhainimal points
in the half spaceR? = {(x,y,z,1) € R*|t > 0} of R* whereR3[a] = {(x,y,2,1) €
R* | t = a}. (If k bounds a non-singular locally flat disk iR}, k is called a slice
knot.)

If k can be transformed into a trivial knot by a finite sequen€eM)-moves, we
see thatt is a ribbon knot, Proposition, and so we can use &hearto classify rib-
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bon knots byM, - moves. Indeed, we will classify almost all grinbbon knots up to
10 crossing points by Theorem 1 in Section 3.

2. Properties of My-moves

In this section, we study some propertiesMf -moves and piidworems. We
prepare Lemmas 1 and 2 to prove Theorem 1.

To calculate the Alexander polynomial dff, -equivalent kndet us define a
local move, called]\71”jE -moves. The tangle transformation from Fig. 3(a) to 3(b) is
called anM;-move and that of Fig. 3(b) to 3(a) is called &) -move.

Lemma 1. (1) An M, (or M, )-move can be realized by aﬁ,;‘ (resp. A7I,l‘)-
move. B
(2) An M} (or M, )-move can be realized by aW; (resp. M, )-move.

Proof. (1) By the deformations illustrated in Fig. 4, we obtél).
(2) We easily see (2) by the definitions of these moves. O

Lemma 2. For two knotsk, k' and an integem (> 2), if k can be transformed
into £’ by an M;-move then

Ap(r) = £ {1 —0)" = ()" H{@ = 0)" = (=)} A (1)

for some integerp, ¢ andr, 0< p, g <n, p+q =n.
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Proof. Suppose that can be transformed iktoby an M, -move, hence by
an M -move by Lemma 1. Namelg can be ambient isotopic to the bamd st
k' and ann -component trivial linkC,, by n bands, sayBi, ..., B,, and let us span
n disks Dy, ..., D, with singularities, sayl1, do1, d2, ..., dn, d,2 Of ribbon type to
L,, whered; = D1N Dy, di1Udj» = D;ND;41 for 2<i <n-1 andd,1Ud,» = D,N By,
Fig. 5(a).

Performing an orientation preserving cut alodg and attach a tubg; along a
subdisk of D;+; or By for 2 <i < n, Fig. 5(b). Hence we obtain an orientable surface
F1U---UF,, where F; is obtained fromD1UB; by an orientation preserving cut along
doand F; =O; — N(dipUdi2 : D;))UT; UB; for 2<i <n, whereN  :X ) means
the regular neighborhood of i

Let F' be an orientable surface &f. If the singularity of F/ N F; is not empty,
it consists of arcs of ribbon type df’ N B;. Performing the orientation preserving cut
along these arcs for each , we obtain an orientable suiface k. of

To calculateA; () ofk , we take a set of basis of the first homoléfjyF) of F
including a; , b; illustrated in Fig. 6. LetM be a Seifert matrix bf ndahenceA; )
is the following, whereq;, b;f mean the lift ofa; ,b; respectively over the positive



ON MILNOR MOVES AND ALEXANDER POLYNOMIALS 849

side of F; .

fo |
I i I Kﬂ‘:—)
_ii_____iL____Ji_ _||_____||_____JL
(a) }"' (b)
Fig. 5.
( bie .._‘
Fy _
H;
— D,
N N

Fig. 6.



850 T. IsHIKAWA, K. KOBAYASHI AND T. SHIBUYA

Ac(t) =|M —tM'|
N S S SR
ai 611‘51 t—1
0
ap—1 O =1
a, r—1 €,1%
= b1 —eltl_(sl t—1 ’
by r—1 - O
* *
by 0 t—1 —e,tt %
0 * A ()

whered; =0,¢;, =1 ord; =1,¢; =—1. Let us denotep d1+---+4, andg =n — p.
Theney---¢, = (—1)? and 1) ---¢, = (—1)7. Therefore

Axlt) = {(=1 2 — 1) + ()P (-1 M — 1) + (1)} Awe (1)
={@-0"=(=0)"HA=0" = (=0)"}Aw (). O

Let k, k' be those of Lemma 2. Thek’ can be transformed intd by an
M, -move. Hence we easily obtain Theorem 1 by Lemmas 1 and 2.
Now, we apply Lemma 2 for =2, 3 and 4.

Corollary 1. Suppose that a knak  can be transformed into a trivial knot by a
finite sequence o/, -moves.

W If n=2, Ag@) =+ [T, ;¢ — 2y (2 — 1y"(® — 1+ 1.

() If n=3, Ax(@) =+ [T, (1> — 3 +3)y" (32— 3 + 1)"
x(t3 — 32 +2r — 1y (13 — 212 + 3t — 1),

@) If n=4, Ax(t) =+ [T, ;, (6% — 42 +6r — 4y (43 — 6% + 4t — 1)™
x(t* — 43 + 612 — 3t + 1) (¢4 — 33+ 612 — 4t + 1)
x (1% — 413 + 512 — 4t + 1P,

Proof. We apply to Lemma 2 in the following cases respectivél n = 2, we
consider the case that; =@, =2apd ¢g= =1alf =3, we do the cases tha
pi=0,¢q; =3 andp; =1g; =2.1fn =4, we do the cases that =p, =4 and
p,-:1,q,-:3andp,- =i =2. O
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Fig. 7.

Let 7« (z) be the Conway polynomial ok . It is well-known thatg(r — 1) =
Ak (t?). Therefore we easily obtain the following.

Corollary 2. (1) If K can be transformed into a trivial knot by a finite se-
quence ofM;-moves vk () =[], ;(1 — 22%)™ (1 +2%)2.
(2) If K can be transformed into a trivial knot by a finite sequendeMy;-moves
Vk(z) =1 ;1 + &)™ (@ - % = 20

K. Habiro introduced a local move, called tlig -move, [2],. [We see that an
M,-move can be realized by a finite sequencef -moves as thastm Fig. 7,
which is also obtained by the result of [2]. But the conversdaise by Example 1.

ExampLE 1. For any integem > 2, there is a knotk, which ig, -equivalent
to a trivial knot O (namely k, can be transformed int® by a finite sequence of
C,-moves) but notM, -equivalent t@. For example, letk, be the knot illustrated
in Fig. 8. Then we easily see thdt, 5, -equivalent @ Suppose that, is
M,-equivalent toO. Then we obtain thath,, {1) = +(2" — 1)®" for an integer
m by putting¢t = —1 in Theorem 1. On the other hand, we obtain thgt + () =
(t — 12D + =1 py calculating the determinant of Seifert matrix bf . Hence
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Ar,(—1) = 20-D 4 (—1y'~1 # 4+(2" — 1)®", which is a contradiction.

ExampLE 2. By the projections of ribbon knots in [4], we easily seetthg 8,
96 and 1Q4p are M-equivalent to a trivial knotO. Since the knots in Fig. 9 are am-
bient isotopic to 9; and 9; respectively, 9, and 9, are M3-equivalent toO.

Next let us prove Theorem 2.

Proof of Theorem 2. Suppose that there is an integey n)(> 2 such thatk
is M,,-equivalent tok’. Then we obtain that

[TE@ =0 = (=P H@ - 0" = (=%} a)
=1
=+ [[{@ =0 = (=) H@L— 0" = (=)} Aw (1)

j=1

and
U
[T{@— " = 0" H@ - 0" = (=02 }A0)
i=1

\%4
=+ T[HA@ - 0" = (0 HA - 0" = (0%} Au0)

j=1
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for some integers u v p; ¢ n; ang ,Op;, qi,rj,s; <n, pitq =rj+s; =n
a.ndS,U,V,P,' , 0, ,Rj ande , KX P, 0;, Rj, SJ‘ <m, P+Q; = RJ‘ +SJ‘ =
m by Theorem 1. By putting =-1, we obtain that (2— 1)*a = +(2" — 1)%p3,
(2" — 1)%Ya = +(2" — 1)?V3, wherea = Ay(—1) and 8 = Ap(—1). Therefore we
obtain that (2 — 1)? = (2" — 1) for some integerp ¢

But we may show that it is a contradiction in the following. \8ppose that there
existm,n,p,q withn > m > 2 such that (2—- 1) = (2" — 1)7. Let p =as and
g = bt, wherea ,b € {2'}<, and integers ¢ are odd. After replacing,¢ )by p ),
we can assume that> b andc =a/b € {2'}5,. Then we have (2— 1) = (2" —1Y.
Sinces ,t are odd and"2> 2" > 4, we have {1) = (-1)* = (-1 = -1 (mod 4).
Thusc =1, s0 (2— 1) =(2" —1). Let A =2" — 1. Then we have

Q) Al=2"-1) =2 -1=(-1=-1 (mod2)
Squaring the above, we have

(2 A% =1 (mod 2)

Now, since @, 2 ) =1, by Euler's Theorem (cf. [3, p. 33]) we have
(3) A’@) =1 (mod 2)

where¢(2") is Euler’s phi function (the number of positive integ@rame to 2 and<
2"). Sincep(2") =21 and (2, 271) =2, (2) and (3) implyA2 =1 (mod 2 ). Since
n > 3, this equation has 4 solution$ = +1, 22~1 + 1 (mod 2 ). But, by (1) it has
only A= -1 (mod2), so2 =0 (mod 2 ). Hencern > n. This is a contradiction.
]

3. A classification of ribbon knots by M,-moves

For two knotsk € R3[a]) and k’(C R®[b]) for a < b, if there is a non-singular
locally flat annulusA in R%[a, b] with AN R3[a] = k and AN R3[b] = —k’, we say
that k is cobordant t&’, [1]. Hence ifk is cobordant to a trivial kndD, & is a slice
knot and moreover if4 does not have minimal point&, is a ribbon knot.

Proposition. For two knotsk, k' and an integern (> 2), if k is M,-equivalent
to k', thenk is cobordant tc’.

Proof. Sincek isM, -equivalent t&’, there are knot&ko(= k), k1, ..., k,(= k')
such thatk; can be transformed intp.; by an M;'-move or anM, -move. Suppose
thatk; is contained inR3[2i] for i =0, 1,..., p.

If we perform a hyperbolic transformation, Fig. 10, ko (k1) in R3[2i + 1]
and obtaink;+1 (resp.k; ) and a trivial knot split from;+1 (resp.k; ).
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Performing the above discussion to each , we obtain a nausin locally flat
annulusA in R3[0, 2p] with 9.A =k U (—k'), namelyk is cobordant ta’. ]

Hence ifk can be transformed into a trivial knot by a finite sswe of M, (or
M})-moves,k is a slice (resp. a ribbon) knot. Thereforé if is adlice knot,k is
not M, -equivalent to a trivial knoO.

In this section, we consider the following by using TheorenAde the prime rib-
bon knots up to 10 crossing pointd, -equivalentQofor some integen X 2)?

By Example 2, we already see that, @0, 946 and 1Q49 are M,-equivalent to©O
and that 9; and Q; are M3-equivalent toO.

ribbon | Alexander polynomial M, | M3 M,,
knot (n>4)
61 212 — 5t +2

8 214 — 63+ 92 — 61 +2

8y 3 +5* — 73 +52 _3r+1

820 (12 — 1+ 1)

9,7 5+ 1% — 153+ 112 — 5+ 1

91 3t — 123+ 192 — 12 +3

6 212 — 5t +2

10; 62— 13 +6

10,0 215 — 65+ 104 — 133+ 102 — 61 + 2
1035 214 — 123+ 212 — 12r +2

104 O — TP+ 19 273+ 192 —Tr + 1
1048 3T +68 — S+ 1 — 3+ 62 -3 +1
1075 -7+ 19— 273+ 192 — Tt + 1
10g7 (1> —t+1P2(—2t> +5t — 2)

1099 (1*—t+1)

10103 | (t* =33 +32 -3t + 1Y

10129 214 — 63+ 92 — 61 +2

10137 (> =3 + 17

10140 (t? — 1+ 1)

10153 -5 +343 -2 —r+1

10:55 -3 +54 — T3 +52 -3 +1

2Z2<Z2Z2Z20909222Z222<Z2Z2<<22<
2Z2Z2Z2Z2Z2Z2Z2Z2Z2Z2222Z2<X<X2Z222Z22Z2
2222222222222 2Z22Z2Z2Z2ZZZZZ|IV.
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Here Y and N mean “yes” and “no” respectively.

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]

Question. Are 107 and 1@9 M-equivalent toO?
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