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Introduction

In the study of the holomorphic automorphism group AMit( ) aamnplex mani-
fold M, it seems to be natural to direct our attention not ordythe abstract group
structure of Autf/ ) but also to its topological group struetuequipped with the
compact-open topology. In fact, a well-known theorem of Frt@n says that the topo-
logical group of the holomorphic automorphisms of a boundethain inC" has the
structure of a Lie group, and this result enables us to makeua kinds of de-
tailed studies of bounded domains @f. On the other hand, in contrast to the case
of bounded domains, the holomorphic automorphism groug@ut (C*)") of the un-
bounded domairC* x (C*)* is terribly big whenk + > 2, and cannot have the structure
of a Lie group. But, by looking at topological subgroups oft@f x (C*)!) with Lie
group structures, we can find a lead to apply the Lie grouprihém the investiga-
tion of the problems related to the structure of Ak(x (C*)!). In the present paper,
we try to approach from this standpoint to the fundamentabl@m of what complex
manifold has the holomorphic automorphism group isomarghi Aut(C* x (C*)!) as
topological groups. Namely, we prove the following resuithwthe aid of the theory
of Reinhardt domains developed in Shimizu [8], [9] (cf. Khilin [6]).

Main Theorem. Let M be a connected Stein manifold of dimension . Assume
that Aut(M) is isomorphic toAut(C* x (C*)"~*) as topological groups. Thed s
biholomorphically equivalent t&€* x (C*)"—*,

As a consequence of the above theorem, we can obtain thenfiemdal result on
the topological group structure of A@f x (C*)/).
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Corollary. If two pairs (k,[) and (k’, ') of nonnegative integers do not coincjde
then the topological groupgut(C* x (C*)") and Aut(C*" x (C*)') are not isomorphic.

It should be remarked that, as shown in Ahern and Rudin [H,gfoups AutC")
and AutC™) are isomorphic as abstract groups precisely whenm = . Als@ aon-
sequence of the study @f n ( )-actions on complex manifoldsimiedsionn , a related
result to our Main Theorem has been obtained by Isaev andhiiuZ4].

This paper is organized as follows. In Section 1, we collemhe preliminary
facts. In particular, two main tools for our study are givédne is a tool to obtain
the normal form of some compact group action on a Reinhardtaily, and the other
is a tool for the standardization of torus actions on comptenifolds. Section 2 is
devoted to the proof of the Main Theorem and its corollaryr @ethod used in Sec-
tion 2 has interesting applications. As one of such apptioat we discuss in Sec-
tion 3 a new approach to the study ofn ( )-actions on complexifolds of dimen-
sionn.

1. Lie group actions, Reinhardt domains and torus actions

We begin with a basic fact on Lie group actions on complex foids. Let M
be a complex manifold. Arautomorphism ofMf means a biholomorphic mapping of
M onto itself. We denote by Aut{ ) the topological group of allt@morphisms of
M equipped with the compact-open topology. L@t be a Lie gronp eonsider a
continuous group homomorphispt G — Aut(M). Then the mapping

GxM>(g p)— (p(e)p) e M

is continuous. It follows from Akhiezer [2] that this mappgirnis actually of clasC¥,
and thereforeG acts o as a Lie transformation group. In viéwhis, when a
continuous group homomorphisp: G — Aut(M) is given, we say thatG acts on
M as a Lie transformation group through. Also, the action ofG onM is called
effectiveif p is injective.

We now recall basic concepts and results on Reinhardt da(ai [8], [9]). We
denote byU £ ) theunitary group of degreé. Write 7" = (U (1))* . Then -dimensional
torus T" acts as a group of automorphisms@hnhby the standard rule

a-z=(z1, .., nzy) for a=(ag,...,a,) € T" andz =¢,...,z,) € C".

By definition, aReinhardt domainD in C" is a domain inC" which is stable under
this action of 7" . Each element of 7" then induces an automorphism, of D given
by 7.(z) = « - z, and the mappingp sendinga to 7, is an injective continuous
group homomorphism of” into Aul{ ). The subgropp(7") of Aut(D) is denoted
by T(D).

Let f be a holomorphic function on a Reinhardt dom&in Ch Then f can be
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expanded uniquely into a “Laurent series”

f@=3 a,

vezr

which converges absolutely and uniformly on any compactisetD, wherez =
(z1,---sza), ¥ = (V1. ..., 1), @nd z¥ = z7*---z¥». The following lemma is a conse-
guence of the uniqueness of the Laurent series expansion.

Lemma 1.1. If f satisfies the condition thafor someyy € Z",
fla-2)=a"f(z) forall aeT" and all z € D,

then f has the formy (z) = a,,z*°.

Proof. Since we have

fla-2)=) a’a:’ and a®f() =) a%a,z",

vezn vezn
it follows from the assumption that, for everye Z", we have

v j—

oa’a, = aa, for all a € T".

This implies that ifa, # 0, thenv =1y, and our lemma is proved. O

We denote bylT ¢") the group of all automorphisms @" of the form
C">(z1,...,z0) — (0az1, ..., anzy) € C",

where @, ..., q®,) € (C*)". For a Reinhardt domai® i€", we denote bylT D )
the subgroup offT @") consisting of all elements aff ) leaving D invariant. Iden-
tifying I7(C") with the multiplicative group €*)", we see that, whedT I ) is re-
garded as a topological subgroup of Ant( ), it is isomorplei@tclosed Lie subgroup
of (C*)". Using Lemma 1.1, we obtain a characterization/ofD ( ) as aysaup of
Aut(D).

Lemma 1.2. Let D be a Reinhardt domain i€". ThenII(D) is the centralizer
Cau(p)(T (D)) of T(D) in Aut(D).

Proof. It is immediate thall I} )C Cauwp)(T(D)). To prove the reverse in-
clusion, lety be any element ofCaup)(T(D)) and write ¢ = (1, ..., ¢s), Where
1, -- -, e, are holomorphic functions o® . Then, for evary =1,n, we have

pila-z) = aipi(z) =a“pi(z) forallaeT" and allz € D,
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where eache; denotes the element Z5f whosei -th component is equal to 1 and
whose components except the -th are all equal to 0. By Lemthaitlfollows from
this property that every functiop;(z) has the form

0i(2) = ae, 2% = a, 7.

This implies thaty € IT(D), and the reverse inclusio@auwp)(7(D)) C II(D) is
shown, as desired. U

The argument used in Shimizu [9] for determining the autgh@ms of
bounded Reinhardt domains has the following consequenkighvplays a crucial role
in our study.

Proposition 1.1. Let D be a bounded Reinhardt domain @¥ and suppose that

DN{z =0}y #0, 1<i<m,
DN{zi=0 =0, m+1<i<n.

If G is a connected compact subgroup Afit(D) containing T (D), then there exists a
transformation
1 C" X (C)Y"™" 2 (21, - zn) = (wa, .o wy) € C7 x (CF)',
wi =1z (@), 1<i<m,
W; =726, m+1<i<n,

such that for D = p(D) and G = ¢Gy~1 c Aut(D), one has

G=U(ky) x -+ x Ulk) X Ulkss1) X - x U(ky),
ki+---t+ky ke t+---+k =n,

k1+"'+k,v:m,

ks+l:"':kl ::L
wherery, ..., r, are positive constantsr’ and ¢” are permutations ofl,...,m} and
{m+1,...,n}, respectivelyz” denotes the coordinats,,+1, ..., z.), andvy, ..., v

are elements ogZ" ™.
We give a useful form of this proposition as a corollary.

Corollary. In the above propositignif G is isomorphic toU (k) x (U(1)y** as
topological groups and ik > 2, thenm > k.
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Proof. SinceG is necessarily isomorphic tbk & JU(1))'* as Lie groups, we
have dimG =k?+ (n — k). On the other hand, Proposition 1.1 implies that dim =
dimG =k? + .-+ k2 + (n — m). Therefore, ifm < k, then it follows that

kK2=k?+.. . +k>+(k —m) and k =ky+---+ks+ (k —m).

By noting thatk > 2 andk — m > O, this is a contradiction. Thus we obtain > k.
O

We recall the fundamental result on torus actions on compiaxifolds, which is
a part of Barrett, Bedford and Dadok [3, Theorem 1].

Standardization Theorem. Let M be a connected Stein manifold of dimen-
sionn. Assume thal” acts effectively 8h  as a Lie transformagioup throughp.
Then there exist a biholomorphic mappifg  &f i and a continuous group
automorphismd of 7" such that

F((p(e))(p)) =0(a)- F(p) forall a eT" and all p € M.

ConsequentlyD := F(M) is a Reinhardt domain irC”, and one hasFp(IT™")F~! =
T(D).

To apply the Standardization Theorem to our study, we neezihreni.

Lemma 1.3. In the Standardization Theoreni M = C* x (C*)"~*, then we have
D = F(M) = Ck x (C*)"~* after a suitable permutation of coordinate necessary.

Proof. We first show thatD N (C*)* = D — {z1---z, = 0} = (C*)". Suppose
contrarily that D N (C*)" # (C*)". Since D N (C*)" is a Stein manifold, the logarith-
mic image of the Reinhardt domaif N (C*)" is a convex domain contained in a half
space ofR". Hence, there exists a nonconstant bounded plurisubhgnfionction u
on D N (C*)". Sinceu extends to the whole dd» , we have a nonconstant bdunde
plurisubharmonic function o> . This contradicts the facitth is biholomorphically
equivalent toM =C* x (C*)"~*. Thus we obtainD N (C*)" = (C*)".

Since D is a Stein manifold, it follows from what we have shovrowe that, af-
ter a suitable permutation of coordinate®, has the f@m C'=x (C*)"~" (cf. [7,

p. 46, Theorem 1.5]). Note that* x (C*)"~* and C" x (C*)"~" are homeomorphic
precisely whenk = . Therefore we have@ G* x (C*)" %, becauseD and! are
biholomorphically equivalent. O
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2. The characterization of C¢ x (C*)': Proof of the Main Theorem and its
corollary

For brevity, we writeX;; =C* x (C*)" and Q; =Xy.,_.

Now, as in the Main Theorem stated in the introduction, Mt decon-
nected Stein manifold of dimensiom and assume that thergtsegn isomorphism
d: Aut(2) — Aut(M). Since 2, is a Reinhardt domain i@", we have the injec-
tive continuous group homomorphispy, : 7" — Aut(€2;). Thus we obtain an injec-
tive continuous group homomorphisd o pg,: T" — Aut(M). Hence, by the Stan-
dardization Theorem, there exists a biholomorphic mapgingf M into C" such that
D := F(M) is a Reinhardt domain ii€" and we haveF ¢ o po, )(T")F~* = T(D).
Therefore we may assume thaf is a Reinhardt donfain C’inand we have an
isomorphism® : Aut2; >~ Aut(D) such that® T @ ))=T D ).

We show that C*)" C D. Since ® : Aut€; ) — Aut(D) is a group isomor-
phism and sinced 7 ¢, )) ¥ I} ), we see thd  gives rise to a topo@bgicoup
isomorphism® :Caua,)(T(2)) — Cauwp)(T (D)) between the centralizers. Moreover,
by Lemma 1.2 we hav&€aue (T () = IT1(S2), and it is immediate thafl & ) =
I1(C"). On the other hand, again by Lemma 1.2 we h&gyp)(7 (D)) = II(D).
Therefore we obtain

2n = dimIT (") = dim Cagiay) (T()) = dim Caupy (T(D)) = dim 17 (D).

Since IT 0 ) is a closed Lie subgroup @1 CY), it follows that IT (D) =IT C"). By
taking a pointzg in D N (C*)", this shows that

(C)'=1(C") - z0=11(D) - 20 C D,

as required.

Since D is a Stein manifold by assumption, we see from the tre$uhe preced-
ing paragraph thaD has the formm ¢ after a suitable permutatfocoordinates.

Whenn =1, we haveD £ =C* or D = Q; = C. Moreover, since Au{*)
and AutC) are not isomorphic, the condition that A ) and At( ) asemorphic
implies that, according to the cases/of =0 and = 1, we must avwe Qo and
D = ;. This proves the Main Theorem when = 1. Therefore, in whdbyfd, we
assume that > 2.

We show thath > k. Whenk = 0, there is nothing to prove. To prove our asser-
tion whenk # 0, we divide into the two cases &f =1 and> 2.

First consider the case df > 2. Noting that Aut2; ) contains the subgroup
Uk) x (UQ)' %, we setG =@ (U k)x (UL)*), which is a connected com-
pact subgroup of Aufp ) containin@ IX ), becauSek % YU(1)y'™* > T() and
d(T(2)) = T(D). Take a relatively compact subdomain bf and put

Do={gx)eD|geG zcU}=JeW)=|JG =
geG €U
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Then Dg is a bounded Reinhardt domain containedZin and can be rapasle
a connected compact subgroup of the Lie group Agj(containing? (o). Recalling
that G is isomorphic toU K X (U(1))"* andk > 2, we can apply the corollary to
Proposition 1.1 toDg and G C Aut(Dg). Therefore, after a suitable permutation of
coordinates, we have for some > k,

@#Doﬁ{Z,‘ZO}CDﬂ{Z,‘:O}, 1§l§m

This implies that2,, C D, and, when we writeD £, , we must have> m > k, as
required.

Now consider the case df = 1. It suffices to show that fyj(and Autf2o)
are not isomorphic. Suppose contrarily that we have an igohiem ¢ : Aut@2;) —
Aut(20). Then, by the Standardization Theorem and Lemma 1.3, we asayme that
we have an isomorphis® : AE2() — Aut(p) such thatd [ 1)) = T(R0). For
s =0, 1, let us set

T'(2)={(L, az, ..., ) € T() | az, ..., a, € UL)}.

Then ® (('(R21)) is an @ — 1)-dimensional subtorus of ), and, after a suitable
change of coordinates by a transformation of the form

QO = (C*)" 9 (Zla AR 7ZIZ) [— (wla L] wll) 6 (C*)" = QOa
w; =z, 1<i<n,

where v1, ...,1v, are elements ofZ”, we have ® /(1)) = T'(Qp). Since @ :
Aut(©;) — Aut(Qp) is a group isomorphism, we see thét  maps the centralizer
of T'(21) in Aut(2;) onto the centralizeZ of T'(Q0) in Aut(Q2p). Therefore, for the
groupsZoy and Z;, their commutator groupszp, Zo] and [Z1, Z;] must be isomorphic.
To derive a contradiction, it is sufficient to see thdb[Zg] is an abelian group, while
[Z1, Z4] is not an abelian group. We verify this only in the casenof -b8cause the
verification in the case of > 2 is almost identical. Using a method similar to that in
the proof of Lemma 1.2, we can show that and Z, are the groups of all elements

g1 € Aut(€1) = Aut(C x C*) and go € Aut(€2) = Aut((C*)?)
having the forms

(*) £1(2) = (az1+ B, f(z1)z2)

and

g0(2) = (az1, f(z1)z2),
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respectively, wherex € C*, g € C, and f ¢1) is a nowhere vanishing holomorphic
function that is defined o€ for g1 and onC* for go. Take any two transformations
K. 5 and Ko gy Of the form ) given by

Kap(2) = (az1+ B, fz1)z2) and Ko g (2) = (/2 + B, f(z10)z22)

and write [Ko.g. 7, Ko g 11(2) = (K1(z), K2(z)) in terms of the coordinates i€?,
where [p, ] := ¢ toyp"topor) denotes the commutator of transformatiansnd ).
Then we have

ad'zy+af — Ba’ + 65—
ao! ’

Ki(z) =

fl'za+B') f'(z1)z2
a7z +aff — o+ 3 — 3)jac))f (o’ + i + 3 — F)/a)

As a consequence, considering the case@®f3() = (0, 0), we have

Ko(z) =

) Koo Ko = (2, LODLEDE)

f(z1)f"(az1)

Now it follows immediately from £x) that [Zo, Z¢] is abelian. On the other hand, con-
sider three elements

P(z) = (az1+ 5, 22), O(z) = (z1,z2€Xpz1), andR ¢ ) = (yz1, z2€XPz1)

in Z;. Then, using the computation result above, we obtain

[P, Ql(2) = (z1, z2€xp{(1 — a)z1 — B3}),
[P, RI(2) = (W,ZzeXp{(l—a)Zl B g}) ’

ary

and therefore [P, O ] P, R ]] is not the identity mapping whenev&n—1)(y—1) # 0.
This implies that F1, Z1] is not abelian, and our assertion that Autj and Autfo)
are not isomorphic is shown.

Summarizing our results obtained so far, we have shown thaf is a connected
Stein manifold of dimensiom and if the topological groupst() and Aut; ) are
isomorphic, thenM is biholomorphically equivalent @, with> k.

To complete the proof of our Main Theorem, it is sufficient Beé =k . Suppose
contrarily thath # k. Then, for the connected Stein manifaiz, of dimension , we
have that Aut2; ) and Auf¢, ) are isomorphic. By lettild @ , an laggion
of what we have shown just above yields thag is biholomomhicequivalent to
Q, with p > h. Sincek < h < p, this contradicts the fact thae, ar@, are not
homeomorphic when # ¢. We thus obtair: % , and our Main Theorem is proved.

U
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It remains to prove the corollary to the Main Theorem.klf [ + k=+1', then
it is immediate from the Main Theorem that AXY(; ) and AXif(,;) are isomorphic
precisely whenk, ! ) =K’,l’). To prove the corollary in the case &f [ k' +1’, we
need the following lemma.

Lemma 2.1. Let M be a connected Stein manifold of dimension NIf> n,
then there is no injective continuous group homomorphisntheftorus 7" into the
topological groupAut(M).

Proof. Suppose contrarily that we have an injective cowotirsugroup homomor-
phism p of TV into Aut(M). Choose am -dimensional subtorfi§ of . By the
Standardization Theorem, there exists a biholomorphicpingpF : M — D of M
onto a Reinhardt domai® i6" such thatFp(T")F~! = T(D). SetG =Fp(T")F~1!
and take a relatively compact subdomdin DBf . Thesp:= {g(z) € D | ¢ € G,

z € U} is a bounded Reinhardt domain @' and G can be regarded as a connected
compact subgroup of the Lie group Al{) containingT Op). SinceG is isomorphic

to 7V andN > n = dimT (Do), G is a torus in AutDo) containing7 Qo) properly.
But, by [8, Section 4, Proposition 1] Dg) is a maximal torus in Autp), that is,
any torus in AutDg) containing7T o) must coincide withT Do). This is a contra-
diction, and our assertion is proved. ]

Supposek + Zk'+l’, say,k # < k’'+I’, and writen =k #, n’ = k’+I’. If there ex-
ists an isomorphisn® : Auk; /) — Aut(Xy;), then we have an injective continuous
group homomorphisn® o py,, , of 7" into Aut(X, ;). SinceX,; is a connected Stein
manifold of dimensiom < n’, this contradicts the above lemma. Therefore, Xui( )
and Aut(X;. ;) are not isomorphic, and the proof of the corollary is cortgidle [

3. U(n)-actions on a Stein manifold of dimensionn

The method used in the preceding section can be applied tostindy of
U (n)-actions on a complex manifold  of dimensian . The follogiitheorem gives
a different approach from Kaup [5], Isaev and Kruzhilin [#].the case where AuY{ )
is not a Lie group, we cannot obtain various results on thgugawy of subgroups of
Aut(M) by applying the conjugacy theorems in the Lie groupotlgein general. How-
ever, even when Aul{ ) is not a Lie group, we have a conjugasyltren Aut(M ) in
a case, as is shown in our theorem below.

Theorem. Let M be a connected Stein manifold of dimensior> 2. Assume
that U(n) acts effectively onM as a Lie transformation group throughThen M
is biholomorphically equivalent to eitheB” oE€", where B” denotes the unit ball
in C". Moreover if we identify M with B” orC", then there exists an element of
Aut(M) such thatyp(U(n)) =t = U(n).
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Proof. Choose a maximal torus” il n (). By the Standardizatidveofem,
there exists a biholomorphic mapping M — D of M onto a Reinhardt domai®
in C" such thatFp(T")F~! = T(D). SetG = Fp(U(n))F~! and take a relatively
compact subdomaitv oD . Thebg := {g(z) € D | g € G, z € U} is a bounded
Reinhardt domain irC" and G can be regarded as a connected compact subgroup of
the Lie group AutDg) containingT o). Recalling thatG is isomorphic t& n( ) and
n > 2, we can apply Proposition 1.1 and its corollaryllg and G C Aut(Dg). There-
fore there exists a transformation

0:C" > (z2, .-, ) — (wa, ..., wy,) € C",
w; = rizog), 1<i<m,

such that, forDg = (Do) and G = oGy~ C Aut(Dg), we haveG = U(n), where
r,...,r, are positive constants and is a permutation of{1,...,n}. Putting D =
©(D), we see by the uniqueness theorem on holomorphic furstibatU ¢ ) =G C
Aut(D), or g(D) = D for all g € U(n). Since D is a Stein manifold, it follows thaD
has the form

b:{(zl,...,zn)EC”

n
Z|Zi|2 < r},

i=1

where 0< r < +oo. This shows thatD, and henceM is biholomorphically equivalent
to either B" orC”", proving the first assertion.

Now, let us identifyM withB" orC". When M = B", the existence of €
Aut(M) satisfying the relationp(U(n))y~ = U(n) is a consequence of the conjugacy
of maximal compact subgroups of the simple Lie group &4t( 09, &nsider the case
of M = C". Then, by the same reasoning as above, there exist bihgidneomappings
F:M=C"— D=C"andy: C" — C" such that ¢ o F)p(U(n))(p o F)~* = U(n).
Therefore, the compositiott = poF is an element of Aut”) required in the theorem.

O

Added in proof. After the submission of this paper, the authors learned @& th
letter of August 21, 2002, from Professor A. Isaev that, ia fipecial case of = ,
the same result as our Main Theorem had been obtained indiepeyn by him (Proc.
Steklov Inst. Math.235 (2001), 103-106).
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