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Introduction

This work started as an attempt to understand the process known as the local
slice construction. Introduced by Freudenburg in [4], thisis a method for modifying a
nonzero locally nilpotent derivation ofk[ ] so as to obtain another one (wherek
is a field of characteristic zero). Near the end of the cited paper, Freudenburg defines
a graph whose vertices are the kernels of the nonzero locallynilpotent derivations
of k[ ] and where vertices ker( ) and ker(′) are joined by an edge whenever

′ can be obtained from by a local slice construction (in one step).
Over the years, it has become clear that the local slice construction is an inter-

esting idea for studying the locally nilpotent derivationsof k[ ]. In particular,
one would like to know if is connected. Connectedness would mean that every lo-
cally nilpotent derivation can be obtained from one of them (say from ∂/∂ ) by a
finite sequence of local slice constructions. In unpublished work, we have shown that
this is indeed the case for derivations which are homogeneous with respect to positive
weights.

In the hope of clarifying the local slice construction, we generalize it. Let be
an arbitrary integral domain of characteristic zero. In Section 3 of the present paper,
we define a graphKLND ( ) which generalizes Freudenburg’s graph : The vertices
of KLND ( ) are the kernels of the nonzero locally nilpotent derivations of and the
edges, one might say, capture the essence of the local slice construction. Also, the
graph KLND ( ) is an invariant of the ring and the group of automorphisms of
acts on it in a natural way. In the special case =k[ ], the two graphs and
KLND ( ) have the same vertices and every edge of is an edge ofKLND ( ); we
don’t know if every edge ofKLND ( ) is an edge of .

This generalization produces new insight into the local slice construction. In par-
ticular, we find that that process is essentially a two-dimensional affair and that it is
intimately related to Danielewski surfaces “ = ( )”.

We believe thatKLND ( ) is a suitable tool for studying polynomial rings ( =
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k[ ] ). For these rings, the graphKLND ( ) seems to have just the right amount of edges
to be interesting. This is not the case for all rings: One can find examples of rings

for which KLND ( ) is the empty graph; orKLND ( ) has only one vertex and no
edges; or (see 6.2)KLND ( ) has infinitely many vertices but no edges.

In a subsequent paper, we intend to use the methods developedhere to investigate
the locally nilpotent derivations ofk[ ].

The material is organized as follows.
Section 1 gives the basic definitions and results that are needed in this paper.
Section 2 gives some algebraic properties of Danielewski surfaces. Note in par-

ticular results 2.5, 2.6 and 2.6.2, which characterize Danielewski surfaces in terms of
locally nilpotent derivations.

Section 3 defines the graphKLND ( ), where is any integral domain of char-
acteristic zero. In addition toKLND ( ), two other graphs (KLND∗( ) and R( )) are
defined in that section.

Section 4 describes the graphKLND ( ) in the case where is a two-dimensional
ring.

Section 5 focuses on the subgraphKLND∗( ) of KLND ( ) obtained by deleting
all isolated vertices. If is a factorial affine domain (of anydimension), Theorem 5.1
states thatKLND∗( ) is a union of connected subgraphs such that: (i) Each is
isomorphic toKLND ( ) for some two-dimensional ring (in fact a Danielewski sur-
face); (ii) every edge ofKLND∗( ) is an edge of exactly one ; and (iii) if 6= then

and have at most one vertex in common. So the local structure of KLND∗( ) is
well understood, thanks to the thorough description of the two-dimensional case given
in Section 4.

Section 6 gathers some remarks which conclude the paper.

1. Generalities

1.1. Conventions.
• All fields and rings are tacitly assumed to be of characteristic zero.
• Throughout,k denotes an arbitrary field (of characteristic zero).
• The set of units of a ring is denoted∗.
• If is a subring of a ring and ∈ N, the notation = [ ] means that is

-isomorphic to the polynomial ring in variables over . If/ is a field exten-
sion, = ( ) means that is a purely transcendental extension of , of transcen-
dence degree .
• If is a domain then Frac is its field of fractions. If ⊆ are domains then

trdeg ( ) is the transcendence degree of Frac over Frac .
• By a k-domain of transcendence degree, we mean an integral domain con-

taining k and satisfying trdegk( ) = .
• If is a subring of a domain , then we write as an abbreviation for the

localized ring −1 , where = \ {0}; in particular, = Frac( ); if : → is
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a derivation, −1 : −1 → −1 is abbreviated : → .
• If α ∈ then α = −1 where ={1 α α2 . . . }.

DEFINITION 1.2. An inert subringof a domain is a subring of satisfying:

∀ ∈ ∈ \ {0} =⇒ ∈

1.3. If is an inert subring of then the following hold.
(1) ∗ = ∗

(2) is algebraically closed in .
(3) If is a UFD then so is .
(4) −1 is an inert subring of −1 , for any multiplicative subset ⊆ \ {0}.

1.4. A subring of an integral domain is inert if and only if ∗ = ∗

and ∩ = .

DEFINITIONS 1.5. Let be a ring.
(1) A derivation : → is

• irreducible if the only principal ideal of which contains ( ) is ;
• locally nilpotent if ∀ ∈ ∃ >0 ( ) = 0.

(2) Notations:

LND( ) = set of nonzero locally nilpotent derivations :→
KLND ( ) = { ker | ∈ LND( )}

If is a subset of ,

LND ( ) = { ∈ LND( ) | ( ) = {0}}
KLND ( ) = { ker | ∈ LND ( )}

1.6. Basic properties of locally nilpotent derivations. Let be an integral
domain, let : → be a nonzero derivation of , and let = ker . The fol-
lowing facts are well-known.
(1) If is locally nilpotent then is an inert subring of . In particular: ∗ = ∗,
∩ Frac = and if is a UFD then so is . Note, also, that if is any field

contained in then ∗ ⊆ ∗ = ∗, so is a -derivation.
(2) Let be a multiplicatively closed subset of \ {0}, and consider the derivation
−1 : −1 → −1 . Then:

(a) −1 is locally nilpotent if and only if is locally nilpotent and ⊂ .
(b) If ⊂ then ker −1 = −1 ; consequently, ∩ −1 = .

(3) Assume thatQ ⊆ . If is locally nilpotent, and if ∈ satisfies ( )∈ ∗,
then = [ ] = [1] .
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(4) Assume thatQ ⊆ . If is locally nilpotent, choose any ∈ such that
6= 0 and 2 = 0 (such an exists, and is called apreslice of ), and let =

{1 ( )2 . . . } ⊂ . Then −1 ( ) ∈ ( −1 )∗ so, by (3), −1 = ( −1 )[ ] =
( −1 )[1] .
(5) If is locally nilpotent, let = \ {0}, then (4) implies −1 = (Frac )[1] .
(6) Let ∈ \ {0}. The derivation : → is locally nilpotent if and only if
is locally nilpotent and ∈ .
Note in particular the following consequence of part (5) of 1.6:

1.7. If is a domain and ∈ KLND ( ) then trdeg = 1.

Rentschler’s Theorem 1.8(see [6]). Let = k[2] , wherek is a field of charac-
teristic zero, and let : → be a nonzero locally nilpotent derivation. Then there
exist , such that = k[ ] and ker = k[ ] . Moreover, given any such , we
have = ( )(∂/∂ ) for some ( ) ∈ k[ ] .

1.9. Simple derivations. Let be ak-domain of transcendence degree two.

DEFINITION 1.9.1. A derivation : → is k-simple if it is locally nilpotent,
irreducible and satisfies

∃ ∈ ker =k[ ]

Note that if this is the case then ker =k[1]. Consequently:

1.9.2. If admits ak-simple derivation then ∗ = k∗.

Lemma 1.9.3. Suppose that ∈ LND( ) is k-simple. If ∈ LND( ) is irre-
ducible andker( ) = ker( ), then = λ for someλ ∈ k∗. Consequently, is
k-simple.

Proof. Let = ker = ker and choose , ∈ such that ( ) = and
= k[ ]. Note that Frac =k( ) (by 1.7) and consider the partial derivative∂ =

∂/∂ : k( )→ k( ). Extending and to derivations̃ and ˜ of k( ),

˜ = ∂ and ˜ = ( )∂

It follows that ( ) = . Since is locally nilpotent and∈ ker , is locally
nilpotent; so ( ) is locally nilpotent and it follows that ( )∈ ker by part (6)
of 1.6. Hence, and ( ) are two elements of the ideal

= {α ∈ | α∂( ) ⊆ }

of . Observe that 16∈ , for otherwise∂( ) ⊆ , so ( ) ⊆ , so ∈ ∗
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(because is irreducible), so∈ ∗, but this is false because =k[ ] = k[1] .
Since is a prime element of and∈ 6= , we have = , so | ( )

in . Then = λ where λ = ( )/ ∈ . Now ( ) ⊆ λ , so λ ∈ ∗ by
irreducibility of . Since ∗ = k∗, k[ ] = k[ λ ] = k[ ] and we are done.

On the number of kernels

Regarding the cardinality of the setKLND ( ), we have the following elementary
fact:

Proposition 1.10. Let be a domain of characteristic zero and suppose that
k ⊂ is a field such thattrdegk( ) < ∞. Then the cardinality ofKLND ( ) is ei-
ther 0, 1 or |k|.

Proof. As a first step, we show:

(1)
Let be aQ-domain and suppose that ,′ are distinct elements
of KLND ( ). Then | KLND ( )| ≥ | ∩ ′|.

Let and ′ be distinct elements ofKLND ( ). Let , ′ ∈ LND( ) be such that
ker = and ker ′ = ′. We first consider the case where:

(2) ( ′) ⊆ ′ and ′( ) ⊆

Then it follows that

(3) ◦ ′ = ′ ◦

Indeed, letδ : → denote the derivation ◦ ′ − ′ ◦ . Then by assumption (2),
we have ∪ ′ ⊆ kerδ. Since each of , ′ is algebraically closed in , and since
has transcendence degree one over each of ,′, it follows that is algebraic over
kerδ, so δ = 0 and (3) is true.

For eachλ ∈ , let λ : → denote the derivation ′ + λ . Then (3) imme-
diately implies that λ ∈ LND( ), so we have a map

(4)
−→ KLND ( )

λ 7−→ ker( λ)

We claim that the map (4) is injective. Indeed, consider distinct elementsλ1, λ2 of .
Then for each ∈ ker( λ1) ∩ ker( λ2) we have

′( ) + λ1 ( ) = 0 = ′( ) + λ2 ( )

from which we deduce that ( ) = 0 = ′( ), i.e., ∈ ∩ ′. So ker( λ1) ∩
ker( λ2) ⊆ ∩ ′ and consequently the transcendence degree of over ker(λ1) ∩
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ker( λ2) is strictly greater than one. It follows that ker(λ1) 6= ker( λ2), so the
map (4) is injective. Thus (1) holds under extra assumption (2).

There remains the case where (2) does not hold; without loss of generality, let us
assume that

(5) ( ′) 6⊆ ′

For eachλ ∈ , let ελ : → be the automorphism of defined by

ελ( ) =
∞∑

=0

λ ( )
!

( ∈ )

i.e., ελ is the exponential ofλ . As is well-known,

(6) ελ1 ◦ ελ2 = ελ1+λ2 for all λ1 λ2 ∈ .

Since ελ( ′) = ker
(
ελ ◦ ′ ◦ ε−1

λ

)
∈ KLND ( ), the assignmentλ 7→ ελ( ′) is a map

from to KLND ( ). We claim that the restriction

(7)
∩ ′ −→ KLND ( )

λ 7−→ ελ( ′)

is an injective map. We begin by showing that (5) implies:

(8) If λ ∈ ∩ ′ satisfiesελ( ′) ⊆ ′, thenλ = 0.

To see this, considerλ ∈ ∩ ′ satisfying ελ( ′) ⊆ ′. By (5), we may pick an
∈ ′ such that ( )6∈ ′. Fix such an and let be such that ( ) = 0 for all
> ; consider the polynomial ( )∈ [ ] defined by

( ) =
∞∑

=0

′

(
( )
!

)
=
∑

=0

′

(
( )
!

)

and note that ( ) is not the zero polynomial since the coefficient of in ( ) is
′( ( )) 6= 0. Then for each ∈ N

( λ) =
∑

=0

′

(
( )
!

)
( λ) = ′

(
∑

=0

(
( )
!

)
( λ)

)
= ′ (ε λ( )) = 0

where the last equality follows fromε λ( ) = ελ( ) ∈ ελ( ′) ⊆ ′. Now ( ) cannot
have infinitely many roots, soλ = 0 and (8) is proved.

Now (6) and (8) imply that the map (7) is injective, so (1) holds in this case as
well. So (1) is proved.
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To complete the proof of the proposition, suppose thatk ⊂ is a field such that
trdegk( ) <∞. Assuming that| KLND ( )| > 1, we show that| KLND ( )| = |k|.

Consider distinct elements and′ of KLND ( ). Sincek ⊆ ∩ ′ by part (1)
of 1.6, we have| KLND ( )| ≥ |k| by (1).

Consider a finite subset{ 1 . . . } of such that is algebraic over
k[ 1 . . . ]. The map

LND( ) −→
7−→ ( 1 . . . )

is injective, so| LND( )| ≤ | | = | | = |k|. Since 7→ ker is a surjection from
LND( ) to KLND ( ), we have| KLND ( )| ≤ | LND( )|, so we are done.

REMARK. It is possible to have| KLND ( )| > | | if we don’t assume that has
finite transcendence degree over some field. For instance, let k be a field of character-
istic zero and let =k[ ] be a polynomial ring, where is a set of indeterminates
satisfying | | ≥ |k| (thus | | = | |). Fix a well-order on the set . For each subset
of other than∅ and , define ak-derivation : → by

( ) =

{
0 if ∈
min if 6∈

Then one can verify that ∈ LND( ). Since ker( )∩ = , it follows that
| KLND ( )| = |2 |.

2. Danielewski surfaces

DEFINITION 2.1. Given ak-algebra , let k( ) denote the (possibly empty) set
of ordered triples (1 2 ) ∈ × × satisfying:

The k-homomorphismk[ 1 2 ] → defined by

1 7→ 1, 2 7→ 2 and 7→

is surjective and has kernel equal to(ϕ− 1 2)k[ 1 2 ] for some non-
constant polynomial in one variableϕ ∈ k[ ] .

If k( ) 6= ∅ then we say that ( k) is a Danielewski surface. If this is the case then
is a k-domain and trdegk( ) = 2.

REMARK. The term “Danielewski surface” usually refers to hypersurfaces ofA3

given by an equation of the form =ϕ( ), or sometimes =ϕ( ), because
such surfaces were studied by Danielewski in connection with the cancellation prob-
lem (see [3]).
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REMARKS. Suppose that ( k) is a Danielewski surface and let (1 2 ) ∈
k( ).

(1) Any two elements of{ 1 2 } are algebraically independent overk.
(2) Once ( 1 2 ) ∈ k( ) is chosen,ϕ ∈ k[ ] \ k is uniquely determined by the
conditionϕ( ) = 1 2.

Lemma 2.2. Let 1, 2, be indeterminates overk, let be a field con-
taining k and let π : k[ 1 2 ] → be a k-homomorphism with kernel(ϕ −

1 2)k[ 1 2 ], whereϕ is some element ofk[ ] \k. Write 1 = π( 1), 2 = π( 2)
and = π( ), then the following hold:
(a) For each elementβ of the subringk[ 1 2 ] of , there exists a unique ∈
k[ 1 2 ] satisfying ( 1 2 ) = β and deg ( )< deg (ϕ).
(b) k( 1)[ ] ∩ k( 2)[ ] = k[ 1 2 ].

Proof. If we view = ϕ − 1 2 as a polynomial in with coefficients in
k[ 1 2], then the leading coefficient of belongs tok∗. Thus assertion (a) follows
from a straightforward application of the division algorithm in k[ 1 2][ ].

To prove (b), it suffices to show thatk( 1)[ ] ∩ k( 2)[ ] ⊆ k[ 1 2 ]. Let β ∈
k( 1)[ ] ∩ k( 2)[ ], then

β =
( 1 2 )

( 1)
=

( 1 2 )
( 2)

for some ∈ k[ 1 2 ], ∈ k[ 1] \ {0} and ∈ k[ 2] \ {0}. By (a), we may
arrange that deg ( )< deg (ϕ) and deg ( )< deg (ϕ). Then ( 2) ( 1 2 ) =

( 1) ( 1 2 ) and the uniqueness part of (a) imply that = ink[ 1 2 ],
so | in k[ 1 2 ]. Let ∈ k[ 1 2 ] be such that = , thenβ =

( 1 2 ) ∈ k[ 1 2 ].

The following result gathers the most basic properties of Danielewski surfaces.
See 1.9.1 fork-simple derivations.

Proposition 2.3. Let ( k) be a Danielewski surface, fix an elementγ =
( 1 2 ) of k( ) and letϕ be the unique element ofk[ ] \k satisfyingϕ( ) = 1 2.
(a) is a normalk-domain and ∗ = k∗.
(b) = k[2] ⇐⇒ deg (ϕ) = 1.
(c) is a UFD ⇐⇒ ϕ is irreducible in k[ ] .
(d) For each = 1, 2, there exists a uniquek-derivation γ : → satisfying

γ( ) = 0 and γ( ) = . Moreover, ker γ = k[ ] and γ is a k-simple derivation
of .
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Proof. We shall prove assertions (a), (d), (c) and (b), in this order. It is immedi-
ate that is ak-domain and that

(9) Any two elements of{ 1 2 } are algebraically independent overk.

By 2.2, there holds

k[ 1 2 ] = k( 1)[ ] ∩ k( 2)[ ]

where eachk( )[ ] = k( )[1] is a normal domain, so

(10) is normal.

Let us also record that 1 = k[ 1 1/ 1 2 ] = k[ 1 1/ 1 ] = k[ 1 1/ 1] [1] and
similarly for 2, i.e.,

(11) For each = 1 2, =k
[

1
]

= k
[

1
][1]

.

Suppose that ∈ ∗. Then is a unit of each of 1 and 2 , so (11) implies
that ∈ k[ 1 1/ 1] ∩ k[ 2 1/ 2]. Since 1, 2 are algebraically independent overk
by (9), we havek( 1) ∩ k( 2) = k and ∈ k. This shows that ∗ = k∗. Together
with (10), this proves assertion (a).

We shall now prove assertion (d). Let ( ) = (1 2) or (2 1). Letδ : k[ 1 2 ]
→ k[ 1 2 ] be the k-derivation given byδ ( ) = 0, δ ( ) = and δ ( ) =
ϕ′( ). Then δ is triangular, hence locally nilpotent, and clearlyδ ( ) = 0, where

= ϕ− 1 2. So we may define a locally nilpotent derivation :→ by taking
δ (mod ). Then ( ) = 0 and ( ) = , thus proving the existence part of asser-
tion (d). If : → is any k-derivation satisfying ( ) = 0 and ( ) = , then

( ) = ( 1 2) = (ϕ( )) = ϕ′( ) , so ( ) =ϕ′( ), which proves uniqueness
of .

It is easy to see that the kernel of the localization1 → 1 of 1 is k[ 1 1/ 1],
so ker 1 = ∩ k[ 1 1/ 1]. Consider an elementβ of ∩ k[ 1 1/ 1]. By 2.2,

β = ( 1 2 ) for some ∈ k[ 1 2 ] such that deg ( )< deg (ϕ)

Sinceβ ∈ k[ 1 1/ 1], there exists > 0 such that 1 ( 1 2 ) ∈ k[ 1], i.e.,

1 ( 1 2 ) = ( 1) for some ∈ k[ 1]

Then 2.2 implies that 1 = , so 1 ∈ k[ 1], so ∈ k[ 1] and β ∈ k[ 1]. This
shows that ker 1 = k[ 1] = k[1] (and by symmetry ker 2 = k[ 2] = k[1]).

Next, we show that 1 is irreducible. Let ∈ be such that ( )⊆ . Since

1( ) = 1, we have | 1 in , so ∈ k[ 1] becausek[ 1] = ker 1 is inert in .
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Hence, = (1) for some ∈ k[ 1]. On the other hand, 1( 2) = ϕ′( ), so ( 1) |
ϕ′( ) in and 2.2 allows us to write

( 1) ( 1 2 ) = ϕ′( )

where ∈ k[ 1 2 ] and deg ( )< deg (ϕ). Now 2.2 implies that =ϕ′ ∈
k[ ] \ {0}, so ∈ k[ 1] ∩ k[ ] = k. Hence 1 is irreducible (and so is 2 by
symmetry). Thus assertion (d) is true.

Next, we prove assertion (c). Since1 is an irreducible element ofk[ 1] and
k[ 1] = ker 1 is an inert subring of , 1 is an irreducible element of . On the
other hand,

(12) / 1
∼= k[ 1 2 ]/( 1 ϕ− 1 2) ∼= k[ 1 2 ]/( 1 ϕ)

∼= k[ 2 ]/(ϕ) ∼=
(
k[ ]/(ϕ)

)[1]

shows that 1 is a prime element of if and only ifϕ is a prime element ofk[ ].
In particular, if is a UFD then 1 is prime in , soϕ is prime in k[ ].

Conversely, ifϕ is prime in k[ ] then 1 is prime in and, by (11), 1 is a
UFD; so is a UFD and assertion (c) is true.

For (b), note that if deg (ϕ) = 1 then it is obvious that =k[ 1 2] = k[2] .
Conversely, assume that =k[2]. By Rentschler’s Theorem 1.8, =[1] for any ∈
KLND ( ); in particular =k[ 1] [1] , so / 1 = k[1] . By (12), deg (ϕ) = 1.

This completes the proof of 2.3.

We also record the following simple fact:

Lemma 2.4. Suppose that( k) is a Danielewski surface and let( 1 2 ) ∈
k( ). Then 1 2 is a generator of the idealk[ ] ∩ 1 of k[ ] .

Proof. We have 1 2 = ϕ( ) for some nonconstant polynomialϕ ∈ k[ ]. Let
= deg (ϕ). Given ξ ∈ k[ ] ∩ 1 , we may writeξ = ψ( ), whereψ ∈ k[ ]; by the

division algorithm,ψ = ϕ + ρ, with , ρ ∈ k[ ] and degρ < . We have

(13) ρ( ) = ψ( )− ( )ϕ( ) = ξ − ( ) 1 2 ∈ 1

so ρ( ) = 1 ( 1 2 ) for some ∈ k[ 1 2 ] such that deg ( )< . Then
ρ = 1 by 2.2, so 1 | ρ in k[ 1 2 ], which implies thatρ = 0. Then (13) yields
ξ = ( ) 1 2 ∈ 1 2k[ ] and we are done.

REMARK. Applying 2.4 to ( 2 1 ) ∈ k( ) implies that 1 2 generates the
ideal k[ ] ∩ 2 of k[ ]. So: The idealsk[ ] ∩ 1 and k[ ] ∩ 2 of k[ ] are equal.
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Two characterizations of Danielewski surfaces

Results 2.5, 2.6 and 2.6.2 characterize Danielewski surfaces in terms of locally
nilpotent derivations.

Theorem 2.5. Let be a k-domain, let ∈ and let 1, 2 : → be
locally nilpotent derivations. Suppose that( 1 2) satisfies:
(i) ker 1 6= ker 2

(ii) for each = 1, 2, ker =k[1] and ( ) ∈ ker( )\ {0}.
Then ( k) is a Danielewski surface. Moreover, if 1 and 2 are irreducible then
exactly one of the following holds:
(2.5-1)For each = 1, 2, ( )∈ k∗ and = (ker )[1] = k[2] .
(2.5-2)Let = ( ) ( = 1 2), then

ker 1 = k[ 1] ker 2 = k[ 2] and ( 1 2 ) ∈ k( )

For the proof of 2.5 we need the following simple observation, whose proof we
leave to the reader:

2.5.1. Let , be indeterminates over the fieldk and let ∈ k[ ] \ k. Then

k( )[ ] ∩ k( + )[ ] = k[ ]

where the intersection is taken ink( ).

Proof of 2.5. Note that assumption (ii) and 1.7 imply that hastranscendence
degree two overk. More precisely, write ker( ) =k[ ] for each = 1, 2. Since is
a preslice of ,

(14) ⊆ k( )⊗k[ ] = k( )[ ] = k( )[1]

In particulark( 1) = Frac =k( 2), so (for each ) , are algebraically indepen-
dent overk. Sincek( 1) = k( 2),

(15) 2 = 2 1 +

1 + 1

where 1, 2, , ∈ k( ) and 1 2− 6= 0; in fact, we may arrange that

(16) 1 2 ∈ k[ ] 1 2− 6= 0 and gcdk[ ] ( 1 2 ) = 1

Consider the subring =k[ 1 ] of and note that =k[2] . We claim:

(17) 2 1 + and 1 + 1 are relatively prime in
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Indeed, letδ = gcd ( 2 1 + 1 + 1). If deg
1
(δ) > 0 then we easily obtain a contra-

diction with the condition 1 2− 6= 0. So deg
1
(δ) = 0, i.e., δ ∈ k[ ]. It follows that

δ is a common divisor of 1, 2, , , so (17) is a consequence of (16).
Since ⊆ k( 1)[ ] by (14), we have 2 ∈ k( 1)[ ] so

2 = /ζ where ∈ and ζ ∈ k[ 1] \ {0}

This and (15) give:

( 2 1 + )ζ = ( 1 + 1) (equation in )

so ( 1 + 1) | ( 2 1 + )ζ in ; in view of (17), we obtain ( 1 + 1) | ζ in . Since
ζ ∈ k[ 1] \ {0} and k[ 1] is inert in (because =k[ 1] [1]), it follows that 1 + 1 ∈
k[ 1]. Hence,

1 ∈ k

Solving (15) for 1 gives

1 =
− 1 2 +

2− 2
(15′)

so, by symmetry, the proof that1, ∈ k shows that− 2, ∈ k. Hence,

(18) 1 2 ∈ k

CASE c = 0. Since 1 2 − 6= 0, it follows that 1 2 6= 0, so 1, 2 ∈ k∗

by (18). Taking this into account, (15) gives

(19) 2 = α 1 + β whereα ∈ k∗ and β ∈ k[ ]

Note that assumption (i) can be written ask[ 1] 6= k[α 1 + β], so β 6∈ k. By (14)
and (19) we have

k[ 1 ] ⊆ ⊆ k( 1)[ ] ∩ k(α 1 + β)[ ]

so 2.5.1 yields =k[ 1 ]. In particular, ( k) is a Danielewski surface.
Sincek[ 1 ] = k[ 2 ] by (19), we also have =k[ 2 ]. Now is a derivation

of k[ ] with kernel k[ ], so = ( )∂/∂ and in particular ( )⊆ ( ) .
Now if (for each ) is assumed to be irreducible, we have ∈ k∗ and condi-
tion (2.5-1) holds.

CASE c 6= 0. Then (18) implies that ∈ k∗ and 1, 2 ∈ k.
Define 1 = 1+ 1 and 2 = 2− 2 (so 1, 2 are not defined as in the statement).

We now show that 1, 2 satisfy the following three conditions:
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(2.5-2-a) ker 1 = k[ 1] and ker 2 = k[ 2]
(2.5-2-b) Thek-homomorphismk[ 1 2 ] → defined by 1 7→ 1, 2 7→ 2,
7→ is surjective and has kernel (ϕ− 1 2)k[ 1 2 ] for some nonconstant poly-

nomial ϕ ∈ k[ ].
(2.5-2-c) If is irreducible then ( ) =λ for someλ ∈ k∗.

From the definition of 1, 2 together with ∈ k∗ and 1, 2 ∈ k, we getk[ ] =
k[ ], so (2.5-2-a) holds. Clearly, we have1, 2 6∈ k, so

(20) 1 2 6∈ k

for otherwise 1, 2 ∈ ∗ = (ker 1)∗ = k[ 1]∗ = k∗, which is not the case. Us-
ing (15′), we get

1 2 = ( 1 + 1)( 2− 2) =

[ (− 1 2 +

2− 2

)
+ 1

]
( 2− 2)

= (− 1 2 + ) + 1( 2− 2) = − 1 2

so 1 2 ∈ k[ ]; thus 1 2 ∈ k[ ] \ k by (20) and consequently:

(21) For some nonconstant polynomialϕ ∈ k[ ], we haveϕ( ) = 1 2.

Let π : k[ 1 2 ] → be the k-homomorphism defined byπ( 1) = 1,
π( 2) = 2 and π( ) = . The image ofπ is the affinek-domain k[ 1 2 ], whose
transcendence degree overk is 2; consequently kerπ is a height one prime ideal of
k[ 1 2 ]; since (ϕ− 1 2)k[ 1 2 ] is a prime ideal and, by (21), is contained
in kerπ, we have:

(22) kerπ = (ϕ− 1 2)k[ 1 2 ]

Since we have

k[ 1 2 ] ⊆ ⊆ k( 1)[ ] ∩ k( 2)[ ]

by (14), and since

k( 1)[ ] ∩ k( 2)[ ] = k[ 1 2 ]

by 2.2, we obtain:

(23) = k[ 1 2 ]

Thusπ : k[ 1 2 ] → is surjective. Together with (22), this implies that (2.5-2-b)
holds.

Hence, ( k) is a Danielewski surface and (1 2 ) ∈ k( ).
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Assume that 1 and 2 are irreducible. Writeγ = ( 1 2 ) and consider the γ

of 2.3. For each ∈ {1 2}, applying 1.9.3 to ( γ) gives = λ γ for some
λ ∈ k∗. Thus ( ) =λ γ( ) = λ , so (2.5-2-c) holds and the condition (2.5-2) of
the theorem is satisfied.

In the two cases ( = 0 or 6= 0), we proved that ( k) is a Danielewski surface.
Assuming that 1 and 2 are irreducible, we also proved the two implications =
0 ⇒ (2.5-1) and 6= 0 ⇒ (2.5-2); so exactly one of (2.5-1), (2.5-2) is true and the
proof of 2.5 is complete.

In the special case where is factorial, we have another characterization of
Danielewski surfaces (compare with 2.5 and 4.6):

Theorem 2.6. Let be a factorialk-domain of transcendence degree2. If
admits ak-simple derivation, then ( k) is a Danielewski surface.

EXAMPLE 2.6.1. Let =k[ 2/ 3/ 2] where , are indeterminates over
k. Then = ∂/∂ : → is a k-simple derivation but ( k) is not a Danielewski
surface. Note that is normal but not factorial. (We leave it to the reader to verify
that ker =k[ ], that is irreducible and that is not a Danielewski surface.)

Proof of 2.6. Consider ak-simple derivation 1 : → , i.e., an irreducible

1 ∈ LND( ) satisfyingk[ 1( )] = ker 1 for some ∈ . Let 1 = 1( ), then

ker 1 = k[ 1] = k[1]

In particular, 1 is a prime element of ker 1; since is factorial and ker 1 is inert
in ,

(24) 1 is a prime element of

Observe that 1( ) = 1 ∈ ker( 1) \ {0} implies that 1 = (ker 1) 1[ ] =
k[ 1 1/ 1 ], so

(25) ⊆ k
[

1
1

1

]

It follows from (24) thatm = k[ ]∩ 1 is a prime ideal ofk[ ]. We claim thatm
is nonzero. To see this, chooseβ ∈ such that 1(β) 6∈ 1 (this is possible because

1 is irreducible). It is clear that 1 mapsk[ 1 ] in 1 , so β 6∈ k[ 1 ]. In view
of (25), we may write

β =
( 1 )

1
for some ∈ k[ 1 ] and ≥ 0.
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Note that we must have > 0, becauseβ 6∈ k[ 1 ]. Assume that is minimal,
i.e., (0 ) 6= 0. Then ( 1 ) = 1β ∈ 1 , so (0 ) ∈ 1 and consequently

(0 ) ∈ m. Since (0 )6= 0, we have (0 )6= 0 (because, by (25), is transcen-
dental overk), so m 6= {0}. Thus k[ ] ∩ 1 is a maximal ideal ofk[ ] and

(26) k[ ] ∩ 1 = ϕ( )k[ ] for some irreducible elementϕ of k[ ].

Let 2 = ϕ( )/ 1 ∈ . Let π : k[ 1 2 ] → be the homomorphism of
k-algebras defined byπ( 1) = 1, π( 2) = 2 and π( ) = . Since im(π) = k[ 1 2 ]
containsk[ 1 ], which is birational to by (25), im(π) has transcendence degree 2
over k. It follows that kerπ is a height one prime ideal ofk[ 1 2 ]. It is clear
that =ϕ− 1 2 is an irreducible element ofk[ 1 2 ] and that ∈ kerπ, so

kerπ = k[ 1 2 ]

Let us observe that

Any two elements of{ 1 2 } are algebraically independent overk.

In fact, (25) implies that 1, are algebraically independent overk and, from 1 2 =
ϕ( ), one easily deduces that each pair,2, and 1, 2, is algebraically independent.

Let = k( 2) and = ⊗k[ 2] . Note that 1 ∈ [ ], since 2 ∈ ∗ and

1 2 ∈ k[ ] ⊆ [ ]. We claim:

(27) 1 is a prime element of and also of [ ].

Begin with the observation that 1( 2) = ϕ′( ) 6∈ ϕ( )k[ ] = k[ ] ∩ 1 ; since

1( 2) ∈ k[ ], we get 1( 2) 6∈ 1 . So, if 1 : / 1 → / 1 denotes 1

(mod 1 ), we have 2 + 1 6∈ ker( 1), so 2 + 1 is transcendental overk and
consequentlyk[ 2] \ {0} ∩ 1 = ∅. This implies that

(28) 1 6∈ ∗ and 1 6∈ [ ]∗.

Since 1 is prime in and 1 6∈ ∗ , 1 is a prime element of .
On the other hand,ϕ( ) is prime in k[ ] =⇒ ϕ( ) is prime in k[ 2 ] = k[ ] [1]

=⇒ ϕ( ) is either prime or a unit ink( 2)[ ] = [ ] =⇒ 1 is either prime or
a unit in [ ] (because 1 andϕ( ) are associates in [ ]). By (28),1 is prime in

[ ] and (27) is proved.
Next, we show that

(29) = [ ]

In fact, (25) implies that ⊆ [ ] 1, so

(30) [ ] ⊆ ⊆ [ ] 1
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By (27), [ ] ∩ 1 is a prime ideal of [ ] and 1 [ ] is a maximal ideal of
[ ]; since 1 [ ] ⊆ [ ] ∩ 1 , we have [ ]∩ 1 = 1 [ ] and by induction

on we deduce:

(31) ∀ ∈ N [ ] ∩ 1 = 1 [ ]

Then (29) follows from (30) and (31).
In particular, (29) implies that ⊆ [ ] = k( 2)[ ], so (25) gives

k[ 1 2 ] ⊆ ⊆ k( 1)[ ] ∩ k( 2)[ ]

and we obtain =k[ 1 2 ] by 2.2, i.e.,π is surjective. We showed that ( k) is a
Danielewski surface, which completes the proof of 2.6.

Note the following reformulation of 2.6:

Corollary 2.6.2. Let be a factorialk-domain and suppose that ∈ LND( )
and ∈ satisfy:

ker =k[ ] = k[1]

Then ( k) is a Danielewski surface and the following hold:
(1) If is irreducible then there exists ∈ such that( ) ∈ k( ).
(2) If is not irreducible then = k[ ] = k[2] .

Proof. The hypotheses imply that trdegk = 2. If is irreducible then it is
k-simple, so the hypothesis of 2.6 is satisfied; then the proofof 2.6 actually shows
that ( 2 ) ∈ k( ) for some 2 ∈ , so assertion (1) is true. If is not irre-
ducible then = ( ) 0 for some 0 ∈ LND( ), because ( ) is a prime element
of ; thus 0( ) = 1 and assertion (2) follows from part (3) of 1.6

The Transitivity Theorem and some consequences

2.7. Assume that ( k) is a Danielewski surface, fix an elementγ = ( 1 2 )
of k( ) and letϕ be the unique element ofk[ ] \ k satisfyingϕ( ) = 1 2. Thus

∼= k[ 1 2 ]/(ϕ− 1 2)

NOTATIONS 2.7.1. ([1]-2.2).
• Define τ ∈ Autk( ) by τ ( 1) = 2, τ ( 2) = 1 and τ ( ) = .
• For each ∈ k[ 1], define ∈ Autk( ) by ( 1) = 1 and ( ) = + 1 .

(Then ( 2) = −1
1 ϕ( + 1 ).)

• Let γ be the subgroup of Autk( ) generated by{τ} ∪ { | ∈ k[ 1]}.
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• Given ∈ k[ 1], also defineδ = ◦ τ ∈ . Note thatδ0 = τ and that γ is
generated by the set{δ | ∈ k[ 1]}.

The assignment (α ) 7−→ α( ), whereα ∈ Autk( ) and ∈ KLND ( ), is a
left-action of the group Autk( ) on the setKLND ( ). We restrict this action to the
subgroup γ of Autk( ) defined in 2.7.1. Then the main result of [1] is:

Transitivity Theorem 2.7.2. The action of γ on KLND ( ) is transitive.

Results 2.8, 2.9 and 2.10 are consequences of the Transitivity Theorem.

Lemma 2.8. Suppose that( k) is a Danielewski surface and consider an irre-
ducible ∈ LND( ). Then isk-simple, i.e., ∃ ( ) ∈ × such that = and
ker = k[ ] . Moreover, for each such pair( ) we have( 2 ) ∈ k( ) for some

2 ∈ .

Proof.
CASE 1. = k[2] . Rentschler’s Theorem 1.8 gives a pair (′ ) such that =

k[ ′ ], ker = k[ ′] and = ∂/∂ for some ∈ k[ ′]. Since is irreducible, we
have ∈ k∗ and in fact we may choose in such a way that = 1. Then′ = ′

satisfies ( ′) = ′, showing that isk-simple.
Now consider any , ∈ such that = and ker =k[ ]. Since =

k[ ′ ] and k[ ] = k[ ′], = k[ ] (where = 1, as before). Then (− ) = 0,
so we may write − = + ( ) for some ∈ k and ( ) ∈ k[ ]. Define a
k-homomorphismπ : k[ 1 2 ] → by π( 1) = , π( 2) = + ( ) andπ( ) = .
Thenπ is surjective and − − 1 2 belongs to kerπ, so ( + ( ) )∈ k( ).

CASE 2. 6= k[2] . Pick any
( (1)

1
(1)
2

(1)
)
∈ k( ).

Given
( ( )

1
( )
2

( )
)
∈ k( ), let ( )

1 ∈ LND( ) be the k-simple derivation

given by 2.3, i.e., ker ( )
1 = k[ ( )

1 ] and ( )
1

(
( )
)

= ( )
1 .

By the Transitivity Theorem, there existsθ1 ∈ Autk( ) such thatθ1
(
k[ (1)

1 ]
)

=
ker . Let

( (2)
1

(2)
2

(2)
)

=
(
θ1( (1)

1 ) θ1(
(1)
2 ) θ1( (1))

)
∈ k( ), then ker =k[ (2)

1 ]
= ker (2)

1 . By 1.9.3 applied to the pair (2)
1 , ,

is k-simple and =λ2
(2)
1 for someλ2 ∈ k∗.

For the second assertion, consider ,∈ such that ( ) = and ker =k[ ].
Then k[ ] = k[ (2)

1 ] and consequently =λ′ (2)
1 + µ for someλ′ ∈ k∗ and µ ∈ k.

Define θ2 ∈ Autk( ) by

θ2 : (2)
1 7−→ λ′ (2)

1
(2)
2 7−→ (λ′)−1 (2)

2 and (2) 7−→ (2)

and define
( (3)

1
(3)
2

(3)
)

=
(
θ2( (2)

1 ) θ2( (2)
2 ) θ2( (2))

)
∈ k( ). Then = (3)

1 +µ and
= λ (3)

1 for someλ ∈ k∗. Let = λ − (3), then (3)
1 ( ) =

(
λ (3)

1

)
( ) − (3)

1
(3) =
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− (3)
1 = µ.

We must haveµ = 0 for otherwise (3)
1 ( ) ∈ k∗ would imply = k[ ] = k[2] ,

which is not the case. Thus =(3)
1 and, since (3)

1 ( ) = 0, λ − (3) = + ( ) for
some ∈ k and ( )∈ k[ ]. As we know, there is an automorphism ∈ Autk( )
satisfying

: (3)
1 7−→ (3)

1 and (3) 7−→ (3) + (3)
1

( (3)
1

)

Let
( (4)

1
(4)
2

(4)
)

=
(

( (3)
1 ) ( (3)

2 ) ( (3))
)
∈ k( ), then

(4)
1 = and (4) = λ −

For each ∈ {1 2 3 4}, let π : k[ 1 2 ] → be thek-homomorphism defined
by π ( 1) = ( )

1 , π ( 2) = ( )
2 andπ ( ) = ( ).

Finally, consider ∈ Autk
(
k[ 1 2 ]

)
defined by

: 1 7−→ 1 2 7−→ 2 and 7−→ λ −

and defineπ5 = π4 ◦ −1 : k[ 1 2 ] → , i.e., we have constructed a commutative
diagram (where we write =k[ 1 2 ]):

(32)

id−−−−→ id−−−−→ id−−−−→ −−−−→
π1

y π2

y π3

y π4

y π5

y

−−−−→
θ1

−−−−→
θ2

−−−−→ −−−−→
id

Thenπ5 is surjective and kerπ5 =
(

kerπ4
)

is of the required form, i.e., if we define

( (5)
1

(5)
2

(5)
)

=
(
π5( 1) π5( 2) π5( )

)

then
( (5)

1
(5)
2

(5)
)
∈ k( ). Sinceπ5( 1) = andπ5( ) = , we are done.

Lemma 2.9. Suppose that ( k) is a Danielewski surface. If( 1 2 ),
( ′

1
′
2

′) ∈ k( ) then there existsθ ∈ Autk( ) satisfying:

θ( ′
1) = 1 θ( ′

2) = 2 for some ∈ k∗, and θ
(
k[ ′]

)
= k[ ]

Proof. If = k[2] then an element of k( ) is a triple ( 1 2 α 1 2 + β) such
that =k[ 1 2], α ∈ k∗ and β ∈ k. In this case, the assertion is trivial and we may
even arrange = 1.

The case 6= k[2] is in fact a corollary of the proof of 2.8. We know that there
exists an irreducible ∈ LND( ) such that = 1 and ker = k[ 1] ( is the
“ γ

1 ” of 2.3, whereγ = ( 1 2 )); so the pair (1 ) satisfies the hypothesis of 2.8.
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Start the proof of 2.8 with
( (1)

1
(1)
2

(1)
)

= ( ′
1

′
2

′) instead of picking an arbi-
trary

( (1)
1

(1)
2

(1)
)
∈ k( ). Going through the proof, we obtain the commutative

diagram (32).
Now let θ = ◦ θ2 ◦ θ1; then θ maps ′ = (1) on (4) (for = 1 2) and ′ = (1)

on (4). Recall that the in the proof of 2.8 corresponds to1 here, so

(33) θ( ′
1) = (4)

1 = = 1

We also haveθ( ′) = (4) = λ − (whereλ ∈ k∗ and ∈ k), so

(34) θ
(
k[ ′]

)
= k[ ]

By 2.4, ′
1

′
2 generates the idealk[ ′] ∩ ′

1 of k[ ′]; applying θ and taking (33)
and (34) into account, we obtain:

1θ( ′
2) generates the idealk[ ] ∩ 1 of k[ ].

But 2.4 implies that 1 2 is another generator of the same ideal ofk[ ]. Thus 1θ( ′
2)

and 1 2 are associates in , soθ( ′
2) = 2 for some ∈ k∗.

Lemma 2.10. Suppose that( k) is a Danielewski surface. Then the polynomial
ϕ ∈ k[ ] in a representation

∼= k[ 1 2 ]/(ϕ− 1 2)

is uniquely determined by , up to a k-automorphism ofk[ ] and multiplication by a
unit. In particular, the degree ofϕ is uniquely determined by .

Proof. Consider (1 2 ), ( ′
1

′
2

′) ∈ k( ) and the correspondingϕ, ψ ∈
k[ ] satisfying 1 2 = ϕ( ) and ′

1
′
2 = ψ( ′). By 2.9, there existsθ ∈ Autk( ) such

that θ( ′
1) = 1, θ( ′

2) = 2 and θ( ′) = λ − , for some ,λ ∈ k∗ and ∈ k. Thus

ϕ( ) = 1( 2) = θ( ′
1

′
2) = θ(ψ( ′)) = ψ(λ − )

so ϕ = ψ(λ − ) and in particular degϕ = deg ψ, as claimed.

3. Definition of KLND (B) and R(B)

Given an arbitrary integral domain (of characteristic zero), the graphsKLND ( )
and R( ) are defined in 3.3 and 3.8 respectively. These graphs are invariants of the
ring and the group of automorphisms of acts on each one of them.

See 1.1 for the notations , , etc.

3.1. Terminology of graphs. By a graph, we mean an undirected graph such
that no edge connects a vertex to itself and at most one edge joins any given pair
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of vertices. In such a graph, the edge joining vertices and isrepresented by the
set { }. Two vertices are calledneighborsif they are joined by an edge. If is a
vertex in a graphG, the set of neighbors of inG is denotedN ( ) or NG( ). A path
in G is a sequence = (0 . . . ) of vertices satisfying ≥ 0 and:

If ≥ 1 then 1 = { 0 1} 2 = { 1 2} . . . = { −1 } are edges inG

If the edges 1 . . . of are distinct, we call asimple path; if satisfies the
weaker condition:

6= +1 for 1≤ < (or equivalently −1 6= +1 for 1≤ < )

we say that islocally simple.
A spanning treeof a graphG is a subgraph ofG which is a tree and whose vertex

set is equal to that ofG.
Let G andH be graphs with vertex sets and respectively. By ahomomor-

phism of graphs : G → H we mean a set map : → satisfying:

for every edge{ } of G, { ( ) ( )} is an edge ofH

(note that this condition implies, in particular, that ( )6= ( )).

3.2. Definitions. Let ⊂ be domains such that trdeg ( ) = 2.

3.2.1. If ∈ KLND ( ), define

( ) = { ∈ | ∃ an irreducible ∈ LND ( ) such that = [ ]}

REMARKS. (1) If ∈ KLND ( ), then LND ( ) is the set of locally nilpotent
derivations of with kernelequal to .
[This is because is algebraically closed in and trdeg ( ) = 1, by 1.7.]
(2) If ∈ KLND ( ) and ( ) 6= ∅, then = ( )[1].
[Indeed, = [ ] for some and , and must be transcendental over
since trdeg ( ) = 2 and (by 1.7) trdeg ( ) = 1.]

3.2.2. Let KLND ( ) be the graph with vertex setKLND ( ) and whose edges
are defined as follows: Given distinct ,′ ∈ KLND ( ),

{ ′} is an edge ofKLND ( ) ⇐⇒ ( ) ∩ ( ′) 6= ∅

DEFINITION 3.3. Given an integral domain , letKLND ( ) be the graph with
vertex setKLND ( ) and where distinct , ′ ∈ KLND ( ) are neighbors if:

{ ′} is an edge ofKLND ( ), for some subring of with trdeg ( ) = 2.
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We also define:

KLND∗( ) = the subgraph ofKLND ( ) obtained by deleting all isolated vertices

Lemma 3.4. Let ⊂ be domains such thattrdeg ( ) = 2 and suppose that
and ′ are distinct elements ofKLND ( ). If is inert in , then = ∩ ′.

Proof. Note that one of the inclusions in

(35) ⊆ ∩ ′ ⊆

must be an algebraic extension of rings, because trdeg ( ) = 1;since each of , ,
′, ∩ ′ is an inert subring of , and hence is algebraically closed in ,one of

the inclusions in (35) must actually be an equality. Now6= ′ and trdeg ( ) = 1 =
trdeg ′ ( ) imply that 6= ∩ ′, so = ∩ ′.

Lemma 3.5. Let be a domain and let{ ′} be an edge ofKLND ( ). Then
there exists a uniqueinert subring of satisfying

trdeg ( ) = 2and { ′} is an edge ofKLND ( ).

Moreover, = ∩ ′ and ( ) is a Danielewski surface.

Proof. The assumption implies that the set

= { | is a subring of , trdeg ( ) = 2 and{ ′} is an edge ofKLND ( )}

is nonempty. Consider any 1 ∈ and define = ∩ Frac( 1). Then 1 ⊆
and Frac( 1) = Frac( ); it follows that 1( ) = ( ) and 1(

′) = ( ′), so
( ) ∩ ( ′) 6= ∅ and ∈ . Since is inert in , is inert in and con-

sequently ( )∗ = ( )∗. On the other hand, the fact that ( )6= ∅ implies that
= ( )[1], so ( )∗ = ( )∗ = ( )∗. Thus the first part of

( )∗ = ( )∗ and ∩ Frac( ) =

holds, and so does the second part by definition of . By 1.4, it follows that is
an inert subring of . This proves that at least one element of is an inert subring
of . Then 3.4 gives:

{ ∈ | is an inert subring of } = { ∩ ′}

To complete the proof, we show that if is any element of then ( )is
a Danielewski surface. Pick ∈ ( ) ∩ ( ′). Then there exist ′ ∈ LND( )
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satisfying ker = , ker ′ = ′, = [ ] and ′ = [ ′ ]. Then the lo-
calized derivations ′ ∈ LND( ) satisfy ker( ) = = ( )[1] and ker( ′ ) =

′ = ( )[1] . Since and ′ are extensions of and ′ respectively, we have
= ∩ ker( ) and ′ = ∩ ker( ′ ); so and ′ have distinct kernels. Since
is a preslice of both and ′ , 2.5 applied to the triple ( ′ ) gives that

( ) is a Danielewski surface.

DEFINITION 3.6. Given an integral domain , letR( ) denote the following set
of subrings of :

R( ) = { | is an inert subring of and ( ) is a Danielewski surface}

Note that if ∈ R( ) then trdeg ( ) = 2.

The following result will be improved later (see 5.1). In part (a) of 3.7, “⊆”
means“is a subgraph of”.

Corollary 3.7. If is an integral domain then:
(a) KLND∗( ) ⊆ ⋃ ∈R( ) KLND ( ) ⊆ KLND ( )
(b) If 1, 2 are distinct elements ofR( ), the graphsKLND

1
( ) and KLND

2
( )

have at most one vertex in common.

Proof. Assertion (a) follows from 3.5 and (b) from 3.4.

Result 3.7 suggests a natural way to turnR( ) into a graph:

DEFINITION 3.8. Given an integral domain , letR( ) be the graph with vertex
set R( ) and where distinct 1, 2 ∈ R( ) are neighbors if and only ifKLND 1( )∩
KLND 2( ) 6= ∅.

Equivalently, 1, 2 ∈ R( ) are neighbors inR( ) if and only if there exists a
nonzero locally nilpotent derivation : → satisfying ( 1 ∪ 2) = {0}.

The structures of the graphsKLND ( ) andR( ) are closely related and (as can be
inferred from 5.1, below) this is particularly true when is factorial and affine over
some field. However, we will not elaborate on this point. Let us simply say that the
graphsKLND ( ) and R( ) are two invariants of the ring , and thatR( ) should be
thought of as a simplified version ofKLND ( ).

3.9. Actions of Aut(B). Let be an integral domain andθ an automorphism
of . Then the following claims are trivial.
(1) If ∈ LND( ) and ′ = θ ◦ ◦ θ−1, then ′ ∈ LND( ) and ker ′ = θ(ker ); if

is irreducible then so is ′.



LOCALLY NILPOTENT DERIVATIONS AND DANIELEWSKI SURFACES 59

(2) If ∈ R( ) and ∈ KLND ( ) then:

θ( ) ∈ R( ) θ( ) ∈ KLND θ( )( ) and θ
(

( )
)

= θ( )
(
θ( )

)

(3) If ∈ R( ) and 1, 2 are distinct elements ofKLND ( ), then:

{ 1 2} is an edge ofKLND ( )⇔ {θ( 1) θ( 2)} is an edge ofKLND θ( )( )

Consequently,

3.9.1. Let Aut( ) denote the group of ring automorphisms of .
• There is a left-action of Aut( ) on the graphKLND ( ), given by

(θ ) 7→ θ = θ( )

• There is a left-action of Aut( ) on the graphR( ), given by

(θ ) 7→ θ = θ( )

3.10. The one-dimensional case.Suppose that is a domain containing a
field over which has transcendence degree one or less.

Then it is well-known that if 06= : → is a locally nilpotent derivation then
is a polynomial ring in one variable over some field, and this field is in fact the

kernel of . This simple fact can be phrased as follows:
• KLND ( ) is either the empty graph or the graph with one vertex(and no edge).
• KLND ( ) is nonempty if and only if = k[1] for some fieldk, in which case

KLND ( ) = {k}.
• R( ) is the empty graph[this is because ∈ R( ) implies trdeg ( ) = 2 and
∗ = ∗].

4. Description of the graph KLND k(B) in the two-dimensional case

The beginning of this section considers the problem of describing the graph
KLND ( ) where is an integral domain which has transcendence degree two over
some field (of characteristic zero). However 4.3 shows that this problem reduces to the
following: Describe the graphKLND k( ) wherek is a field, is an integral domain
containingk as a subring and has transcendence degree2 over k. Solving this re-
formulated problem then becomes the aim of this section (this viewpoint is adopted
in 4.4).

In 4.6 (but see also 4.3) we show thatKLND k( ) is non-discrete (i.e., has at least
one edge) if and only if ( k) is a Danielewski surface. From 4.7 to the end of the
section, we restrict our attention to the case whereKLND k( ) is non-discrete and give
a quite satisfactory description of that graph. In particular, we show that it is con-
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nected, we identify in which cases it is a tree and, in all cases, we describe a spanning
tree of KLND k( ).

Result 5.1, below, is the motivation for giving such a detailed description of
KLND k( ) in the non-discrete case.

The case whereKLND ( ) is a discrete graph deserves to be investigated, but this
is not done in this paper. In particular, one would like to know which two-dimensional
rings are such thatKLND ( ) has many vertices but no edges (see 6.2 for an inter-
esting example).

We begin by showing that the graphR( ) has at most one vertex in the two-
dimensional case:

Proposition 4.1. Let be an integral domain which has transcendence degree2
over some field. ThenR( ) is the set of fieldsk contained in and satisfying: ( k)
is a Danielewski surface. In particular, R( ) has at most one element.

Proof. Consider an arbitrary elementk of R( ) (a priori, k is not necessarely
a field). Note that ∗ = k∗, since k is an inert subring of . By assumption, there
exists a field ⊂ such that trdeg ( ) = 2. Then∗ ⊆ ∗ = k∗, so ⊆ k. Since
trdeg ( ) = 2 = trdegk( ), k is integral over , sok is a field. It follows thatk =
{0}∪k∗ = {0}∪ ∗ is uniquely determined by , soR( ) = {k}. Obviously,k ∈ R( )
implies that ( k) is a Danielewski surface.

Conversely, suppose thatk ⊂ is a field such that ( k) is a Danielewski sur-
face. We have ∗ = k∗ by 2.3, sok is an inert subring of andk ∈ R( ).

Next we point out that there are edges in the graphKLND ( ) of a Danielewski
surface:

EXAMPLE 4.2. Suppose that ( k) is a Danielewski surface and consider
( 1 2 ) ∈ k( ). Let = k[ ] ∈ KLND ( ) ( = 1 2). Then

{ 1 2} is an edge inKLND k( ).

Proof. For each ∈ {1 2}, consider the derivation γ : → of 2.3, where
γ = ( 1 2 ). Then γ is an irreducible derivation, belongs toLND ( ), and satis-
fies ker γ = k[ γ( )]. So

∈ k( 1) ∩ k( 2)

and { 1 2} is an edge inKLND k( ).

Corollary 4.3. Let be an integral domain which has transcendence degree2
over some field. Then the following three conditions are equivalent:
(1) R( ) 6= ∅
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(2) There exists a fieldk ⊂ such that( k) is a Danielewski surface.
(3) KLND ( ) has at least one edge.
Moreover, we have
(∗) KLND ( ) = KLND k( )
for some fieldk ⊂ satisfyingtrdegk( ) = 2. More precisely:
(4) If conditions (1–3) hold then the unique elementk of R( ) satisfies(∗).
(5) If conditions (1–3) do not hold then(∗) holds for any fieldk ⊂ satisfying
trdegk( ) = 2.

Proof. We have (1)
4 1⇐⇒ (2)

4 2
=⇒ (3)

3 7
=⇒ (1).

To prove (4), assume that (1–3) hold and consider the unique elementk of R( ).
Sincek is a field contained in , we haveKLND ( ) = KLND k( ) by 1.6. So 3.7 and
R( ) = {k} give KLND ( ) = KLND k( ).

To prove (5), assume that (1–3) do not hold and consider any field k ⊂ satis-
fying trdegk( ) = 2. Again, we haveKLND ( ) = KLND k( ) by 1.6. This immediately
implies thatKLND ( ) = KLND k( ), sinceKLND ( ) has no edges.

Result 4.3 implies, in particular, that the study ofKLND ( ) reduces to that of
KLND k( ). Until the end of this section, our aim is to describe the graph KLND k( )
where ( k) is a pair satisfying:

4.4. Global assumptions. kis a field, is an integral domain containingk as
a subring and has transcendence degree 2 overk.

4.5. Let ( k) be a pair satisfying 4.4. Recall the following facts from 3.2:
(1) For each ∈ KLND ( ) we define

k( ) = { ∈ | ∃ an irreducible ∈ LND ( ) such that k[ ] = }

Regarding the set k( ), note the following.
(i) If ∈ k( ) then k[ ] = holds for every irreducible ∈ LND ( ),

by 1.9.3.
(ii) If k( ) 6= ∅ then =k[1] .

(iii) If k( ) 6= ∅ for some , then ∗ = k∗ [because ∗ = ∗ and =k[1] ].
(2) KLND k( ) is the graph with vertex setKLND k( ) = KLND ( ) and whose edges
are defined as follows: Given distinct vertices ,′ ∈ KLND k( ),

{ ′} is an edge if and only if k( ) ∩ k( ′) 6= ∅.

Recall that a graph isnon-discreteif it has at least one edge.
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Corollary 4.6. Let ( k) be a pair satisfying4.4. Then KLND k( ) is non-
discrete if and only if( k) is a Danielewski surface.

Moreover, if { 1 2} is any edge ofKLND k( ) then there exists( 1 2 ) ∈
k( ) satisfying 1 = k[ 1] and 2 = k[ 2].

Proof. By 4.2, if ( k) is a Danielewski surface thenKLND k( ) is non-discrete.
Conversely, suppose that{ 1 2} is an edge ofKLND k( ) (where 1, 2 are

distinct elements ofKLND ( )). Then k( 1) ∩ k( 2) 6= ∅, so we may pick an ele-
ment of that intersection. For each∈ {1 2} we have ∈ k( ) and consequently
there exists an irreducible ∈ LND ( ) satisfying = k[ ( )]. Let = ( ),
then

ker = k[ ] = k[1] (for each ∈ {1 2}).

Thus ( 1 2) satisfies the hypothesis of 2.5. Since it is clear that (2.5-1) is false,
(2.5-2) must hold. So ( k) is a Danielewski surface and (1 2 ) ∈ k( ).

The graph of a Danielewski surface of degreen

In view of 2.10, the following is well-defined:

4.7. Terminology. Let be a positive integer. The phrase “(k) is a
Danielewski surface of degree ” means that (k) is a Danielewski surface and that
the polynomialϕ ∈ k[ ] satisfying ∼= k[ 1 2 ]/(ϕ− 1 2) has degree .

Until the end of this section, we consider a Danielewski surface ( k) of de-
gree and our aim is to describeKLND k( ). This is an important problem because
of 5.1, below.

Theorem 4.8. If ( k) is a Danielewski surface then the graphKLND k( ) is
connected.

Proof. Chooseγ = ( 1 2 ) ∈ k( ) and write 1 = k[ 1] and 2 = k[ 2].
By 4.2, 1 and 2 belong to the same connected componentC of KLND k( ).

Consider the subgroup =γ of Autk( ) generated by the set ={τ} ∪ { |
∈ k[ 1]} (see 2.7.1). If ∈ then, by 3.9.1, C is a connected component of

KLND k( ). It is immediate that if ∈ then 1 ∈ { 1 2}, so 1 ∈ C, so C =
C; it follows that C = C for all ∈ . Since acts transitively on the setKLND ( )
(by 2.7.2), we conclude thatKLND k( ) is connected.

The main result of this subsection is 4.10.4, but we also point-out:

Theorem 4.9. Suppose that( k) is a Danielewski surface of degree . Then
KLND k( ) is a tree if and only if > 2.
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The proof of 4.9 consists of 4.9.1, 4.9.2 and part (4) of 4.10.4.
We begin by showing (in 4.9.1 and 4.9.2) that if (k) is a Danielewski surface

of degree 1 or 2, thenKLND k( ) is very far from being a tree:Each vertex belongs
to a subgraph ofKLND k( ) isomorphic to the complete graph on the setk.

EXAMPLE 4.9.1. Suppose that ( k) is a Danielewski surface of degree 1 (which
is equivalent to =k[2] by 2.3). We first note that:

(36) The edge set ofKLND k( ) is {{k[ ] k[ ]} | = k[ ]}.

Indeed, if , ∈ are such that =k[ ], then it is immediate that ( )∈
k( ); so 4.2 implies that{k[ ] k[ ]} is an edge. Conversely, suppose that{ 1 2}

is an edge. Then, by 4.6, there exists (1 2 ) ∈ k( ) such that 1 = k[ 1]
and 2 = k[ 2]. Since ϕ( ) = 1 2 for someϕ ∈ k[ ] of degree one, we have
∈ k[ 1 2], so =k[ 1 2]. This proves (36).

Let ∈ KLND ( ). By Rentschler’s Theorem 1.8 we may choose1, 2 such that
= k[ 1 2] and =k[ 1]. For eachλ = (λ1 : λ2) ∈ P1

k , let λ = k[λ1 1+λ2 2]. Then
= { λ | λ ∈ P1

k} is a subset ofKLND ( ) of cardinality |k|, ∈ and, by (36),
{ λ λ′} is an edge ofKLND k( ) wheneverλ, λ′ are distinct elements ofP1

k . In
other words, the complete graph on the set is a subgraph ofKLND k( ).

EXAMPLE 4.9.2. Suppose that ( k) is a Danielewski surface of degree 2. Let
∈ KLND ( ). By the Transitivity Theorem (or by 2.8), there exists (1 2 ) ∈

k( ) such that =k[ 1]. Consider the polynomialϕ ∈ k[ ] which satisfies 1 2 =
ϕ( ). Thenϕ has degree two and depends on our choice of (1 2 ). In fact we may
choose (1 2 ) in k( ) in such a way that =k[ 1] and:

(37) ϕ = 2 + for some ∈ k.

[To see this, it suffices to observe that if (1 2 ) ∈ k( ), ν ∈ k∗ and µ ∈ k, then
( 1 ν 2 +µ) ∈ k( ).] For eachλ = (λ1 : λ2) ∈ P1

k , let λ = k[λ2
1 1+2λ1λ2 +λ2

2 2].
Observe that = (1:0). We claim:
(38)
{ λ λ′} is an edge ofKLND k( ) wheneverλ, λ′ are distinct elements ofP1

k

Clearly, if this is true then belongs to a subgraph ofKLND k( ) isomorphic to the
complete graph on the setk. To prove (38), letα, β ∈ k and consider the element
θ = α ◦ τ ◦ β of Autk( ) (see 2.7.1). Note that, given∈ k, ( 1) = 1, ( ) =

+ 1 and (taking (37) into account) (2) = 2
1 + 2 + 2. It follows that θ( 1) =

α2
1 + 2α + 2, so

θ(k[ 1]) = (α:1)
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Also, θ( 2) = (1 +αβ)2
1 + 2(1 +αβ)β + β2

2, so

θ(k[ 2]) = (1+αβ:β)

Since{k[ 1] k[ 2]} is an edge inKLND k( ) by 4.2, so is{ (α:1) (1+αβ:β)} by 3.9.1.
The claim (38) follows from this.

4.10. Statement of the main result. Suppose that ( k) is a Danielewski sur-
face of degree and fix an elementγ = ( 1 2 ) of k( ). Consider the sub-
group = γ of Autk( ) and its generating set{δ | ∈ k[ 1]}, as in 2.7.1. Let

1 = k[ 1] ∈ KLND ( ).
We now define a treeFγ , a subtreeF ◦

γ of Fγ and homomorphisms of graphs
Pγ : Fγ → KLND k( ) andP◦

γ : F ◦
γ → KLND k( ).

DEFINITION 4.10.1. Eγ =

{
k[ 1] if > 1

1k[ 1] if = 1

DEFINITION 4.10.2. LetFγ be the set of finite sequences (1 . . . ) of elements
of Eγ satisfying:

6= 0 for all 6= 1.

Let F◦
γ be the subset ofFγ whose elements are the finite sequences (1 . . . ) in Eγ

satisfying:

deg
1
( ) ≥ 3− for all 6= 1.

Note that the empty sequence∅ is an element of bothFγ andF◦
γ .

Let Fγ (resp.F ◦
γ ) be the tree with vertex-setFγ (resp.F◦

γ ) and where the edges
are the pairs of the form

{( 1 . . . ) ( 1 . . . +1)}

It is clear thatFγ is a tree, thatF ◦
γ is a subtree ofFγ and thatF ◦

γ = Fγ whenever
≥ 3.

DEFINITION 4.10.3. Define a mapPγ : Fγ → KLND k( ) by declaring that the ele-
ment ( 1 . . . ) of Fγ is mapped to the element (δ 1 ◦ · · · ◦ δ )( 1) of KLND k( ).

Let P◦
γ : F◦

γ → KLND k( ) be the restriction ofPγ to F◦
γ .

Theorem 4.10.4. The mapsPγ and P◦
γ have the following properties:

(1) Pγ : Fγ → KLND k( ) and P◦
γ : F ◦

γ → KLND k( ) are homomorphisms of graphs
(see 3.1for definition).
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(2) Pγ is surjective, both as a map of vertices and as a map of edges.
(3) P◦

γ is bijective, as a map of vertices. Consequently, P◦
γ defines an isomorphism of

trees fromF ◦
γ to some spanning tree ofKLND k( ).

(4) If > 2 then Pγ : Fγ → KLND k( ) is an isomorphism and consequently
KLND k( ) is a tree.

4.11. Preliminaries to the proof of 4.10.4. Throughout 4.11, we suppose that
( k) is a Danielewski surface of degree and we fix an elementγ = ( 1 2 ) of

k( ). Let ϕ be the unique element ofk[ ] \ k such that 1 2 = ϕ( ). Consider the
subgroup = γ of Autk( ) and its elementsτ , and δ (where ∈ k[ 1]), as
in 2.7.1. Let =k[ ] ∈ KLND ( ) for ∈ {1 2}.

Bidegree. Some of the material on bidegree is reproduced from [1], but there are
also some additions.

Since γ = ( 1 2 ) ∈ k( ) is fixed, we may embed ink[ 1
−1
1 ]. Each

element ofk[ 1
−1
1 ] is a sum

=
∑

( )∈Z×N

1

where ∈ k for all ( ) and where the set suppγ( ) = {( ) ∈ Z× N | 6= 0} is
finite. As in [1]-2.7, we define the bidegree map determined byγ

bidegγ : k[ 1
−1
1 ] −→ N× N

7−→ ( )

by declaring that , are the following integers:

= max
[
{0} ∪ { ∈ N | ( 0) ∈ suppγ( )}

]

= max
[
{0} ∪ { ∈ N | (−1 ) ∈ suppγ( )}

]

Sinceγ is fixed throughout 4.11, we may simply write supp and bideg .

4.11.1 ([1]-2.7.2). Let ∈ k[ 1 1/ 1 ] and ( ) = bideg . Then:

> 0 =⇒ ( 0) ∈ supp and > 0 =⇒ (− ) ∈ supp

Given ∈ k[ 1 1/ 1 ], ( ) = bideg , let ( ) be the unique subset ofR2

which is closed, convex and has boundary∪ ∪ , where is the line segment
joining (− ) to ( 0), ={( 0) | ≤ } and ={( ) | ≤ − }.

4.11.2 ([1]-2.7.3). Given ∈ KLND ( ) and ∈ , supp( )⊂ ( ).
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4.11.3 ([1]-2.7.6). Given ∈ KLND ( ) and ∈ ,

bideg = ( ) =⇒ bidegτ ( ) = ( )

As in [1]-3.6.6, letN× N be endowed with the reverse lexicographic order:

( ) < ( ′ ′) ⇐⇒ < ′ or ( = ′ and < ′)

and define for each ∈ KLND ( )

bidegγ( ) = min{bidegγ | ∈ \ k} ∈ N ×N

[which makes sense becauseN× N is well-ordered]. So we have a well-defined map

bidegγ : KLND ( ) −→ N× N

Recall that =k[1] ; it is a straightforward exercise to prove:

4.11.4. Given ∈ KLND ( ) and ∈ , bideg = bideg( )⇔ = k[ ].

So applying 4.11.3 (resp. [1]-3.6.4) to a generator of yields 4.11.5 (resp. 4.11.6):

4.11.5. Given ∈ KLND ( ), bideg( ) = ( ) =⇒ bideg(τ ) = ( ).

4.11.6. Let ∈ KLND ( ) and ( ) = bideg . Then

= 0 ⇐⇒ = k[ 2] and = 0 ⇐⇒ = k[ 1]

Finally we quote:

4.11.7 ([1]-3.9). Let ∈ KLND ( ) \ {k[ 1]}, let ( ) = bideg( ) and sup-
pose that ≥ . Then there exists (λ ) ∈ k∗ × N such that if we set =λ 1

then the ring ′ = ( ) satisfies bideg(′) = ( ′ ) and ′ < . Moreover, =
( + )/gcd( + )− 1.

REMARK. The last assertion of 4.11.7 implies, in particular, that∈ Eγ . To see
this, we may assume that = 1 (otherwiseEγ = k[ 1]); then = ( + )/gcd( + )−
1 = ( + )/gcd( )− 1, and if this is not positive then = 0 or = 0. However,
6= 1 and 4.11.6 give 6= 0, and 6= 0 follows from ≥ ; so > 0 and ∈

1k[ 1] = Eγ .

We continue to prepare for the proof of 4.10.4. See the beginning of 4.11 for the
notation.
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Lemma 4.11.8. Suppose that > 1 (resp. = 1). Then for ∈ k[ 1] we have:

( 2) = 2 ⇐⇒ = 0 (resp. ∈ k).

Proof. Let ∈ k[ 1] be such that (1) = , let ϕ( ) ∈ k[ ] be the -th deriva-
tive of ϕ, define

= 2 +
∑

=1

ϕ( )

!
−1

1 ( 1) ∈ k[ 1 2 ]

and note that (2) = ( 1 2 ). Then we have

( 2) = 2 ⇐⇒ ∃λ∈k∗

µ∈k
( 2) = λ 2 + µ

⇐⇒ ∃λ∈k∗

µ∈k
( 1 2 ) = λ 2 + µ

⇐⇒ ∃λ∈k∗

µ∈k
= λ 2 + µ (equality in k[ 1 2 ])

where the last equivalence is a consequence of 2.2 and

deg =

{
0 if = 0
− 1 if 6= 0

}
< and deg (λ 2 + µ) <

The desired result follows.

In the next result,N ( 1) denotes the set of neighbors of the vertex1 in the
graph KLND ( ).

Lemma 4.11.9. Let 1 = k[ 1] ∈ KLND ( ). Then

Eγ → N ( 1)
7→ δ ( 1)

is a well-defined bijection.

Proof. Since 1 is a neighbor of 2 = k[ 2], it follows from 3.9.1 thatδ ( 1)
is a neighbor ofδ ( 2) = 1 for every ∈ k[ 1]. Thus η : k[ 1] → N ( 1), η( ) =
δ ( 1), is a well-defined map.

We show thatη is surjective.
CASE n = 1. Let ∈ N ( 1). Define ∈ k∗ by the conditionϕ = + (for

some ∈ k); note that (2) = 2 + , for every ∈ k[ 1].
By (36), = k[ ] for some satisfying =k[ 1 ]. Then k[ 1 2] = k[ 1 ],

so λ = 2 + for someλ ∈ k∗ and ∈ k[ 1]. Now ( 2) = 2 + = λ , so
η( ) = δ ( 1) = ( 2) = k[ ] = .
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CASE n 1. [i.e., 6= k[2] ] Let ∈ N ( 1). By 4.6, there existsγ′ =
( ′

1
′
2

′) ∈ k( ) such that 1 = k[ ′
1] and = k[ ′

2]. Applying 4.2 to γ′ gives
′ ∈ k( 1); thus 1 = k[ 1( ′)], where 1 = γ

1 ∈ LND 1( ) is such that

1( ) = 1 (see 2.3 and remark (i) in part (1) of 4.5). Sok[ 1( ′)] = k[ 1], which im-
plies that 1( ′) = λ 1 + µ for someλ ∈ k∗ andµ ∈ k. Since ( ′

1
′
2 λ−1 ′) ∈ k( ),

we may in fact arrange that 1( ′) = 1 +µ for someµ ∈ k. Since 1( ′− ) = µ and
6= k[2] , µ = 0; so 1( ′) = 1 = 1( ).

Note that there is an irreducible ′
1 ∈ LND 1( ) such that ′

1( ′) = ′
1 (namely,

′
1 = γ′

1 ). By 1.9.3, we have 1 = λ ′
1 (someλ ∈ k∗), so 1 = 1( ′) = λ ′

1( ′) =
λ ′

1 and consequently (1 ′
2

′) = (λ ′
1

′
2

′) ∈ k( ). To summarize,

( 1
′
2

′) ∈ k( ) = k[ ′
2] and 1( ′) = 1 = 1( )

Since 1( ′) = 1( ), ′− ∈ k[ 1]. Noting that ( 1
′
2

′ + ) ∈ k( ) for every
∈ k, we may also arrange that′ − ∈ 1k[ 1]. Then for some ∈ k[ 1] we have
′ = + 1 = ( ).

Since ( 1 2 ) ∈ k( ), it follows that

( 1 ( 2) ′) = ( ( 1) ( 2) ( )) ∈ k( )

Hence, both (1 ′
2

′) and ( 1 ( 2) ′) belong to k( ). By 2.4, each of 1
′
2 and

1 ( 2) generates the idealk[ ′] ∩ 1 of k[ ′]. It follows that ′
2 and ( 2) are

associates, so

η( ) = δ ( 1) = ( 2) = k[ ( 2)] = k[ ′
2] =

So η : k[ 1] → N ( 1) is a surjective map.
Consider again ∈ N ( 1) and pick 0 ∈ k[ 1] such thatη( 0) = . Then, for
∈ k[ 1] we have

η( ) = ⇐⇒ η( ) = η( 0) ⇐⇒ ( 2) = 0( 2) ⇐⇒ − 0( 2) = 2

and, in view of 4.11.8, the last condition is equivalent to =0 (resp. − 0 ∈ k)
if > 1 (resp. if = 1). Thusη is bijective if > 1; and if = 1 then exactly one
element of 1k[ 1] satisfiesη( ) = .

Proposition 4.11.10. Let ∈ \ k, let ∈ Eγ \ {0} and assume the following:
(i) ∈ for some ∈ KLND ( )
(ii) > , where ( ) = bideg .
Thenbidegδ ( ) = ( ) where =

[
1 + deg

1
( )
]
− 1. Moreover,

≥ 1 and
[

> 1⇔ + deg
1
( ) ≥ 3

]
.
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Proof. Let = 1 + deg
1
( ) ≥ 1, then = − 1 ≥ 0. If = 0, then = 1,

so = 1 and ∈ k∗, which contradicts the assumption that∈ Eγ . Hence, ≥ 1.
The equivalence > 1⇔ + deg

1
( ) ≥ 3 is trivial if ≥ 3, and is easily verified for

each ∈ {1 2}.
Note that ≥ 1, because ( )∈ N×N and > ; also, ∈ and 4.11.3 imply

(39) bideg(τ ) = ( )

We have ⊂ , where =k[ 1
−1
1 ], and observe that ∈ Autk( ) extends

to ∈ Aut 0( ), where 0 = k[ 1
−1
1 ]. Given ( )∈ Z× N, consider

= supp
[

( 1 )
]

= supp
[

1( + 1 )
]

Direct calculation shows that ( ), ( + 0)∈ ⊂ , where ⊂ R2 denotes the
triangular region with vertices ( ), ( + 0) and ( + 0).
Thus bideg

[
( 1 )

]
= ( + ), for some . By definition of bidegree,

(−1 ) ∈ supp[ ( 1 )
]
⊂ , so ≤ [because any point (′ ′) of

satisfies ′ ≤ ]; we record:

(40) ≤

where equality holds if and only if + = 0 or = 0 (see Fig. 1).
Suppose now that ( )∈ supp(τ ). Since τ ( ) ∈ τ ∈ KLND ( ), we may ap-

ply 4.11.2 to τ ( ) and conclude that supp(τ ) ⊂ (τ ); since bideg(τ ) = ( )
by (39), we have1

( 0) (− ) ∈ supp(τ ) ⊂ (τ )

In particular, ( )∈ (τ ) implies that ≤ , so

(41) ≤
1In our case, (τ ) is the closed and convex subset ofR2 with boundary ∪ ∪ ′, where is

the line segment joining(− ) to ( 0), = {( 0) | ≤ } and ′ = {( ) | ≤ − }.
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By (40) and (41) we have ≤ for all ( ) ∈ supp(τ ). If ( ) ∈ supp(τ )
satisfies = , then equality must hold in both (40) and (41), so () = (− ).
Note that (− ) does belong to supp(τ ) and − = [because if we regard

( −
1 ) = −

1 ( + 1 ) as a polynomial in with coefficients ink[ 1], then
the leading term is −

1 , which shows that − = ]. So the second component
of bideg

[
(τ )

]
is , i.e.,

The second component of bideg
[
δ ( )

]
is .

Clearly, the slope of a line “ + = constant” is equal to−1/ , and the slope of
the line segment joining ( 0) to (− ) is − /( + ); thus

(slope of line “ + = constant”)− (slope of ) =

+
− 1

= − − −
( + )

=
−

( + )
> 0

because ≥ 1 and > . Consequently,

0> slope of line “ + = constant”> slope of

Hence, the maximum value of + on supp(τ ) is reached at the point (− ) and
at no other point (see Fig. 2). Since bideg

[
( 1 )

]
= ( + ), it follows that the

first component of bideg
[

(τ )
]

is − + = (−1 + ) = . So

bideg
[
δ ( )

]
= ( )

as desired.

Proposition 4.11.11. For each ∈ KLND ( ) \ { 1}, there exists a unique ∈
Eγ satisfying the following condition:

If we define( ) = bideg( ), ′ = δ−1( ) and ( ′ ′) = bideg( ′), then
( ′ ′) < ( ) and ′ > ′.

Moreover, we havedeg
1
( ) ≥ 3− ⇐⇒ > .

Proof. We prove the existence of by induction on bideg( ). Note that
bideg( )≥ (0 1), by 4.11.6.

If < then = 0∈ Eγ satisfies the desired condition, by (4.11.5). In particular,
this proves the case bideg( ) = (0 1), i.e., the base case of induction.

Assume that ≥ ; by 4.11.7 and the remark following it, there exists∈ Eγ
such that, if we write = ( ), then bideg( ) = (1 ) with 1 < , so bideg( )<
bideg( ). Observe that if = 1 then = − ( 1) = 1, a contradiction; hence
6= 1.
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Since 6= 1 and bideg( )< bideg( ), we may assume by induction that there
exists ∈ Eγ such that, if we set ′ = δ−1( ), then bideg( ′) < bideg( ) and ′ > ′

where ( ′ ′) = bideg( ′). Then

′ = δ−1( ) = δ−1 ( ) = τ − ( ) = τ − ( ) = δ−1
− ( )

Note thatEγ is closed under addition, so− ∈ Eγ . Thus = − satisfies the
desired condition, which proves the existence of .

We now prove uniqueness of . Suppose that ,∈ Eγ satisfy the conditions
′ > ′ and ′′ > ′′, where:

′ = δ−1( ) ( ′ ′) = bideg( ′) ′′ = δ−1( ) ( ′′ ′′) = bideg( ′′)

Since δ ( ′) = δ ( ′′), it follows that τ ( ′) = τ ( ′′), so − τ ( ′) = τ ( ′′),
i.e.,

(42) δ − ( ′) = τ ′′

By (4.11.5), τ ′′ has bidegree (′′ ′′); since ′′ < ′′, the bidegree of the ring
δ − ( ′) = τ ′′ cannot be of the form ( ′ ′), where is a positive integer.

If − 6= 0 then − ∈ Eγ \ {0} (and ′ > ′), so 4.11.10 implies that
bideg[ − τ ( ′)] = ( ′ ′) for some positive integer . This contradicts the preced-
ing paragraph, so − = 0, i.e., is unique.

Finally, we prove the last assertion of 4.11.11. Let =
[
1 + deg

1
( )] − 1.

Suppose that > . If = 0 then ′ = δ−1
0 ( ) = τ ( ), so ( ′ ′) = bideg( ′) =

( ) by 4.11.5, and since′ > ′ we get < , a contradiction. Hence, ∈ Eγ \{0}.
Since we also have ′ > ′, 4.11.10 implies that bideg

[
δ ( ′)

]
= ( ′ ′), where

≥ 1. So ( ) = ( ′ ′); now the assumption > implies that > 1, which gives
deg

1
( ) ≥ 3− .

Conversely, suppose that deg
1
( ) ≥ 3− . Then 6= 0, so ∈ Eγ \ {0}; together

with ′ > ′ and 4.11.10, this implies that ( ) = (′ ′) where ≥ 1. But in fact
the condition deg

1
( ) ≥ 3− implies that > 1, so > .

Lemma 4.11.12. Let ( 1 . . . ) ∈ F◦
γ and define

= (δ +1 · · · δ )( 1) and ( ) = bideg( ) (0≤ ≤ )

Then (1 0) = ( )< · · · < ( 0 0) and, for each > 0, > . Moreover,

0 > 0 ⇐⇒ deg
1
( 1) ≥ 3−

Proof. Since = 1, (1 0) = ( ) and > are clear. Suppose that for
some ∈ {1 . . . } we have

(1 0) = ( )< · · · < ( ) and, for each ∈ { . . . }, >
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Proceding by descending induction, it suffices to prove:

(43) ( )< ( −1 −1) and [ = 1 or −1 > −1].

We consider two cases. If > 1 then the definition ofF◦
γ gives ∈ Eγ

and deg
1
( ) ≥ 3 − ; together with > and 4.11.10, this implies that

bideg
[
δ ( )

]
= ( ) for some > 1. Since δ ( ) = −1, this gives

( −1 −1) = ( ), so ( )< ( −1 −1) and −1 > −1, i.e., (43) holds.
If = 1 then we still have 1 ∈ Eγ and 1 > 1. If 1 = 0 then 0 = δ0 1 = τ 1

has bidegree (1 1) by 4.11.5, so (1 1) < ( 0 0); if 1 6= 0 then 4.11.10 implies
that 0 = δ 1 1 has bidegree ( 1 1) for some ≥ 1, so again (1 1) < ( 0 0).
Hence, (43) holds in all cases.

To prove that 0 > 0⇔ deg
1
( 1) ≥ 3− , observe that the conditions

1 ∈ Eγ 1 = δ−1
1

( 0) ( 1 1) < ( 0 0) and 1 > 1

show that 1 is the unique element ofEγ determined by 0 ∈ KLND ( ) \ { 1}
(see 4.11.11); then the last assertion of 4.11.11 is the desired result.

Proof of 4.10.4. Consider an edge{f f′} of Fγ , where

f = ( 1 . . . ) and f′ = ( 1 . . . +1);

write δ = δ 1 ◦ · · · ◦ δ , = Pγ(f) = δ( 1) and ′ = Pγ(f′) = δ ◦ δ +1( 1). Since
δ−1( ′) = δ +1( 1) is a neighbor ofδ−1( ) = 1 by 4.11.9, it follows that ′ is a
neighbor of . This proves (1).

Observe that the connectedness ofKLND k( ) (4.8) implies that every vertex of
KLND k( ) is an endpoint of some edge; so, in order to prove (2), it suffices to prove
surjectivity on the edges. Now, again by connectedness ofKLND k( ), if is any edge
of KLND k( ) then there exists a simple path with initial point1 and which tra-
verses . So it suffices to prove:

(44) Suppose that = ( 0 . . . ) is a locally simple path inKLND k( )
such that 0 = 1. Then there existsf = ( 1 . . . ) ∈ Fγ such that
{(δ 1 · · · δ )( 1)} =0 = .

If = 0 then f = ∅ (empty sequence) satisfies (44). Assume that> 0 and that
( 1 . . . −1) ∈ Fγ is such that

{(δ 1 · · · δ )( 1)} −1
=0 = ( 0 . . . −1)

Write δ = δ 1 ◦ · · · ◦ δ −1. Then δ−1( ) is a neighbor ofδ−1( −1) = 1 so,
by 4.11.9, there is a unique ∈ Eγ such thatδ ( 1) = δ−1( ); this implies that
(δ 1 · · · δ )( 1) = so there remains only to check that (1 . . . ) ∈ Fγ .
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Assume that (1 . . . ) 6∈ Fγ , then we must have > 1 and = 0; writing
δ′ = δ 1 ◦ · · · ◦ δ −2, we have

= δ′ ◦ δ −1 ◦ δ0( 1) = δ′ ◦ −1 ◦ τ2( 1) = δ′( 1) = −2

contradicting the hypothesis that is locally simple. So (44) is proved and so is as-
sertion (2).

Let ∈ KLND ( ). By induction on ( ) = bideg( ), we show that is in the
image ofP◦

γ : F◦
γ → KLND k( ). If ( ) = (1 0) then = 1 by 4.11.6, soP◦

γ (∅) =
.

Suppose that ( )> (1 0); then ∈ KLND ( ) \ { 1}. By 4.11.11, there exists
∈ Eγ such that, if we define

′ = δ−1( ) and ( ′ ′) = bideg( ′)

then ′ > ′ and ( ′ ′) < ( ). By induction, we may assume that′ = P◦
γ (f′) for

some vertexf′ = ( 1 . . . ) of F ◦
γ . We claim that

(45) f = ( 1 . . . ) is a vertex ofF ◦
γ .

To see this, it suffices to show that, iff′ 6= ∅, then deg
1
( 1) ≥ 3− . Assume that

f′ 6= ∅ and apply 4.11.11 to (1 . . . ); then the last assertion of 4.11.11 reads
deg

1
( 1) ≥ 3 − ⇔ ′ > ′. Since ′ > ′ does hold, (45) follows. Clearly,

P◦
γ (f) = δ ( ′) = . ThusP◦

γ is surjective on vertices.
Notice the following consequence of 4.11.12: Iff is a vertex ofF ◦

γ other than∅,
then P◦

γ (f) has bidegree strictly greater than (1 0); in other words, the only element
of P◦

γ
−1( 1) is the empty sequence.

Suppose thatP◦
γ is not injective (on vertices). Then we may choose distinct ver-

tices f, f′ of F ◦
γ such thatP◦

γ (f) = P◦
γ (f′). Write f = ( 1 . . . ) and f′ = ( 1 . . . )

and assume that we have chosenf, f′ such that + is minimal. Write =P◦
γ (f) =

P◦
γ (f′). Since f 6= f′, at least one off, f′ is nonempty, so 6= 1 by the preceding

paragraph, so bothf and f′ are nonempty.
Result 4.11.12 implies that each element of{ 1 1} satisfies:

If we define( ) = bideg( ), ′ = δ−1( ) and ( ′ ′) = bideg( ′), then
( ′ ′) < ( ) and ′ > ′.

So the uniqueness part of 4.11.11 implies that1 = 1.
Notice that f∗ = ( 2 . . . ) and f′∗ = ( 2 . . . ) belong toF◦

γ . Since 1 = 1,
P◦

γ (f∗) = P◦
γ (f′∗); by minimality of + we obtainf∗ = f′∗, which implies thatf = f′, a

contradiction. This proves assertion (3).
If > 2 thenFγ = F◦

γ and Pγ = P◦
γ . By (1–3), Pγ is a homomorphism of

graphs which is bijective on vertices and surjective on edges; it follows that it is an
isomorphism, so (4) is true.

This completes the proof of 4.10.4.
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5. Factorial affine domains

By a factorial affine domain, we mean a UFD which is affine over some field
(of characteristic zero, as always in this paper). The main result of this section is 5.1,
which improves 3.7.

Theorem 5.1. If is a factorial affine domain then:
(1) KLND∗( ) =

⋃
∈R( ) KLND ( )

(2) For each ∈ R( ), KLND ( ) is isomorphic toKLND ( ) and ( ) is a
Danielewski surface. In particular, KLND ( ) is infinite and connected.
(3) If , ′ are distinct elements ofR( ), the graphsKLND ( ) and KLND ′ ( )
have at most one vertex in common.

REMARKS.
• Assertion 5.1(3) simply repeats 3.7(b).
• In 5.1(2), the fact that ( ) is a Danielewski surface follows from the defini-

tion of R( ), and we know by Section 4 that the graph of a Danielewski surface is
infinite and connected.

The proof of 5.1 requires some preparation. First, we define aset Rin( ) of sub-
rings of which is larger thanR( ):

DEFINITION 5.2. Given an integral domain ,

R
in( ) = { | is an inert subring of and trdeg ( ) = 2}

Lemma 5.3. Let be a factorial affine domain and ∈ Rin( ). Then:
(a) The map : KLND ( ) → KLND ( ), 7→ , is well-defined and bijective.
Its inverse is given byA 7→ A ∩ .
(b) The bijection is an isomorphism of graphs, KLND ( )→ KLND ( ).

Proof. It is clear that has transcendence degree two over , soit makes
sense to consider the graphKLND ( ). Note thatKLND ( ) = KLND ( ), by 1.6
and the fact that is a field contained in .

We prove (a) now, and (b) will be proved after 5.3.3, below.
The fact that : KLND ( ) → KLND ( ) is well-defined and injective is a

consequence of part (2) of 1.6.
Before proving that is surjective, we first note that is affineover . Indeed,

we have ∗ = ∗ because is an inert subring of . Letk ⊆ be a field over
which is affine. Thenk∗ ⊆ ∗ = ∗, so k ⊆ ⊂ and it follows that is affine
over .

To show that is surjective, considerA ∈ KLND ( ). ChooseD ∈ LND ( )
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such that kerD = A. Since is affine over , we may consider1 . . . such that
= [ 1 . . . ]. For each ∈ {1 . . . }, we haveD( ) ∈ ; so there exists
∈ \ {0} satisfying

∀ D( ) ∈

Since the derivationD : → maps to 0 and maps each in , it maps
into itself; also, D is locally nilpotent, since ∈ kerD. Let : → be the

restriction of D, then ∈ LND ( ) and ker = , where we define = ∩ A.
Since has aunique extension to a derivation of , we have =D; by 1.6,
the kernel of is , so we obtainA = = ( ). So is surjective and (a) is
proved.

The next three facts are needed for the proof of 5.3(b). The first one is well-
known and easy to prove.

5.3.1. Let be a UFD and ∈ KLND ( ). Then:
(1) There exists an irreducible ∈ LND ( ).
(2) If 1, 2 ∈ LND ( ) are irreducible, then 2 = λ 1 for someλ ∈ ∗.

Lemma 5.3.2. Let be a UFD, an inert subring of and : → an
irreducible -derivation. Then : → is irreducible.

Proof. Assume the contrary; then there exists∈ \ ∗ such that ( )⊆
. In fact, such an element may be chosen in . Then some prime factor ∈

of satisfies 6∈ ∗.
Since is irreducible and 6∈ ∗, we may choose ∈ such that 6∈ .

Since ( ) = ( )∈ , there exists ∈ \ {0} such that | ( ) in . Then
| in ; since ∈ \ {0} and is an inert subring of , ∈ \ {0}. Thus
∈ ∗, a contradiction.

Lemma 5.3.3. Let be a UFD, ∈ Rin( ) and = . Then, for each ∈
KLND ( ),

( ) = ∩ ( )

REMARK. Since is a field contained in , we have ( ) = . So the defi-
nition of ( ) reads:

( ) = {ζ ∈ | ∃ an irreducible ∈ LND ( ) such that = [ ζ]}

Proof of 5.3.3. Let ∈ ( ). Then there exists an irreducible ∈ LND ( )
such that = [ ]. By 1.6, : → belongs toLND ( ); moreover,
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is irreducible by 5.3.2. Since = [ ] = [ ( )], we have ∈ ( ). This
proves that ( )⊆ ∩ ( ).

Conversely, suppose that∈ ∩ ( ). Then there exists an irreducible ∈
LND ( ) such that = [ ]. On the other hand, 5.3.1 allows us to consider an
irreducible ∈ LND ( ) and, by 5.3.2, is irreducible. Thus and are two
irreducible derivations belonging toLND ( ); using 5.3.1 again, we get =λ
for someλ ∈ ∗. Since is inert in , is inert in , so ∗ = ∗ andλ ∈ ∗.
So

[ ] = [ ( )] = [ λ ( )] = [ ( )] =

showing that ∈ ( ). This proves that ∩ ( ) ⊆ ( ).

Proof of 5.3(b). Write = . We have to verify that, given distinct , ′ ∈
KLND ( ),

(46) ( )∩ ( ′) 6= ∅ ⇐⇒ ( ) ∩ ( ′ ) 6= ∅

By 5.3.3, we have in particular ( )⊆ ( ) and ( ′) ⊆ ( ′ ), so
“ =⇒ ” holds in (46).

Conversely, suppose thatω ∈ ( )∩ ( ′ ). For anyλ ∈ ∗, we haveλω ∈
( ) ∩ ( ′ ); chooseλ ∈ \ {0} such thatλω ∈ , then 5.3.3 gives

λω ∈ ∩ ( ) ∩ ( ′ ) = ( ) ∩ ( ′)

so “⇐=” holds in (46). This proves 5.3(b).

Proof of 5.1. Assertion (3) (of 5.1) is given in 3.7, so only (1) and (2) need
proof.

If ∈ R( ) then (by definition) ( ) is a Danielewski surface; so
KLND ( ) is connected by 4.8, and contains infinitely many verticesby (say) 4.11.9.
Now ∈ R( ) also implies that ∈ Rin( ), so KLND ( ) ∼= KLND ( ) by 5.3;
this proves assertion (2).

For each ∈ R( ), assertion (2) implies thatKLND ( ) has no isolated vertex;
thus

⋃
∈R( ) KLND ( ) ⊆ KLND∗( ). This and 3.7 imply assertion (1).

This completes the proof of 5.1.

6. Some philosophical remarks

Given any integral domain (of characteristic zero) we have defined three graphs,
KLND ( ), KLND∗( ) and R( ), which are invariants of up to isomorphism. More-
over, the structures ofKLND∗( ) and R( ) are closely related andR( ) should be
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thought of as a “simplified version” ofKLND∗( ): If is factorial and affine,R( )
is isomorphic to the graph obtained fromKLND∗( ) by shrinking each connected sub-
graph KLND ( ) (where ∈ R( )) to a single vertex.

To illustrate the claim thatKLND∗( ) and R( ) have closely related structures we
mention the following easy consequence of 5.1:

If is a factorial affine domain thenKLND∗( ) and R( ) have the same number
of connected components. In particular,

KLND∗( ) is connected⇐⇒ R( ) is connected.
Consider the problem of describingKLND ( ). In view of 5.1 and of the fact that

the graphsKLND ( ) ∼= KLND ( ) are described in Section 4, we are justified to
state the following:

6.1. Aphorism. Let be a factorial affine domain. To achieve a satisfactory
description ofKLND ( ), it suffices to solve the following problems:
(1) Describe the kernels ∈ KLND ( ) which are isolated vertices ofKLND ( ).
(2) Describe the graphR( ).
A particularly interesting factorial affine domain is =k[ ] = k[3] . For this ring,
the above problems (1) and (2) are still open but there are some partial results that we
intend to give in a subsequent paper. Let us mention that a crucial rôle is played by
the polynomials ∈ k[ ] whose generic fiber is a Danielewski surface, i.e.,

the pair
(
k( )[ ] k( )

)
is a Danielewski surface.

In fact, it is not too difficult to show thatR( ) is precisely the set of ringsk[ ] such
that ∈ is a polynomial whose generic fiber is a Danielewski surface.

It seems to this author that, in order to understand the locally nilpotent derivations
(and the automorphisms) ofk[3] , it will be necessary to better understand the polyno-
mials whose generic fiber is a Danielewski surface. It may be agood idea to think of
those polynomials as generalized variables.

Isolated vertices

This paper made some progress in the understanding ofKLND∗( ), but essentially
nothing has been said about isolated vertices ofKLND ( ). In particular, it would be
interesting to classify two-dimensional rings such thatKLND ( ) is a discrete graph
with many vertices. The smooth surfaces which are studied in[5] give examples
of such rings:2

EXAMPLE 6.2. Fix two integers 0< < such that gcd( ) = 1. Consider
the Danielewski surface =C[ 1 2 ] defined by 1 2 = − 1. Let ζ ∈ C be a
primitive -th root of unity and defineθ ∈ AutC( ) by θ( 1) = ζ 1, θ( 2) = ζ−1

1 and
θ( ) = ζ . Finally, let = { ∈ | θ( ) = }. Then Theorem 2.9 of [5] shows,

2See also [2] for more information on such rings.
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among other things, that the smooth surface = Spec( ) is aQ-homology plane
with |Pic( )| = . We claim:

(47) KLND ( ) is a discrete graph whose vertex set has the cardinality ofC.

Proof of (47). Assume thatKLND ( ) is non-discrete. Then, by 4.3, there ex-
ists a fieldk ⊂ such that ( k) is a Danielewski surface; sincek must satisfy

∗ = k∗, and since it is clear that ∗ = C∗ (becauseC ⊂ ⊆ and ∗ = C∗),
we must then havek = C. However, it is known (see 2.8 of [5]) that any smooth
Danielewski surface (overC) of degree has a Picard group isomorphic toZ −1;
since is smooth and has a Picard group of order , it cannot be a Danielewski
surface overC. This contradiction shows thatKLND ( ) is discrete.

Theorem 2.9 of [5] also implies thatKLND ( ) has at least two elements. In
view of 1.10, it follows that| KLND ( )| = |C|.

Local slice construction

As mentioned in the introduction, the present work started as an attempt to under-
stand [4]. In that paper, Freudenburg presents a method for modifying a given kernel
∈ KLND ( ), where =k[3] , so as to obtain another one, say′ ∈ KLND ( ); in

that case he says that′ is obtained from by local slice construction.
To conclude this paper, we show that the graphKLND ( ) can be interpreted as

method for modifying kernels, in the same spirit as [4]. Thisworks best when is a
factorial affine domain:

Proposition 6.3. Let be a factorial affine domain and consider a triple
( ) where ∈ R( ), ∈ KLND ( ) and ∈ ( ). Then there exists exactly
one ′ ∈ KLND ( ) such that

∈ ( ′) and ′ 6=

DEFINITION 6.3.1. In the situation of 6.3, we say:
′ is obtained from( ) by local slice construction.

REMARK. There is a method for computing ′ from ( ), similar to the
method described in [4], but we leave this aspect to the reader.

The first step in the proof of 6.3 is:

Lemma 6.3.2. Let ( k) be a Danielewski surface and∈ . Then the set

= { ∈ KLND ( ) | ∈ k( )}
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has cardinality zero or two.

Proof. Suppose that ∈ . Then ∈ k( ), so there exists an irreducible ∈
LND ( ) satisfying =k[ ]. Write = , then 2.8 implies that ( 2 ) ∈ k( )
for some 2 ∈ . Write ′ = k[ 2], then ′ ∈ KLND ( ), ′ 6= and 4.2 gives
∈ k( ) ∩ k( ′); so ′ ∈ . This shows that if 6= ∅ then | | ≥ 2.

To finish the proof of 6.3.2, it suffices to show that if1, 2, 3 ∈ satisfy

(48) 1 6= 2 and 1 6= 3

then 2 = 3.
Suppose that (48) holds. For each∈ {1 2 3} we have ∈ k( ) and con-

sequently there exists an irreducible ∈ LND ( ) satisfying = k[ ( )]. Let
= ( ), then ker = =k[ ] = k[1] (for each ∈ {1 2 3}).

Let ∈ {2 3}. Since 1 6= , ( 1 ) satisfies the hypothesis of 2.5; since
(2.5-1) is false, (2.5-2) must hold, so (1 ) ∈ k( ). This and 2.4 imply that
k[ ] ∩ 1 is the principal ideal ofk[ ] generated by 1 .

So 1 2 and 1 3 are associates ink[ ] and consequently 3 = λ 2 for someλ ∈
k∗. So 2 = 3 and 6.3.2 is proved.

Proof of 6.3. Let be a factorial affine domain, let∈ R( ) and let ∈ .
We have to show that the set

( ) = { ∈ KLND ( ) | ∈ ( )}

has cardinality zero or two. Since ∈ R( ), the pair ( ) is a Danielewski sur-
face so the set

= {A ∈ KLND ( ) | ∈ (A)}

has cardinality zero or two by 6.3.2. By 5.3,

: KLND ( ) −→ KLND ( )
7−→

is a well-defined bijection and, in view of 5.3.3, for each∈ KLND ( ) we have

∈ ( ) ⇔ ∈ ( )⇔ ∈ ∩ ( )⇔ ∈ ( )⇔ ∈

i.e., ( ) = −1( ). So ( ) has cardinality zero or two and 6.3 is proved.
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