Saito, T.
Osaka J. Math.
41 (2004), 427-454

GENUS ONE 1-BRIDGE KNOTS AS VIEWED FROM THE CURVE COMPLEX

Toshio SAITO

(Received September 13, 2002)

1. Introduction

W.J. Harvey [4] associated to a surface S a finite-dimensional simplicial complex $C(S)$, called the curve complex, which we recall below.

For a connected orientable surface $F=F_{g, n}$ of genus g with n punctures, the curve complex $C(F)$ of F is the complex whose k-simplexes are the isotopy classes of $k+1$ collections of mutually non-isotopic essential loops in F which can be realized disjointly. It is proved in [16] that the curve complex is connected if F is not sporadic (where F is sporadic if $g=0, n \leq 4$ or $g=1, n \leq 1$). For $[x]$ and $[y]$, vertices of $C(F)$, the distance $d([x],[y])$ between $[x]$ and $[y]$ is defined by the minimal number of 1 -simplexes in a simplicial path joining $[x]$ to $[y]$. It is known that if S is not sporadic, then $C(F)$ has infinite diameter with respect to the distance defined above (cf. [11], [16]), $C(F)$ is not locally finite in the sense that there are infinite edges around each vertex, and the dimension of $C(F)$ is $3 g-4+n$.

Recently, J. Hempel [11] studied Heegaard splittings of closed 3-manifolds by using the curve complex of Heegaard surfaces. Let M be a closed orientable 3-manifold and $\left(V_{1}, V_{2} ; S\right)$ a genus $g \geq 2$ Heegaard splitting, that is, $V_{i}(i=1$ and 2$)$ is a genus g handlebody with $M=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1} \cap \partial V_{2}=S$. By using the curve complex, Hempel defined the distance of the Heegaard splitting, denoted by $d\left(V_{1}, V_{2}\right)$, and proved the following results.

Theorem 1.1 (J. Hempel). (1) Let M be a closed, orientable, irreducible 3-manifold which is Seifert fibered or which contains essential tori. Then $d\left(V_{1}, V_{2}\right) \leq 2$ for any Heegaard splitting $\left(V_{1}, V_{2} ; S\right)$ of M.
(2) There are Heegaard splittings of closed orientable 3-manifolds with distance $>n$ for any integer n.

In particular, the theorem above implies that a Haken manifold is hyperbolic if a Heegaard splitting of the manifold has distance ≥ 3. Results along these lines were also obtained by A. Thompson [20]. Moreover, H. Goda, C. Hayashi and N. Yoshida [2] made detailed study of tunnel number one knots and C. Hayashi ([6], [7]) studied (1, 1)-knots from similar points of view.

In this paper, we apply this idea to genus one 1 -bridge knots. A knot K in an orientable closed 3 -manifold M is called a genus one 1-bridge knot, a (1,1)-knot briefly, if $(M, K)=\left(V_{1}, t_{1}\right) \cup_{P}\left(V_{2}, t_{2}\right)$, where $\left(V_{1}, V_{2} ; P\right)$ is a genus one Heegaard splitting and t_{i} is a trivial arc in $V_{i}(i=1$ and 2). (An arc t properly embedded in a solid torus V is said to be trivial if there is a disk D in V with $t \subset \partial D$ and $\partial D-t \subset \partial V$.) Set $W_{i}=\left(V_{i}, t_{i}\right)(i=1$ and 2$)$. We call the triple $\left(W_{1}, W_{2} ; P\right)$ a $(1,1)$-splitting of (M, K). In this paper, we study $(1,1)$-splittings by using the distance of the curve complex. To define the distance of a (1,1)-splitting, we use the twice punctured torus $\Sigma=P-K$.

For $i=1$ or 2 , let $\mathcal{K}\left(W_{i}\right)$ be the maximal subcomplex of $C(\Sigma)$ consisting of simplexes $\left\langle\left[c_{0}\right],\left[c_{1}\right], \ldots,\left[c_{k}\right]\right\rangle$ such that an essential loop representing $\left[c_{j}\right]$ ($j=$ $0,1, \ldots, k)$ bounds a disk in $V_{i}-t_{i}$.

Definition 1.2. We define the distance of a $(1,1)$-splitting $\left(W_{1}, W_{2} ; P\right)$ by

$$
\begin{aligned}
d\left(W_{1}, W_{2}\right) & =d\left(\mathcal{K}\left(W_{1}\right), \mathcal{K}\left(W_{2}\right)\right) \\
& =\min \left\{d([x],[y]) \mid[x]: \text { a vertex in } \mathcal{K}\left(W_{1}\right),[y]: \text { a vertex in } \mathcal{K}\left(W_{2}\right)\right\} .
\end{aligned}
$$

In this paper, we give topological characterizations of the knots admitting $(1,1)$-splittings of distance ≤ 2 (Theorem 2.2, 2.3 and 2.5). As a corollary, we see that a $(1,1)$-knot is hyperbolic if and only if it has a $(1,1)$-splitting of distance ≥ 3, except for certain knots (Corollary 2.6). Further we will prove that there are $(1,1)$ splittings with arbitrarily high distance (Theorem 2.7).

2. Statement of results

Let K be a knot in a closed 3-manifold M. By $E(K)$, we mean the exterior of K in M, i.e., $E(K)=\operatorname{cl}(M-N(K))$, where $N(K)$ is a regular neighborhood of K in M.

Definition 2.1. (1) K is a trivial knot if K bounds a disk in M.
(2) K is a core knot if K is non-trivial and M admits a genus one Heegaard splitting $\left(V_{1}, V_{2} ; P\right)$ such that K is isotopic to the core of V_{i} for $i=1$ or 2.
(3) K is a torus knot if K is isotopic to a simple loop on a genus one Heegaard surface of M and is not a core knot.
(4) K is a 2-bridge knot if there is a genus zero Heegaard splitting $\left(B_{1}, B_{2} ; P_{0}\right)$ of S^{3} such that $\left(B_{i}, B_{i} \cap K\right)(i=1,2)$ is a 2 -string trivial tangle. (Note that a trivial knot in S^{3} is also regarded as a 2-bridge knot.)
(5) For a pair $\alpha(\geq 4)$ and β of coprime integers and an element $r \in \mathbb{Q} \cup\{1 / 0\}$, $K(\alpha, \beta ; r)$ denotes the knot K_{2} in $K_{1}(r)$, where $K_{1} \cup K_{2}$ is the 2-bridge link of type (α, β) (cf. Chapter 10 of [22]) and $K_{1}(r)$ is the manifold obtained by r-surgery on K_{1}.

By an argument similar to that in Section 1 of [18], we can see that $K(\alpha, \beta ; r)$ is a (1,1)-knot. These knots form an important family of (1, 1)-knots (see [1], [3]
and [8]).
For the definition of other standard terms in three-dimensional topology and knot theory, we refer to [10], [12] and [22].

In this paper, we prove the following theorems.
Theorem 2.2. Let K be a (1, 1)-knot in M and $\left(W_{1}, W_{2} ; P\right) a(1,1)$-splitting of (M, K). Then $d\left(W_{1}, W_{2}\right)=0$ if and only if K is a trivial knot.

Note that Theorem 1.1 of [9] essentially implies Theorem 2.2.

Theorem 2.3. Let K be a (1, 1)-knot in M and $\left(W_{1}, W_{2} ; P\right) a(1,1)$-splitting of (M, K). Then $d\left(W_{1}, W_{2}\right)=1$ if and only if M is $S^{2} \times S^{1}$ and K is a core knot.

Theorem 2.4. Let K be a (1, 1)-knot in M and $\left(W_{1}, W_{2} ; P\right) a(1,1)$-splitting of (M, K). If $d\left(W_{1}, W_{2}\right)=2$, then one of the following holds.
(1) M is S^{3} and K is a non-trivial 2-bridge knot.
(2) M is a lens space and K is a core knot.
(3) K is a non-trivial torus knot.
(4) $E(K)$ contains an essential torus.
(5) K is non-trivial and $K=K(\alpha, \beta ; r)$ for some α, β and r.

Conversely, if (M, K) satisfies one of (1)-(4), then any (1,1)-splitting of (M, K) has distance $=2$.

In the above theorem, by a lens space, we mean a closed 3-manifold which admits a Heegaard splitting of genus one and is homeomorphic to neither S^{3} nor $S^{2} \times S^{1}$. To prove Theorem 2.4, we need the following results.

- The classification of $(1,1)$-splittings of 2-bridge knots in S^{3} by T. Kobayashi and O. Saeki [15].
- The classification of $(1,1)$-splittings of core knots in lens paces by C. Hayashi [6].
- The classification of $(1,1)$-splittings of torus knots by K. Morimoto [17].
- A characterization of $(1,1)$-splittings of $(1,1)$-knots whose exteriors contain an essential torus (Proposition 6.1), which generalizes results of C. Hayashi [7] (cf. [18]).

Moreover, we prove the following characterization of (1,1)-knots whose exteriors contain an essential torus. A torus properly embedded in a compact orientable 3 -manifold is called an essential torus if it is incompressible and not ∂-parallel in the 3-manifold.

Theorem 2.5. The exterior of a (1, 1)-knot K in M contains an essential torus if and only if K belongs to $\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}$ or \mathcal{K}_{4}.

In the above theorem, $\mathcal{K}_{i}(i=1,2,3,4)$ denote the families of $(1,1)$-knots defined

Fig. 1.

Fig. 2.
as follows.
(1) $K \in \mathcal{K}_{1}$ if K is a knot in lens spaces which is the connected sum of a core knot in a lens space and a non-trivial 2-bridge knot.
(2) $K \in \mathcal{K}_{2}$ if K is constructed as follows. Let K_{0} be a non-trivial torus knot in a closed 3-manifold M, and let $L=K_{1} \cup K_{2}$ be a 2-bridge link of type (α, β) with $\alpha \geq 4$. Let $\varphi: E\left(K_{2}\right) \rightarrow N\left(K_{0}\right)$ be an orientation-preserving homeomorphism which takes a meridian $m_{2} \subset \partial E\left(K_{2}\right)$ of K_{2} to a regular fiber $f \subset\left(\partial N\left(K_{0}\right) \cap P\right)$ of $E\left(K_{0}\right)$. Then $K=\varphi\left(K_{1}\right) \subset N\left(K_{0}\right) \subset M$.
(3) $K \in \mathcal{K}_{3}$ if K is constructed as follows. Let $K_{0} \cup K_{1} \cup K_{2}$ be the connected sum of two Hopf links illustrated in Fig. 1, and let $K_{1}^{\prime} \cup K_{2}^{\prime}$ be a non-trivial 2-bridge link. Set $M=E\left(K_{1} \cup K_{2}\right) \cup_{\left(\varphi_{1}, \varphi_{2}\right)} E\left(K_{1}^{\prime} \cup K_{2}^{\prime}\right)$, where $\varphi_{i}: \partial E\left(K_{i}\right) \rightarrow \partial E\left(K_{i}^{\prime}\right)$ is an orientation-reversing homeomorphism which takes a preferred longitude $l_{i} \subset \partial E\left(K_{i}\right)$ of K_{i} to a meridian $m_{i} \subset \partial E\left(K_{i}^{\prime}\right)$ of $K_{i}^{\prime}(i=1$ and 2$)$. Then $K=K_{0} \subset E\left(K_{1} \cup\right.$ $\left.K_{2}\right) \subset M$. It should be noted that $M \cong S^{2} \times S^{1}$. This can be seen as follows. For $(i, j)=(1,2)$ and $(2,1)$, let D_{i} be a disk in $E\left(K_{j}\right)$ bounded by l_{i}. Then each of $\operatorname{cl}\left(E\left(K_{1} \cup K_{2}\right)-N\left(D_{1} \cup D_{2}\right)\right)$ and $E\left(K_{1}^{\prime} \cup K_{2}^{\prime}\right) \cup N\left(D_{1} \cup D_{2}\right)$ is homeomorphic to $S^{2} \times[0,1]$.
(4) $K \in \mathcal{K}_{4}$ if K is constructed as follows. Let K_{0} be $K(4,1 ; 0)$ and K_{1} a meridian of K_{0} (see Fig. 2). Let $l_{1} \subset \partial E(K)$ be a longitude of K_{1} which bounds a disk in $E\left(K_{1}\right)$ intersecting K_{0} transversely in a single point. Let K_{2} be a non-trivial 2-bridge knot and $\varphi: \partial E\left(K_{1}\right) \rightarrow \partial E\left(K_{2}\right)$ an orientation-reversing homeomorphism which takes l_{1} to a meridian of K_{2}. Set $M=E\left(K_{1}\right) \cup_{\varphi} E\left(K_{2}\right)$. Then $K=K_{0} \subset E\left(K_{1}\right) \subset M$. It should be noted that $M \cong S^{2} \times S^{1}$. This can be seen by using the fact that the union of $E\left(K_{2}\right)$ and a regular neighbourhood of a disk in $E\left(K_{1}\right)$ bounded by l_{1} is a 3-ball.

By using Thurston's hyperbolization theorem of Haken manifolds (see for example [13]), we can obtain the following corollary.

Corollary 2.6. Let K be a $(1,1)$-knot in M. Suppose that (M, K) is not equivalent to $K(\alpha, \beta ; r)$ for any α, β and r, and that the bridge index of K is at least three if $M \cong S^{3}$. Then K is a hyperbolic knot if and only if it has a $(1,1)$-splitting
with distance ≥ 3.
In the last section, we construct $(1,1)$-splittings with arbitrarily high distance.
Theorem 2.7. Let M be a closed 3-manifold which admits a genus one Heegaard splitting. Then for any positive integer n, there is a (1,1)-knot in M which has a (1,1)-splitting with distance $>n$.

3. The structure of $\mathcal{K}\left(W_{i}\right)$

In this section, we describe the structure of the simplicial complex $\mathcal{K}\left(W_{i}\right)$. Throughout this section, $W=(V, t)$ denotes a pair of a solid torus V and a trivial arc t properly embedded in V, and Σ denotes the twice punctured torus $\partial V-t$. The two punctures of Σ are denoted by p_{1} and p_{2}. Two subspaces X and Y in W are said to be pairwise isotopic, if there is an ambient isotopy $\left\{h_{s}\right\}_{0 \leq s \leq 1}$ of V such that $h_{0}=i d$, $h_{s}(t)=t$ and $h_{1}(X)=Y$.

Definition 3.1. An essential loop in Σ is called an ε-loop (an ι-loop resp.) if it is essential (inessential resp.) in ∂V.

Definition 3.2. Let D be a properly embedded disk in V.
(1) D is called an ι-disk in W if $D \cap t=\emptyset$ and ∂D is an ι-loop on Σ.
(2) D is called an ε_{0}-disk in W if $D \cap t=\emptyset$ and ∂D is an ε-loop on Σ.
(3) D is called an ε_{1}-disk in W if $D \cap t=\{1$ point $\}$ and ∂D is an ε-loop on Σ.

Lemma 3.3. Let D_{0} be an ε_{0}-disk in W with $\alpha=\partial D_{0}$, and let β be an essential loop in Σ disjoint from α. Then precisely one of the following conditions holds.
(1) β is isotopic to α in Σ.
(2) β bounds an ι-disk in W.
(3) β bounds an ε_{1}-disk in W.

Proof. Let B be the 3-ball obtained by cutting V along D_{0}, and let D_{0}^{\prime} and $D_{0}^{\prime \prime}$ be the copies of D_{0} in ∂B.

Case 1. Suppose that β does not separate D_{0}^{\prime} and $D_{0}^{\prime \prime}$ in ∂B.
Then β does not separate p_{1} and p_{2} in ∂B, because β is essential in Σ. Let t^{\prime} be a properly embedded arc in B with $\partial t^{\prime}=\left\{p_{1}, p_{2}\right\}$ which is parallel to an arc in $\partial B-\beta$ joining p_{1} to p_{2}. Then β bounds a separating disk D_{β} in B disjoint from t^{\prime}. Since t^{\prime} is isotopic to t in B relative $D_{0}^{\prime} \cup D_{0}^{\prime \prime}$, the arc t^{\prime} in V is isotopic to t in V relative $\left\{p_{1}, p_{2}\right\}$. Moreover by the hypothesis of Case $1, D_{\beta}$ cuts (V, t) into $\left(V_{1}, t\right)$ and $\left(V_{2}, \emptyset\right)$, where V_{1} is a 3-ball and V_{2} is a solid torus. Hence the condition (2) holds.

Case 2. Suppose that β separates D_{0}^{\prime} and $D_{0}^{\prime \prime}$ in ∂B.
Then we can see, by an argument similar to the above, that the condition (3)
or (1) holds according as β separates $\left\{p_{1}, p_{2}\right\}$ in ∂B or not.
This completes the proof of Lemma 3.3.
Lemma 3.4. Any two ε_{0}-disks in W are pairwise isotopic.
Proof. Let D and D^{\prime} be ε_{0}-disks in W. If $D \cap D^{\prime}=\emptyset$, then we can see that $D \cup D^{\prime}$ bounds a product region disjoint from t by an argument similar to that of Lemma 3.3. Hence we may assume that D and D^{\prime} intersect transversely, $\left|D \cap D^{\prime}\right|$ is minimized up to pairwise isotopy in W and that $\left|D \cap D^{\prime}\right|>0$, where $|\cdot|$ is the number of connected components. By a standard innermost disk argument, we can see that $D \cap$ D^{\prime} has no loop components. Let γ be a component of $D \cap D^{\prime}$ which is outermost in D^{\prime} and δ_{1}^{\prime} the outermost disk in D^{\prime} with $\gamma \subset \partial \delta^{\prime}$, that is, the interior of δ_{1}^{\prime} is disjoint from D. The arc γ also cuts D into two disks δ_{1} and δ_{2}. Then each of $\delta_{1} \cup \delta_{1}^{\prime}$ and $\delta_{2} \cup \delta_{1}^{\prime}$ is a properly embedded disk in V disjoint from t. If either $\partial\left(\delta_{1} \cup \delta_{1}^{\prime}\right)$ or $\partial\left(\delta_{2} \cup \delta_{1}^{\prime}\right)$ is inessential in $\partial(V-t)$, then we can decrease $\left|D \cap D^{\prime}\right|$ by a pairwise isotopy of D in W, a contradiction. So we may assume that $\delta_{1} \cup \delta_{1}^{\prime}$ and $\delta_{2} \cup \delta_{1}^{\prime}$ are ε_{0}-disks or ι-disks in W.

Claim. At least one of $\delta_{1} \cup \delta_{1}^{\prime}$ and $\delta_{2} \cup \delta_{1}^{\prime}$ is an ι-disk in W.
Proof. Suppose that $\delta_{1} \cup \delta_{1}^{\prime}$ is a ε_{0}-disk in W to show that $\delta_{2} \cup \delta_{1}^{\prime}$ is an ι-disk. Let B be the 3-ball obtained from V by cutting along D, and let D_{+}and D_{-}be the copies of D in ∂B. We denote the image of δ_{1}^{\prime} in B by the same symbol. Then we may assume $\delta_{1}^{\prime} \cap D_{+}=\emptyset$ and $\delta_{1}^{\prime} \cap D_{-}=\gamma$. By cutting B along δ_{1}^{\prime}, we obtain 3-balls B_{1} and B_{2} with $D_{+} \subset \partial B_{1},\left(\delta_{1} \cup \delta_{1}^{\prime}\right) \subset \partial B_{1}$ and $\left(\delta_{2} \cup \delta_{1}^{\prime}\right) \subset \partial B_{2}$. Since D and δ_{1}^{\prime} are disjoint from t in V, precisely one of B_{1} and B_{2} contains t. If $t \subset B_{1}$, then $\partial\left(\delta_{2} \cup \delta_{1}^{\prime}\right)$ is inessential in $\partial(V-t)$, a contradiction. Hence $t \subset B_{2}$, and $\delta_{2} \cup \delta_{1}^{\prime}$ is an ι-disk in W.

Let B, D_{+}, D_{-}, B_{1} and B_{2} be as above. Put $\delta_{2}^{\prime}=\operatorname{cl}\left(D^{\prime}-\delta_{1}^{\prime}\right)$, and let A be the annulus defined by $A=\partial B_{1} \cap\left(\partial B-\operatorname{int}\left(D_{+} \cup D_{-}\right)\right)$. Put $\alpha=\partial D^{\prime} \cap \partial \delta_{2}^{\prime}$, and let $\partial \gamma \ni p_{1}, p_{2}, \ldots, p_{n} \in \partial \gamma$ be the components of $\partial D \cap \alpha$ sitting on α in this order. Then by the minimality of $\left|D \cap D^{\prime}\right|$, we may assume that $A \cap \partial \delta_{2}^{\prime}$ consists of essential arcs in the annulus A. Let α_{i} be the subarc of α joining p_{i} to p_{i+1} in α, and let p_{i}^{+}, p_{i}^{-}, respectively the copies of p_{i} in ∂D_{+}and $\partial D_{-}(i=1,2, \ldots, n-1)$. Then $\alpha_{1} \cap$ $D_{+}=p_{1}^{+}$and $\alpha_{1} \cap D_{-}=p_{2}^{-}$, because α_{1} is essential in A. Inductively, we obtain $\alpha_{i} \cap D_{+}=p_{i}^{+}$and $\alpha_{i} \cap D_{-}=p_{i+1}^{-}(i=1,2, \ldots, n-1)$. In particular, $\alpha_{n-1} \cap D_{+}=p_{n-1}^{+}$ and $\alpha_{n-1} \cap D_{-}=p_{n}^{-}$. This means that D^{\prime} does not intersect D transversely in p_{n}, a contradiction. Hence the interior of A is disjoint from $\partial \delta_{2}^{\prime}$, and there is an ε_{0}-disk obtained by moving D_{+}so that it is disjoint from D^{\prime}. This means D^{\prime} is isotopic to D.

Lemma 3.5. Let $[\alpha]$ be the vertex of $\mathcal{K}(W)$ represented by the boundary of an ε_{0}-disk, and let $[\beta]$ be an arbitrary vertex of $\mathcal{K}(W)$ different from $[\alpha]$. Then $[\beta]$ is represented by an ι-loop disjoint from an ε-loop representing $[\alpha]$.

Proof. If $[\beta]$ is represented by an ε-loop, then we have $[\alpha]=[\beta]$ by Lemma 3.4, a contradiction. So $[\beta]$ is represented by an ι-loop, say β. Let D_{β} be a disk in $V-t$ bounded by β. Since β is inessential in V, there is an essential disk D in V disjoint from D_{β} (and hence disjoint from t). By Lemma 3.4, ∂D represents $[\alpha]$ and hence we obtain the desired result.

Lemma 3.6. Any two mutually disjoint ι-disks in W are pairwise isotopic.
Proof. Let D and D^{\prime} be mutually disjoint ι-disks in W and put $\beta=\partial D$ and $\beta^{\prime}=\partial D^{\prime}$. Then D cuts (V, t) into $\left(V_{1}, t\right)$ and $\left(V_{2}, \emptyset\right)$, where V_{1} is a 3 -ball and V_{2} is a solid torus. If necessary, by exchanging the names D and D^{\prime} of disks, we may assume that D^{\prime} is contained in V_{1} and β^{\prime} is an inessential loop in $\partial V_{1}-t$, because D^{\prime} is an ι-disk and is disjoint from D. If β^{\prime} bounds a disk in ∂V_{1} disjoint from the copy of D in ∂V_{1}, then β^{\prime} is inessential in $\partial V-t$, a contradiction. Hence β^{\prime} separates the copy of D from ∂t in ∂V_{1}, and this implies D and D^{\prime} are pairwise isotopic.

Let α be an ε-loop which bounds an ε_{0}-disk, say D_{α}. We fix a properly embedded arc, say t_{0}, in ∂V such that $\partial t_{0}=\partial t, t_{0} \cap \alpha=\emptyset$ and $t \cup t_{0}$ bounds a disk in V. Let B be the 3-ball obtained by cutting V along D_{α}, and let D_{α}^{\prime} and $D_{\alpha}^{\prime \prime}$ be the copies of D_{α} in ∂B. Set $\mathcal{P}=\partial t \cup\left\{\right.$ the centers of D_{α}^{\prime} and $\left.D_{\alpha}^{\prime \prime}\right\}$. Then $(\partial B, \mathcal{P})$ is identified with $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right) / \Gamma$, where Γ is the group of isometries of \mathbb{R}^{2} generated by π-rotations about the points of the integral lattice \mathbb{Z}^{2}. Here t_{0} is identified with a line in \mathbb{R}^{2} of slope $1 / 0$, i.e., a lift of t_{0} joins $(0,0)$ to $(0,1)$ in \mathbb{R}^{2}.

Let \mathcal{A} be the set of the vertices of $\mathcal{K}(W)$ different from $[\alpha]$, where $[\alpha]$ is the vertex of $\mathcal{K}(W)$ represented by α. In the following, we define a map $\varphi: \mathcal{A} \rightarrow \mathbb{Q} \cup\{1 / 0\}$. Let $[\beta]$ be an element of \mathcal{A}. Then by Lemma $3.5,[\beta]$ is represented by an ι-loop, say β, which is disjoint from α. Let t_{β} be an arc in $\partial V-\beta$ joining distinct components of ∂t. Note that t_{β} is unique up to isotopy relative to the endpoints. Let $\tilde{t}_{\beta}:[0,1] \rightarrow \mathbb{R}^{2}$ be a lift of $t_{\beta}:[0,1] \rightarrow(\partial B, \mathcal{P})$. Then $\tilde{f}_{\beta}(1)-\tilde{t}_{\beta}(0)$ is an integral vector, say (p, q), in \mathbb{R}^{2}.

Lemma 3.7. Let $[\beta]$ and (p, q) be as above. Then the rational number q / p does not depend on the choice of a representative of $[\beta]$, and hence the correspondence $\beta \mapsto q / p$ induces a well-defined map $\varphi: \mathcal{A} \rightarrow \mathbb{Q} \cup\{1 / 0\}$. Moreover φ is injective and the image is equal to $\{q / p \in \mathbb{Q} \cup\{1 / 0\} \mid(p, q) \equiv(0,1)(\bmod 2)\}$.

Proof. Let β^{\prime} be another representative disjoint from α of $[\beta]$. Then there is a homotopy in Σ between β and β^{\prime}. Since α is an essential loop in Σ and is homotopic to neither β nor β^{\prime}, we can modify the homotopy so that it is disjoint from α. Hence β and β^{\prime} are homotopic in $\Sigma-\alpha$ and therefore in the four times punctured 2-sphere $\partial B-\mathcal{P}$. This implies that φ is well-defined and injective, because it is well known that the correspondence $\beta \mapsto q / p$ induces a well-defined injective map from the set of the isotopy classes of essential loops in $\partial B-\mathcal{P}$ to $\mathbb{Q} \cup\{1 / 0\}$ (cf. Section 2 of [5]). Moreover, since an ι-loop representing [β] does not separate ∂t in ∂V, we see $(p, q) \equiv(0,1)(\bmod 2)$. On the other hand, it is easy to see that for any $q / p \in \mathbb{Q} \cup\{1 / 0\}$ with $(p, q) \equiv(0,1)(\bmod 2)$, there is a vertex $[\beta] \in \mathcal{A}$ with $\varphi([\beta])=q / p$. Hence we obtain the desired result.

Proposition 3.8. Let $[\alpha]$ be the vertex of $\mathcal{K}(W)$ represented by the boundary of an ε_{0}-disk of W, and let \mathcal{A} be the countably infinite set as above. Then $\mathcal{K}(W)$ is isomorphic to the join $\{[\alpha]\} * \mathcal{A}$.

Proof. By Lemma 3.4, we see that $[\alpha]$ is unique. Lemma 3.5 indicates that for any vertex $[\beta]$ of \mathcal{A}, there is an edge joining $[\beta]$ to $[\alpha]$. On the other hand, by Lemma 3.6, there are no edges of $C(\Sigma)$ joining distinct vertices of \mathcal{A}.

4. $(1,1)$-splittings of distance $=0$

Lemma 4.1. Let K be $a(1,1)$-knot in M and $\left(W_{1}, W_{2} ; P\right) a(1,1)$-splitting of (M, K). Then K is a trivial knot if and only if there are an ι-disk D_{i} in W_{i} with $\partial D_{1}=\partial D_{2}(i=1$ and 2$)$.

Proof. We first prove the "only if part". Suppose that K is trivial. Let D be a disk in M with $\partial D=K$. Then by Theorem 1.1 of [9], we can isotope D so that $D \cap P$ separates D into two disks. Set $D_{i}=\partial N(D) \cap V_{i}(i=1$ and 2). Then we see that D_{i} is an ι-disk and $\partial D_{1}=\partial D_{2}(i=1$ and 2$)$.

We next prove the "if part". Suppose that there are an ι-disk D_{i} in $W_{i}(i=1$ and 2). Then $D_{1} \cup D_{2}$ forms a 2 -sphere which cuts (M, K) into $\left(M-\operatorname{int} B^{3}, \emptyset\right)$ and ($B^{3}, 1$-bridge knot) and hence K is a trivial knot.

Lemma 4.2. Let K be a (1, 1)-knot in $S^{2} \times S^{1}$ and $\left(W_{1}, W_{2} ; P\right)$ a (1, 1)-splitting of $\left(S^{2} \times S^{1}, K\right)$. Then K is a trivial knot if and only if there are an ε_{0}-disk D_{1} in W_{1} and an ε_{0}-disk D_{2} in W_{2} with $\partial D_{1}=\partial D_{2}$.

Proof. We first prove the "if part". Suppose that the latter condition in Lemma 4.2 holds. Then there are ι-disks D_{1}^{\prime} and D_{2}^{\prime} in W_{1} and W_{2}, respectively, with $\partial D_{i}^{\prime} \cap \partial D_{i}=\emptyset(i=1,2)$ and $\partial D_{1}^{\prime}=\partial D_{2}^{\prime}$. Hence by Lemma 4.1, K is a trivial knot.

Suppose conversely that K is a trivial knot in $S^{2} \times S^{1}$. By Lemma 4.1, there are
an ι-disk δ_{i} in W_{i} with $\partial \delta_{1}=\partial \delta_{2}(i=1$ and 2$)$. Then there are ε_{0}-disks in each of W_{1} and W_{2} such that they are disjoint from $\delta_{1} \cup \delta_{2}$ and they share their boundaries since the manifold is $S^{2} \times S^{1}$. Hence we see that the latter condition holds.

Proof of Theorem 2.2. Suppose that K is a trivial knot in M. Then by Lemma 4.1, we have $d\left(W_{1}, W_{2}\right)=0$.

Conversely, let K be a (1, 1)-knot in M and $\left(W_{1}, W_{2} ; P\right)$ a (1, 1)-splitting of (M, K) with $d\left(W_{1}, W_{2}\right)=0$. Then there is an essential loop x in $\Sigma=P-K$ which bounds a disk in $V_{i}-t_{i}$ for each $i=1$ and 2.

If x is an ε_{0}-loop, then $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition of Lemma 4.2. Hence M is $S^{2} \times S^{1}$ and K is a trivial knot.

If x is an ι-loop, then $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition of Lemma 4.1, that is, K is a trivial knot in M.

We have completed the proof of Theorem 2.2.

5. $(1,1)$-splittings of distance $=1$

Proposition 5.1. Let K be a $(1,1)$-knot in $S^{2} \times S^{1}$ and $\left(W_{1}, W_{2} ; P\right)$ a $(1,1)$ splitting of $\left(S^{2} \times S^{1}, K\right)$. Then K is a core knot if and only if there are an ε_{0}-disk D_{i} in W_{i} and an ε_{1}-disk D_{j} in W_{j} with $\partial D_{i}=\partial D_{j}$ for $(i, j)=(1,2)$ or $(2,1)$.

Proof. The "if part" follows from the light bulb theorem (cf. Chapter 9, Section E, 4 Exercise of [22]).

To prove the "only if part", suppose that K is a core knot in $S^{2} \times S^{1}$. Then there is an essential 2-sphere S which intersects K in one point. Put $S_{i}=S \cap V_{i}(i=1$ and 2). We may assume that each component of S_{1} is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in $W_{i}=\left(V_{i}, t_{i}\right)$. Note that $\left|S_{1}\right|>0$ and that S_{1} contains at most one ε_{1}-disk component. Let D be an ε_{0}-disk in W_{2} such that D intersects S_{2} transversely. We choose S and D so that each component of S_{1} is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}, and the pair ($\left|S_{1}\right|,\left|S_{2} \cap D\right|$) is minimized with respect to the lexicographic order.

If $\left|S_{1}\right|=1$, then $S \cap P$ is an ε-loop because S is an essential 2-sphere in $S^{2} \times S^{1}$. Hence the assertion obviously holds. So we may assume $\left|S_{1}\right|>1$.

Claim 1. $\quad S_{2} \cap D \neq \emptyset$.

Proof. Suppose that S_{2} is disjoint from D. Let B be the 3-ball obtained by cutting V_{2} along D. Then there is a disk E on ∂B with $E \cap S_{2}=\partial E$ and $|E \cap K| \leq 1$. Let E^{\prime} be the disk obtained from E by pushing the interior of E into the interior of B. Then ∂E^{\prime} cuts S into two disks Q_{1} and Q_{2}. Precisely one of them, say Q_{1}, is a component of S_{1}.

Suppose that $\left|E^{\prime} \cap K\right|=0$. If $\left|Q_{1} \cap K\right|=1$, then $Q_{1} \cup E^{\prime}$ is a 2 -sphere which inter-
sects K in one point. Hence the disks Q_{1} and E^{\prime} satisfy the desired condition. So we may assume that $\left|Q_{1} \cap K\right|=0$ and hence $\left|Q_{2} \cap K\right|=1$. Let S^{\prime} be the 2 -sphere obtained from $Q_{2} \cup E^{\prime}$ by pushing ∂E^{\prime} into the interior of V_{2} slightly. Then each component of $S_{1}^{\prime}:=S^{\prime} \cap V_{1}$ is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}, and $\left|S_{1}^{\prime}\right|<\left|S_{1}\right|$, a contradiction.

Suppose that $\left|E^{\prime} \cap K\right|=1$. If $\left|Q_{1} \cap K\right|=0$, then $Q_{1} \cup E^{\prime}$ is a 2 -sphere which intersects K in one point, and hence the disks Q_{1} and E^{\prime} satisfy the desired condition. So we may assume that $\left|Q_{1} \cap K\right|=1$ and hence $\left|Q_{2} \cap K\right|=0$. Let S^{\prime} be the 2 -sphere obtained from $Q_{2} \cup E^{\prime}$ by pushing ∂E^{\prime} into V_{2} slightly. Then each component of $S_{1}^{\prime}:=S^{\prime} \cap V_{1}$ is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}, and $\left|S_{1}^{\prime}\right|<\left|S_{1}\right|$, a contradiction.

Claim 2. $\quad S_{2} \cap D$ has no loop components.

Proof. Suppose that $S_{2} \cap D$ has a loop component. Let σ be a loop component of $S_{2} \cap D$ which is innermost in D and D_{σ} the innermost disk with $\sigma=\partial D_{\sigma}$, that is, the interior of D_{σ} is disjoint from S_{2}. Then σ cuts S into two disks E_{1} and E_{2}. We can assume that $\left|E_{1} \cap K\right|=1$. Since D_{σ} is disjoint from $K, S^{\prime}=E_{1} \cup D_{\sigma}$ is a 2-sphere which intersects K in one point. Put $S_{i}^{\prime}=S^{\prime} \cap V_{i}\left(i=1\right.$ and 2). Note that S_{1}^{\prime} is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}. If σ is essential in S_{2}, then $\left|S_{1}^{\prime}\right|<\left|S_{1}\right|$, a contradiction. If σ is inessential in S_{2}, then $\left|S_{1}^{\prime}\right|=\left|S_{1}\right|$. In this case, by isotoping S^{\prime} so that D_{σ} is disjoint from D, we see that $\left|S_{2}^{\prime} \cap D\right|<\left|S_{2} \cap D\right|$, a contradiction.

By Claim 1 and Claim 2, there is an arc component γ of $S_{2} \cap D$ which is outermost in D. Let $D_{\gamma} \subset D$ be the outermost disk with $\gamma \subset \partial D_{\gamma}$. Put $\gamma^{\prime}=\operatorname{cl}\left(\partial D_{\gamma}-\gamma\right)$. Let F be the component of the surface obtained by cutting ∂V_{1} along ∂S_{1} such that $\gamma^{\prime} \subset F$. Let $S^{(1)}$ be a 2 -sphere obtained by isotoping S along D_{γ} near the arc γ, and put $S_{i}^{(1)}=S^{(1)} \cap V_{i}(i=1$ and 2$)$.

Claim 3. The arc γ^{\prime} is essential in F.
Proof. Suppose that γ^{\prime} is inessential in F. Then we obtain an annulus component A in $S_{1}^{(1)}$ such that one of the components of ∂A bounds a disk E in ∂V_{1}. Note that $|E \cap K| \leq 2$ and ∂E cuts S into two disks R_{1} and R_{2}. Since S intersects K transversely in one point, we may assume that $\left|R_{1} \cap K\right|=1$ and $\left|R_{2} \cap K\right|=0$.

Suppose that $|E \cap K|=0$. If $A \subset R_{1}$, let S^{\prime} be a 2 -sphere obtained from $R_{1} \cup E$ by pushing E into the interior of V_{1}; otherwise, let S^{\prime} be a 2 -sphere obtained from $R_{1} \cup E$ by pushing the interior of E into the interior of V_{2}. Then we see that each component of S_{1}^{\prime} is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}, and that $\left(\left|S_{1}^{\prime}\right|,\left|S_{2}^{\prime} \cap D\right|\right)<$ ($\left|S_{1}\right|,\left|S_{2} \cap D\right|$), a contradiction.

Suppose that $|E \cap K|=1$. If $A \subset R_{2}$, let S^{\prime} be a 2-sphere obtained from $R_{2} \cup E$ by
pushing E into the interior of V_{1}; otherwise, let S^{\prime} be a 2-sphere obtained from $R_{2} \cup E$ by pushing the interior of E into the interior of V_{2}. Then we see that each component of S_{1}^{\prime} is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}, and that $\left(\left|S_{1}^{\prime}\right|,\left|S_{2}^{\prime} \cap D\right|\right)<$ ($\left|S_{1}\right|,\left|S_{2} \cap D\right|$), a contradiction.

Suppose that $|E \cap K|=2$. If γ^{\prime} joins an ι-disk to itself, then $E^{\prime}:=\operatorname{cl}(F-E)$ is a disk bounded by a component of ∂A. Since E^{\prime} is disjoint from K, by an argument similar to the case of $|E \cap K|=0$, we obtain a contradiction by using the disk E^{\prime} instead of E. So we may assume that γ^{\prime} joins an ε_{0}-disk to itself. Then there is an $\varepsilon_{0^{-}}$ disk disjoint from ∂E. By Lemma 3.3, ∂E bounds an ι-disk. Hence by an argument similar to the case of $|E \cap K|=0$, we obtain a contradiction by using the ι-disk instead of E.

Claim 4. $\quad S_{1}$ has no ε_{1}-disk components.
Proof. Suppose that S_{1} has an ε_{1}-disk component. Then S_{1} has no ι-disk components. Thus S_{1} has ε_{0}-disk components, because $\left|S_{1}\right|>1$. Hence by Claim 3, γ^{\prime} joins distinct components of S_{1}.

CASE 1. The arc γ^{\prime} joins distinct ε_{0}-disks.
Let δ be the disk component of $S_{1}^{(1)}$ obtained from these disks. Then we can push δ out of V_{1} fixing t_{1}. After this operation, we see that each component of $S_{1}^{(1)}$ is either an ε_{0}-disk or an ε_{1}-disk in W_{1}, and that $\left|S_{1}^{(1)}\right|<\left|S_{1}\right|$, a contradiction.

CASE 2. The arc γ^{\prime} joins an ε_{0}-disk to an ε_{1}-disk.
Then $S_{1}^{(1)}$ has the disk component δ^{\prime} from these disks. Note that δ^{\prime} cuts $\left(V_{1}, t_{1}\right)$ into $\left(V_{1}^{\prime}, t_{1}^{\prime}\right)$ and $\left(V_{1}^{\prime \prime}, t_{1}^{\prime \prime}\right)$, where V_{1}^{\prime} is a 3-ball, t_{1}^{\prime} is a trivial arc in $V_{1}^{\prime}, V_{1}^{\prime \prime}$ is a solid torus and $t_{1}^{\prime \prime}$ is a trivial arc in $V_{1}^{\prime \prime}$. So we can push δ^{\prime} out of V_{1} through ($V_{1}^{\prime}, t_{1}^{\prime}$). After this operation, each component of $S_{1}^{(1)}$ is either an ε_{0}-disk or an ε_{1}-disk in W_{1}, and we have $\left|S_{1}^{(1)}\right|<\left|S_{1}\right|$, a contradiction.

Claim 5. $\quad S_{1}$ has no ε_{0}-disk components.
Proof. Suppose that S_{1} has an ε_{0}-disk component. Note that S_{1} may have ι-disk components, because S_{1} has no ε_{1}-disk components by Claim 4. Since γ^{\prime} is essential in F by Claim 3, we have the following cases.

CASE 1. The arc γ^{\prime} joins distinct ε_{0}-disks, or joins distinct ι-disks.
By an argument similar to Case 1 in the proof of Claim 4, we obtain a contradiction.

CASE 2. The arc γ^{\prime} joins an ε_{0}-disk to an ι-disk.
Then $S_{1}^{(1)}$ is either an ε_{0}-disk, an ε_{1}-disk or an ι-disk in W_{1}, and $\left|S_{1}^{(1)}\right|<\left|S_{1}\right|$, a contradiction.

CASE 3. The arc γ^{\prime} joins an ε_{0}-disk to itself.
By Claim 3, γ^{\prime} must be essential in F. Hence S_{1} must consist of an ε_{0}-disk and
ι-disks, and we obtain a Möbius band in $S_{1}^{(1)}$, a contradiction.
Case 4. The arc γ^{\prime} joins an ι-disk to itself.
Let δ be the ι-disk component of S_{1} with $\partial \gamma^{\prime} \subset \partial \delta$, and let γ_{1} and γ_{2} be arcs such that $\partial \delta=\gamma_{1} \cup \gamma_{2}$ and $\partial \gamma_{1}=\partial \gamma_{2}=\partial \gamma^{\prime}$. Since S_{1} has ε_{0}-disk components, by Claim 3, $\gamma^{\prime} \cup \gamma_{1}$ bounds an ε_{0}-disk, say E^{\prime}, whose interior is disjoint from S. Hence by an argument similar to Claim 3, we have a contradiction by using the disk E^{\prime}.

By Claim 4 and Claim 5, S_{1} consists of ι-disks, because $\left|S_{1}\right|>1$. But this implies that S is inessential in $S^{2} \times S^{1}$, a contradiction.

This completes the proof of Proposition 5.1.
Proof of Theorem 2.3. Suppose that K is a core knot in $S^{2} \times S^{1}$. By Proposition 5.1, we may assume that there are an ε_{0}-disk D_{1} in W_{1} and an ε_{1}-disk D_{2} in W_{2} with $\partial D_{1}=\partial D_{2}$. Then there is an ε_{0}-disk D_{2}^{\prime} in W_{2} which is disjoint from D_{2}. Hence we have $d\left(W_{1}, W_{2}\right)=1$ since Theorem 2.2 implies $d\left(W_{1}, W_{2}\right) \neq 0$ for $(1,1)$-splittings of the core knot in $S^{2} \times S^{1}$.

Conversely, we suppose $d\left(W_{1}, W_{2}\right)=1$, that is, there are mutually disjoint essential loops x and y in $\Sigma=P-K$ which bound disks in $V_{1}-t_{1}$ and $V_{2}-t_{2}$, respectively. Suppose that either x or y, say y, is an ι-loop. If x bounds an ε_{0}-disk, then y bounds an ι-disk in W_{1} by Lemma 3.3. (Otherwise, y is pairwise isotopic to x.) Hence K is a trivial knot, a contradiction. So we may suppose that x (y resp.) bounds an ε_{0}-disk in W_{1} (W_{2} resp.). Then x bounds an ε_{1}-disk in W_{2} by Lemma 3.3. Hence K is a core knot in $S^{2} \times S^{1}$ by Proposition 5.1.

We have completed the proof of Theorem 2.3.

6. (1, 1)-knots whose exteriors contain essential tori

In this section, we study (1,1)-knots whose exteriors contain an essential torus and prove Theorem 2.5 and the following Proposition 6.1.

Proposition 6.1. Let K be a $(1,1)$-knot in M whose exterior contains an essential torus. Then every $(1,1)$-splitting $\left(W_{1}, W_{2} ; P\right)$ of (M, K) satisfies one of the following conditions.
$\left(\#_{a}\right)$ There are an ι-disk D_{i} in W_{i} and an ε_{1}-disk D_{j} in W_{j} such that $\partial D_{i} \cap \partial D_{j}=\emptyset$ for $(i, j)=(1,2)$ or $(2,1)$.
$\left(\#_{b}\right)$ There is an annulus $Z \subset P$ which is incompressible in both V_{1} and V_{2}, and there is an ι-disk D_{i} in W_{i} with $\partial D_{i} \subset Z$ for each $i=1$ and 2.
$\left(\#_{c}\right)$ There are an ε_{1}-disk D_{1} in W_{1} and an ε_{1}-disk D_{2} in W_{2} with $\partial D_{1}=\partial D_{2}$.
Before proving Theorem 2.5 and Proposition 6.1, we present lemmas which describe topological consequences of the conclusions in Proposition 6.1.

Lemma 6.2 ([7] Lemma 2.1). Let K be a non-trivial (1, 1)-knot in M with $a(1,1)$-splitting $\left(W_{1}, W_{2} ; P\right)$ satisfying the condition $\left(\#_{a}\right)$ of Proposition 6.1. Then one of the following holds.
(1) K is a 2-bridge knot.
(2) K is a core knot in a lens space.
(3) K belongs to \mathcal{K}_{1}.

Remark 6.3. Though this lemma is proved under the assumption that $M \not \nexists$ $S^{2} \times S^{1}$ in [7], we can easily see that the same conclusion holds even if $M \cong S^{2} \times S^{1}$. In fact, we can show by using the light bulb theorem that K is a core knot in this case.

Lemma 6.4. Let K be a non-trivial (1,1)-knot in M with a (1,1)-splitting $\left(W_{1}, W_{2} ; P\right)$ satisfying the condition $\left(\#_{b}\right)$ of Proposition 6.1. Then one of the following holds.
(1) K is a core knot or a torus knot.
(2) $K=K(\alpha, \beta ; r)$ for some α, β and r.
(3) K belongs to \mathcal{K}_{2}.

Proof. Let Z be an annulus which satisfies the condition $\left(\#_{b}\right)$ of Proposition 6.1. For each $i=1$ and 2 , since Z is incompressible in $V_{i}, \partial D_{i}$ bounds a disk D_{i}^{\prime} in Z. Let A_{i} be an annulus in V_{i} obtained from $Z_{i}:=\operatorname{cl}\left(\left(Z-D_{i}^{\prime}\right) \cup D_{i}\right)$ by pushing the interior of Z_{i} into the interior of V_{i}. For each $i=1$ and 2 , let $\left(V_{i 1}, \emptyset\right)$ and $\left(V_{i 2}, t_{i}\right)$ be the pair obtained from $\left(V_{i}, t_{i}\right)$ by cutting along A_{i}, where each of $V_{i 1}$ and $V_{i 2}$ is a solid torus and t_{i} is a trivial arc in $V_{i 2}$. Then we see that $V_{11} \cup V_{12}$ is either a solid torus or the exterior of a torus knot. On the other hand, $\left(V_{i 2}, t_{i}\right)$ is identified with $\left(\mathrm{cl}\left(B^{3}-\tau_{1}\right), \tau_{2}\right)$, where $\left(B^{3}, \tau_{1} \cup \tau_{2}\right)$ is a 2 -string trivial tangle, in such a way that the copy of A_{i} corresponds to the boundary of the regular neighbourhood of τ_{1}. Since $V_{11} \cap V_{21}$ is a 2 -sphere with two holes which contains the two points $P \cap K$, we see that $\left(V_{11} \cup V_{21}, K\right)$ is identified with $\left(E\left(K_{2}\right), K_{1}\right)$, where $K_{1} \cup K_{2}=L$ is a 2-bridge link.

Suppose that L is a trivial link. Then K_{1} bounds a disk in $E\left(K_{2}\right)$ and hence K is a trivial knot, a contradiction.

Suppose that L is a Hopf link. Then K_{1} is isotopic to K_{2}. So we can put K on P. Hence K is a core knot or a torus knot.

Suppose that $V_{11} \cup V_{12}$ is a solid torus. Then we see that $K=K(\alpha, \beta ; r)$ for some α, β and r.

In other cases, we see that $A_{1} \cup A_{2}$ is an essential torus. Hence K belongs to \mathcal{K}_{2}.

Fig. 3.
Lemma 6.5. Let K be a non-trivial (1,1)-knot in M and $\left(W_{1}, W_{2} ; P\right)$ a $(1,1)$-splitting of (M, K). Suppose that $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition $\left(\#_{c}\right)$ of Proposition 6.1. Then $M \cong S^{2} \times S^{1}$ and either
(1) $K=K(4,1 ; 0)$, or
(2) K belongs to \mathcal{K}_{3} or \mathcal{K}_{4}.

Proof. Let D_{1} and D_{2} be a pair of disks which give the condition ($\#_{c}$) of Proposition 6.1, and put $V_{i}^{-}=\operatorname{cl}\left(V_{i}-N\left(t_{i}\right)\right)(i=1$ and 2$)$. Let $\alpha_{i j}(j=1$ and 2$)$ be the components of $\partial\left(V_{i}^{-} \cap N\left(t_{i}\right)\right)$, and let $A_{i j}(j=1$ and 2) be annuli properly embedded in V_{i}^{-}satisfying the following conditions (see Fig. 3).
(1) $A_{i j}$ is parallel to $D_{i} \cap V_{i}^{-}$in V_{i}.
(2) $A_{i j} \cap N\left(t_{i}\right)=\emptyset$.
(3) $\alpha_{i j}$ is parallel to a component of $\partial A_{i j}$ in $\operatorname{cl}\left(\partial V_{i}^{-}-N\left(t_{i}\right)\right)$.
(4) $\partial\left(A_{11} \cup A_{12}\right)=\partial\left(A_{21} \cup A_{22}\right)$.

For each $i=1$ and 2 , let $\left(V_{i 1}, \emptyset\right)$ and $\left(V_{i 2}, t_{i}\right)$ be the pairs obtained from $\left(V_{i}, t_{i}\right)$ by cutting along $A_{i 1} \cup A_{i 2}^{\prime}$, where $V_{i 1}$ is a genus two handlebody, $V_{i 2}$ is a 3-ball and t_{i} is a trivial arc in $V_{i 2}$. Then $V_{i 1}$ is identified with the exterior of a 2 -string trivial tangle (B^{3}, τ) in such a way that the copy of $A_{i 1} \cup A_{i 2}$ corresponds to the boundary of the regular neighbourhood of τ.

CASE 1. $A_{11} \cup A_{12} \cup A_{21} \cup A_{22}$ composes two tori.
Suppose that one of the tori, say T_{0}, is inessential in $E(K)$. Then since T_{0} is not parallel to $\partial N(K), T_{0}$ is compressible in $E(K)$. So we can obtain the 2 -sphere S by compressing T_{0}. Note that S is essential, because T_{0} is non-separating in $E(K)$. Hence S is an essential 2-sphere in $E(K)$. This implies that K is a trivial knot by Proposition 2.9 of [2], a contradiction. Hence T_{0} is an essential torus in $E(K)$. In the following, we show that K belongs to \mathcal{K}_{3}. Since $V_{11} \cap V_{21}$ is a 2 -sphere with four holes, we see that $V_{11} \cup V_{21}$ is the exterior of a non-trivial 2-bridge link, say L. On the other hand, we can recognize $\left(M_{0}, k_{0}\right):=\left(V_{12}, t_{1}\right) \cup\left(V_{22}, t_{2}\right)$ as follows. We first note that $\left(V_{i 2}, t_{i}\right)$ is identified with $\left(B^{3}, \tau\right)$, where τ is a trivial arc in B^{3}, in such a way that
the copy of $A_{i 1} \cup A_{i 2}$ corresponds to a regular neighborhood on ∂B^{3} of two homotopically non-trivial simple loops in $\partial B^{3}-\tau$. Moreover, $\left(V_{12}, t_{1}\right) \cap\left(V_{22}, t_{2}\right)$ consists of an annulus and two copies of $\left(D^{2}, o\right)$, where o is the center of the disk. By using this fact, we can see that $E\left(k_{0}\right)$ is identified with $B \times S^{1}$, an orientable S^{1}-bundle over a two-holed disk B, and that a meridian of $E\left(k_{0}\right)$ is isotopic to a fiber. Here the S^{1}-bundle structure is obtained by glueing the S^{1}-bundle structure of $E\left(t_{1}\right)$ and $E\left(t_{2}\right)$. Now let $K_{0} \cup K_{1} \cup K_{2}$ be as in the definition of \mathcal{K}_{3}. Since $E\left(K_{0} \cup K_{1} \cup K_{2}\right)$ is identified with $B \times S^{1}$, where longitudes of K_{1} and K_{2} correspond to fibers of $B \times S^{1}$, $\left(V_{12}, t_{1}\right) \cup\left(V_{22}, t_{2}\right)=\left(E\left(k_{0}\right), \emptyset\right) \cup\left(N\left(k_{0}\right), k_{0}\right)$ is identified with $\left(E\left(K_{0} \cup K_{1} \cup K_{2}\right), K_{0}\right)$, where a longitude of k_{0} corresponds to a fiber (with respect to the bundle structure $B \times S^{1}$ on $\left.E\left(k_{0}\right)\right)$. Hence $\left(E\left(K_{1} \cup K_{2}\right), K_{0}\right)=\left(E\left(K_{0} \cup K_{1} \cup K_{2}\right), \emptyset\right) \cup\left(N\left(K_{0}\right), K_{0}\right)$ is identified with $\left(E\left(k_{0}\right), \emptyset\right) \cup\left(N\left(k_{0}\right), k_{0}\right)$. Thus we have $(M, K)=\left(V_{11}, \emptyset\right) \cup\left(V_{21}, \emptyset\right) \cup$ $\left(V_{21}, t_{1}\right) \cup\left(V_{22}, t_{2}\right)=(E(L), \emptyset) \cup\left(E\left(K_{1} \cup K_{2}\right), K_{0}\right)$. Hence K belongs to \mathcal{K}_{3}.

CASE 2. $\quad A_{11} \cup A_{12} \cup A_{21} \cup A_{22}$ composes a torus T.
Since $V_{11} \cap V_{21}$ is a 2 -sphere with four holes, we see that $V_{11} \cup V_{21}$ is the exterior of a 2 -bridge knot, say K_{2}. On the other hand, we can recognize $\left(M_{0}, k_{0}\right):=$ $\left(V_{12}, t_{1}\right) \cup\left(V_{22}, t_{2}\right)$ as follows. We first note that $\left(V_{i 2}, t_{i}\right)$ is identified with $\left(B^{3}, \tau\right)$, where τ is a trivial arc in B^{3} in such a way that the copy of $A_{i 1} \cup A_{i 2}$ corresponds to a regular neighborhood on ∂B^{3} of two homotopically non-trivial simple loops in $\partial B^{3}-\tau$. Moreover, $\left(V_{12}, t_{1}\right) \cap\left(V_{22}, t_{2}\right)$ consists of an annulus and two copies of $\left(D^{2}, \emptyset\right)$. By using this fact, we can see that $E\left(k_{0}\right)$ is identified with $B \widetilde{\times} S^{1}$, an orientable twisted S^{1}-bundle over a one-holed Möbius band B, and that a meridian of $E\left(k_{0}\right)$ is isotopic to a fiber. Here the S^{1}-bundle structure is obtained by glueing the S^{1} bundle structure of $E\left(t_{1}\right)$ and $E\left(t_{2}\right)$. Now let $K_{0} \cup K_{1} \subset S^{2} \times S^{1}$ and $l_{1} \subset \partial E\left(K_{1}\right)$ be as in the definition of \mathcal{K}_{4}. Then $\left(V_{12}, t_{1}\right) \cup\left(V_{22}, t_{2}\right)=\left(E\left(k_{0}\right), \emptyset\right) \cup\left(N\left(k_{0}\right), k_{0}\right)$ is identified with ($E\left(K_{1}\right), K_{0}$), where l_{1} corresponds to a fiber (with respect to the bundle structure $B \widetilde{\times} S^{1}$ on $\left.E\left(k_{0}\right)\right)$. This can be seen as follows. Since $K_{0}=K(4,1 ; 0), K_{0}$ intersects each fiber S^{2} in two points. So $E\left(K_{0}\right)$ is a twisted annuls bundle over S^{1}, and hence it is a twisted S^{1}-bundle over a Möbius band. Moreover, the meridian K_{1} of K_{0} corresponds to a regular fiber. This implies that $E\left(K_{0} \cup K_{1}\right)$ is identified with $B \widetilde{\times} S^{1}$, where l_{1} corresponds to a fiber of $B \widetilde{\times} S^{1}$. Hence $\left(E\left(K_{0}\right), K_{1}\right)=\left(E\left(K_{0} \cup K_{1}\right), \emptyset\right) \cup\left(N\left(K_{0}\right), K_{0}\right)$ is identified with $\left(E\left(k_{0}\right), \emptyset\right) \cup\left(N\left(k_{0}\right), k_{0}\right)$. Thus we have $(M, K)=\left(V_{11}, \emptyset\right) \cup\left(V_{21}, \emptyset\right) \cup$ $\left(V_{21}, t_{1}\right) \cup\left(V_{22}, t_{2}\right)=\left(E\left(K_{2}\right), \emptyset\right) \cup\left(E\left(K_{1}\right), K_{0}\right)$.

Suppose that T is essential in $E(K)$. Then K_{2} is non-trivial. Hence K belongs to \mathcal{K}_{4}.

Suppose that T is inessential in $E(K)$. Then we see that K_{2} is trivial. Hence $E(K)$ is homeomorphic to $B \widetilde{\times} S^{1}$, where B is a Möbius band. Hence $E(K)$ is a Seifert fibered space whose base space is a disk with two singular points, and the Seifert invariant of the singular fibers are $1 / 2$. Hence K is a torus knot in $S^{2} \times S^{1}$ which intersects $S^{2} \times\{1$ point $\}$ in two points. This implies $K=K(4,1,0)$.

Fig. 4.
To prove Proposition 6.1, we prepare some lemmas which are obtained by an argument similar to those in Section 3 of [14]. An annulus properly embedded in an orientable 3-manifold is called essential if it is incompressible and not ∂-parallel. For a solid torus V and a trivial arc t in V, an annulus properly embedded in $V-t$ is called essential in (V, t) if it is essential in $V-t$.

Lemma 6.6. Let V be a solid torus and t a trivial arc in V, and let A be an essential annulus in (V, t). Then one of the following holds (see Fig. 4).
(1) A cuts (V, t) into $\left(V_{1}, \emptyset\right)$ and $\left(V_{2}, t\right)$, where V_{1} is a genus two handlebody, V_{2} is a 3-ball and t is a trivial arc in V_{1}.
(2) A cuts (V, t) into $\left(V_{1}, \emptyset\right)$ and $\left(V_{2}, t\right)$, where V_{1} is a solid torus, V_{2} is a genus two handlebody and t is a trivial arc in V_{2}.
(3) A is a non-separating annulus in $V-t$ and there are an ε_{0}-disk D and an ε_{1}-disk D^{\prime} in (V, t) with $D \cap D^{\prime}=\emptyset$ and $A \cap\left(D \cup D^{\prime}\right)=\emptyset$.

Proof. Let \mathcal{D} be a disjoint union of an ε_{0}-disk and an ι-disk in (V, t). Since A is incompressible in $V-t, A$ intersects \mathcal{D}. By a standard innermost/outermost disk argument, we can find a disk δ in V such that $\delta \cap t=\emptyset, \delta \cap A=a$ is an essential arc in A and $\delta \cap \partial V=b$ is an arc with $\partial a=\partial b$ and $a \cup b=\partial \delta$. By performing a ∂-compression of A along δ, we obtain a disk D properly embedded in $V-t$. Since A is essential in $V-t, D$ is essential in $V-t$.

Fig. 5.
CASE 1. D is an ι-disk.
Then D cuts (V, t) into $\left(V^{\prime}, t\right)$ and $\left(V^{\prime \prime}, \emptyset\right)$, where V^{\prime} is a 3-ball, t is a trivial arc in V^{\prime} and $V^{\prime \prime}$ is a solid torus. If $A-D \subset V^{\prime}$, then we obtain the conclusion (1). Otherwise, we obtain the conclusion (2).

CASE 2. $\quad D$ is an ε_{0}-disk.
Then D cuts (V, t) into (B, t), where B is a 3-ball and t is a trivial arc in B. By a pairwise isotopy of (B, t), we may assume $A \subset \partial B$. Then since A is essential in $V-t$, the core α of A separates the two punctures of $\partial B-t$. Hence by Lemma 3.3, α bounds an ε_{1}-disk D^{\prime} in (V, t). By moving D and D^{\prime} so that $\left(~ D \cup D^{\prime}\right) \cap A=\emptyset$, we obtain the conclusion (3).

Lemma 6.7. Let V be a solid torus and t a trivial arc in V, and let $\mathcal{A}=A_{1} \cup A_{2}$ be a disjoint union of non-parallel essential annuli in (V, t). Then one of the following holds (see Fig. 5).
(1) \mathcal{A} cuts (V, t) into $\left(V_{1}, \emptyset\right)$ and $\left(V_{2}, t\right)$, where V_{1} is a genus two handlebody, V_{2} is a 3-ball and t is a trivial arc in V_{2}, which satisfy $\mathcal{A} \subset \partial V_{j}(j=1$ and 2$)$. Moreover, there are an ε_{0}-disk D and an ε_{1}-disk D^{\prime} in (V, t) with $D \cap D^{\prime}=\emptyset$ and $\mathcal{A} \cap\left(D \cup D^{\prime}\right)=$ \emptyset.
(2) \mathcal{A} cuts (V, t) into $\left(V_{1}, \emptyset\right),\left(V_{2}, \emptyset\right)$ and $\left(V_{3}, t\right)$, where V_{1} is a solid torus, V_{2} is

Fig. 6.
a genus two handlebody, V_{3} is a 3-ball and t is a trivial arc in V_{3}, which satisfy $\mathcal{A} \cap \partial V_{1}=A_{1}, \mathcal{A} \subset \partial V_{2}$ and $\mathcal{A} \cap \partial V_{3}=A_{2}$ after changing the subscripts. Moreover, there is an ι-disk in (V, t) disjoint from \mathcal{A}.
(3) \mathcal{A} cuts (V, t) into $\left(V_{1}, \emptyset\right)$ and $\left(V_{2}, t\right)$, where V_{1} is a genus two handlebody, V_{2} is a 3-ball and t is a trivial arc in V_{2}, which satisfy $\mathcal{A} \subset \partial V_{1}$ and $\mathcal{A} \cap \partial V_{2}=A_{2}$ after changing the subscripts.

Proof. By performing ∂-compressions of A_{1} and A_{2}, we obtain mutually disjoint disks D_{1} and D_{2} properly embedded in $V-t$. Since A_{1} and A_{2} are essential in $V-t$, D_{1} and D_{2} are essential in $V-t$. Suppose that both D_{1} and D_{2} are ε_{0}-disks. Then we obtain the conclusion (1). Suppose next that both D_{1} and D_{2} are ι-disks. Then we obtain the conclusion (2). Suppose finally that precisely one of D_{1} and D_{2}, say D_{1}, is an ε_{0}-disk and D_{2} is an ι-disk. Note that A_{2} is disjoint from D_{2}. This implies that A_{2} is parallel to $\partial N(K)$. Hence we obtain the condition (3).

The following lemma is obtained by using Lemma 3.3 of [14].
Lemma 6.8. Let V be a solid torus and t a trivial arc in V, and let $\mathcal{A}=A_{1} \cup$ $A_{2} \cup A_{3}$ be a disjoint union of non-parallel essential annuli in (V, t). Then \mathcal{A} cuts (V, t) into $\left(V_{1}, \emptyset\right),\left(V_{2}, \emptyset\right)$ and $\left(V_{3}, t\right)$, where V_{1} is a genus two handlebody, V_{2} is a solid torus and V_{3} is a 3-ball and t is a trivial arc in V_{3}, which satisfy $\mathcal{A} \cap \partial V_{1}=$ $A_{1} \cup A_{2}, \mathcal{A} \subset \partial V_{2}$ and $\mathcal{A} \cap \partial V_{3}=A_{3}$ after changing the subscripts (see Fig. 6).

Proof. Note that $A_{1} \cup A_{2}$ satisfies one of the conclusions of Lemma 6.7. Suppose that $A_{1} \cup A_{2}$ satisfies the conclusion (2) of Lemma 6.7. Then $A_{1} \cup A_{2}$ cuts (V, t) into $\left(V_{1}, \emptyset\right),\left(V_{2}, \emptyset\right)$ and $\left(V_{3}, t\right)$, where V_{1} is a solid torus, V_{2} is a genus two handlebody, V_{3} is a 3-ball and t is a trivial arc in V_{3}. If $A_{3} \subset V_{1}$ or V_{3}, then A_{3} is parallel to A_{1} or A_{2}. If $A_{3} \subset V_{2}$, then by Lemma 3.3 of [14], A_{3} is parallel to A_{1} or A_{2}. Hence we may assume that $A_{1} \cup A_{2}$ satisfies the conclusion (1) or (3) of Lemma 6.8.

Suppose $A_{1} \cup A_{2}$ satisfies the conclusion (1) of Lemma 6.7. Then $A_{1} \cup A_{2}$ cuts (V, t) into $\left(V_{1}, \emptyset\right)$ and (V_{2}, t), where V_{1} is a genus two handlebody, V_{2} is a 3-ball and
t is a trivial arc in V_{2}. By Lemma 3.3 of [14], A_{3} must be contained in V_{2}. Hence A_{3} is parallel to $\partial N(t)$.

Suppose $A_{1} \cup A_{2}$ satisfies the conclusion (3) of Lemma 3.3. Then $A_{1} \cup A_{2}$ cuts (V, t) into $\left(V_{1}, \emptyset\right)$ and $\left(V_{2}, t\right)$, where V_{1} is a genus two handlebody, V_{2} is a 3-ball and t is a trivial arc in V_{2}. By Lemma 3.3 of [14], A_{3} is parallel to an annulus, say A^{\prime}, in ∂V_{2}. Since A_{3} is essential in $V-t$ and is not parallel to $A_{i}\left(i=1\right.$ and 2), A^{\prime} contains $\partial A_{1} \cup \partial A_{2}$. This implies A_{3} satisfies the condition (3) of Lemma 6.6. Then by changing the subscripts, we can see that \mathcal{A} satisfies the condition of Lemma 6.8.

Proof of Proposition 6.1. Let $\left(W_{1}, W_{2} ; P\right)$ be a $(1,1)$-splitting of (M, K) and T an essential torus in $E(K)$. We put $T_{i}=T \cap V_{i}$.

Claim. We may assume that T_{i} consists of essential annuli in $W_{i}(i=1$ and 2$)$.
Proof. Since $\chi(T)=0$, we have only to show that T_{i} has no disks.
We may assume that after an isotopy, each disk of T_{i} is essential in $V_{i}-t_{i}$ ($i=1$ and 2). Suppose that both T_{1} and T_{2} have disk components. Then this implies $d\left(W_{1}, W_{2}\right) \leq 1$ because $\partial T_{1}=\partial T_{2}$. Hence we see that K is a trivial knot or a core knot in $S^{2} \times S^{1}$ by Theorem 2.2 and Theorem 2.3, a contradiction. Hence we may assume that either T_{1} or T_{2}, say T_{2}, has no disk components. Further we assume that the number of disk components of T_{1} is minimal among all essential tori satisfying the condition as above. Let Δ be the union of the disk components of T_{1}. Choose a disjoint union \mathcal{D} of an ε_{0}-disk and an ι-disk in W_{2} which intersect T_{2} transversely.

Note that $E(K)$ is irreducible, i.e., $E(K)$ contains no essential 2 -spheres. Otherwise, K is a trivial knot by Proposition 2.9 of [2], a contradiction. Hence by a standard argument, we can eliminate all loop components of $T_{2} \cap \mathcal{D}$ by an ambient isotopy on $E(K)$.

Suppose that $\Delta \cap \mathcal{D}=\emptyset$. Then each component of $\partial \Delta$ is isotopic to one of the components of $\partial \mathcal{D}$ because each component of $\partial \Delta$ is either an ε-loop or an ι-loop. This implies that $\partial \Delta$ bounds a disk in $V_{2}-t_{2}$, and hence $d\left(W_{1}, W_{2}\right)=0$. By Theorem 2.2, K is a trivial knot, a contradiction. So $\Delta \cap \mathcal{D} \neq \emptyset$.

Let Γ be the union of the arc components of $T_{2} \cap \mathcal{D}$ incident to $\partial \Delta \cap \mathcal{D}$. Let γ be a component of Γ such that γ clips a disk, say δ_{γ}, from \mathcal{D} with $\delta_{\gamma} \cap \Gamma=\gamma$. Suppose that $\delta_{\gamma} \cap T_{2} \neq \gamma$. Then there is a component γ^{\prime} of $\delta \cap T_{2}$ which clips a disk $\delta_{\gamma^{\prime}}$ with $\delta_{\gamma^{\prime}} \cap T_{2}=\gamma^{\prime}$. We can isotope T along $\delta_{\gamma^{\prime}}$ near γ^{\prime} without increasing the number of disks of T_{1}. By repeating this operation, if necessary, we may suppose that $\delta_{\gamma} \cap T_{2}=\gamma$. By isotoping T along δ_{γ}, we can reduce the number of disk components of T_{1} at least by one, a contradiction.

This completes the proof of the claim.

Let \mathcal{A}_{i} be a union of mutually disjoint, non-parallel, essential annuli in $W_{i}=$ $\left(V_{i}, t_{i}\right)$ of which T_{i} consists of parallel copies $(i=1$ and 2$)$. Note that $\left|\mathcal{A}_{1}\right| \leq 3$ by Lemmas 6.6-6.8. By changing the subscripts, if necessary, we may assume that $\left|\mathcal{A}_{1}\right| \geq\left|\mathcal{A}_{2}\right|$.

CASE 1. $\left|\mathcal{A}_{1}\right|=3$.
Note that one of the following holds.

- \mathcal{A}_{2} consists of an annulus satisfying one of the conditions in Lemma 6.6.
- \mathcal{A}_{2} consists of two annuli satisfying one of the conditions in Lemma 6.7.
- \mathcal{A}_{2} consists of three annuli satisfying the condition in Lemma 6.6.

Suppose that \mathcal{A}_{2} satisfies the condition (1) of Lemma 6.6, the condition (2) of Lemma 6.7, the condition (3) of Lemma 6.7, or the condition of Lemma 6.8. Here, the sentence " \mathcal{A}_{2} satisfies the condition (1) of Lemma 6.6 " means that \mathcal{A}_{2} consists of an annulus satisfying the condition (1) in Lemma 6.6. Then $T_{1} \cup T_{2}$ contains a torus which is parallel to $\partial N(K)$, a contradiction.

Suppose that \mathcal{A}_{2} satisfies the condition (2) of Lemma 6.6 or the condition (3) of Lemma 6.6. Let $\left\{p_{1}, p_{2}\right\}$ be points of $P \cap K$. Note that \mathcal{A}_{1} has a component which is isotopic to $\partial N\left(p_{i} ; P\right)$ for each $i=1$ and 2 . On the other hand, for $i=1$ or $2, \mathcal{A}_{2}$ does not have a component which is isotopic to $\partial N\left(p_{i} ; P\right)$. This implies that $\partial T_{1} \neq \partial T_{2}$, a contradiction.

Suppose that \mathcal{A}_{2} satisfies the condition (1) of Lemma 6.7. Put $\mathcal{A}_{1}=A_{11} \cup A_{12} \cup A_{13}$ and $\mathcal{A}_{2}=A_{21} \cup A_{22}$. We may assume that A_{13} is isotopic to $\partial N(K) \cap V_{1}$. Suppose that T_{1} consists of m_{1} parallel copies of A_{11}, m_{2} parallel copies of A_{12} and m_{3} parallel copies of A_{13}, and T_{2} consists of n_{1} parallel copies of A_{21} and n_{2} parallel copies of A_{22}. Then since $\partial T_{1}=\partial T_{2}$, we have $m_{1}+m_{2}=n_{1}+n_{2}, m_{1}+m_{3}=n_{1}$ and $m_{2}+m_{3}=n_{2}$. This implies that $m_{3}=0$, a contradiction. Hence Case 1 does not occur.

CASE 2. $\left|\mathcal{A}_{1}\right|=2$.
Set $\mathcal{A}_{1}=A_{11} \cup A_{12}$. We have the following three subcases by Lemma 6.7.
CASE 2.1. \mathcal{A}_{1} satisfies the condition (1) of Lemma 6.7.
By an argument similar to Case 1 , we see that \mathcal{A}_{2} satisfies the condition (1) or (2) of Lemma 6.7. Set $\mathcal{A}_{2}=A_{21} \cup A_{22}$.

Suppose that \mathcal{A}_{2} satisfies the condition (1) of Lemma 6.7. Then we see $\left|T_{1}\right|=$ $\left|T_{2}\right|=2$. (Otherwise $T_{1} \cup T_{2}$ has plural components.) So we may assume $T_{i}=A_{i 1} \cup A_{i 2}$ ($i=1$ and 2) (cf. Fig. 3). Since $M \cong S^{2} \times S^{1}$, we can find an ε_{1}-disks D_{i} in $W_{i}(i=1$ and 2) with $\partial D_{1}=\partial D_{2}$. Hence $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition $\left(\#_{c}\right)$ of Proposition 6.1.

Suppose that $\mathcal{A}_{2}=A_{21} \cup A_{22}$ satisfies the condition (2) of Lemma 6.7. Then we can find an ε_{1}-disk D_{1} in W_{1} and an ι-disk D_{2} in W_{2} which satisfy the condition $\left(\#_{a}\right)$ of Proposition 6.1 (see Fig. 7). Hence by the remark below Lemma 6.2, K is a core knot, a contradiction.

CASE 2.2. \mathcal{A}_{1} satisfies the condition (2) of Lemma 6.7.
Then by an argument similar to Case 1 , we see that \mathcal{A}_{2} satisfies the condition (1)

Fig. 7.
of Lemma 6.7. Hence by changing the subscripts, Case 2.2 is equivalent to the latter case of Case 2.1.

CASE 2.3. \mathcal{A}_{1} satisfies the condition (3) of Lemma 6.7.
Then by an argument similar to Case 1 , we see that Case 2.3 is impossible.
Case 3. $\left|\mathcal{A}_{1}\right|=1$.
By Lemma 6.6, we have the following three subcases.
CASE 3.1. \mathcal{A}_{1} satisfies the condition (1) of Lemma 6.6.
By an argument similar to Case 1, we see that \mathcal{A}_{2} satisfies the condition (1) of Lemma 6.6. Hence $T_{1} \cup T_{2}$ contains a torus which is parallel to $\partial N(K)$, a contradiction.

CASE 3.2. \mathcal{A}_{1} satisfies the condition (2) of Lemma 6.6.
By an argument similar to Case 1 , we see that \mathcal{A}_{2} satisfies the condition (2) of Lemma 6.6. Moreover T_{i} consists of an annulus ($i=1$ and 2). (Otherwise, $T_{1} \cup T_{2}$ consists of plural components.) Let z be one of the components of $\partial \mathcal{A}_{1}=\partial \mathcal{A}_{2}$. For each $i=1$ and 2 , let Δ_{i} be a disk in V_{i} such that $t_{i} \subset \partial \Delta$, and $\Delta_{i} \cap \partial V_{i}=\operatorname{cl}\left(\partial \Delta_{i}-t_{i}\right)=: t_{i}^{\prime}$ is disjoint from z. Then there are ι-disks D_{i} in W_{i} with $\partial D_{i}=\partial N\left(t_{i}^{\prime} ; P\right)$ for each $i=1$ and 2. Hence $Z:=\operatorname{cl}(P-N(z ; P))$ gives the condition $\left(\#_{b}\right)$ of Proposition 6.1.

CASE 3.3. \mathcal{A}_{1} satisfies the condition (3) of Lemma 6.6.
By an argument similar to Case 1 , wee see that \mathcal{A}_{2} satisfies the condition (3) of Lemma 6.6. Then there are an ε_{1}-disk D_{i} in $W_{i}(i=1$ and 2$)$ with $\partial D_{1}=\partial D_{2}$. Hence $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition ($\#_{c}$) of Proposition 6.1.

This completes the proof of Proposition 6.1.
Proof of Theorem 2.5. Let K be a (1, 1)-knot in M and $\left(W_{1}, W_{2} ; P\right)$ a $(1,1)$-splitting of (M, K). By Proposition 6.1, $\left(W_{1}, W_{2} ; P\right)$ satisfies one of the conditions in Proposition 6.1.

Suppose that $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition $\left(\#_{a}\right)$ of Proposition 6.1. Then by Lemma $6.2, K$ belongs to \mathcal{K}_{1}, because the exteriors of 2-bridge knots and core knots do not contain essential tori (see [5]).

Suppose that ($W_{1}, W_{2} ; P$) satisfies the condition $\left(\#_{b}\right)$ of Proposition 6.1. Then by
arguments in the proof of Lemma 6.4 and the proof of Proposition 6.1, K belongs to \mathcal{K}_{2}, because $E(K)$ contains an essential torus.

Suppose that $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition $\left(\#_{c}\right)$ of Proposition 6.1. Then by Lemma $6.5, K$ belongs to \mathcal{K}_{3} or \mathcal{K}_{4}.

We have thus proved Theorem 2.5.

7. $(1,1)$-splittings of distance $=2$

In this section, we give the proof of Theorem 2.4.
Proof of Theorem 2.4. We first assume $d\left(W_{1}, W_{2}\right)=2$, that is, there is an essential loop x (y resp.) in $\Sigma:=P-K$ which bounds a disk in $V_{1}-t_{1}\left(V_{2}-t_{2}\right.$ resp.) such that x and y intersect each other, and there is an essential loop z in Σ with $z \cap(x \cup y)=\emptyset$.

CASE 1. Both x and y are ε-loops.
If z is an ι-loop, then z bounds an ι-disk in each of W_{1} and W_{2} by Lemma 3.3. This implies that $\left(W_{1}, W_{2} ; P\right)$ is of distance $=0$, a contradiction. Hence by Lemma 3.3, z must be an ε-loop and z bounds an ε_{0}-disk or an ε_{1}-disk in each of W_{1} and W_{2}.

Suppose that z bounds an ε_{0}-disk in each of W_{1} and W_{2}. Then this means that $d\left(W_{1}, W_{2}\right) \leq 1$, a contradiction.

Suppose that z bounds an ε_{1}-disk in each of W_{1} and W_{2}. Then $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition $\left(\#_{c}\right)$ of Proposition 6.1. By Lemma 6.5, $K=K(4,1,0)$ or $E(K)$ contains an essential torus.

Case 2. Precisely one of x and y, say x, is an ε-loop.
We see that z is an ε-loop by an argument similar to Case 1 . Then by Lemma 3.3, z bounds an ε_{1}-disk in W_{1}. So ($W_{1}, W_{2} ; P$) satisfies the condition ($\#_{a}$) of Proposition 6.1, and hence (M, K) satisfies one of the conditions (1)-(3) of Lemma 6.2. Note that if K satisfies the condition (3), we can find an essential torus in $E(K)$ by making an appropriate "swallow-follow torus".

Case 3. Both x and y are ι-loops.
Then z must be an ε-loop by the same argument as above. In particular, z must be contained in the surface T_{0} obtained from the torus P by removing the interior of the disk bounded by x. So all components of $y \cap T_{0}(\neq \emptyset)$ are parallel in T_{0}. Note that we can regard y as $\partial N\left(t_{2}^{\prime} ; P\right)$, where t_{2}^{\prime} is an arc in P such that $t_{2} \cup t_{2}^{\prime}$ bounds a disk in V_{2}. By an isotopy on Σ, we may assume that $|x \cap y|$ is minimal.

CASE 3.1. $\left|y \cap T_{0}\right|=2$.
Then K is isotopic to a knot in P, and hence K satisfies the condition (2) or (3) of Theorem 2.4.

CASE 3.2. $\left|y \cap T_{0}\right|>2$.
Let A_{1} in V_{1}^{-}(A_{2} in V_{2}^{-}resp.) be an annulus obtained by pushing the interior of $N(z ; P)$ into the interior of $V_{1}\left(V_{2}\right.$ resp. $)$, where $V_{i}^{-}=\operatorname{cl}\left(V_{i}-N\left(t_{i}\right)\right)(i=1,2)$. So $T:=A_{1} \cup A_{2}$ is a torus in $E(K)$ (see Fig. 8).
A_{1} (A_{2} resp.) cuts V_{1}^{-}(V_{2}^{-}resp.) into a solid torus V_{11}^{-}(V_{21}^{-}resp.) and a genus

Fig. 8.
two handlebody V_{12}^{-}(V_{22}^{-}resp.). $M_{1}=V_{11}^{-} \cup V_{21}^{-}$is the exterior of a trivial knot, a core knot or a torus knot. $M_{2}=V_{21}^{-} \cup V_{22}^{-}$is the exterior of a 2-bridge link, and $M_{2} \cup N(K)$ should be a solid torus. If M_{1} is a solid torus, then (M, K) is equivalent to $K(\alpha, \beta ; r)$ for some α, β and γ. If not, by the hypothesis of Case 3.2, we can see that T is not parallel to $\partial N(K)$. Hence T is an essential torus in $E(K)$.

This completes the proof of the first part of Theorem 2.4.
Next, we prove the second part of Theorem 2.4.
CASE (1). $\quad K$ is a non-trivial 2-bridge knot in S^{3}.
By Theorem 8.2 of [15], every (1,1)-splitting of a non-trivial 2-bridge knot is isotopic to that constructed as follows. For a non-trivial 2-bridge knot K, let $\left(B_{1}, a_{1} \cup a_{2}\right) \cup_{S}\left(B_{2}, b_{1} \cup b_{2}\right)$ be a 2-bridge decomposition. Put $V_{1}=B_{1} \cup N\left(b_{2} ; B_{2}\right)$, $V_{2}=\operatorname{cl}\left(B_{2}-N\left(b_{2} ; B_{2}\right)\right), t_{1}=a_{1} \cup a_{2} \cup b_{2}$ and $t_{2}=b_{1}$. Then $W_{i}:=\left(V_{i}, t_{i}\right)$ is a pair of a solid torus V_{i} and a trivial arc t_{i} in $V_{i}(i=1,2)$, and $\left(W_{1}, W_{2} ; P\right)$ gives a $(1,1)$-splitting of $\left(S^{3}, K\right)$. In the following, we show that this $(1,1)$-splitting has distance $=2$.

Let D_{i} be a properly embedded disk in B_{i} such that D_{i} separates two trivial arcs in $B_{i}(i=1,2)$. Then D_{1} determines an ε_{0}-disk in W_{1}, and D_{2} determines an ι-disk in W_{2}. Further, ∂D_{1} and ∂D_{2} are disjoint from an essential loop z in $\Sigma:=P-K$, where z is one of the boundary components of the meridian disks $B_{1} \cap N\left(b_{2} ; B_{2}\right)$. Hence $d\left(W_{1}, W_{2}\right) \leq 2$. By Theorem 2.2 and Theorem 2.3, we have $d\left(W_{1}, W_{2}\right)=2$.

CASE (2) and (3). K is a core knot in a lens space or a torus knot in M.
By Theorem C of [6] and Theorem 3 of [17], every (1,1)-splitting of (M, K) is isotopic to that constructed as follows. Let $\left(V_{1}, V_{2} ; P\right)$ be a genus one Heegaard splitting of M such that $K \subset P$. Let p_{1} and p_{2} be distinct points in K. Then $p_{1} \cup p_{2}$ cuts K into two arcs l_{1} and l_{2}. Let t_{i} be the properly embedded arc by slightly pushing the interior of l_{i} into the interior of V_{i}, and put $W_{i}=\left(V_{i}, t_{i}\right)(i=1$ and 2). Then $\left(W_{1}, W_{2} ; P\right)$ is a $(1,1)$-splitting of (M, K).

Let z be a core of the annulus $\operatorname{cl}(P-N(K ; P))$. Then $\partial N\left(l_{i} ; P\right)$ bounds an ι-disk in $W_{i}(i=1,2)$, and $\partial N\left(l_{1} ; P\right)$ and $\partial N\left(l_{2} ; P\right)$ are disjoint from the essential loop z in P. So we have $d\left(W_{1}, W_{2}\right) \leq 2$. By Theorem 2.2 and Theorem 2.3, we obtain $d\left(W_{1}, W_{2}\right)=2$.

CASE (4). $\quad E(K)$ contains an essential torus.
Let $\left(W_{1}, W_{2} ; P\right)$ be a $(1,1)$-splitting of (M, K). By Proposition 6.1, $\left(W_{1}, W_{2} ; P\right)$ satisfies one of the conditions $\left(\#_{a}\right),\left(\#_{b}\right)$ and $\left(\#_{c}\right)$.

Suppose that $\left(W_{1}, W_{2} ; P\right)$ satisfies the condition $\left(\#_{a}\right)$. Let $D_{1}\left(D_{2}\right.$ resp.) be an ι-disk (an ε_{1}-disk resp.) in W_{1} (W_{2} resp.) such that $\partial D_{1} \cap \partial D_{2}=\emptyset$. By cutting $W_{2}=\left(V_{2}, t_{2}\right)$ along D_{2}, we obtain a 2-string trivial tangle (B, τ). Let D_{2}^{+}and D_{2}^{-} be the copy of D_{2} in ∂B. Let D_{2}^{\prime} be a disk properly embedded in B such that $D_{2}^{\prime} \cap\left(D_{2}^{+} \cup D_{2}^{-}\right)=\emptyset$ and D_{2}^{\prime} separates a component of τ from the other. Then D_{2}^{\prime} determines an ε_{1}-disk W_{2}, and D_{2}^{\prime} is disjoint from D_{2}. Hence ∂D_{1} and ∂D_{2} give $d\left(W_{1}, W_{2}\right) \leq 2$.

We can easily see that the condition $\left(\#_{b}\right)$ directly gives $d\left(W_{1}, W_{2}\right) \leq 2$.
Finally, if the condition $\left(\#_{c}\right)$ is satisfied, then we can also obtain $d\left(W_{1}, W_{2}\right) \leq 2$ by using an argument similar to that in case of the condition $\left(\#_{a}\right)$. By Theorem 2.2 and Theorem 2.3, we obtain $d\left(W_{1}, W_{2}\right)=2$.

We have completed the proof of Theorem 2.4.

Proof of Corollary 2.6. By Thurston's hyperbolization theorem of Haken manifolds (see, for example, [13]), a knot K is hyperbolic if and only if $E(K)$ is irreducible, $E(K)$ contains no essential torus, and $E(K)$ is not a Seifert fibered space.

CASE 1. $E(K)$ is reducible.
By Proposition 2.9 of [2], $E(K)$ is reducible if and only if K is a trivial knot. Hence $d\left(W_{1}, W_{2}\right)=0$ by Theorem 2.2.

CASE 2. $\quad E(K)$ contains an essential torus.
Then by Theorem $2.6, d\left(W_{1}, W_{2}\right)=2$.
CASE 3. $E(K)$ is a Seifert fibered space whose regular fiber is not a meridian of K.

Then by Lemma 5.2 of [14], if $E(K)$ is a Seifert fibered space whose regular fiber is not a meridian of K and $\partial E(K)$ is incompressible in $E(K)$, then one of the following holds: (1) the base space is a disk with two singular points, where the regular fiber in $\partial E(K)$ intersects the meridian in one point, (2) the base space is a Möbius
band with one singular point, where the regular fiber in $\partial E(K)$ intersects the meridian in one point, (3) $E(K)$ is a twisted S^{1}-bundle over a Möbius band. If $E(K)$ satisfies the condition (1) or (3), then K is a torus knot. If $E(K)$ satisfies the condition (2), then there is an essential torus in $E(K)$. Hence by Theorem 2.4, $d\left(W_{1}, W_{2}\right)=2$.

Suppose that $\partial E(K)$ is compressible in $E(K)$. Then we obtain a 2 -sphere S in $E(K)$ by compressing $\partial E(K)$. If S bounds a 3-ball in $E(K)$, then $E(K)$ is a solid torus and hence K is a trivial knot or a core knot. Otherwise, since S is essential in $E(K), K$ is a trivial knot by Proposition 2.9 of [2]. Hence by Theorems 2.2 and 2.3, we have $d\left(W_{1}, W_{2}\right)=0$ or 1 .

CASE 4. $E(K)$ is a Seifert fibered space whose regular fiber is a meridian of K.
Let B be the base orbifold of $E(K)$. Then $\pi_{1}(M)=\pi_{1}(E(K)) /\langle f\rangle$, where f is the element of $\pi_{1}(E(K))$ represented by a regular fiber, is isomorphic to the orbifold fundamental group $\pi_{1}(B)$. Since M is a lens space, $\pi_{1}(B)$ is cyclic. It is known that such an orbifold is isomorphic to a disk with only one singular point (see, for example, Section 3 of [19]). Therefore $E(K)$ is a solid torus, and hence K is a core knot. Hence by Theorem 2.3, we have $d\left(W_{1}, W_{2}\right)=1$.

Hence by Theorems 2.2-2.4 and the hypothesis of Proposition 2.6, $d\left(W_{1}, W_{2}\right) \leq$ 2 if and only if $E(K)$ is a Seifert fibered space or contains an essential 2 -sphere or torus. By Thurston's hyperbolization theorem, we obtain the desired result.

8. (1, $\mathbf{1}$)-splittings of distance $\geq \mathbf{3}$

Theorem 2.7 can be proved by the arguments of J. Hempel in Section 2 of [11]. To this end, we first recall the covering distance introduced in [11].

Let S be a connected, compact, orientable surface. We say that a covering space $p: \tilde{S} \rightarrow S$ separates essential loops x and y in S if there are components \tilde{x} of $p^{-1}(x)$ and \tilde{y} of $p^{-1}(y)$ with $\tilde{x} \cap \tilde{y}=\emptyset$. A finite covering $p: \tilde{S} \rightarrow S$ is sub-solvable if p can be factored as a composition of cyclic coverings.

Definition 8.1 ([11] Section 2). Let $[x]$ and $[y]$ be distinct vertices of $C(S)$, and let x (y resp.) be a representative of $[x]$ ($[y]$ resp.). Then we define the covering distance between $[x]$ and $[y]$ as follows.

$$
\operatorname{cd}([x],[y])=1+\min \left\{\begin{array}{l|l}
n & \begin{array}{l}
\text { there is a degree } 2^{n} \text { sub-solvable covering of } S \\
\text { which separates } x \text { and } y
\end{array}
\end{array}\right\} .
$$

As an analogy of Lemma 2.3 in [11], we obtain the following.
Lemma 8.2. Let $[x]$ and $[y]$ be distinct vertices of $C(S)$. Then
(1) $d([x],[y])=2$ if and only if $c d([x],[y])=2$ and
(2) $\operatorname{cd}([x],[y]) \leq d([x],[y])$.

Fig. 9.
Proof. Let x (y resp.) be a representative of $[x]$ ([y] resp.).
(1) Suppose that $d([x],[y])=2$, that is, $x \cap y \neq \emptyset$ and there is an essential loop z in S with $z \cap(x \cup y)=\emptyset$.

CASE $1 . \quad z$ is an ε-loop.
Since an ε-loop is a non-separating loop in $S, S^{\prime}:=\operatorname{cl}(S-N(z))$ is connected. We can construct a double cover \tilde{S} of S by gluing two copies S_{1}^{\prime} and S_{2}^{\prime} of S^{\prime} along z. Hence \tilde{x} in S_{1}^{\prime} and \tilde{y} on S_{2}^{\prime} can give $\operatorname{cd}([x],[y])=2$.

CASE 2. z is an ι-loop.
Let γ be an essential arc which joins two punctures of S such that γ is disjoint from z. Then we can construct a double cover \tilde{S} of S by gluing two copies of $\operatorname{cl}(S-N(\gamma))$. Therefore we can also get $\operatorname{cd}([x],[y])=2$.

The converse follows from the proof of Lemma 2.3 in [11].
(2) The second assertion can also be proved by the same argument as that in the proof of Lemma 2.3 of [11].

This completes the proof of Lemma 8.2.
By Lemma 8.2, we can get a lower estimation of the distance between distinct vertices on $C(S)$. For the covering distance, the following lemma is proved in [11].

Lemma 8.3 ([11] Theorem 2.5). If $[x]$ and $[y]$ are vertices of $C(S)$ and $h: S \rightarrow S$ is a pseudo-Anosov homeomorphism, then $\lim _{n \rightarrow \infty} c d\left([x],\left[h^{n}(y)\right]\right)=\infty$.

Proof of Theorem 2.7. We first construct a pseudo-Anosov map f of $\Sigma:=$ $P-K$ whose extension to P is isotopic to $i d$. To this end, let a and b be essential loops on Σ illustrated in Fig. 9, and put $f=\tau_{a}^{-1} \circ \tau_{b}$, where τ_{a} (τ_{b} resp.) a right-hand Dehn twist along a (b resp.). Then f is pseudo-Anosov by Theorem 3.1 of [21], because $a \cup b$ fills Σ. Since a and b are isotopic in P, the extension \hat{f} of f to P is isotopic to the identity.

Now let M be a 3-manifold with a genus one Heegaard splitting. Pick a
(1,1)-knot K in M and its (1,1)-splitting ($W_{1}, W_{2} ; P$). Let x (y resp.) be an ε-loop in Σ which bounds an ε_{0}-disk in W_{1} (W_{2} resp.). By Lemma 8.2 and Lemma 8.3, for any positive integer n, there is an integer N such that $d\left([x],\left[f^{N}(y)\right]\right)>n+2$, where $[x]$ ($\left[f^{N}(y)\right]$ resp.) is represented by $x\left(f^{N}(y)\right.$ resp.). Since $\hat{f} \simeq i d$, the manifold obtained from M by cutting along P and regluing it after composing \hat{f}^{N} is homeomorphic to M. Let $\left(W_{1}^{\prime}, W_{2}^{\prime} ; P\right)$ be a $(1,1)$-splitting obtained in the above way. Then by Proposition 3.8, we have $d\left(W_{1}^{\prime}, W_{2}^{\prime}\right) \geq d\left([x],\left[f^{N}(y)\right]\right)-2>n$.

We have completed the proof of Theorem 2.7.
Acknowledgements. I would like to express my thanks to Prof. Makoto Sakuma for leading me to this subject, many instructive suggestions and conversations. And I would also like to thank Prof. Hiroshi Goda, Prof. Chuichiro Hayashi, Prof. Tsuyoshi Kobayashi and Prof. Kanji Morimoto for helpful conversations.

References

[1] D.H. Choi and K.H. Ko: On 1-bridge torus knots, preprint.
[2] H. Goda, C. Hayashi and N. Yoshida: Genus two Heegaard splittings of exteriors of knots and the disjoint curve property, Kobe J. Math. 18 (2001), 79-114.
[3] H. Goda and C. Hayashi: Genus two Heegaard splittings for 1-genus 1-bridge knot exteriors, preprint.
[4] W.J. Harvey: Boundary structure of the modular group, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference, Princeton Univ. Press, Princeton, N.J. 1981.
[5] A. Hatcher and W. Thurston: Incompressible surfaces in 2-bridge knot complements, Invent. math. 79 (1981), 225-246.
[6] C. Hayashi: Genus one 1-bridge positions for the trivial knot and torus knots, Math. Proc. Camb. Phil. Soc. 125 (1999), 53-65.
[7] C. Hayashi: Satellite knots in 1-genus 1-bridge positions, Osaka J. Math. 36 (1999), 711-729.
[8] C. Hayashi: 1-genus 1-bridge positions for knots in the 3-sphere and lens spaces, preprint.
[9] C. Hayashi and K. Shimokawa: Heegaard splittings of the trivial knot, J. Knot Theory Ramifications 7 (1998), 1073-1085.
[10] J. Hempel: 3-manifolds, Princeton Univ. Press, Princeton, N.J. (1976).
[11] J. Hempel: 3-manifolds as viewed from the curve complex, Topology, 40 (2001), 631-657.
[12] W. Jaco: Lectures on three manifold topology, Conference board of Math. Amer. Math. Soc. (1980).
[13] M. Kapovich: Hyperbolic Manifolds and Discrete Groups, Progress in Math. 183, Birkhäuser (2001).
[14] T. Kobayashi: Structures of the Haken manifolds with Heegaard splittings of genus two, Osaka. J. Math. 21 (1984), 437-455.
[15] T. Kobayashi and O. Saeki: The Rubinstein-Scharlemann graphic of a 3-manifold as the discriminant set of a stable map, Pacific J. Math. 195 (2000), 101-156.
[16] H.A. Masur and Y.N. Minsky: Geometry of the complex of curves I. hyperbolicity, Invent. Math. 138 (1999), 103-149.
[17] K. Morimoto: On minimum Heegaard splitting of some orientable closed 3-manifolds, Tokyo. J. Math. 12 (1989), 321-355.
[18] K. Morimoto and M. Sakuma: On unknotting tunnels for knots, Math. Ann. 289 (1991),

143-167.
[19] P. Scott: The geometries of 3-manifolds, Bull. London. Math. Soc. 15 (1983), 401-487.
[20] A. Thompson: The disjoint curve property and genus 2 manifolds, Topology Appl. 97 (1999), 273-279.
[21] R.C. Penner: A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), 179-197.
[22] D. Rolfsen: Knots and links, Publish or Perish Inc. (1976).

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043, Japan e-mail: saito@gaia.math.wani.osaka-u.ac.jp

