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1. Introduction

The Kohn-Nirenberg correspondence assigns to a symbolσ( ω) in the space of
tempered distributionsS ′(R2 ) the operatorσ( ) : S(R )→ S ′(R ) defined by

σ( ) ( ) =
∫

R

σ( ω) ˆ(ω) 2π ·ω dω

This is the classical version of pseudodifferential operators that is used in the in-
vestigation of partial differential operators, cf. [21]. In the language of physics,
the Kohn-Nirenberg correspondence and its relatives such as the Weyl correspondence
are methods of quantization. In the language of engineering, they are time-varying fil-
ters.

The Kohn-Nirenberg correspondence is usually analyzed using methods from hard
analysis. The problems arising from the theory of partial differential equations sug-
gest using the classical Hörmander symbol classesρ δ(R2 ), which are defined in
terms of differentiability conditions [21], [31]. On the other hand, if we introduce
the time-frequency shifts

(1) ω ( ) = 2π ω· ( − )

then we can writeσ( ) as a formal superposition of time-frequency shifts:

σ( ) ( ) =
∫∫

R2

σ̂(η − ) 2π η· ( ) dη d

=
∫∫

R2

σ̂(η ) 2π η· ( + ) d dη

=
∫∫

R2

σ̂(η )
(

η −
)

( ) d dη(2)

From this perspective, it seems natural to use symbols in function classes that are as-
sociated to the time-frequency shiftsη . Specifically, this is done by investigating
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Fig. 1. Set of ( ) for whichσ( ω) ∈ (R2 ) implies σ( ) is bounded or
unbounded on 2(R ).

the class of function spaces known as themodulation spaces. Modulation space norms
are quantitative measures of the time-frequency concentration of a function or distribu-
tion, and have proven useful in the study of many aspects of time-frequency analysis.
In these terms, the investigation of pseudodifferential operators amounts to the ques-
tion of how a pseudodifferential operator affects the time-frequency concentration of
a function.

The modulation spaces were invented and extensively investigated by Feichtinger
over the period 1980–1995, with some of the main references being [9], [10],
[11], [12], [13]. They are now recognized as the appropriatefunction spaces for
time-frequency analysis, and occur naturally in mathematical problems involving
time-frequency shifts ω . For a detailed development of the theory of modulation
spaces and their weighted counterparts, we refer to the original literature mentioned
above and to [16, Chapter 11–13].

In this note we will employ the unweighted modulation spaces (R2 ) as sym-
bol classes in the study of pseudodifferential operators. We will completely charac-
terize which of these spaces yield operatorsσ( ) that extend to bounded map-
pings of 2(R ) into itself. In particular, we construct counterexamplesdemonstrating
the sharpness of our conditions. Because of the invariance properties of the modula-
tion spaces, the same results also hold for the Weyl correspondence. Our results are
succinctly summarized in the diagram in Fig. 1.



COUNTEREXAMPLES FORPSEUDODIFFERENTIAL OPERATORS 683

2. Time-frequency representations and modulation spaces

The modulation space norms provide a quantitative measure of time-frequency
concentration. We will use the short-time Fourier transform as an appropriate defini-
tion of the time-frequency content of a function at “time” and frequencyω, but
we could just as well use any time-frequency representation, such as the ambiguity
function or the Wigner distribution [16, Chapter 4].

DEFINITION 1. Fix a nonzero window ∈ 2(R ). Then theshort-time Fourier
transform (STFT) of with respect to is

( ω) =
∫

R

( ) ( − ) −2π ·ω d ω ∈ R

The STFT can be written in a number of equivalent ways, for example:

( ω) = 〈 ω 〉 = ( · ¯ )̂ (ω) = −2π ·ω
ˆ ˆ(ω − )

Clearly, in this formulation, the STFT can be extended to many dual pairs. In partic-
ular, if ∈ S(R ), then is defined for any tempered distribution∈ S ′(R ). In
this way the STFT becomes an instrument to measure the time-frequency concentration
of distributions.

DEFINITION 2. Fix a nonzerowindow function in the Schwartz classS(R ), and
let 1 ≤ ≤ ∞. Then the modulation space (R ) is the subspace of the tem-
pered distributions consisting of all ∈ S ′(R ) for which

‖ ‖ = ‖ ‖ (R2 ) =

(∫

R

(∫

R

| ( ω)| d

) /

dω

)1/

<∞

We define = . In particular,‖ ‖ = ‖ ‖ .

The definition of is independent of the choice of the window∈ S(R ),
and different windows yield equivalent norms on [16, Proposition 11.3.2].
We will employ both the modulation spaces (R ) and (R2 ) in our analysis,
the domain being clear from context if not explicitly specified.

The modulation spaces have an elegant structure theory and possess atomic de-
compositions similar to the Besov spaces. The space1 serves as an important Ba-
nach space of test functions in time-frequency analysis. This space is invariant under
the Fourier transform and is an algebra under both convolution and pointwise multi-
plication. Any compactly supported function such that ˆ∈ 1 belongs automatically
to 1 [9].

An important property of the modulation spaces is that they are invariant un-
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der the operator which transforms a Kohn-Nirenberg symbol to a Weyl symbol.
In particular, given a symbolσ( ω), the symbol τ ( ω) whose Weyl transform
equals the Kohn-Nirenberg transform ofσ( ω) is given by ˆτ (ξ ) = −π ·ξσ̂(ξ ).
By [17, Lemma 2.1],

σ ∈ (R2 ) ⇐⇒ τ ∈ (R2 )

Consequently, all of our results are unchanged if the Kohn-Nirenberg correspondence
is replaced by the Weyl correspondence, or equivalently, the operatorσ( ) can be
interpreted as being either the Kohn-Nirenberg or Weyl transform of σ( ω).

3. Pseudodifferential operators onL2(Rd)

In the literature on pseudodifferential operators, the modulation spaces figure im-
plicitly in [3], [19], [28], [30], [32], and enter explicitly in [17], where ∞ 1(R2 )
in particular is used as a symbol class to establish the boundedness ofσ( )
on (R ), 1 ≤ ≤ ∞, including 2 = 2 as a special case. Further developments
using modulation spaces have been obtained in [1], [23], [24], [33].

In this section we present sufficient conditions for the boundedness of pseudo-
differential operators on 2(R ) when the symbol is taken in a modulation space .
These results follow from known endpoint results. In the following section we will
show that these conditions are sharp.

For 1 ≤ < ∞ we let I denote the -Schatten class, which is the Banach
space of all compact operators on2(R ) whose singular values lie in [2], [7], [29].
Although not a standard notation, for convenience we will denote the Banach space of
all bounded operators on2(R ) by I∞, with norm ‖ ‖I∞ = ‖ ‖op.

Theorem 3. (a) If σ ∈ 2(R2 ) = 2(R2 ), then σ( ) ∈ I2 and
‖σ( )‖I2 = ‖σ‖ 2 .
(b) If σ ∈ 1(R2 ), then σ( ) ∈ I1.

Theorem 3 (a) is due to Pool [27]. Statement (b) was stated independently
by Feichtinger and Sjöstrand, with the first proof published in [15]; see also [17,
Proposition 4.1] or [18, Proposition 6.1]. As discussed in [17], Theorem 3 improves
the trace-class results of Daubechies [6] and Hörmander [20]. So far the best result
using a weighted modulation space as a symbol class seems to be found in [19]
(see [18] for the formulation in modulation space terms), with a related result in [26].

The following is [16, Theorem 14.5.2], and extends the results of [17] to all
the unweighted modulation spaces.
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Theorem 4. If σ ∈ ∞ 1(R2 ), thenσ( ) is a bounded mapping of (R )
into itself for each1≤ ≤ ∞, with a uniform estimate

‖σ( )‖op ≤ ‖σ‖ ∞ 1

In particular, σ( ) is bounded on 2(R ).

It can be shown that +1(R ) ⊂ ∞ 1(R ) [16, Theorem 14.5.3], and
thus Theorem 4 implies the following corollary in the spiritof the celebrated
Calderòn-Vaillancourt theorem:if σ ∈ 2 +1(R2 ), then σ( ) is bounded on
for every 1 ≤ ≤ ∞, cf. [4] and [14, Theorem 2.73]. In fact, the more involved
arguments of [19] or [25] show that the Hölder-Zygmund class +ǫ(R ) is contained
in ∞ 1(R ) for all ǫ > 0. However, ∞ 1 is not defined by a smoothness criterion,
and includes non-differentiable functions.

A special case of Theorem 4 was proved by Sjöstrand [30], whowas apparently
unaware of the extended theory of modulation spaces that wasavailable. Among hard
analysts, the space ∞ 1 is sometimes known as Sjöstrand’s class. Further investiga-
tions were done by Boulkhemair [3], who rediscovered a decomposition of ∞ 1 of
Feichtinger [10], and more recently by Toft [32], [33].

To extend the above endpoint results, we use the basic inclusion and interpolation
properties of modulation spaces. In particular, recall thefollowing facts.
(a) Inclusion Theorem [16, Theorem 12.2.2]:

(3) 1 1 ⊂ 2 2 ⇐⇒ 1 ≤ 2 1 ≤ 2

(b) Complex interpolation [8], [11]:
[

1 1 2 2
]
θ

= for 1 ≤ ≤ 2, and[
2 2 ∞ 1

]
θ

=
′

for 2≤ ≤ ∞.
The -Schatten classes interpolate like -spaces, namely, [I1 I∞]θ = I for

1 ≤ ≤ ∞, cf. [22, Theorem 2.c.6]. The following statements therefore follow im-
mediately.

Theorem 5. (a) If 1≤ ≤ 2 and σ ∈ (R2 ), thenσ( ) ∈ Imax{ }.
(b) If 2≤ ≤ ∞ and 1≤ ≤ ′, and if σ ∈ (R2 ), then σ( ) ∈ I .
(c) In particular, if 1 ≤ ≤ 2 and 1 ≤ ≤ ′, then σ( ) is a bounded operator
on 2(R ).

Proof. (a) Let 1≤ ≤ 2, and setµ = max{ }. If σ ∈ [ 1 1 2 2]θ =
, then σ( ) ∈ [I1 I2]θ = I . By (3), we have ⊂ µ µ and therefore

σ( ) ∈ Iµ.
(b) If 2 ≤ ≤ ∞ and σ ∈ [ 2 2 ∞ 1]θ =

′

, then σ( ) ∈ [I2 I∞]θ =
I . Since ≤ ′, we have ⊂ ′

, and consequentlyσ( ) ∈ I .
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4. Counterexamples

Our main goal is to show that Theorem 5 is sharp. We will prove the following
statement.

Theorem 6. (a) If > 2, then for any1 ≤ ≤ ∞ there existsσ ∈ (R2 )
such thatσ( ) is unbounded on 2(R ).
(b) If ≥ 2 and > ′, then there existsσ ∈ (R2 ) such thatσ( ) is
unbounded on 2(R ).

4.1. Proof of Theorem 6 (a). For this portion of the proof of Theorem 6, it
will be more convenient to work in the setting of the Weyl correspondence. Hence in
this part we letσ( ) denote the Weyl transform ofσ( ω). The Wigner distribution

( )( ω) =
∫ (

+
2

) (
−

2

)
−2π ω· d

will play an important role because of the fact that〈σ( ) 〉 = 〈σ ( )〉. In
particular, if σ is chosen to have the formσ = (ϕ ψ), thenσ( ) is the rank-one
operatorσ( ) = 〈 ψ〉ϕ. This motivates the following lemma. A different proof
of this lemma has been independently obtained by Toft in [33], and a variety of related
results can be found in [5].

Lemma 7. Let 1≤ ≤ ≤ ∞ be given. If ψ ∈ (R ) and ϕ ∈ (R ), then
(ϕ ψ) ∈ (R2 ).

Proof. Fix any nonzero window function∈ S(R ). Then = ( )∈ S(R2 ),
and for = ( 1 2) and ζ = (ζ1 ζ2) ∈ R2 we have by [16, Lemma 14.5.1] that

| ( ) (ϕ ψ)( ζ)| =
∣∣∣∣ ψ

(
1 +

ζ2

2 2 −
ζ1

2

)
ϕ

(
1 −

ζ2

2 2 +
ζ1

2

)∣∣∣∣

Writing I ( ) = (− ) and ζ̃ = (ζ2 −ζ1), we therefore have for <∞ that

‖ (ϕ ψ)‖

=

(∫

R2

(∫

R2

| ( ) (ϕ ψ)( ζ)| d

) /

dζ

)1/

=

(∫

R2

(∫

R2

∣∣∣∣ ψ

(
1 +

ζ2

2 2 −
ζ1

2

)∣∣∣∣
∣∣∣∣ ϕ

(
1 −

ζ2

2 2 +
ζ1

2

)∣∣∣∣ d

) /

dζ

)1/

=

(∫

R2

(∫

R2

| ψ( )|
∣∣I ϕ

(
ζ̃ −

)∣∣ d

) /

dζ

)1/
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=

(∫

R2

(
| ψ| ∗ |I ϕ|

(
ζ̃
)) /

dζ

)1/

= ‖| ψ| ∗ |I ϕ| ‖1/
/

≤ ‖| ψ| ‖1/
1 ‖|I ϕ| ‖1/

/

= ‖ ψ‖ ‖ ϕ‖
= ‖ψ‖ ‖ϕ‖

Young’s convolution inequality is applicable above since/ ≥ 1. The case =∞ is
similar.

Now we can prove Theorem 6 (a) for the case> 2 and 1≤ ≤ . The case
> will be covered by the proof of part (b).

We construct a counterexample in the form of a rank-one operator. Since > 2,
we have that 2(R ) is a proper subspace of (R ). Choose anyψ ∈ \ 2, and
any nonzeroϕ ∈ S(R ). Thenσ = (ϕ ψ) ∈ (R2 ) by Lemma 7, yetσ( ) is
the rank-one operatorσ( ) = 〈 ψ〉ϕ, which is unbounded on 2(R ).

4.2. Preparation for the proof of Theorem 6 (b). For the remainder of
the proof of Theorem 6 it will most convenient to work in the setting of
the Kohn-Nirenberg correspondence. We will seek a counterexample of the form
σ( ω) = ( )µ(ω) = ( ⊗ µ)( ). For such a separable symbol, the Kohn-Nirenberg
transformσ( ) coincides with the product-convolution operator

σ( ) = · (µ̌ ∗ )

where µ̌ = F−1µ is the inverse Fourier transform ofµ. For further simplification, we
will try to find functions , µ, of the form =

∑
∈Z α , µ̌ =

∑
∈Z β ,

and =
∑
∈Z γ . However, before constructing this counterexample we require

some preparation.

Lemma 8. Assume thatσ = ⊗ µ ∈ S ′(R2 ). Thenσ ∈ (R2 ) if and only
if both , µ ∈ (R ).

Proof. Choose a window ∈ S(R2 ) of the form = 1 ⊗ 2 with 1, 2 ∈
S(R ). Then the STFT factors as σ = 1 ⊗ 2µ, and the result immediately fol-
lows from Definition 2.

Next we estimate the modulation space norms of several Gaborsums. The follow-
ing is a special case of [16, Theorem 12.2.4].
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Lemma 9. Assume that ∈ 1 and 1 ≤ ≤ ∞. Then there exists > 0
such that for everyα ∈ (Z ) and β ∈ (Z ) we have

∥∥∥∥∥
∑

∈Z

α

∥∥∥∥∥ ≤ ‖α‖ and

∥∥∥∥∥
∑

∈Z

β

∥∥∥∥∥ ≤ ‖β‖

If < ∞, then both sums converge unconditionally in . If = ∞ or =
∞ with ( ) 6= (1 ∞), (∞ 1), then both sums converge weak∗ in , otherwise
weak∗ in ∞.

Lemma 10. Assume that2 < ≤ ∞ and ′ < < 2. Let ∈ 1 be given
with compact support. Let α ∈ (Z ), β ∈ (Z ), and γ ∈ 2(Z ) be given. Define

(4) =
∑

∈Z

α ∈ µ =
∑

∈Z

β − ˆ ∈ =
∑

∈Z

γ ∈ 2

Then · (µ̌ ∗ ) ∈ for some2 < < ∞ and all 1 ≤ ≤ ∞. Furthermore,
· (µ̌ ∗ ) is given explicitly as

(5) · (µ̌ ∗ ) =
∑

| |≤

∑

∈Z

α + (β ∗ γ) ( ∗ ) · +

for some > 0 depending only on the size of the support of, with convergence of
the series in (weak∗ if =∞).

Proof. Define 1/ = 1/ −1/2 = 1/ +1/2−1. Then 2< <∞, and by Young’s
inequality we haveβ ∗ γ ∈ ∗ 2 ⊂ . Since ∗ ∈ 1, we have by Lemma 9 that
the series

∑
(β ∗ γ) ( ∗ ) converges in (weak∗ if = ∞). Further,

µ̌ ∗ =
∑

∈Z

∑

∈Z

γ β ( ∗ )

=
∑

∈Z

(
∑

∈Z

γ β −

)
( ∗ )

=
∑

∈Z

(β ∗ γ) ( ∗ )

Let ∈ Z be fixed, and define (τ α) = α + . Then by Hölder’s inequality,τ α ·
(β ∗ γ) ∈ · ⊂ where 1/ = 1/ + 1/ = 1/ + 1/ − 1/2 (note that 2<
< ∞). Since ( ∗ ) · ∈ 1, we have by Lemma 9 that the series

∑
α + ·

(β ∗ γ)
(
( ∗ ) ·

)
converges in (weak∗ if = ∞).

Now, since has compact support centered at 0, there exists> 0 such that
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( ∗ ) · = 0 whenever| − | > . Consequently,

· (µ̌ ∗ ) =
∑

∈Z

∑

∈Z

α (β ∗ γ) ( ∗ )

=
∑

| |≤

∑

∈Z

α + (β ∗ γ) ( ∗ ) · +

with convergence of the series in (weak∗ if = ∞).

4.3. Proof of Theorem 6 (b): Construction of a counterexample. The case
= 2 is covered by part (a), so it suffices to assume that> 2 and > ′. Further,

by the inclusion properties of the modulation spaces, it suffices to consider the case
2< <∞ and ′ < <∞.

We choose a window that will allow us to compute a lower estimate. In par-
ticular, we take ∈ 1 compactly supported and with ≥ 0. To be specific, let

= χ[−1/2 1/2] ∗ χ[−1/2 1/2] . Then for some constants , > 0 we have

(6) ( ∗ ) · ≥ χ[− ]

Suppose thatα, β, γ ≥ 0 satisfy the hypotheses of Lemma 10, and let ,µ, and
be defined by (4). Then by Lemma 8, we haveσ = ⊗ µ ∈ (R2 ). Further,
· (µ̌∗ ) is an element of = for some 2< <∞, which is a strict superset

of 2.
Since all terms in the series (5) representing· (µ̌∗ ) are non-negative, we have
· (µ̌ ∗ ) ≥ 0. Therefore, using the = 0 term in (5) and applying (6), we can

estimate the 2-norm of the product-convolution from below as

‖σ( ) ‖ 2 = ‖ · (µ̌ ∗ )‖ 2

≥
∥∥∥∥∥
∑

∈Z

α (β ∗ γ) (( ∗ ) · )

∥∥∥∥∥
2

≥ ′‖α · (β ∗ γ)‖ 2

for some appropriate constant′. Consequently, to show thatσ( ) is unbounded
on 2, it suffices to construct nonnegative sequencesα ∈ , β ∈ , and γ ∈ 2 such
that α · (β ∗ γ) /∈ 2.

Since 1/ + 1/ + 1/2< 3/2, we may chooseδ > 0 so that
(

1
+

1
+

1
2

)
( + δ) <

3
2

Define

ρ =
+ δ

σ =
+ δ

τ =
+ δ
2
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Setα0 = β0 = γ0 = 1, and for 6= 0 define

α = | |−ρ β = | |−σ γ = | |−τ

Thenα ∈ , β ∈ , γ ∈ 2, and each sequence is positive. Further, given∈ Z we
have

(β ∗ γ) =
∑

∈Z

β γ − ≥
∑

| |/4≤| |≤3| |/4

| |−σ| − |−τ ≥ | | | |−σ−τ

Hence

α · (β ∗ γ) ≥ | | −ρ−σ−τ ≥ | |− /2

becauseρ + σ + τ < 3 /2. Consequentlyα · (β ∗ γ) 6∈ 2. Thus σ ∈ (R2 ) and
∈ 2(R ), yet σ( ) ∈ \ 2.
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