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0. Introduction

In this article we study the Fuchsian differential equationof order 2 with mono-
dromy group a triangle group and having three regular non-apparent singularities and
several apparent singularities. To each such differentialequation there corresponds
a differential operator ∈ C( )[ / ]. We will give an integral representation of its
solution and discuss the algebraicity of the value of the Schwarz map ( ) for ∈ Q
in the case ∈ Q( )[ / ].

In Sections 1 and 2 we reconstruct a classical argument of Ritter [14] and
thereby obtain a differential equation ( ) = 0 of the shape (1.3) when we have three
regular singularities = 0 1∞ and apparent singularities at =1 . . . , with
the Riemann scheme

(0.1)




0 1 1 · · · ∞
0 0 0 · · · 0 µ′

ν0 ν1 2 · · · 2 µ′′




In general we get 2 differential equations ( ) = 0 belonging tothe same Riemann
scheme. This is deduced from the non-logarithmicity condition for (1.3).

In each differential equation the solution ( ) that is holomorphic at = 0
with (0) = 1 is expressed as a linear combination of Gauss hypergeometric functions,
as follows

0( ) (µ′ µ′′ 1− − ν0; ) + · · · + ( ) (µ′ µ′′ 1− ν0; )
∑

=0

( ) = 1

where the coefficients ( )’s are 2 -valued analytic functionsof = ( 1 . . . ).
In Section 3 we restrict our study to the case whereν0 ν1 µ′ µ′′ ∈ Q with some

non-integral condition given by (3.1). We assume ( )∈ Q( )[ / ], in particular
the apparent singularities1 . . . are algebraic numbers. The above solution ( )
can be regarded as a period

∫
γ1
η( ) of an abelian differential of the second kind
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on the hypergeometric curve ( ) along a 1-cycleγ1, where

( ) : = ( − )( − 1) ( + −1)( − )

we changed the signatures of the exponents with ( ) = (µ′ µ′′ 1− − ν0) and
is the least common denominator of . We note here that the differential η( )
depends on (and ), but the curve ( ) and the 1-cycleγ1 = γ1( ) do not depend
on .

Putting ζ = 2π / the first homology group 1( ( ) Z) can be regarded as
a Z[ζ]-module. By using another generator cycleγ2 not belonging toZ[ζ]γ1, we get
the second solution

∫
γ2
η( ) of ( ) = 0. Our Schwarz map is therefore given

by ( ) =
∫

γ1
η( )

/ ∫
γ2
η( ).

We consider the Prym variety ( ) of the covering Riemann surface ( ),
that is the abelian variety induced from the differentials of the first kind that is
not coming from an intermediate covering between ( ) andP1. The dimension
of ( ) is ϕ( ) = ♯(Z/ Z)∗ and the extended endomorphism algebra End( ( ))⊗
Q contains the fieldQ(ζ).

By inspection ofη( ) and ( ), we get the following:
(1) For any ∈ = C− {0 1} the cohomology group 1

DR( ( )), the space of
differentials of the second kind modulo exact differentials, has a naturalζ-action. We
always have a 2-dimensional eigenspace for every eigenvalue 2π / with ∈ (Z/ Z)∗.
(2) The relation between and ( ) ( = 0. . . ) is stated in Theorem 3.1 and Propo-
sition 3.2 in an explicit way.

In Section 4 we discuss the algebraicity of the value ( ) for∈ Q in the same
situation as in Section 3, with special interest for the case= ( = 1 . . . ).
If ( ) ∈ Q, then ( ) is of CM type, namely it is isogenous to a product of simple
abelian varieties with complex multiplication. By inspection of the monodromy group
we obtain the following detailed result.

In the case that the monodromy group is finite, namely the solution is an algebraic
function, we always have ( )∈ Q. Moreover ( ) does not depend on and it is
a fixed abelian variety of CM type.

If the monodromy group is infinite, the family{ ( ) : ∈ } corresponds to
a 1-dimensional variety in the moduli space of abelian varieties. In the case of
a non-arithmetic monodromy group, the André-Oort conjecture predicts that we
have only finite numbers of ( )’s with complex multiplicationin this family.
Much progress on this prediction is given by Edixhoven and Yafeev [8]. Cohen
and Wüstholz [6] showed how their result can be applied to various problems con-
cerned with hypergeometric functions, filling a serious gapin the third author’s pa-
per [20]. It is therefore highly likely that we have only finitely many algebraic points
with ( ) ∈ Q.

In the case of an arithmetic monodromy group, we have infinitely many ( )’s
of CM type. For the Gauss hypergeometric function, the Schwarz image is alge-
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braic if and only if the corresponding Prym variety ( ) is of CMtype pro-
vided the corresponding corresponding differential form is holomorphic satisfying a
necessary additional condition, see [19, Corollary 5 (ii)]. This is however not the
case for our differential equation ( ) = 0. We have very rarelyan algebraic
point with ( ) in Q. In fact, for fixed = τ ∈ ∩ Q, arbitrary ∈
Z>0 and arbitrary = (1 · · · ) ∈

(
Q
)

we have infinetly many Schwarz images
{ (τ ) : ∈ Z>0 ∈

(
Q
)

= 1 . . . 2 }. There are at most two algebraic val-
ues among them. This is the main result in this section.

The full statement is given in Theorem 4.1 and Theorem 4.2. For the proofs
of this section, we need applications of Wüstholz’ Analytic Subgroup Theorem [24].
As an Appendix, we include a proof, kindly provided to us by Paula B. Cohen, of
the relevant linear independence result, originally announced in [23], for period inte-
grals of the second kind.

For a transcendental value ( ), a method of Hirata-Kohno [10]gives even
its transcendence measure. If we wish to extend our study to the case where we
have regular singularities at more than three points (namely with non-triangle mono-
dromy group), we encounter a problem stated in the work of D.V. Chudnovsky and
G.V. Chudnovsky [2]: in which cases do we have a monodromy group definable
over Q? In our triangle case the monodromy group is always realizedin GL

(
2 Q

)
.

This is a subject outside the immediate context of our present work.

1. Preliminaries about accessory parameters

We consider a Fuchsian differential equation

{ 2

2 + ( ) + ( )

}
( ) = 0 ( ( ) ( ) ∈ C( ))

of order 2 with + 3 regular singularities1 . . . +3. We have at most a simple pole
for ( ) and a double pole for ( ) at = ( = 1. . . + 3). The characteristic
equation at = is given by

( ) = ( − 1) + + = 0

with = lim → ( − ) ( ), = lim → ( − )2 ( ). In the case =∞, we use
= 2 − lim →0 (1/ )/ , = lim →0 (1/ )/ 2 for the coefficients. Two roots of

the characteristic equation give the exponents ,′ at = . The sum of all exponents
satisfies Fuchs’ relation

(1.1)
+3∑

=1

( + ′ − 1) =−2

The table of exponents is called the Riemann scheme. If = 0 theRiemann scheme
determines a Fuchsian differential equation in a unique way. However in the case
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where we have > 0 there appear severalaccessory parametersin the correspond-
ing differential equation, so the differential equation isnot uniquely determined by
the Riemann scheme. We shall restrict our study to the case ofsimple apparent singu-
larities for = 1 . . . and ordinary singularities at = 0 1∞. In other words, we
assume that we have the Riemann scheme of the form

(1.2)




0 1 1 · · · ∞
0 0 0 · · · 0 µ′

ν0 ν1 2 · · · 2 µ′′




Corresponding to this Riemann scheme we have the Fuchsian differential equation
= 0 with

(1.3) =
2

2
+

(
1− ν0 +

1− ν1

− 1
−
∑

=1

1
−

)
+

1
( − 1)

(
µ′µ′′ +

∑

=1
−

)

where 1 . . . are the accessory parameters.
In general we have a logarithmic singularity at = , so we have to check a non-

logarithmicity condition for these accessory parameters.
For a Fuchsian differential equation of order 2, in a neighborhood of a regular

singularity = , we can rewrite it in the form





{
( − )2

2

2
+ ( − ) ∗( ) + ∗( )

}
( ) = 0

∗( ) = 0 + 1( − ) + 2( − )2 + · · ·
∗( ) = 0 + 1( − ) + 2( − )2 + · · ·

Consider a solution of the form

( ) = ( − )
(

0 + 1( − ) + 2( − )2 + · · ·
)

with an exponent at = . If is not a positive integer, we obtain aformal solution

( ) = ( − )
(

1 +
∑
≥1 ( − )

)
at = by the recurrence relation

( − ) + = 0

with

=
∑

+ = <

( + )

If we have the exponent = 2 the above recurrence condition becomes

( − 2) + = 0
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When we have 2 6= 0 our recurrence procedure stops at = 2. In this case we
have a logarithmic singularity. Therefore we have a non-logarithmic singularity, that
is an apparent singularity, if and only if2 = 0 2 + 1 1 + 1 1 = 0. We may assume

0 = 1, therefore 1 = 1 = 0 1 = 1, and we have 2 = 2 + 2
1 + 1 1 = 0. For our

equation = 0 with in (1.3) we have

∗( ) = −1 +


1− ν0 +

1− ν1

− 1
−
∑

6=

1
−


 ( − ) + · · ·

∗( ) =
( − 1)

( − )

+
1

( − 1)



−

(
1

+
1
− 1

)
+


µ′µ′′ +

∑

6= −






 ( − )2 + · · ·

for every ( = 1 . . . ). We obtain the following result:

Lemma 1.1. The non-logarithmicity condition at = for = 0 in (1.3) is
given by
(1.4)

2 −


ν0( − 1) +ν1 +

∑

6=

( − 1)
−


 + ( − 1)


µ′µ′′ +

∑

6= −


 = 0

We also have:

Lemma 1.2. The system of quadratic equations





2
1 + 12 2 + 13 3 + · · · + 1 = α1

21 1 + 2
2 + 23 3 + · · · + 2 = α2

· · ·
1 1 + 2 2 + · · · + −1 −1 + 2 = α

(with all 6= 0) has 2 solutions( 1 . . . ) ∈ C counting multiplicities.

Proof. Let be the intersection of the above quadratic hypersurfaces in
the compactificationP of the ( 1 . . . )-spaceC . It is apparent that has no
intersection with the hyperplane at infinity. As a consequence, is a 0-dimensional
algebraic set. Bezout’s theorem therefore gives the required number of solutions as
the degree of the intersection of quadratic hypersurfaces.

According to this Lemma we obtain the following:
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Proposition 1.1. For any pairwise different apparent singularities1 . . .

∈ P1− {0 1 ∞} we have2 possibilities for the -tuples of accessory parameters
( 1 . . . ).

REMARK 1.1. We can treat the case of general exponent differences atpossi-
bly exceeding 2 as some confluent case of our equation. If we have exponents 0 and
at = , we get the differential equation putting (− 1)/( − ) instead of 1/( − )
in (1.3). For the case = 0 1 we get the equation by puttingν0 + 1, ν1 + 1 instead
of ν0, ν1, respectively, with the ’s being given as the limit values determined
by (1.4). The case =∞ can be reduced to the case = 0 by the inversion→ 1/ .

2. Isomonodromy properties and reduction procedure

We consider first the differential equation ( ( )) = 0 with the differential opera-
tor (1.3) in the special case = 1, i.e.

(2.1) ( ) = =
2

2
+

(
1− ν0 +

1− ν1

− 1
− 1
−

)
+

(
µ′µ′′ + −

)
1

( − 1)

satisfying the non-logarithmicity condition of Lemma 1.1 for = 1, = 1. It corre-
sponds to the Riemann scheme

(2.2)




0 ∞ 1
0 µ′ 0 0
ν0 µ

′′ ν1 2




By Lemma 1.1, the accessory parameter runs over a 2 sheeted Riemann surface

: 2 − (ν0( − 1) +ν1 ) + µ′µ′′ ( − 1) = 0

over the space of with two ramification points in general. We may therefore consider
as P1 with a natural projectionπ from to the spaceP1.

We sometimes write = ( ) as well, keeping in mind that for most there are
two choices for .

We have the following classical well-known fact:

Lemma 2.1 (Local lemma). Take ( 0 0) ∈ P1 − {0 1 ∞} × and suppose
π( 0) 6= 0. We consider the solutions ( ) ( = 0 1) of = 0 defined in some
neighbourhood of( 0 0) with the initial conditions

(
0( 0 )

∂ 0

∂
( 0 )

)
= (1 0)

(
1( 0 )

∂ 1

∂
( 0 )

)
= (0 1)
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Then we can find a neighbourhood × of ( 0 0) where the solutions ( )
( = 0 1) are holomorphic in2 variables.

We have:

Lemma 2.2 (Semi-global lemma). Take any point 0 ∈ P1 − {0 1 ∞}. Then
we can find a neighbourhood of0 such that the solution ( ) in the previous
lemma at 0 is holomorphic in2 variables in × ( − π−1( 0)).

Proof. Let ε( ) be a neighbourhood of0 and let ( ) be the solutions given
by convergent power series in with =π( ) 6= 0. They give a holomorphic function
in some neighbourhood of{ 0} × − π−1( 0). Take a simply connected open neigh-
bourhood of 0 with ∩ {0 1 ∞} = ∅. For every with =π( ) 6= 0 we can
make an analytic continuation of this series solution ( ) to as a holomorphic
function of one variable. According to Hartogs’ continuitytheorem we have an exten-
sion of ( ) holomorphic in × − π−1( 0).

DEFINITION. The above system{ 0( ; 0) 1( ; 0)} is said to beinitially
conditionedat 0.

REMARK 2.1. As we see in the proof of the following proposition, ( )
( = 0 1) is meromorphic on × and has a polar divisor along × π−1( 0).

In the following we will write sometimes ( ) and ( ;0) instead of ( )
and ( ; 0) for = π( ). As functions of these functions are multivalued but can
be assumed to be locally single valued meromorphic at least outside the critical values
of π.

Proposition 2.1 (Isomonodromy property). Let α be an arc connecting0 and 1

in the space and avoiding the critical values ofπ. Let α be one of the liftings ofα
to . Let 0 be a point different fromα. Let γ be an arbitrary loop in the -domain
P1−{0 1 ∞} with the terminal point 0. Then we can find a basis{ϕ( ) ψ( )}
( ∈ α ) of ( ) = 0 in (2.1) so that the circuit matrix of the differential equation
induced fromγ with respect to this basis does not depend on∈ α.

Proof. Let ( ) = ( ; 0) ( = 0 1) be the initially conditioned system
at 0. Let ˜0( ) and ˜1( ) be the result of the continuation alongγ. We have
an expression

(2.3)

( ˜0( )
˜1( )

)
=

(
00( ) 01( )

10( ) 11( )

)(
0( )

1( )

)
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Here the matrix ( ) is a circuit matrix ofγ with respect to the basis{ 0( )

1( )}. Because ( ) is holomorphic on × ( − π−1( 0)), ( ) is holomor-
phic on − π−1( 0). If π( ) = 0, the function ( ; 0) is not defined. We must
show that the matrix ( ( )) in (2.3) is holomorphic at∈ π−1( 0) also. The prob-
lem is local, so we consider a product neighbourhood× of ( ) = ( 0 0). We
take another point 1 in and make ( ) = ( ;1) = ( ; 1) by the same
procedure. It is holomorphic on × ( − { 1}). We have a relation

(
0

1

)
=

(
00( ) 01( )

10( ) 11( )

)(
0

1

)

where ( ) is holomorphic on − { 0 1}. Put

( ′
0( )
′
1( )

)
=

(
( 1) ( 0 ) −( 0) ( 0 )
− 1( 0 ) 0( 0 )

)(
0( )

1( )

)

and

( ) = det

[
0( 0 ) 1( 0 )

( 0) ( 0 ) ( 1) ( 0 )

]

Here we see that ( ), the Wronskian at =0, is holomorphic and non-zero
on 0 < | − 0| < δ for some smallδ > 0. But it has a zero at = 0, because

= 0 (= ) is a singularity of the equation ( ) = 0. So ( ) = (1/ ( )) ′( ) has
a polar divisor along =0 as mentioned in the above remark.

Then we have again the same circuit matrix forγ with respect to the system
{ ′0 ′

1}:

(2.4)

(
˜ ′0( )
˜ ′1( )

)
=

(
11( ) 12( )

21( ) 22( )

)( ′
0( )
′
1( )

)

Because ′( ) is holomorphic in some neighbourhood of (0 0), (2.4) means
that ( ) is holomorphic at = 0. So it is holomorphic on the whole compact
Riemann surface , hence the circuit matrix (2.3) is a constant matrix.

Theorem 2.1 (Ritter [14]). We consider the differential equation( ) = 0 for
the operator(2.1). Let α be an arc connecting = 0 and = 1. Let = 0 be a point
different fromα. Let ( ) be the initially conditioned system at0.

Take an arbitrary point ∈ α, and let ϕ( ) be an arbitrary solution of
( ) = 0. We putϕ( ) = 0 0( ) + 1 1( ). Set ϕ ( ) = ϕ( ) = 0 0( ) +

1 1( ) ( = 0 1). Then ϕ( ) is expressed as aC-linear combination 0( )ϕ0 +

1( )ϕ1. Here, ( 0) and ( 1) ( = 0 1) are solutions of the Gauss hypergeomet-
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ric differential equations corresponding to the Riemann schemes




0 ∞ 1
0 µ′ 0

ν0 + 1 µ′′ ν1







0 ∞ 1
0 µ′ 0
ν0 µ

′′ ν1 + 1




respectively.

Proof. Note that all the functions above are defined on some neighbourhood
× of { 0} × α. The matrix



ϕ0 ϕ ϕ1

00 0 01

10 1 11




is of rank two for any point ( )∈ × , where we put = ( ), 0≤ ≤ 1.
It induces the relation

ϕ( ) = 0( )
( )

ϕ0( ) + 1( )
( )

ϕ1( )

with

( ) = det

[
00 01

10 11

]
0( ) = det

[
0 01

1 11

]
1( ) = det

[
00 0

10 1

]

Let us fix for the moment. According to Proposition 2.1, thesethree minors of

(
00 0 01

10 1 11

)

behave in the same manner as multivalued functions. The function 0( ) has
the shape ν0( − 1)ν1 ( ) with a holomorphic function ( ) onC. The sit-
uation is the same for ( ) and 1( ). The coefficients 0 = 0( )/ ( )
and 1 = 1( )/ ( ) are single valued and holomorphic on the affine space of .
By Fuchs’ relationν0 + µ′ + µ′′ + ν1 = 0 they are holomorphic at =∞. Therefore
these three minors are holomorphic on the whole planeP1. They must be constants
in , and hence 0 = 0( ) and 1 = 1( ) depend only on the variable .

Now we return to the Riemann scheme

(2.5)




0 ∞ 1 1 · · ·
0 µ′ 0 0 · · · 0
ν0 µ

′′ ν1 2 · · · 2
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with the Fuchs relation

ν0 + µ′ + µ′′ + ν1 = 1−

We consider the corresponding Fuchsian differential operator (1.3) and the differen-
tial equation = 0 having no logarithmic singularity. When = (1 . . . ) move
on (P1) , the accessory parameters = (1 . . . ) constitute a compact covering
variety over the compactified space (P1) .

For the moment we fix the exponents and− 1 apparent singularities2 . . . .
A solution therefore becomes a function of and1. According to Remark 1.1 we
may allow to be equal to 0 1∞ and also allow them to coincide.

Let α be an arc in the1 space connecting 0 and 1 and passing through a point

1 = ρ. Let = 0 be a point different fromα. By the same procedure as in Lemma 2.2
and Proposition 2.1 we find a system of solutions{ ( 1; 0)} ( = 0 1) holomor-
phic on × ( 1) with some neighbourhood of0 where (1) denotes the one di-
mensional covering variety over1 space obtained as a connected component of the re-
striction of . In the same way as shown in Proposition 2.1 thissystem has a constant
circuit matrix for a fixed loopγ in the spaceC − {0 1 1 2 . . . }. We call it
the initially conditioned system at0 with respect to 1.

Proposition 2.2 (Reduction procedure).We consider the situation stated above.
Let α be an arbitrary lifting ofα to ( 1) and let ρ = π−1(ρ) ∩ α. Let { ( 1)} =
{ ( 1; 0)} ( = 0 1), 1 ∈ α be the initially conditioned system. Let ϕ( ρ) =

0 0( ρ) + 1 1( ρ) be an arbitrary solution for (ρ) = (ρ 2 . . . ) = 0.
Put ϕ ( ) = 0 0( )+ 1 1( ) ( = 0 1). Thenϕ( ρ) is expressed as a linear combi-
nation

ϕ( ρ) = 0(ρ)ϕ0( ) + 1(ρ)ϕ1( )

Whereϕ0 and ϕ1 are solutions of the differential equations for the Riemannschemes




0 ∞ 1 2 · · ·
0 µ′ 0 0 · · · 0

ν0 + 1 µ′′ ν1 2 · · · 2




and



0 ∞ 1 2 · · ·
0 µ′ 0 0 · · · 0
ν0 µ

′′ ν1 + 1 2 · · · 2




respectively.

Successive application of this reduction procedure gives
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Theorem 2.2 (Linear dependence).Let ( 1 . . . ) be a solution of = 0
with in (1.3) satisfying the nonlogarithmicity condition inLemma 1.1.Suppose it is
holomorphic at = 0. Then we have an expression

(2.6) ( ) = 0( ) ( ; ) + 1( ) ( + 1; ) + · · · + ( ) ( + ; )

in terms of Gauss hypergeometric functions where( ) = (µ′ µ′′ 1− − ν0).

3. Integral representation and algebro-geometric aspects

3.1. Associate hypergeometric functions. Throughout Sections 3 and 4 we
will assume that the angular parameters in the non-apparentsingularities satisfy
the condition

(3.1) ν0 ν1 ν∞ := µ′′ − µ′ ∈ Q− Z ν0± ν1± ν∞ /∈ Z

First we concentrate our attention on the equation = 0 havingone apparent
singularity with of (2.1). According to the Fuchs relation we may put the Riemann
scheme in the form




0 1 ∞
0 0 µ′ 0
ν0 ν1 µ

′′ 2


 =




0 1 ∞
0 0 −1

2
(ν0 + ν1 + ν∞) 0

ν0 ν1 −
1
2

(ν0 + ν1− ν∞) 2




(3.2)

Now let us consider the integral representation of the solution for our differential equa-
tion. Recall that two Gauss’ hypergeometric functions ( ; ),( ′ ′ ′; ) are
said to beassociateif

≡ ′ ≡ ′ ≡ ′ modZ

or equivalently, if the respective angular parameters satisfy

ν0 ≡ ν′0 ν1 ≡ ν′1 ν∞ ≡ ν′∞ modZ and ν0 + ν1 + ν∞ ≡ ν′0 + ν′1 + ν′∞ mod 2Z

For a fixed hypergeometric function ( ; ) the functions in the set of all asso-
ciate functions generate a 2-dimensional vector space overthe field of rational func-
tions C( ), and the operator/ acts on it as a linear transformation. In our case all
the parameters , , are inQ. Therefore the vector space can be considered over
the field Q( ) as well.

Recall the integral representation of the hypergeometric function:

( ; ) =
1

( − )

∫ ∞

1

− ( − 1) − −1( − )−
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=
ρ

( − )

∫

γ

− ( − 1) − −1( − )−

for the Pochhammer cycleγ going around 1,∞ and some constantρ in a certain cy-
clotomic field. Take two associate hypergeometric Riemann schemes

1 :




0 1 ∞
0 0 −1

2
(ν0 + ν1 + ν∞)

ν0 + 1 ν1 −
1
2

(ν0 + ν1− ν∞)




2 :




0 1 ∞
0 0 −1

2
(ν0 + ν1 + ν∞)

ν0 ν1 + 1 −1
2

(ν0 + ν1− ν∞)




and define

µ0 =
1
2

(1− (ν0 + 1) +ν1− ν∞)

µ1 =
1
2

(1 + (ν0 + 1)− ν1− ν∞)

µ =
1
2

(1− (ν0 + 1)− ν1 + ν∞)

µ∞ =
1
2

(1 + (ν0 + 1) +ν1 + ν∞)

For the hypergeometric differential equations corresponding to these Riemann schemes
we have the integral representation of the solutions

∫

γ

η

∫

γ

η′

with

η = η( ) = η′ = η′( ) =
− 1

η

respectively. Hereη and η′ are differentials of the first or the second kind on the hy-
pergeometric curve ( ), a projective nonsingular model of

= µ0( − 1) µ1( − ) µ

where denotes the least common denominator ofµ0, µ1, µ . The multiplicative
group 〈ζ 〉 acts on ( ) by

( ) 7→ (ζ−1 )
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The homology group 1( ( ) Z) is a Z[ζ ] module. Let 1
DR( ( )) be

the C-vector space of all differentials of the second kind on ( ) modulo exact dif-
ferentials. It splits into eigenspaces via the action ofζ . For each eigenvalue of prim-
itive -th roots of unity, the corresponding eigen space is always 2-dimensional, see
e.g. [21]. For every /∈ C − {0 1}, set C( ) = Cη ⊕ Cη′. It is the eigenspace
for ζ , and it contains all differentials belonging to the hypergeometric functions asso-
ciate to

∫
γ η( ). (Often we will omit the parameter when it is clear that we consider

the equations depending on .)
Let γ1, γ2 be Z[ζ ]-linearly independent in 1( ( ) Z). According to Theo-

rem 2.2 we obtain a basis of solutions of the differential equation corresponding to
the Riemann scheme (3.2) by the periods

∫
γ1
η1,
∫

γ2
η1 with η1 = ′

1η( ) + ′
2η
′( ). We

define the developing map by

(3.3) ( ) =

∫
γ1
η1∫

γ2
η1

As an arithmetic side-remark for use in the next section we point out that under this
normalization the values (0), (1), (∞) are algebraic or∞. This can be seen by
a study of the monodromy group: arguments already used by Felix Klein [9] show that
it acts on the homology group of the curve hence gives an action on the values ( )
by fractional linear transformations with coefficients in the cyclotomic fieldQ(ζ ).
Since (0), (1), (∞) are fixed points under this group, the claim follows. An-
other important point is the interpretation of the functions

∫
γ η1 as periods on cer-

tain abelian varieties. For all proper divisors of there is an obvious morphism of
the curve ( ) onto ( ) inducing an epimorphism

Jac ( )→ Jac ( )

Let ( ) be the connected component of 0 in the intersection of all kernels
of these epimorphisms, namely it is the Prym variety for the covering Riemann sur-
face ( )→ P1 with ramifications. Then it is known by [20], [21] that ( ) is
an abelian variety of dimensionϕ( ) whereϕ denotes Euler’s function. The abelian
variety ( ) has generalized complex multiplication by the cyclotomic field, so

Q(ζ ) ⊆ End0 ( ) := Q⊗Z End ( )

We consder the action ofζ on the vector space 0( ( ) ) of the differentials
of the first kind. Let be the eigenspace for the eigenvalueζ of this action.
We have

= dim =−1 +
∑
〈µ 〉
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where 〈 〉 denotes the fractional part− [ ] of , see e.g. [19] (on p. 23 use for-
mula (4) with = 2). In particular, 1 can be identified with the subspace of holo-
morphic differentials in C. In the same way we tacitly identify also the differentials
of the second kined in C with differentials in 1

DR( ( )).

3.2. Description of the apparent singularity. As a first application of the in-
tegral representation, we obtain the explicit relation between the coefficients and
the apparent singularities in Theorem 2.2. At first we consider the case with one
apparent singularity . Recall the classical relations between , , , the angular pa-
rameters and the exponents

(3.4)





ν0 + 1 = 1− = 1− µ0 − µ = µ1 + µ∞ − 1

ν1 = − − = 1− µ1 − µ = µ0 + µ∞ − 1

ν∞ = − = µ + µ∞ − 1 = 1− µ0− µ1

Theorem 3.1. We consider the equation = 0 with the Riemann scheme(3.2).
Define

( ) = ( − − ) + ( − 1)

( ) =
( − )( − ) − ( − 1)

where is the ratio 1/ 0 of the coefficients

( ) = 0 ( ; ) + 1 ( + 1; )

in Theorem 2.2for one apparent singularity case. Then we have

( ) = ( )(3.5)

By using ( ) in (3.3) the apparent singularity property is expressed by the condition
that ( / ) vanishes in = , in other words that the Wronskian

∫

γ1

η2

∫

γ2

η1−
∫

γ1

η1

∫

γ2

η2 = 0

where the differential

η2( ) = η2 := η1( ) = ( η + η′) =
µ

− η1( )

is again a differential of the second kind lying in the same eigenspace C( ) as η1.
For generic this 2-dimensional spaceC is generated byη1 and η2 because any two
different associate hypergeometric functions generate the vector space of all associate
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hypergeometric functions having dimension 2 over the fieldC( ) of rational functions.
This property remains true for the corresponding differentials in the C-vector space

C( ) if we replace by any special number ∈ C − {0 1} with some possible
exceptions corresponding to the fact that theC( )-coordinates in C( ) with respect
to the basisη1( ), η2( ) may become singular for = . This happens precisely for
apparent singularities: ′( ) = 0 as above implies that the same linear dependence
of periods

∫
γ1
η2∫

γ2
η2

=

∫
γ1
η1∫

γ2
η1

is valid for η2 as for η1 at least if not all periods ofη1 vanish. That this is impossible
may be seen by considering the global behaviour of

∫
η1 as a function of : Other-

wise, 0 would be a fixed point of all monodromy substitutions.Since γ1, γ2 gener-
ate the homology 1( ( ) Q) = Q ⊗Z 1( ( ) Z) as a vector space overQ(ζ )
and sinceη1, η2 belong to the sameQ(ζ )-eigenspace, there is a constant such that

∫

γ

η1 =
∫

γ

η2 for all γ ∈ 1( ( ) Z)

Then η1 − η2 would be a second kind differential with vanishing periods on the en-
tire homology, henceη1 − η2 = 0 ∈ DR( ( )). So we may characterize the ap-
parent singularity by the fact that in this point the differentials η1 and η2 become lin-
early dependent. If we express both asC( )-linear combinations of a given basis, e.g.
η and η′, by means of Gauss’relationes inter functiones contiguas, this gives an alge-
braic relation between = and/ with coefficients inQ.

Proposition 3.1. For any ∈ C− {0 1}, in the family of2-dimensionalQ(ζ )-
eigenspaces C( ) ⊂ 1

DR( ( )) there are at most two1-dimensional families of sub-
spacesCη1( ) = C( η( ) + η′( )) containing for the special point = both

η1 and η2 =
µ

− η1

hence giving a developing map with′( ) = 0. These1-dimensional eigenspaces
have generating differentialsη11( ), η12( ) which are for = defined over a quadratic
extension ofQ( ).

We give a proof in the spirit of classical function theory. Consider a linear combina-
tion

( ) = ( ; ) + ( + 1; )



640 H. SHIGA, T. TSUTSUI AND J. WOLFART

and its first derivative with respect to which can be written ([9], p. 10) as

′( ) = ( + 1 + 1 + 1; ) +
+ 1

( + 1 + 1 + 2; )

=
( − 1)

( − 1− )
( ( + 1 ; )− ( − 1; ))

+
( − )

( ( + 1 + 1; )− ( ; ))

observing that − /∈ Z by our assumptions on the angular parameters: recall the for-
mulas (3.4). Rewrite the expression for′( ) as aQ( )-linear combination

1
( − 1)

( ( ) ( ; ) + ( ) ( + 1; ))

of ( ; ) and ( + 1; ) using Gauss’ relations ([7], p. 103, formulas (30),
(41), (42)). The resulting coefficients are inQ[ ], linear in and . A straight-
forward but lengthy calculation gives them in explicit formas

( ) = ( − − ) + ( − 1)

( ) =
( − )( − ) − ( − 1)

(recall that by our assumptions on the angular parameters =−ν0 6= 0).
Now consider analytic continuations of all functions involved here along some

nontrivial loop starting and ending at , avoiding the singularities 0, 1,∞, and de-
note the resulting new branches by adding a tilde. Since 1, , (), ( ) remain
unchanged, we obtain the matrix equation

(
( ) ˜ ( )
′( ) ˜ ′( )

)
=

1
( − 1)

(
1

( ) ( )

)(
( ; ) ˜ ( ; )

( + 1; ) ˜ ( + 1; )

)

For almost all loops, the first row on the left side forms the numerator and the denom-
inator of a corresponding developing map . As in our arguments concerning the in-
tegral representation, ′( ) = 0 is equivalent to the determinant condition

′( ) ˜ ( )− ˜ ′( ) ( ) = 0

Since the matrix on the right side is nonsingular for almost all loops, the matrix
in the middle has to be singular, hence

( ) = ( )

gives an algebraic relation between and with coefficients inQ, quadratic in and
linear in , proving both Theorem and Proposition.
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3.3. More apparent singularities. Recall that by Proposition 1.1 of Section 1
there are generically 2 different Fuchsian differential equations of second order
with angular parameters

ν0 ν1 ν∞ ∈ Q− Z ν0 ± ν1 ± ν∞ /∈ Z

in the regular singularities 0 1∞ and apparent singularities in1 . . . (which may
be supposed to be simple if they are pairwise different). As one may expect, to these
correspond 2 basis functions given by period integrals of families of differentials
in C( ) ⊂ 1

DR( ( )).

Proposition 3.2. For a Zariski dense subset of -tuples( 1 . . . ) ∈ C the 2
second order Fuchsian differential equations= 0 with regular singularities0, 1, ∞,
angular parameters

ν0 ν1 ν∞ ∈ Q− Z ν0 ± ν1 ± ν∞ /∈ Z

and apparent singularities1 . . . are solved by linear combinations of associate hy-
pergeometric functions

( 1 . . . ; ) := ( ; ) +
∑

=1

( + ; )

where ( ; ) belongs to the angular parametersν0 + , ν1, ν∞. The correspond-
ing integral representations are given by period integralsof 2 families of differentials
η1 ( ) = 1 . . . 2 , for each generating2 1-dimensional subspaces ofC, and the
apparent singularities are characterized by the property that in the points the dif-
ferentials

η1 ( ) and η1 ( )

are multiples of each other.

The main part of this statement is only a reformulation of Proposition 1.1
and Theorem 2.2 in the language of differentials of the second kind used for the proof
of Proposition 3.1. One may try to give a direct proof based onthe same idea as
the proof of Proposition 3.1, with the only difference that the linear combination

( 1 . . . ; ) has to be rewritten first as a linear combination of the firsttwo con-
tiguous functions by successive application of some Gauss relation ([7, p. 103, (30)]).
The result is

1− ( 2 . . . ) ( ; ) + 1− ( 1 . . . ) ( + 1; )
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where the coefficients are polynomials defined overQ linear in 1 . . . and
of degree≤ − 1 in . Differentiation with respect to leads as before to determi-
nant conditions for =1 . . .

′( 1 . . . ) ˜ ( 1 . . . )− ˜ ′( 1 . . . ) ( 1 . . . ) = 0

where the derivative—with a similar application of Gauss’ contiguity relations as
before—can be written as

− (1− )−1 ( 1 . . . ) ( ; ) + − (1− )−1 ( 1 . . . ) ( + 1; )

with polynomials defined overQ linear in 1 . . . and of degree≤ in .
Finally one obtains algebraic equations

( 1 . . . ) ( 1 . . . ) = ( 2 . . . ) ( 1 . . . ) = 1 . . .

all quadratic in 1 . . . . Using the above argument we obtain the relation for
the case = 2 in explicit form.

Proposition 3.3. For the solution

( ; ) := ( ; ) + ( + 1; ) + ( + 2; )

of = 0 in the case of two apparent singularities1, 2, we have

(3.6) ( ; ) ( ; )− ( ; ) ( ; ) = 0

with

( ; ) = − ( (1 + ) (−1 + )) + (1− + ) (1− + )

( ; ) = (1− + ) (1− + ) − (1 + ) ( − (1− − + 2 ) )

( ; ) = − ( ( (1 + (−1 + ))− ( + ) ))

− (−1 + )
(
(1 + )2 (−1 + ) + (−1 + − ) (−1 + − )

)

(1− + ) (1− + )
( ; ) = − ( ((1 + ) (−1 + )− (−1 + + − ) ))

+

(
2 (1 + (−1 + )) + − ( + )

)

− ( + (−1 + + ) − 2 )
(
−
(
(1 + )2 (−1 + )

)
+ (−1 + − ) (1− + )

)

(−1 + − ) (1− + )
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leading to the following relation between, , = 1, 2:

0 =
(

2 (1 + ) + 2 3 (1 + ) + 4 (1 + )
)

+
[

3 (1 + ) ((−2 + + ) − 4 ) + 4 (1 + ) (− − 2 ) +

+ 2
(
(−1− (−1 + ) + ) + (1− ) (−1 + ) 2 + (−2 + − 2 )

)]

+
[
(−1 + ) (−1 + ) + 4 (1 + ) (1 + + )

+ 3 (1 + ) (−2 (−1 + + ) + (2− − ) + 2 )

+ 2{1 + 2 − 3 + 2 + (−3 + 4 ) +
(
2 + 2 + 4 (−1 + )− 4 + 2)

+ (−1 + ) (−1 + ) 2 + (1− + ) }
+
(
− ((1− ) (1 + ))− 2 (−1− + (2 + ))

−
(
1 + + 2 (2 + ) + (−2 (2 + ) + )

))]
2

As a consequence we know that the equation (3.6) is of degree 2in and gives four
solutions ( ) for any fixed pair (1 2) as predicted by Proposition 1.1 and Theo-
rem 2.2.

4. Apparent singularities and transcendence

4.1. Schwarz maps with algebraic values at algebraic arguments. Now we
describe the arithmetic implications of the other sectionson Fuchsian differential
equations having three singularities 0, 1,∞ with angular parametersν0 ν1 ν∞ ∈
Q− Z and apparent singularities 6= 0 1 ∞, = 1 . . . . If is algebraic,
the curve ( ), the Jacobian and its Prym part ( ), all differentials of the second
kind η η′, used in the previous section become defined overQ, and then these differ-
entials generate a 2-dimensionalQ-vector space Q with C = C⊗Q Q. If we consider

apparent singularities1 . . . lying in Q, also all differentialsη1 ( ), = 1 . . . 2
constructed in Proposition 3.2 and Theorem 2.2 lie inQ for all algebraic , in partic-
ular for the themselves. Recall further that for all6= 0 1 the cyclesγ1, γ2 become
cycles on ( ) generating the homology1( ( ) Q) = Q ⊗Z 1( ( ) Z) as
a vector space overQ(ζ ).

Proposition 4.1. Supposeτ ∈ Q, 6= 0 1 and that ( τ ) is a simple abelian
variety with Q(ζ ) = End0 ( τ ). Then all periods

∫

γ

η1 γ ∈ 1( ( τ ) Z)

of a fixed nonzeroη1 ∈ Q ⊂ 1
DR( ( τ )) generate aQ-vector space of dimen-

sion 2.

The action of the endomorphisms on1( ( τ ) Z) and η1 shows dimQ ≤ 2.
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The proof that we have in fact = 2 relies on a result going back to Wüstholz [23].
A proof worked out by Paula B. Cohen, see Theorem 6.1, is provided in the Ap-
pendix. To apply Theorem 6.1, take = 1, =1, 1 = ϕ( ), completeη1 by other
Q(ζ )-eigendifferentialsη2 . . . η2ϕ( ) to a basis of 1

DR( ( τ )). Then Theorem 6.1
gives

dimQ
̂ = 2 + 4ϕ( )

Since the periods of everyη generate an at most 2-dimensionalQ-vector space, this
upper bound 2 has to be attained for everyη , in particular dimQ = 2.

On the other hand, this vector space is generated by
∫

γ1
η1,

∫
γ2
η1. If their

quotient (τ ) is an algebraic number, theQ-vector space generated by all pe-
riods

∫
γ η1 has dimension 1, therefore (τ ) cannot be a simple abelian variety

with Q(ζ ) = End0 ( ). More precisely, we can show

Proposition 4.2. If τ and (τ ) = δ ∈ Q are algebraic, the abelian variety( τ )
is of CM type, i.e. isogenous to a product of simple abelian varieties with complex
multiplication. More precisely,
1. ( τ ) is isogenous to the product of two abelian varieties ′, both of complex
dimension(1/2)ϕ( ) and with endomorphism algebraQ(ζ ),
2. or ( τ ) has complex multiplication by a quadratic extension ofQ(ζ ) and is
isogenous to a pure power of a simple abelian variety with complex multiplica-
tion.

Proof. An argument going back to Bertrand ([1], Section 1, Example 3) gives
two possibilities for ( τ ) (see also [19], Proposition 5 and its proof):

If there are zero-divisors of End0( ( τ )) commuting with Q(ζ ), their kernels
give proper abelian subvarieties stable under the action ofQ(ζ ). Such an has
complex dimension< [Q(ζ ) : Q], hence = (1/2)[Q(ζ ) : Q] by well known divisibil-
ity relations between dimensions of abelian varieties and their endomorphism algebras.
Then has complex multiplication byQ(ζ ), and its cofactor in ( τ ) does as well.

Otherwise, the endomorphisms of (τ ) commuting withQ(ζ ) form a field ,
either Q(ζ ) itself or a quadratic extension of it, and (τ ) is isogenous to a pure
power of a simple abelian variety. Under the isomorphism

1
DR( ( τ )) ∼= ( 1

DR( ))

η1 corresponds to an -tuple (η1
1 . . . η1 ) of differentials in 1

DR( ), all defined
over Q. The componentsη1 lie all in the same (End0 )-eigenspace, otherwise the pe-
riods of

∫
γ
η1, γ ∈ 1( ( τ ) Z), could not lie in the 1-dimensionalQ-vector

space . Using this reasoning, the same contains all periods of all η1, and
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by dimQ = 1 again, this is possible only for abelian varieties with complex multi-
plication. By Satz 4 of [20], this implies [ :Q(ζ )] = 2.

4.2. Implications of complex multiplication. Our hypergeometric functions are
algebraic if and only if all associate functions are algebraic if and only if their mono-
dromy groups are finite—some degenerate cases like polynomials (occurring for certain
integer parameters , ) are excluded by our assumptions on theangular parameters.
Then clearly is an algebraic function as well and the algebraic apparent singular-
ity = τ will have an algebraic image (τ ) = δ. We will see that this corresponds
precisely to a special situation of the first case discussed in Proposition 4.2.

Proposition 4.3. Let τ be algebraic 6= 0 1. The following two conditions are
equivalent.
1. The abelian variety ( τ ) is isogenous to ⊕ ′ where both abelian varieties

′ have complex multiplication byQ(ζ ) with the same CM type.
2. The monodromy group of = 0 is finite.

Proof. The first condition implies that the CM type of (τ ) (see the end
of Subsection 3.1) satisfies

= 0 or 2 for all ∈ (Z/ Z)∗

and this property is valid for all ( ), not only for (τ ). But then it is well
known by results of Shimura (see [20], Section 7) that all ( ) are isogenous
to a square 2 of a fixed abelian variety with complex multiplication. Therefore
the monodromy group is finite. The converse direction follows in the same way by
the fact that in the case of a finite monodromy group, the family of all ( ) has
complex dimension zero, see again [20], Section 7, or [5] fora more general version.

For the other cases we obtain the following result.

Proposition 4.4. Suppose that the monodromy group of = 0 is infinite,
and let τ 6= 0 1 ∞ be an algebraic point with (τ ) ∈ Q such that ( τ ) is of
CM type. Then the2-dimensionalQ(ζ )-eigenspace Q ⊂ 1

DR( ( τ )) has only two
1-dimensional subspaces whose generating differentialsη3 , = 1 2, satisfy

∫
γ1
η3∫

γ2
η3
∈ Q = 1 2

Proof. 1. Suppose the claim of the Proposition is not true. Then we show
first that the periods ofall η3 ∈ Q lie in a 1-dimensionalQ-vector space .



646 H. SHIGA, T. TSUTSUI AND J. WOLFART

Let η31 η32 ∈ Q ⊂ 1
DR( ( τ )) be linearly independent and letη31 + ση32,

σ ∈ Q− {0} be a third differential all with algebraic period quotients. Writing

π :=
∫

γ

η3 = 1 2

we can suppose

π11

π21
= δ1

π12

π22
= δ2

π11 + σπ12

π21 + σπ22
= δ3

all to be algebraic. Then

δ1π21 + σδ2π22

π21 + σπ22
= δ3

follows and the algebraicity ofπ21/π22, hence dimQ = 1.
2. By Wüstholz’ analytic subgroup theorem [24], applied via Theorem 6.1 in

a similar way as in the proof of Proposition 4.1, and by standard facts about com-
plex multiplication ([12], Chapter I), two differentials of the second kindη31, η32

defined overQ on two simple abelian varieties1 2 defined overQ lead to the same
1-dimensionalQ-vector space generated by their respective periods if and only if
• 1 and 2 are isogenous,
• both have complex multiplication by the same field and with isomorphic CM

types,
• both η31 and η32 are eigendifferentials for the complex representation of on

the respective spaces of differentials,
• for some isogenyι : 1→ 2, the pullbackη32 ◦ ι is a Q-multiple of η31.

Since does not change under isogenies, we may even assume without loss of
generality thatι is an isomorphism, that 1 and 2 have the same CM type and
that η31 = η32 ◦ ι.

3. Now consider the decomposition of (τ ) given in Proposition 4.2. In
the first case considered there, the intersections ofQ with 1

DR( ) and 1
DR( ′) are

both 1-dimensionalQ(ζ )-eigenspaces for the same eigenvalues, and by our assump-
tion, their periods generate the same 1-dimensionalQ-vector space . If and ′ are
simple, we see by the above that they are isogenous of the sameCM type. Therefore,
Proposition 4.3 applies and gives a contradiction to the assumption about the mono-
dromy group. If or ′ are not simple, they are isogenous to powers of simple
abelian varieties ′ with complex multiplication (see [12] or the details given be-
low for the second case), and we can extend the same argument to see that and ′

are isogenous and Proposition 4.3 applies again.
In the second case of Proposition 4.2 recall that the simple factor of ( τ )

is determined as follows. Let be the CM type of (τ ), i.e. a system ofϕ( ) =
(1/2)[ : Q] representativesσ of the embeddings → C modulo complex conju-
gation, and let be the maximal subgroup of Gal/Q leaving invariant. Then
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has complex multiplication by the fixed field of ([ : ] =| | = ), and its
CM type \ consists of the different restrictions of theσ ∈ to the subfield .
On our 2-dimensional eigenspaceQ for the action ofQ(ζ ) has a 1-dimensional

Q-vector space of periods only if Gal/Q(ζ ) ⊆ , i.e. if it fixes the CM type
of ( τ ). But then again ( τ ) is isogenous to some 2 where has complex
multiplication by Q(ζ ) with CM type (Gal /Q(ζ ))\ , and Proposition 4.3 gives
a contradiction to our assumptions.

Now we specializeτ to be an apparent singularity. Putting together the last three
Propositions we can conclude

Theorem 4.1. For a second order Fuchsian differential equation = 0 with
regular singularities0, 1,∞, angular parameters

ν0 ν1 ν∞ ∈ Q− Z ν0± ν1± ν∞ /∈ Z

one algebraic apparent singularityτ 6= 0 1 and with infinite monodromy group, the de-
veloping map has algebraic values in the singularities if and only if
• the abelian variety ( τ ) is of CM type and
• on ( τ ), a differential η11(τ ) or η12(τ ) constructed inProposition 3.1is a mul-

tiple of η31 or η32 found in Proposition 4.4.

If the number of apparent singularities is> 1, we have generically 2 different
families of 1-dimensional spacesCη1 ( ) leading to developing maps. Together with
the Proposition 4.4 we obtain

Theorem 4.2. Let be an integer> 1. For all second order Fuchsian differen-
tial equations = 0 with regular singularities0, 1,∞, angular parameters

ν0 ν1 ν∞ ∈ Q− Z ν0 ± ν1 ± ν∞ /∈ Z

and algebraic apparent singularitiesτ1 . . . τ the developing maps ,= 1 . . . 2 ,
have the following properties.
• For all τ the value (τ ) is algebraic only if the Prym variety ( τ ) is of CM

type.
• If moreover the monodromy group is infinite, for all componentsτ in a Zariski

dense subset of algebraic -tuples(τ1 . . . τ ) ∈ Q the value (τ ) can be algebraic
for at most two of the , = 1 . . . 2 .

5. Some graphics of Schwarz maps

We give some graphics of the Schwarz maps for our differential equations with
one apparent singularity given by (2.1). We consider only the case with rational pa-
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rameters , , and a real apparent singularity . According to [11] we determine
the Schwarz map of a Gauss hypergeometric differential equation for ( ; ). Set

( ; ) = ( ) =
∫

ϕ( ) ∈ {0 1 ∞ } 6=(5.1)

ϕ( ) = − (1− ) − −1( − )−(5.2)

for a variable withℑ( ) > 0. The path of the integral is a side or an extended side
of the triangle 01 on the complex plane. So ( ) can be defined as asingle valued
function on the upper half planeH.

The arguments ofϕ( ) along these paths are determined according to the follow-
ing table

· arg arg(1− ) arg( − )

1∞ 0 −π η → π

0 ξ 0 → η − π ξ

∞0 π 0 0 → ξ

1 0 → ξ η − π η

01 0 0 ξ → η

∞ ξ η − π → ξ − π ξ + π

with 0< ξ = arg < π, 0< η = arg( − 1)< π.

Theorem 5.1 (Linear relations).

01− 0 + 1 = 0

1∞ − 1 − ∞ = 0

∞0 + 0 + 2π
∞ = 0

01 + 2π ( − )
1∞ + 2π ( − )

∞0 = 0

Theorem 5.2 (Connection formula).

( 1∞ 0 )

(
2π ( − ) 2π

1 1

)
= ( ∞0 1 )

(
− 2π ( − ) −1

1 2π

)

( 1∞ 0 )

(
1 − 2π ( − )

−1 2π ( − )

)
= ( 01 ∞)

(
−1 1
1 − 2π

)

Theorem 5.3 (Expression via the Kummer solutions).

1∞( ) = − π (− + − ) ( ) ( − )
( )

( ; )
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0 ( ) =
( − + 1) (1− )

(2− )
1− ( − + 1 − + 1 2− ; )

∞0( ) = π ( − ) ( ) ( − + 1)
( + − + 1)

( + − + 1; 1− )

1 ( ) = − −π ( − ) (1− )
( − − + 1)

(1− ) − − ( − − − − + 1; 1− )

01( ) =
( − + 1) ( − )

( − + 1)
−

(
− + 1 − + 1;

1
)

∞( ) = − π (− + − ) ( ) (1− )
( − + 1)

−
(

− + 1 − + 1;
1
)

REMARK 5.1. These three theorems are stated in [11] as Theorem 4.4.1, Theo-
rem 4.4.2 and formulas (4.4.10), (4.4.11) (there—as we believe—with typing errors;
these are corrected above since we need them for the drawingsbelow).

The Schwarz map for ( ; ) is defined by

0( ) = 0 ( ; )

1∞( ; )

on {| | < 1} ∩ H and it has an analytic continuation onH.
By using the connection formula we can get the image of the real line by

the Schwarz map 0( ).
In the following, the letter has no longer the same meaning ason Sections 3

and 4. According to Theorem 2.2 the integrals

(5.3) 0 ( ; )+(1− ) 0 ( +1; ) 1∞( ; )+(1− ) 1∞( +1; )

are the basis solutions of some differential equation for (2.1). So we define our
Q-Schwarz map (Ritter’s terminology [14]) by

( ; ) = 0 ( ; ) + (1− ) 0 ( + 1; )

1∞( ; ) + (1− ) 1∞( + 1; )

We obtain the following as a direct consequence of Theorem 3.1.

Proposition 5.1. The apparent singularity for(2.1) is given as a function of :

=
( − 1)( − + (2 − ) )

(2 − 1)( − + (2 − − ) )

We show the images of the real line of (1/8 3/8 3/4; ) and (1/8 3/8
−1/4; ) by plotting the discrete values of for several ’s in the interval 0≤ ≤
1. In many cases the coordinates frame is pressed down, the horizontal and the ver-
tical line segments are always the intervals [−1 1] and [−1− −1]. In these cases
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we have the angular parameters (1/4 1/4 1/4). We used “Mathematica” to generate
the figures.

Animation of the Q-Schwarz map for the combination of hypergeometric func-
tions

(
1
8

3
8

3
4

)
+ (1− )

(
1
8

3
8

1 +
3
4

)

The apparent singularity is given by the function of :

3( − 1)(3 − 1)
(2 − 1)(8 − 3)

The graphics are the images of the real line corresponding toseveral values of indi-
cated, and the images of singular points are occasionally indicated by hand writings.

= 0

= 0 2, > 1

= 0 28, > 1

= 2/7, = 1

= 0 29, 0 < < 1

= 0 31, 0 < < 1

= 1/3, = 0

the image of [1 ∞], that is a over lapped circle

(0) =∞

(0) =∞(0) =∞

(∞)

(∞)

(∞)(∞)

(1)

(1)

(1)

( )

( )

( )

( )

(1) =−

( ) = (1)

(0) =∞ = ( )



TRIANGLE FUCHSIAN DIFFERENTIAL EQUATIONS 651

= 0 35, < 0

= 0 37, < 0

= 3/8, =∞

= 0 38, > 1

= 1/2, =∞

= 0 6, < 0

= 0 7, < 0

= 0 8, < 0

= 1, = 0

(0) =∞

(0) =∞(0) =∞

(0) =∞

(0) =∞

(1)

(1)

(1)

(1)

(1)

(∞)

(∞)

(∞) ( )

( )

( )

( )

( )

(∞) = ( )

(∞) = ( )

(0) = 0 = ( )
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Animation of the Q-Schwarz map for

(
1
8

3
8
−1
4

)
+ (1− )

(
1
8

3
8

1 +
−1
4

)

The apparent singularity is given by the function of :

( − 1)(7 − 5)
(2 − 1)(8 − 5)

its graphic is given below. These graphics are the continuation of the previous ones
connected at (1/8 3/8 3/4).

Graphic of the as a function of :

= 0

= 0 1

= 0 2

= 0 4

= 1/2, =∞

( )

( )

( )

(0) = 0

(∞)

(1)

( ) = (∞)
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= 0 6

= 0 62

= 0 625 = 5/8, =∞

= 0 627, > 1

= 0 63

= 0 65

( )

( )

( )

( )

(1)

(1)

(∞)

(∞)

(∞)

(0)

(0)

(0) = 0

(∞) = ( )
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= 2/3, = 1

= 0 7, 0 < < 1

= 5/7, = 0

= 0 75, < 0

= 0 8, < 0

= 1, = 0

(0)

(0)

(0)

(0)

(∞)

(∞)

(∞)

(∞)

(∞)

(∞)

(1)(1)

(1)

(1)

( )

( )

( )

( )

(1) = ( )

(0) =∞ = ( )

(0) = ( )
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6. Appendix. Linear independence of periods of the second kind

by Paula B. Cohen

In this appendix, we show that the arguments of [19], Section2, together with
those of Section 1 of [22] give rather directly a proof of Wüstholz’ announcement,
Theorem 5 of [23], in the case of abelian varieties defined over Q. Namely, we have:

Theorem 6.1. Let be an abelian variety isogenous overQ to the direct prod-
uct 1

1 × · · · × of simple, pairwise non-isogenous abelian varietiesν defined
over Q, with ν of dimension ν , ν = 1 . . . . Then theQ-vector spacê gen-
erated by1 2π together with all periods of differentials, defined overQ, of the first
and the second kind on , has dimension

(6.1) dimQ
̂ = 2 + 4

∑

ν=1

2
ν

dimQ End0 ν

Proof. We use the notations of [19], Section 1, and assume thebackground nec-
essary to understand Section 1 of [22] and its notations. Forgeneral information,
the reader can consult [17], [18] and [15]—see also [13], [3]and [4] for the elliptic
case. That̂ has dimension overQ bounded above by the right-hand-side of (6.1)
is obvious once one observes that the induced action of End0( ) on ̂ is by linear
transformations defined overQ.

We now show that dimQ ̂ is bounded below by the right-hand-side of (6.1). As-

sume the contrary. As in [19], Section 2, letω1 . . . ω , = dim , be aQ-basis

of 0
(

Q

)
: the differentials, defined overQ, of the first kind on . Choose

γ1 . . . γ ∈ 1( Z) such that the period vectors

∫

γ

ω =




∫
γ ω1

...∫
γ ω


 = 1 . . .

in the period lattice of form a basis of Q = ⊗Z Q over ( ), where
is the complex representation of = End0( ) induced by the isomorphism of

with C / . Let η1 . . . η be a Q-basis of 1
DR( ) modulo 0

(
Q

)
. In partic-

ular, theη , = 1 . . . , are defined overQ. Our hypothesis is, then, that there exists
a relation of the form

(6.2)
∑

=1

∑

=1

{
α

∫

γ

ω + β
∫

γ

η

}
+ β0 · 2π + α0 = 0
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with α0 β0 α β ∈ Q, = 1 . . . , = 1 . . . , not all zero. Let,

η( ) =
∑

=1

β η = 1 . . .

By analogy with [22], the complex number,

∑

=1

∑

=1

β

∫

γ

η =
∑

=1

∫

γ

η( )

can be written as
∫

γ η for a certainη ∈ 1
DR( ) and γ ∈ 1( Z), whereη cor-

responds to an element of 1( O ) ∼= Ext1( G ). Namely, if : →
denotes the projection onto the -th factor of , = 1. . . , then

η = ∗
1η

(1) + · · · + ∗ η( )

and γ = ∗
1γ1 + · · · + ∗ γ

Moreover η determines a commutative algebraic group variety overQ such that
on the tangent space at the orgin ( ) = ( )∼= C× (C ) the vector,

=

(∫

γ

η

∫

γ1

ω . . .

∫

γ

ω

)

is in Ker exp . The extension corresponds to the sum of the extensions ˜ =
∗ ∈ Ext1( G ), where is determined byη( ), = 1 . . . .

Assume for the moment thatα0 = β0 = 0. Now ( ) = (G )⊕ ( ). We let
be the coordinate in (G ) ∼= C and ( )

1 . . . ( ) be the coordinates in ( ) for
the -th factor of , = 1. . . . Let be the hyperplane in ( )∼= C × (C )

given, with ( ) =
(

( )
)

=1 ...
, = 1 . . . by

(
(1) . . . ( )

)
= 1

(
(1)
)

+ · · · +
(

( )
)

+ = 0

where the
(

( )
)
, = 1 . . . , are the linear forms,

(
( )
)

=
∑

=1

α ( )

Then, from (6.2) we have 06= ∈ .
We may therefore apply the Wüstholz algebraic subgroup theorem as in Lemma 1

of [19] to deduce the existence of a proper connected algebraic subgroup of ,
defined overQ, with ∈ ( ) ⊆ .
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Now, if G ∩ = G , then exp−1(G ) ⊆ , so that for every ∈ C the point
( 0 . . . 0) ∈ C × (C ) is in , which contradicts the defining equation for .
Hence dim(G ∩ ) = 0 and so is isogenous to an abelian subvariety0 of ,

defined overQ with 0 =
(∫

γ1
ω . . .

∫
γ ω

)
∈ ( 0). If 0 were a proper abelian

subvariety of then, as (0) is defined overQ, there would exist a non-trivial
Q-linear relation between the periods

∫
γ ω , = 1 . . . , = 1 . . . , and so by

Proposition 1 in [19] there would be a non-trivial dependence relation over ( ) be-
tween the period vectors

∫
γ ω, = 1 . . . . Hence, 0 = and so 1 ≡ · · · ≡

≡ 0.
These arguments show that is isogenous to . In particular, the element

of Ext1( G ) defined by ist trivial as this same isogeny provides a splitting of
the associated exact sequence. Thereforeη = 0, so that we have finallyα = β = 0,

= 1 . . . , = 1 . . . , which is the desired contradiction in the caseα0 = β0 = 0.
When we do not haveα0 = β0 = 0, we can use the same arguments as in [22]

to conclude the proof. Let us briefly recall the line of those arguments. Whenα0 = 0,
β0 6= 0, one argues with ′ = G × instead of to obtain an algebraic subgroup′

of ′, defined overQ, with dim((G ×G ) ∩ ′) = 0. One then concludes as above.
Whenα0 6= 0 one argues with ′′ = G ×G × as in the proof of [22]. One can

now construct an algebraic subgroup′′ of ′′, defined overQ, with dim(G ∩ ′′) =
0. However, one does not necessarily have dim((G × G ) ∩ ′′) = 0 as dim((G ×
G ) ∩ ′′) = 1 can also occur. In the latter case, one argues as in the preceding para-
graphs (when we hadα0 = 0) on the quotientsG = ′′/G and = ′′/G . One
deduces then thatG is a trivial extension of byG , so thatβ = 0, = 1 . . . ,

= 1 . . . , that is isogenous to , so thatα = 0, = 1 . . . , = 1 . . . ,
and thatβ0 = 0. It is then easy to show thatα0 = 0 exactly as in [22].
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