SOLENOIDAL UNIT VECTOR FIELDS WITH MINIMUM ENERGY

Fabiano BRITO* * and Marcos SALVAI ${ }^{\dagger}$

(Received January 20, 2003)

Introduction

Let M be an oriented compact connected Riemannian manifold and let V be a unit vector field on M. The total bending of V, which measures to what extent V fails to be parallel, is defined in [6], up to a constant, by

$$
\mathcal{B}(V)=\int_{M}\|\nabla V\|^{2},
$$

where integration is taken with respect to the Riemannian volume form, ∇ is the LeviCivita connection, $(\nabla V)_{p} \in \operatorname{End}\left(T_{p} M\right), X \mapsto \nabla_{X} V$, and $\|T\|^{2}=\operatorname{tr} T^{t} T$. The unit vector field V is a map from M into $T^{1} M$, the unit tangent bundle of M. If one considers on $T^{1} M$ the canonical (Sasaki) metric, then the energy of V can be expressed as

$$
\mathcal{E}(V)=c_{1}+c_{2} \mathcal{B}(V),
$$

where c_{1} and c_{2} are constants depending only on the dimension and the volume of M. Beginning with G. Wiegmink and C.M. Wood [6, 7], critical points of (any of) such functionals on unit vector fields on M have been extensively studied (see for instance in [3] the abundant bibliography on the subject).

Some Riemannian manifolds, for instance odd dimensional spheres, admit volume preserving, unit speed flows. In a certain sense, one can say that the best organized of these flows are those with minimum total bending among them.

We give new examples of unit vector fields V on compact Riemannian manifolds M having the following properties:
$(* 1) V$ is critical for the energy functional among all unit vector fields on M.
$(* 2) V$ has minimum energy among all solenoidal (that is, divergence free) unit vector fields on M.

A unit vector field V on a compact oriented Riemannian manifold M is said to have minimum Ricci curvature if $\operatorname{Ricci}\left(V_{p}\right) \leq \operatorname{Ricci}\left(W_{p}\right)$ for all $p \in M$ and any

[^0]unit vector field W on M. It is said to be an eigenvector of the Ricci curvature if $\operatorname{Ricci}\left(V_{p}\right)=f(p) V_{p}$ for some smooth function f on M and all $p \in M$.

Proposition 1. Let M be a compact oriented Riemannian manifold and V a Killing unit vector field on M. If V is an eigenvector on the Ricci operator, then it satisfies property $(* 1)$. If V has minimum Ricci curvature, then it satisfies property ($* 2$).

Proof. The first assertion was proved by Wiegmink in [6, Theorem 2 (iv)]. The second one follows from the expression for the total bending given in formula (2) of the same article, which originated in K. Yano (see for instance [8]) and states that, up to a constant,

$$
\mathcal{B}(W)=\int_{M} \operatorname{Ricci}(W)+\frac{1}{2}\left\|\mathcal{L}_{W} g\right\|^{2}-(\operatorname{div} W)^{2},
$$

for any unit vector field W on M, where $\mathcal{L}_{W} g$ denotes the Lie derivative of the metric in the direction of W and integration is taken with respect to the Riemannian volume form. (If W is a Killing vector field, then the second and third terms of the integrand vanish, since by definition, the metric does not vary along a Killing vector field, let alone the volume form.)

An immediate consequence of the Proposition is that the following vector fields satisfy properties ($* 1-2$):
a) Unit Hopf vector fields on odd dimensional spheres.
b) Left or right invariant unit vector fields on a compact simple Lie group endowed with a bi-invariant metric (the Lie group needs only to be semisimple if the metric is determined by the opposite of the Killing form).

With additional techniques, González-Dávila and Vanhecke [4] proved that each of the two distinguished unit vector fields on the Berger spheres $\left(S^{3}, g_{t}\right)$, for some range of t, have minimum energy among all unit vector fields. In particular, they satisfy properties ($* 1-2$).

In this paper we present many examples of unit vector fields satisfying properties (*1-2), among them Hopf unit vector fields on spheres $S^{2 n+1}$ or $S^{4 n+3}$ for certain homothetic modifications of the canonical metrics in the vertical spaces of the Hopf submersions $S^{2 n+1} \rightarrow \mathbb{C} P^{n}, S^{4 n+3} \rightarrow \mathbb{H} P^{n}$, as in the following proposition. Let $A=\mathbb{C}$ or \mathbb{H} be the complex and quaternionic algebras, respectively, and let $\operatorname{Im} A$ denote the orthogonal complement of 1 .

Theorem 2. Let $S=S^{2 n+1}$ or $S^{4 n+3}$ be the unit sphere in A^{n+1} and let \mathcal{D} be the one-, respectively, three-dimensional distribution on S defined by $\mathcal{D}_{q}=(\operatorname{Im} A) \cdot q \subset$ $T_{q} S$. For each $s>0$, let γ_{s} be the Riemannian metric on S satisfying

$$
\gamma_{s}(u, v)=0, \quad \gamma_{s}(v, v)=\|v\|^{2}, \quad \gamma_{s}(u, u)=s^{2}\|u\|^{2}
$$

for all $u \in \mathcal{D}_{q}, v \in \mathcal{D}_{q}^{\perp}, q \in S$. Then, for any unit vector $u \in \operatorname{Im}(A)$, the vector field U on S defined by $U_{q}=u q / s$ (with unit length with respect to γ_{s}) satisfies property $(* 1)$. Moreover, it satisfies property ($* 2$) provided that $s^{2} \in(0,1]$, $s^{2} \in[1 /(2 n+3), 1]$, respectively.

The proof is based on considerations about some examples below and is postponed to the end of the article.

An application of Jensen's examples

All our examples arise from a construction by Gary Jensen [5] of metrics g_{t} (for t in some real interval) on the total spaces of certain principal bundles $P \rightarrow M$, with M an irreducible symmetric space. The metrics g_{t} differ homothetically on the vertical spaces and coincide on the horizontal ones. These spaces P may be thought of as a sort of generalization of Berger spheres. Based on Jensen's arguments, we obtain examples generalizing example (a) above. Using Proposition 13 of [5] one could also generalize example (b) in an analogous manner, finding unit vector fields satisfying properties ($* 1-2$) on compact Lie groups with left invariant metrics, which are not bi-invariant.

Next we recall Jensen's results. Let K be a compact connected semisimple Lie group endowed with a bi-invariant Riemannian metric b. Suppose that K has closed subgroups H, H_{1}, H_{2} with Lie algebras \mathfrak{h}, $\mathfrak{h}_{1} \neq\{0\}, \mathfrak{h}_{2}$, respectively, such that $b\left(\mathfrak{h}_{1}, \mathfrak{h}_{2}\right)=0$ and $\mathfrak{h}=\mathfrak{h}_{1} \oplus \mathfrak{h}_{2}$ is a direct sum of ideals of \mathfrak{h} (that is, as a group, H is locally the product of H_{1} and H_{2}). Let \mathfrak{k} be the Lie algebra of K and \mathfrak{m} the orthogonal complement of \mathfrak{h} in \mathfrak{k}. Let us denote $P=K / H_{2}, M=K / H$ and $\pi: P \rightarrow M$ the canonical projection. Notice that H / H_{2} is Lie group with Lie algebra \mathfrak{h}_{1} and π is an $\left(H / H_{2}\right)$-principal bundle.

Proposition 3 ([5]). For any $t>0$, the inner product

$$
\begin{equation*}
g_{t}=\left.b\right|_{\mathfrak{m} \times \mathfrak{m}}+\left.t^{2} b\right|_{\mathfrak{h}_{1} \times \mathfrak{h}_{1}}, \quad g\left(\mathfrak{m}, \mathfrak{h}_{1}\right)=0 \tag{1}
\end{equation*}
$$

on $\mathfrak{h}_{2}^{\perp}=\mathfrak{m} \oplus \mathfrak{h}_{1}$ is $\operatorname{Ad}\left(H_{2}\right)$-invariant and defines a K-invariant Riemannian metric on P, subducing a K-invariant Riemannian metric on M. Moreover, for any vector $Y \in \mathfrak{h}_{1}$, a vertical vector field \tilde{Y} on P is well-defined by

$$
\tilde{Y}_{k H_{2}}=d \tilde{L}_{k}(Y)
$$

and is Killing (here \tilde{L}_{k} denotes left multiplication by $k \in K$ in P).
In the following suppose that $b=-F$, the opposite of the Killing form of \mathfrak{k} and that there exists $c \in \mathbb{R}$ such that F_{1}, the Killing form of \mathfrak{h}_{1}, satisfies $F_{1}=\left.c F\right|_{\mathfrak{h}_{1} \times \mathfrak{h}_{1}}$, for instance when \mathfrak{h}_{1} is simple or abelian.

Theorem 4 ([5, Proposition 12]). Suppose additionally that M is an irreducible Riemannian symmetric space. If P, g_{t} and $Y \in \mathfrak{h}_{1}$ are as above, with $g_{t}(Y, Y)=1$, then \tilde{Y} is an eigenvector of the Ricci operator on P. Moreover, \tilde{Y} has minimum Ricci curvature, provided that $t>0$ belongs to the real closed interval whose endpoints are the nonnegative roots of the equation

$$
\begin{equation*}
\left(\frac{2 r}{n}+1\right)(1-c) t^{4}-2 t^{2}+c=0 \tag{2}
\end{equation*}
$$

where $n=\operatorname{dim} \mathfrak{m}, r=\operatorname{dim} \mathfrak{h}_{1}$.
Remark. a) Jensen proves that the metric g_{t} is Einstein if and only if t is a nonzero root of the equation (2).
b) No vector field \tilde{Y} as in the Theorem is parallel, since any such a vector field has positive Ricci curvature, by Proposition 11 (iii) and equation (26) of [5]. (Notice that parallel unit vector fields are trivial minima of the energy functional.)

As an immediate corollary of Theorem 4 and Proposition 1 we have
Corollary 5. If P and Y are as above, then the unit vector field \tilde{Y} satisfies property ($* 1$). If additionally t is in the cited interval, then \tilde{Y} satisfies property ($* 2$).

Concrete examples

Jensen classified all Lie algebra triples $\mathfrak{k}, \mathfrak{h}, \mathfrak{h}_{2}$ satisfying the hypothesis of Theorem 4. We adapt to our situation all those examples, up to finite coverings, of Jensen's list involving classical groups (Examples 1-10) and one exceptional (Example 11), making them explicit for instance as Grassmann- or Stiefel-like manifolds.

Next we fix some notation and recall some concepts involved in the examples. We refer the reader to [1]. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ denote the canonical basis of $\mathbb{R}^{m}, \mathbb{C}^{m}$ or \mathbb{H}^{m}. The $m \times m$ identity and zero matrices are denoted by I_{m} and 0_{m}, respectively. The matrix with blocks A_{1}, \ldots, A_{m} in the diagonal and zeroes in the rest is denoted by $\operatorname{diag}\left(A_{1}, \ldots, A_{m}\right)$.

A complex orientation on an m-dimensional complex vector space V is an element of $\left(\Lambda^{m} V-\{0\}\right) / \mathbb{R}_{+}$, that is an equivalence class of nonzero \mathbb{C}-multilinear alternating functions $\times_{j=1}^{m} V \rightarrow \mathbb{C}$ modulo positive multiples. Equivalently, if V carries an Hermitian inner product, a complex orientation is an equivalence class of ordered orthonormal bases of V, two of them being in the same class if and only if the complex matrix relating them has determinant one, that is, a multivector $v_{1} \wedge \cdots \wedge v_{m}$, with $\left(v_{1}, \ldots, v_{m}\right)$ an ordered orthonormal basis of V.

The S^{1}-projectivization of an ordered orthonormal basis $\left(v_{1}, \ldots, v_{m}\right)$ of an Hermitian complex vector space is the set $\left\{\left(u v_{1}, \ldots, u v_{m}\right) \mid u \in S^{1}\right\}$ and is denoted by $\left[v_{1}, \ldots, v_{m}\right]$.

Let V be a real vector space with an inner product \langle,$\rangle and an orthogonal com-$ plex structure J, that is, an orthogonal operator J on V such that $J^{2}=-$ Id (in particular the dimension of V is even). Then V has canonically the structure of a complex vector space and

$$
(x, y)_{J}=\langle x, y\rangle+i\langle x, J y\rangle
$$

defines an Hermitian product on V.
Let $(V,\langle.,\rangle,. \theta)$ be an oriented Euclidean space of dimension $2 m$. An orthogonal complex structure J on V is said to be special if $\omega^{m}=\theta$, where $\omega(x, y)=\langle x, J y\rangle$ for all $x, y \in V$. If $V=\mathbb{R}^{2 m}$ with the canonical inner product and the canonical orientation $e^{1} \wedge \cdots \wedge e^{2 m}$, then the linear transformation given by the matrix $J_{m}=\left(\begin{array}{c}0_{m}-I_{m} \\ I_{m} \\ 0_{m}\end{array}\right)$ is a special complex structure and all the other ones have the form $k J_{m} k^{-1}$ for some $k \in S O(2 m)$.

The Killing forms of $s o(m), s u(m) \subset \mathrm{M}(m, \mathbb{C})$ and of $s p(m) \subset \mathrm{M}(2 m, \mathbb{C})$ are given by

$$
\begin{equation*}
F(X, Y)=\lambda_{m} \operatorname{tr}(X Y), \tag{3}
\end{equation*}
$$

where $\lambda_{m}=m-2,2 m, m+2$, respectively.
In each of the Examples 1-11 below, the Lie group K acts transitively on P and M. Suppose that K is endowed with the bi-invariant metric determined by the opposite of the Killing form and P and M carry the Riemannian structures such that the canonical projections of K onto them are Riemannian submersions.

Theorem 6. In each of the following examples, the projection

$$
\pi: P \cong K / H_{2} \rightarrow M \cong K / H
$$

is a Riemannian submersion and M is an irreducible symmetric space. If P carries the metric g_{t} defined in (1), then for all $t>0$ the unit vector fields \tilde{Y}, with $Y \in \mathfrak{h}_{1}$, which are parametrized by the unit sphere in $\mathfrak{h}_{1} \cong \mathbb{R}^{r}$, have property $(* 1)$. If additionally t is in the real interval whose endpoints are the roots of (2), with the given constant c, then \tilde{Y} has property ($* 2$).

Example 1. M is the Grassmann manifold of all oriented p-dimensional subspaces of \mathbb{R}^{p+q} and P is the Stiefel manifold of all ordered orthonormal bases of elements of M.

$$
\begin{array}{|l|l|l|}
\hline K=S O(p+q) & H_{2} \cong S O(q) & H=S O(p) \times S O(q) \\
\hline \mathfrak{h}_{1} \cong \operatorname{so}(p) & r=\binom{p}{2} & c=(p-2) /(p+q-2) \\
\hline
\end{array}
$$

Clearly, $H_{2}=\left\{I_{p}\right\} \times S O(q)$ and H are the isotropy subgroups at $\left(e_{1}, \ldots, e_{p}\right)$ and $e_{1} \wedge \cdots \wedge e_{p}$, respectively. Next we compute c. By (3), if $X \in \operatorname{so}(p)$, then $F_{1}(X, X)=$
$(p-2) \operatorname{tr} X^{2}$ and

$$
F\left(\operatorname{diag}\left(X, 0_{q}\right), \operatorname{diag}\left(X, 0_{q}\right)\right)=(p+q-2) \operatorname{tr} X^{2}
$$

Hence, $c=(p-2) /(p+q-2)$.
Example 2. $\quad M$ is the manifold of special complex structures of $\mathbb{R}^{2 p}$ and P is the manifold of all complex orientations on the complex vector space structures on $\mathbb{R}^{2 p}$ determined by elements of M.

$K=S O(2 p)$	$H_{2} \cong S U(p)$	$H \cong U(p)$
$\mathfrak{h}_{1} \cong \mathbb{R}$	$r=1$	$c=0$

We recall that K acts on M by conjugation. The isotropy subgroup at J_{p} is $H=\left\{A \in S O(2 p) \mid A J_{p}=J_{p} A\right\}$, whose Lie algebra \mathfrak{h} consists of all matrices $f_{p}(X+i Y):=\left(\begin{array}{cc}X & -Y \\ Y & X\end{array}\right)$, where X, Y are real $(p \times p)$-matrices, X is skew-symmetric and Y is symmetric. The map $f_{p}: u(p) \rightarrow \mathfrak{h}$ is a Lie algebra isomorphism. The Lie algebra of the isotropy subgroup at $\left(\left(\mathbb{R}^{2 p}, J_{p}\right) \cong \mathbb{C}^{p}, e_{1} \wedge \cdots \wedge e_{p}\right)$ is $\mathfrak{h}_{2}=f_{p}(s u(p))$, that is,

$$
\mathfrak{h}_{2}=\left\{f_{p}(X+i Y) \mid \operatorname{tr} Y=0\right\}
$$

Hence $\mathfrak{h}_{1}=\mathbb{R} J_{p}$ is abelian and so $c=0$.

Example 3. M is as in the previous example and P is the manifold of all S^{1}-projectivized orthonormal bases of the complex vector space structures on $\mathbb{R}^{2 p}$ determined by elements of M.

$$
\begin{array}{|l|l|l|}
\hline K=S O(2 p) & H_{2} \cong S^{1} & H \cong U(p) \\
\hline \mathfrak{h}_{1} \cong s u(p) & r=p^{2}-1 & c=p /(2 p-2) \\
\hline
\end{array}
$$

The Lie algebra of the isotropy subgroup at $\left(\left(\mathbb{R}^{2 p}, J_{p}\right) \cong \mathbb{C}^{p},\left[e_{1}, \ldots, e_{p}\right]\right)$ is $\mathfrak{h}_{2}=$ $\mathbb{R} J_{p}$, since $\exp \left(s f_{p}^{-1}\left(J_{p}\right)\right) e_{j}=e^{s i} e_{j}$ for all $j=1, \ldots, p$. Hence \mathfrak{h}_{2} is the subalgebra we called \mathfrak{h}_{1} in the previous example and vice versa. Next we compute c. Let $X \in$ $s o(p) \subset s u(p)$ and $Y=0$. By (3), $F_{1}(X, X)=2 p \operatorname{tr} X^{2}$ and $F\left(f_{p}(X), f_{p}(X)\right)=$ $2(2 p-2) \operatorname{tr} X^{2}$. Hence c is as stated.

Example 4. M is the Grassmann manifold of all oriented 4-dimensional subspaces of \mathbb{R}^{4+q} and P is the manifold of all special orthogonal complex structures on elements of M, with their complex orientations.

$K=S O(4+q)$	$H_{2} \cong S^{3} \times S O(q)$	$H=S O(4) \times S O(q)$
$\mathfrak{h}_{1} \cong \operatorname{so}(3)$	$r=3$	$c=2 /(q+2)$

Clearly, H is the isotropy subgroup at $e_{1} \wedge \cdots \wedge e_{4}$. For a quaternion q, let R_{q}, L_{q} denote right, respectively left, multiplication by q. With the usual identification $\mathbb{R}^{4} \cong \mathbb{H}$,
any element of $S O$ (4) may be written as $L_{p} \circ R_{q}$ for some $p, q \in S^{3} \subset \mathbb{H}$, and the special complex structure $J:=\operatorname{diag}\left(J_{1}, J_{1}\right)$ is represented by L_{i}. Now, $L_{p} \circ R_{q}$ is a complex automorphism of $\left(\mathbb{R}^{4}, J\right)$ if and only if it commutes with L_{i}, or equivalently, $p=e^{i \theta}$ for some $\theta \in \mathbb{R}$. Moreover, the complex orientation $e_{1} \wedge e_{3}$ is preserved if and only if $p= \pm 1$. Therefore, if R (respectively, L) is the subgroup of $S O$ (4) consisting of all matrices, with respect to the canonical basis, of the transformations R_{q} (respectively, L_{q}), $q \in S^{3} \subset \mathbb{H}$, then the isotropy subgroup at $\left(e_{1} \wedge \cdots \wedge e_{4}, J, e_{1} \wedge e_{3}\right) \in P$ is $H_{2}=R \times S O(q)$ and \mathfrak{h}_{1} is the Lie algebra of L.

We now compute c. For $q \in S^{3}$, let $l(q) \in S O(q)$ denote the matrix of L_{q} with respect to the canonical basis. The map $l: S^{3} \rightarrow L$ is a Lie group isomorphism and $d l(i)=J \in \operatorname{Lie}(L) \subset \operatorname{so}(4)$. Let $\bar{J}=\operatorname{diag}\left(J, 0_{q}\right) \in \operatorname{so}(4+q)$. Since $d l$ is a Lie algebra isomorphism, and

$$
\begin{equation*}
[x, y]=2 x y \tag{4}
\end{equation*}
$$

for all orthogonal $x, y \in \operatorname{Im} \mathbb{H}=T_{1} S^{3}$, we have that $F_{1}(\bar{J}, \bar{J})=-8$. On the other hand, we have by (3) that $F(\bar{J}, \bar{J})=(q+2) \operatorname{tr} J^{2}=-4(q+2)$. Therefore, $c=2 /(q+2)$.

Example 5. M is the Grassmann manifold of all p-dimensional subspaces of \mathbb{C}^{p+q} and P is the manifold of all complex orientations of elements of M.

$K=S U(p+q)$	$H_{2}=S U(p) \times S U(q)$	$H=S(U(p) \times U(q))$
$\mathfrak{h}_{1} \cong \mathbb{R}$	$r=1$	$c=0$

Clearly, H and H_{2} are the isotropy subgroups at $\operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\}$ and at $e_{1} \wedge \cdots \wedge e_{p}$, respectively. The orthogonal complement of \mathfrak{h}_{2} in \mathfrak{h} is $\mathfrak{h}_{1}=\mathbb{R} \operatorname{diag}\left(q i I_{p},-p i I_{q}\right) \cong \mathbb{R}$, which is abelian. Hence, $c=0$.

Example 6. $\quad M$ is as in the previous example and P is the Stiefel manifold of all S^{1}-projectivized ordered orthonormal bases of elements of M.

$$
\begin{array}{|l|l|l|}
\hline K=S U(p+q) & \mathfrak{h}_{2} \cong u(q) & H=S(U(p) \times U(q)) \\
\hline \mathfrak{h}_{1} \cong \operatorname{su}(p) & r=p^{2}-1 & c=p /(p+q) \\
\hline
\end{array}
$$

The isotropy subgroup at $\left[e_{1}, \ldots, e_{p}\right]$ is the connected group

$$
H_{2}=\left\{\operatorname{diag}\left(u I_{p}, A\right) \mid u \in S^{1}, A \in U(q), u^{p} \operatorname{det}(A)=1\right\},
$$

with Lie algebra $\mathfrak{h}_{2}=\left\{\operatorname{diag}\left(a i I_{p}, X\right) \mid a \in \mathbb{R}, X \in u(q)\right.$, pai $\left.+\operatorname{tr} X=0\right\}$. The orthogonal complement of \mathfrak{h}_{2} in \mathfrak{h} is $\mathfrak{h}_{1}=s u(p) \times\left\{0_{q}\right\}$. Next we compute c. If $X \in \operatorname{su}(p)$, by (3), $F_{1}(X, X)=2 p \operatorname{tr} X^{2}$ and

$$
F\left(\operatorname{diag}\left(X, 0_{q}\right), \operatorname{diag}\left(X, 0_{q}\right)\right)=2(p+q) \operatorname{tr} X^{2} .
$$

Hence $c=p /(p+q)$.
Example 7. $\quad M$ is the Grassmann manifold of all p-dimensional subspaces of $\mathbb{C}^{2 p}$ and P is the Stiefel manifold of all S^{1}-projectivized ordered orthonormal bases of the elements of M and their orthogonal complements.

$K=S U(2 p)$	$H_{2} \cong S^{1} \times \mathbb{Z}_{p}$	$H=S(U(p) \times U(p))$
$\mathfrak{h}_{1}=\operatorname{su}(p) \times s u(p)$	$r=2\left(p^{2}-1\right)$	$c=1 / 2$

Clearly, H is the isotropy subgroup at $\operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\}$ and the isotropy subgroup at $\left(\left[e_{1}, \ldots, e_{p}\right],\left[e_{p+1}, \ldots, e_{2 p}\right]\right)$ is

$$
H_{2}=\left\{\operatorname{diag}\left(u I_{p}, v I_{p}\right) \mid u, v \in S^{1}, u^{p} v^{p}=1\right\} .
$$

The map $\phi: S^{1} \times \mathbb{Z}_{p} \rightarrow H_{2}, \phi(u, w)=\operatorname{diag}\left(w u I_{p}, \bar{u} I_{p}\right)$ is a Lie group isomorphism (we think of \mathbb{Z}_{p} as the solutions of $z^{p}=1$). Next we compute c. Let $X, Y \in \operatorname{su}(p)$. Since \mathfrak{h}_{1} is a sum of ideals, we have by (3) that

$$
F_{1}(\operatorname{diag}(X, Y), \operatorname{diag}(X, Y))=2 p\left(\operatorname{tr} X^{2}+\operatorname{tr} Y^{2}\right)
$$

On the other hand, also by (3), we have that

$$
F(\operatorname{diag}(X, Y), \operatorname{diag}(X, Y))=4 p \operatorname{tr} \operatorname{diag}\left(X^{2}, Y^{2}\right)=4 p\left(\operatorname{tr} X^{2}+\operatorname{tr} Y^{2}\right) .
$$

Hence, $c=1 / 2$.
Example 8. $\quad M$ is the Grassmann manifold of all p-dimensional quaternionic subspaces of \mathbb{H}^{p+q} and P is the Stiefel manifold of all ordered orthonormal bases of elements of M.

$$
\begin{array}{|l|l|l|}
\hline K=S p(p+q) & H_{2} \cong S p(q) & H=S p(p) \times S p(q) \\
\hline \mathfrak{h}_{1} \cong s p(p) & r=p(2 p+1) & c=(p+2) /(p+q+2) \\
\hline
\end{array}
$$

Notice that $K \cong U(p+q, \mathbb{H}) . H$ is the isotropy subgroup at $e_{1} \wedge \cdots \wedge e_{p}$ and the isotropy subgroup at $\left(e_{1}, \ldots, e_{p}\right)$ is $\left\{I_{p}\right\} \times S p(q)$. Hence $\mathfrak{h}_{1}=s p(p) \times\left\{0_{q}\right\}$. By (3), since $s p(p)$ is a real form of $s p(p, \mathbb{C})$, we have that $c=(p+2) /(p+q+2)$.

Example 9. $\quad M$ is the Grassmann manifold of all totally isotropic p-dimensional complex subspaces of $\mathbb{C}^{2 p}$ (with respect to the canonical complex symplectic structure $\left.\Omega=\sum_{j=1}^{p} d z_{j} \wedge d z_{j+p}\right)$ and P is the manifold of all complex orientations of elements of M.

$K=S p(p)$	$H_{2} \cong S U(p)$	$H \cong U(p)$
$\mathfrak{h}_{1} \cong \mathbb{R}$	$r=1$	$c=0$

Recall that K is the group of complex automorphisms of $\mathbb{C}^{2 p}$ preserving both Ω and the canonical Hermitian scalar product. The isotropy subgroup at $\operatorname{span}\left\{e_{1}, \ldots, e_{p}\right\}$ is $H=\{\operatorname{diag}(B, \bar{B}) \mid B \in U(p)\}$. The isotropy subgroup at $e_{1} \wedge \cdots \wedge e_{p}$ is $H_{2}=$ $\{\operatorname{diag}(B, \bar{B}) \mid B \in S U(p)\}$ with Lie algebra $\mathfrak{h}_{2}=\{\operatorname{diag}(X, \bar{X}) \mid X \in s u(p)\}$. Hence $\mathfrak{h}_{1}=\mathbb{R} \operatorname{diag}\left(i I_{p},-i I_{p}\right)$, which is abelian and so $c=0$.

Example 10. $\quad M$ is as in the previous example and P is the Stiefel manifold of all S^{1}-projectivized ordered orthonormal bases of elements of M.

$K=S p(p)$	$H_{2} \cong S^{1}$	$H \cong U(p)$
$\mathfrak{h}_{1} \cong s u(p)$	$r=p^{2}-1$	$c=p /(p+2)$

The isotropy subgroup at $\left[e_{1}, \ldots, e_{p}\right]$ is $H_{2}=\left\{\operatorname{diag}\left(u I_{p}, \bar{u} I_{p}\right) \mid u \in S^{1}\right\}$. Hence, \mathfrak{h}_{2} is the subalgebra we called \mathfrak{h}_{1} in the previous example and vice versa. Next we compute c. Given $Y \in s u(p)$, we have by (3) that $F_{1}(Y, Y)=2 p \operatorname{tr} Y^{2}$ and

$$
F(\operatorname{diag}(Y, \bar{Y}), \operatorname{diag}(Y, \bar{Y}))=(p+2) \operatorname{tr} \operatorname{diag}\left(Y^{2}, \bar{Y}^{2}\right)=2(p+2) \operatorname{tr} Y^{2},
$$

since $\bar{Y}^{2}=\left(-Y^{t}\right)^{2}$. Hence, $c=p /(p+2)$.
Example 11. $\quad M$ is the Grassmann manifold of all quaternionic subalgebras of the octonians and P is the Stiefel manifold of all algebra monomorphisms of \mathbb{H} into the octonians.

$K=G_{2}$	$H_{2} \cong S U(2)$	$H \cong S U(2) \times S U(2)$
$\mathfrak{h}_{1} \cong s u(2)$	$r=3$	$c=1 / 6$

We recall that the algebra \mathbb{O} of the octonians is $\mathbb{H} \times \mathbb{H}$ with the multiplication given by

$$
(a, b)(c, d)=(a c-\bar{d} b, d a+b \bar{c})
$$

and G_{2} is its group of automorphisms. The group $S^{3} \times S^{3}$ acts on \mathbb{O} as follows:

$$
\begin{equation*}
(u, v) \cdot(x, y)=(u x \bar{u}, v y \bar{u}) \tag{5}
\end{equation*}
$$

(we denote the action by a dot, to avoid confusion with the octonian multiplication). The action is effective and preserves the algebra structure, hence we may consider $S^{3} \times S^{3}$ as a subgroup of G_{2}. The product $S^{3} \times S^{3}$ is moreover the isotropy subgroup at $1 \wedge i \wedge j \wedge k$. On the other hand, the isotropy subgroup at the inclusion $f_{o}: \mathbb{H} \rightarrow \mathbb{O}$, $f_{o}(x)=(x, 0)$ is $H_{2}=\{1\} \times S^{3}$. We compute the constant c corresponding to this example in the following Proposition.

Proposition 7. The constant corresponding to the last example is $1 / 6$.

Proof. We consider the presentation of \mathfrak{g}_{2} in terms of its root system, as the orthogonal direct sum

$$
\mathfrak{g}_{2}=\mathfrak{t} \oplus \sum_{\gamma \in \Delta^{+}} \mathfrak{m}_{\gamma},
$$

where $\mathfrak{t}=\mathbb{R}^{2}$ with the canonical metric, $\alpha=(2,0), \beta=(-3, \sqrt{3})$ and $\Delta^{+}=\{\alpha, \beta, \alpha+\beta, 2 \alpha+\beta, 3 \alpha+\beta, 3 \alpha+2 \beta\}$ is the set of positive roots, \mathfrak{m}_{γ} is a twodimensional vector space with orthonormal basis $\left\{x_{\gamma}, y_{\gamma}\right\}$ and

$$
\begin{equation*}
\left[z, x_{\gamma}\right]=\langle z, \gamma\rangle y_{\gamma}, \quad\left[z, y_{\gamma}\right]=-\langle z, \gamma\rangle x_{\gamma}, \quad\left[z, z^{\prime}\right]=0, \quad\left[x_{\gamma}, y_{\gamma}\right]=\gamma \tag{6}
\end{equation*}
$$

for all $z, z^{\prime} \in \mathfrak{t}$ and all $\gamma \in \Delta^{+}$(we do not need the expression for the Lie brackets of the other elements). Notice that the inner product is a negative multiple of the Killing form.

Let $S^{1}=\left\{e^{i s} \mid s \in \mathbb{R}\right\} \subset S^{3}$. Since the restrictions to each factor S^{3} of the action (5) on \mathbb{O} commute, $S^{1} \times S^{1} \subset S^{3} \times S^{3}$ is a maximal torus in G_{2} and there is a Lie algebra monomorphism

$$
\iota: T_{(1,1)}\left(S^{3} \times S^{3}\right)=\operatorname{Im} \mathbb{H} \times \operatorname{Im} \mathbb{H} \rightarrow \mathfrak{g}_{2}
$$

such that the restriction of ι to each factor $\operatorname{Im} \mathbb{H}$ preserves inner products (but ι does not!). We may suppose that $\iota(\operatorname{Im} \mathbb{H} \times\{0\})=\mathbb{R} \gamma_{1} \oplus \mathfrak{m}_{\gamma_{1}}$ and $\iota(\{0\} \times \operatorname{Im} \mathbb{H})=\mathbb{R} \gamma_{2} \oplus$ $\mathfrak{m}_{\gamma_{2}}$ for some pair of orthogonal positive roots γ_{1}, γ_{2}, say $\left\{\gamma_{1}, \gamma_{2}\right\}=\{\alpha, 3 \alpha+2 \beta\}$. By Lemma 8 below, $\gamma_{1}=\alpha$ and hence $\mathfrak{h}_{1}=\mathbb{R} \alpha \oplus \mathfrak{m}_{\alpha}$. Using (6), one computes the matrix of ad_{α} with respect to the basis of \mathfrak{g}_{2} consisting of α, β and x_{γ}, y_{γ} for $\gamma \in \Delta^{+}$: It is a matrix with blocks λJ_{1} in the diagonal, with $\lambda=0,4,6,2,0,-2,-6$. Hence, $F(\alpha, \alpha)=\operatorname{trad} \alpha_{\alpha}^{2}=-192$. On the other hand, the matrix of $\left.\operatorname{ad}_{\alpha}\right|_{\mathfrak{h}_{1}}$ with respect to the basis $\left\{\alpha, x_{\alpha}, y_{\alpha}\right\}$ is $\operatorname{diag}\left(0,4 J_{1}\right)$ and so $F_{1}(\alpha, \alpha)=\left.\operatorname{tr~ad}_{\alpha}^{2}\right|_{\mathfrak{h}_{1}}=-32$. Therefore $c=32 / 192=1 / 6$.

Lemma 8. With the notation of the previous Proposition, $\gamma_{1}=\alpha$.

Proof. Since the inner products on $\operatorname{Im} \mathbb{H}$ and \mathfrak{g}_{2} are (negative) multiples of the respective Killing forms and those Lie algebras are simple, there exist positive constants λ and μ such that

$$
\|\iota(x, 0)\|=\lambda\|x\| \quad \text { and } \quad\|\iota(0, x)\|=\mu\|x\|
$$

for all $x \in \operatorname{Im} \mathbb{H}$. Now, since ι is a Lie algebra morphism, we have by (4) that $[\iota(j, 0), \iota(k, 0)]=2 \iota(i, 0)$. Hence we may take $\iota(j, 0) / \lambda$ and $\iota(k, 0) / \lambda$ as $x_{\gamma_{1}}$ and $y_{\gamma_{1}}$, respectively, since they are orthonormal and their Lie bracket is a positive multi-
ple of $\iota(i, 0)$. Therefore,

$$
\left\|\gamma_{1}\right\|=\left\|\left[x_{\gamma_{1}}, y_{\gamma_{1}}\right]\right\|=\frac{\|2 \iota(i, 0)\|}{\lambda^{2}}=\frac{2}{\lambda} .
$$

Analogously, $\left\|\gamma_{2}\right\|=2 / \mu$. Thus, to show that $\gamma_{1}=\alpha$, the short root, it suffices to verify that $\lambda>\mu$.

Differentiating the action (5) of G_{2} on \mathbb{O}, we have an inclusion $I: \mathfrak{g}_{2} \rightarrow \operatorname{so}(8)$ (identifying \mathbb{O} with \mathbb{R}^{8} in the canonical way):

$$
\begin{align*}
& I(i, 0)(x, y)=\left.\frac{d}{d s}\right|_{0}\left(e^{i s} x e^{-i s}, y e^{-i s}\right)=(i x-x i,-y i), \tag{7}\\
& I(0, i)(x, y)=\left.\frac{d}{d s}\right|_{0}\left(x, e^{i s} y\right)=(0, i y) .
\end{align*}
$$

Let B be the inner product on $s o(8)$ defined by $B(X, Y)=-\operatorname{tr} X Y$, which is a negative multiple of the Killing form of $\operatorname{so}(8)$, and also (via I) of that of \mathfrak{g}_{2}, since this algebra is simple. $\operatorname{By}(7), I(i, 0)=\operatorname{diag}\left(0_{2}, 2 J_{1},-J_{1}, J_{1}\right)$ and $I(0, i)=\operatorname{diag}\left(0_{4}, J_{1}, J_{1}\right)$. Hence,

$$
\frac{\lambda^{2}}{\mu^{2}}=\frac{\|\iota(i, 0)\|^{2}}{\|\iota(0, i)\|^{2}}=\frac{B(I(i, 0), I(i, 0))}{B(I(0, i), I(0, i))}=\frac{12}{4}=3>1,
$$

as desired.
Proof of Theorem 2. Let K and H_{2} be as in Example 5 (for $A=\mathbb{C}$) or as in Example 8 (for $A=\mathbb{H}$), with $p=1$ and $q=n$. The group K acts on S by isometries, preserving the distribution \mathcal{D}. The isotropy subgroup at e_{1} is H_{2}, which acts irreducibly on $\mathcal{D}_{e_{1}}$ and on its orthogonal complement in $T_{e_{1}} S$. Therefore, there exist positive numbers λ, μ such that the map

$$
\begin{equation*}
\phi:\left(K / H_{2}, g_{t}\right) \rightarrow\left(S, \mu \gamma_{\lambda t}\right), \quad \phi\left(k H_{2}\right)=k e_{1}, \tag{8}
\end{equation*}
$$

is an isometry for any $t>0$. Moreover, in each case \mathfrak{h}_{1} is canonically isomorphic to $\operatorname{Im} A$ and a vector field \tilde{Y} on $K / H_{2}\left(Y \in \mathfrak{h}_{1}\right)$ is mapped by $d \phi$ to one of the vector fields U considered in the Theorem. Hence, the assertion regarding property $(* 1)$ is proved (notice that if a unit vector field V on a Riemannian manifold (N, g) satisfies properties ($* 1-2$), then μV on ($N, \mu g$) has the same properties).

By Theorem 6 - Example 5, the Remark after Theorem 4 and (8), only the round metric γ_{1} is Einstein among the metrics γ_{s} on $S^{2 n+1}$ and hence any unit vector U_{s} on $\left(S^{2 n+1}, \gamma_{s}\right)$ satisfies property ($* 2$) if $0<s \leq 1$. We consider now $S^{4 n+3}$. By the Example in [5], the metric g_{t} of Example 8 is Einstein if and only if $t^{2}=2$ (corresponding to a round metric $\left.\mu \gamma_{1}\right)$ or $t^{2}=2 /(2 n+3)$. Since $s=\lambda t$, we have $\lambda^{2}=1 / 2$. Therefore,
proceeding analogously as before, the unit vector U_{S} on $\left(S^{4 n+3}, \gamma_{s}\right)$ satisfies property $(* 2)$ if $1 /(2 n+3) \leq s^{2} \leq 1$.

Acknowledgements. We would like to thank Eduardo Hulett for his helpful comments. The second author would like to thank the warm hospitality at IME.

References

[1] A. Besse: Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, Band 10, Springer, Berlin-Heidelberg New York, 1987.
[2] F. Brito: Total bending of flows with mean curvature correction, Diff. Geom. Appl. 12 (2000), 157-163.
[3] O. Gil-Medrano, J.C. González-Dávila and L. Vanhecke: Harmonic and minimal invariant unit vector fields on homogeneous Riemannian manifolds, Houston J. Math. 27 (2001), 377-409.
[4] J.C. González-Dávila and L. Vanhecke: Energy and volume of unit vector fields on threedimensional Riemannian manifolds, Diff. Geom. Appl. 16 (2002), 225-244.
[5] G. Jensen: Einstein metrics on principal fiber bundles, J. Diff. Geom. 8 (1973), 599-614.
[6] G. Wiegmink: Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), 325-344.
[7] C.M. Wood: On the energy of a unit vector field, Geom Ded. 64 (1997), 319-330.
[8] K. Yano: Integral formulas in Riemannian geometry, Pure and Applied Mathematics, Marcel Dekker Inc., New York, 1970.

Fabiano Brito
Departamento de Matemática, IME-USP, Caixa Postal 66281
CEP 05315-970, São Paulo, Brasil
e-mail: fabiano@ime.usp.br
Marcos Salvai
FaMAF-CIEM, Ciudad Universitaria
5000 Córdoba, Argentina
e-mail: salvai@mate.uncor.edu

[^0]: * Partially supported by Coop. Agr. GMD, CNPq.
 ${ }^{\dagger}$ Partially supported by FONCYT, CIEM(CONICET), FOMEC, SECYT (UNC), FAPESP Proc. 99/026845 (proj. tematico).

