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Introduction

Let be a finite group. Let and be normal projective varieties.is called
a -cover of if there exists a finite surjective morphismπ : → such that the in-
duced morphismπ∗ : C( ) → C( ) gives a Galois extension with Gal(C( )/C( )) ∼=

, whereC( ) and C( ) denote the rational function fields of and , respectively.

DEFINITION 0.1. A -cover̟ : → is said to be versal if it satisfies the fol-
lowing property:

For any -coverπ : → , there exist a rational mapν : · · · → and a Zariski
open set in such that
(i) ν| : → is a morphism, and
(ii) π−1( ) is birational to × over .

One could say the investigation of versal -covers is a geometric study of generic
or versal -polynomials (see [2] and [4]). The notion of versal -covers implicitly ap-
peared in [7], [8], and is defined explicitly in [12], [13]. Itis known that there exists
a versal -cover for any finite group ([8, Theorem 2.4]). The dimension of the ver-
sal -cover given by Namba, however, is equal to♯( ). Hence it does not seem to be
tractable in practical use. We need to find a tractable model for . So far it has been
done for some cases by ad-hoc methods in ([12], [13]).

In this note, we consider versal8-covers, where 8 is the dihedral group of or-
der 8, i.e., 8 = 〈σ, τ | σ2 = τ4 = (στ )2 = 1〉. It is known that any versal 8-cover has
dimension at least 2 (see [2]), and one of such models was given in [12]. The purpose
of this article is to give another new model, which is described as follows:

Let ϕ141: 141 → P1 be the rational elliptic surface obtained by blowing-up base
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points of the (2 2)-pencil onP1 × P1 given by

{
λ0( 0 − 1)2( 0 − 1)2 + λ1( 0 1 0 1) = 0

}
[λ0:λ1]∈P1

As for 141, the following facts are well-known:
(i) 141 is so-called the elliptic modular surface attached to

1(4) :=

{( )
∈ SL(2 Z)

∣∣∣∣
( )

≡
(

1 ∗
0 1

)
mod 4

}

andϕ141 has three singular fibers and their types are of∗
1 , 4 and 1 (see [3, p.350]).

(ii) The group of sections, (141), is isomorphic toZ/4Z (see [6] or [9]).
Let σϕ141 be the involution on 141 induced by the inversion with respect to

the group law and letτ be the translation by a 4-torsion section .σϕ141 and
τ generate a finite fiber preserving automorphism group isomorphic to 8. Let

141 := 141/〈σϕ141 τ 〉 be the quotient surface and we denote its quotient morphism
by π141: 141 → 141. Now we are in position to state our result:

Theorem 0.2. π141: 141 → 141 is a versal 8-cover.

In comparison with the model in [12], this model has a nice description with re-
spect to the action of the Galois group.

1. Preliminaries

Let be a smooth minimal projective surface, and let be a pencil of curves
on such that a general member is irreducible. Let ¯ϕ : · · · → P1 be the rational
map determined by , and let : → be the resolution of the indeterminacy
of ϕ̄ . We denote the induced morphism from toP1 by ϕ . We may assume
that ϕ is relatively minimal. Let us begin with the following lemma.

Lemma 1.1. Let σ be an automorphism of . Suppose that̄ϕσ = ϕ̄ (we regard
ϕ̄ as an element ofC( )). Then σ gives rise to a fiber preserving automorphism
of (By abuse of notation, we also denote it byσ).

Proof. SinceC( ) ∼= C( ), ϕ̄σ = ϕ̄ implies ϕσ = ϕ . Hence a general fiber
of ϕ goes to that ofϕ under σ. Let σ̄ be the induced birational map from
to itself induced byσ. Let µ : ˆ → be a succession of blowing-ups so that
(i) σ̂ := σ̄◦µ becomes a birational morphism and (ii) the number of the blowing-ups is
minimal. It is well-known that ˆσ is a composition of blowing-downs. Let1 . . .

be the exceptional divisors forµ, and let 1 . . . be those for ˆσ. We may assume
that 1 is the (−1) curve for the first blow-down. Since1 can not be any of
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( = 1 . . . ), 1 ≥ 0 ( = 1 . . . ). Since

−1 = 1 ˆ = 1


µ∗ +

∑

=1


 = 1µ

∗ + 1


∑

=1




we have 1µ
∗ ≤ −1. Henceµ( 1) is not any irreducible component in a fiber

of ϕ . Since the image ofµ( 1) by σ is a point, this implies that a general fiber
of ϕ does not go to that ofϕ under σ̂, which leads us to a contradiction.

EXAMPLE 1.2. Let ( ) be an inhomogeneous coordinate ofP1 × P1. The pencil
on P1 × P1 in Introduction is given by

:
{
λ0( − 1)2( − 1)2 + λ1 = 0

}
[λ0 λ1]∈P1

Let σ and τ be the automorphisms ofP1 × P1 given by

( σ σ) = ( ) ( τ τ ) =

(
1
)

σ and τ generate a finite automorphism group isomorphic to8. Since the rational
function onP1 × P1,

( − 1)2( − 1)2

is invariant underσ and τ , one can apply Lemma 1.1 to this case. In fact, it fol-
lows that (P1 × P1) = 141, ϕ = ϕ141, and σ, τ fiber preserving automorphisms of

141. By Example 4.7, Chapter III in [11], bothσ and τ are the compositions of iso-
genies and translations. In particular, the correspondingisogenies should be isomor-
phisms as an elliptic curve. By Theorem 10.1, Chapter III in [11], the automorphisms
of 141 as an elliptic curve are only the identity andσϕ141. Sinceσ ◦ τ has a fixed
point (1 0), the induced fiber preserving automorphism on141 is non-trivial and fixes
a section, . Hence we may assume thatσ ◦ τ = σϕ141 on 141, by regarding as
the zero. Also ifτ is the composition ofσϕ141 and a translation, thenτ2 = id on 141.
This implies that we may assume thatτ is a translation by a 4-torsion section .

EXAMPLE 1.3. Let = Z⊕2 and let ( = 1 . . . 6) be 2-dimensional cones
in ⊗ R given by

1 = R≥0e1 + R≥0(e1 + e2) 2 = R≥0(e1 + e2) + R≥0e2

3 = R≥0(−e1) + R≥0e2 4 = R≥0(−e1) + R≥0(−e1 − e2)

5 = R≥0(−e1 − e2) + R≥0(−e2) 6 = R≥0(−e2) + R≥0e1
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where e1 = (1 0), e2 = (0 1). Let =
⋃6

=1 and 12 = emb( ) (see [10,
§1.2]). The subgroup, , of GL(2Z) generated by

σ =

(
0 1
1 0

)
τ =

(
0 1
−1 1

)

is isomorphic to 12. Since preserves as above,12 acts on 12. An explicit
description is as follows:

Let { 1 2} be the basis of Hom( Z) dual to {e1 e1 + e2} and let = e( 1)
and =e( 2). ( ) gives an affine coordinate of the affine open set,1, determined
by 1. Then

( σ σ) = ( ) ( τ τ ) =

(
1

)

Consider the pencil on which is given on 1 by

{λ0( ) + λ1( + 1)( + 1)( + 1) = 0}[λ0 λ1]∈P1

on σ1. Since

( + 1)( + 1)( + 1)

is 12-invariant, one can apply Lemma 1.1 to this case. In this case, coin-
cides with the rational elliptic surfaceϕ6321: 6321→ P1 (the notation is due to [6]).
The following facts on 6321 are well-known:
(i) 6321 is so-called the elliptic modular surface attached to

1(6) :=

{( )
∈ SL(2 Z)

∣∣∣∣
( )

≡
(

1 ∗
0 1

)
mod 6

}

and has four singular fibers and their types are of6, 3, 2 and 1 (see [1] and [6]).
(ii) The group of sections, (6321), is isomorphic toZ/6Z (see [6]).

In our case,ϕ = ϕ6321, and σ and τ generate a fiber preserving automorphism
group of 6321 isomorphic to 12. By the same argument to that in Example 1.2, we
may assume that it coincides with one given by the inversion with respect to the group
law and the translation by a 6-torsion section.

We here raise a question concerning Example 1.3.

Question 1.4. Let 12 be the quotient of 12 with respect to the 12-action
in Example 1.3. Is the 12-cover 12 → 12 versal? In other words, is 6321 →

6321 a versal 12-cover, where 6321 is the quotient by the inversion with respect to
the group law and the translation by 6-torsion?
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2. Proof of Theorem 0.2

Let σ and τ be the automorphisms ofP1 × P1 as in Example 1.2. They give rise
to a finite automorphism group isomorphic to8. Put 8 := P1 × P1/〈σ τ〉, and we
denote the quotient morphism by̟ 8 : P1 × P1 → 8. Theorem 0.2 follows from
Example 1.2 and the proposition below.

Proposition 2.1. ̟ 8 : P1 × P1 → 8 is versal.

We need two lemmas to prove Proposition 2.1.

Lemma 2.2. Let π : → be a 8-cover. Then there exist non-constant ratio-
nal functionsψ1 and ψ2 such that
(i) (ψσ

1 ψσ
2 ) = (ψ2 ψ1),

(ii) (ψτ
1 ψτ

2 ) = (ψ2 1/ψ1),
(iii) ψ1/ψ2 6∈ C and
(iv) ψ1ψ2 6= 1.

Proof. By the normal basis theorem (see [5, p.229]), there exists θ ∈ C( ) such
that {θτ θστ } ( = 0 1 2 3) form a basis ofC( ) as a vectorC( )-space. Put

ψ1 =
θ + θσ + θτ 3

+ θστ 3

θτ 2 + θστ 2 + θτ + θστ
ψ2 =

θ + θσ + θτ + θστ

θτ 2 + θστ 2 + θτ 3 + θστ 3

Both ψ1 and ψ2 are non-constant rational functions since{θ | ∈ 8} is a basis
over C( ), and the statements (i) and (ii) are straightforward. Ifψ1 = ψ2 for some
∈ C, we haveψ1 = ±ψ2 by (i). If this happens, then we infer thatψ2

2 = ±1 by (ii),
but this is impossible asψ2 is non-constant. Suppose thatψ1ψ2 = 1. Thenψ2/ψ1 = 1
by (i). This contradicits to (iii).

Lemma 2.3. Let ψ1 and ψ2 be the rational functions as inLemma 2.2.Then
C( ) = C( )(ψ1 ψ2).

Proof. Choose a rational number not equal to±1 and we putψ = ψ1 + ψ2. It
is enough to see thatψ 6= ψ for all ( 6= 1) ∈ 8.
(i) ψ 6= ψτ . If ψ = ψτ , we have

ψ1 − ψ2 =

(
1− ψ1ψ2

ψ1

)

By Lemma 2.2, 1− ψ1ψ2 6= 0, ψ1 − ψ2 6= 0. So

=
ψ1 − ψ2

1− ψ1ψ2
ψ1 6= 0
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On the other hand, we have

(
ψ1 − ψ2

1− ψ1ψ2
ψ1

)σ

=
ψ2 − ψ1

1− ψ1ψ2
ψ2 = − ψ1 − ψ2

1− ψ1ψ2
ψ2

As σ = , we haveψ1 = −ψ2, but this contradicts to Lemma 2.2, (iii).
(ii) ψ 6= ψτ 2

. If ψ = ψτ 2
, we have

=
(ψ2

1 − 1)ψ2

(1− ψ2
2)ψ1

By Lemma 2.2, 6= 0. On the other hand, we have

(
(ψ2

1 − 1)ψ2

(1− ψ2
2)ψ1

)σ

=
(1− ψ2

2)ψ1

(ψ2
1 − 1)ψ2

=
1

As σ = , we have 2 = 1. This contradicts to our choice of .
(iii) ψ 6= ψτ 3

. If ψ = ψτ 3
, we have

=
ψ1ψ2 − 1
ψ1 − ψ2

1
ψ2

By the similar argument to the first case, we inferψ1 = −ψ2, but this is impossible.
(iv) ψ 6= ψσ. If ψ = ψσ, we have = 1, but this contradicts to our choice of .
(v) ψ 6= ψστ . If ψ = ψστ , ψ2

1 = 1. This contradicts to Lemma 2.2.
(vi) ψ 6= ψστ 2

. If ψ = ψστ 2
, we have =−ψ1/ψ2. As = σ, we haveψ1/ψ2 = ψ2/ψ1.

This implies thatψ1 = ±ψ2, but this contradicts to Lemma 2.2 (iii).
(vii) ψ 6= ψστ 3

. If ψ = ψστ 3
, we haveψ2

2 = 1, but this is impossible.

Proof of Proposition 2.1. Letπ : → be an arbitrary 8-cover. By Lem-
mas 2.2 and 2.3, there exist non-constant rational functions ψ1 and ψ2 such that
(i) C( ) = C( )(ψ1 ψ2) and (ii) (ψσ

1 ψσ
2 ) = (ψ2 ψ1) and (ψτ

1 ψτ
2 ) = (ψ2 1/ψ1).

Define the 8-equivalent rational map : · · · → P1 × P1 by

∈ 7→ (ψ1( ) ψ2( )) ∈ P1 × P1

This shows Proposition 2.1.

Now Theorem 0.2 follows from Proposition 2.1 and Example 1.2. We end this
section with the following example.
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EXAMPLE 2.4. Let

ρ : 8 → GL(2 C)

be the representation given by

ρ(σ) =

(
0 1
1 0

)
ρ(τ ) =

(
0 1
−1 0

)

Let ρ̃ = 1 8 ⊕ ρ, and define the 8-action onP2 by

([ 0 1 2]) = [ 0 1 2](ρ̃( ))−1 [ 0 1 2] ∈ P2

Put 1 = P2 and 1 = P2/ 8 (note that 1 → 1 is the versal 8-cover by [12,
Proposition 4.1]). Let and be the rational functions ofP2 given by 1/ 0

and 2/ 0, respectively. Then one can check

{θ } ∈ 8 θ =
1

1− − 2

form a basis overC( 1) = C( ) 8. To see this, let

:=




θ θτ θτ 2
θτ 3

θσ θστ θστ 2
θστ 3

θτ θτ 2
θτ 3

θ θστ 3
θσ θστ θστ 2

θτ 2
θτ 3

θ θτ θστ 2
θστ 3

θσ θστ

θτ 3
θ θτ θτ 2

θστ θστ 2
θστ 3

θσ

θσ θστ θστ 2
θστ 3

θ θτ θτ 2
θτ 3

θστ θστ 2
θστ 3

θσ θ θτ θτ 2
θτ 3

θστ 2
θστ 3

θσ θστ θτ 2
θτ 3

θ θτ

θστ 3
θσ θστ θστ 2

θτ θτ 2
θτ 3

θ




and check that det 6= 0. The explicit forms ofψ1 andψ2 with respect to the normal
basis{θ } ∈ 8 are as follows:

ψ1 = − (−2 + 6 3 + 9 − 9 2 − 13 2 + 5 2)
(2 + 6 3 + 9 − 9 2 + 13 2 − 5 2)

× (1 + + 2 )(1 + 2 + )(1 + 2 − )(1 + − 2 )
(−1 + + 2 )(−1 + 2 + )(−1− + 2 )(−1 + − 2 )

ψ2 = − (2 + 9 2 − 5 2 − 6 3 + 13 2 − 9 )
(−2 + 9 2 + 5 2 − 6 3 − 13 2 − 9 )

× (1 + + 2 )(1 + 2 + )(−1− + 2 )(−1 + − 2 )
(−1 + + 2 )(−1 + 2 + )(1 + 2 − )(1 + − 2 )
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Hence we have a 8-equivalent rational map fromP2 → P1×P1. Note that the ex-
istence of this rational map gives another proof for Proposition 2.1.

ACKNOWLEDGEMENT. The author thanks for the referee for his/her comments on
the first version of this article.
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