Tokunaga, H. Osaka J. Math. **41** (2004), 831–838

NOTE ON A 2-DIMENSIONAL VERSAL D8-COVER

Dedicated to Professor Makoto Namba on his sixtieth birthda y

HIRO-O TOKUNAGA

(Received April 9, 2003)

Introduction

Let G be a finite group. Let X and Y be normal projective varieties. X is called a G-cover of Y if there exists a finite surjective morphism $\pi: X \to Y$ such that the induced morphism $\pi^*: \mathbb{C}(Y) \to \mathbb{C}(X)$ gives a Galois extension with Gal($\mathbb{C}(X)/\mathbb{C}(Y)$) ≅ , where $\mathbb{C}(X)$ and $\mathbb{C}(Y)$ denote the rational function fields of X and Y, respectively.

DEFINITION 0.1. A G-cover ϖ : $X \to M$ is said to be versal if it satisfies the following property:

For any *G*-cover $\pi: Y \to Z$, there exist a rational map $\nu: Z \cdots \to M$ and a Zariski open set U in Z such that

(i) $\nu|_{U} : U \to M$ is a morphism, and

(ii) $\pi^{-1}(U)$ is birational to $U \times_M X$ over U.

One could say the investigation of versal G -covers is a geometric study of generic or versal G -polynomials (see [2] and [4]). The notion of versal G -covers implicitly appeared in [7], [8], and is defined explicitly in [12], [13]. It is known that there exists a versal G-cover for any finite group G ([8, Theorem 2.4]). The dimension of the versal G -cover given by Namba, however, is equal to $\sharp(G)$. Hence it does not seem to be tractable in practical use. We need to find a tractable model for G . So far it has been done for some cases by ad-hoc methods in ([12], [13]).

In this note, we consider versal D_8 -covers, where D_8 is the dihedral group of order 8, i.e., $D_8 = \langle \sigma, \tau | \sigma^2 = \tau^4 = (\sigma \tau)^2 = 1 \rangle$. It is known that any versal D_8 -cover has dimension at least 2 (see [2]), and one of such models was given in [12]. The purpose of this article is to give another new model, which is described as follows:

Let $\varphi_{141} : X_{141} \to \mathbb{P}^1$ be the rational elliptic surface obtained by blowing-up base

2000 Mathematics Subject Classification : 14E20, 14J27.

Research partly supported by the research grant 14340015 from JSPS.

832 H. TOKUNAGA

points of the $(2, 2)$ -pencil on $\mathbb{P}^1 \times \mathbb{P}^1$ given by

$$
\left\{\lambda_0(s_0-s_1)^2(t_0-t_1)^2+\lambda_1(s_0s_1t_0t_1)=0\right\}_{[\lambda_0:\lambda_1]\in\mathbb{P}^1}.
$$

As for X_{141} , the following facts are well-known:

(i) X_{141} is so-called the elliptic modular surface attached to

$$
\Gamma_1(4) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 4 \right\},\
$$

and φ_{141} has three singular fibers and their types are of I_1^* , I_4 and I_1 (see [3, p.350]). (ii) The group of sections, $MW(X_{141})$, is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ (see [6] or [9]).

Let $\sigma_{\varphi_{141}}$ be the involution on X_{141} induced by the inversion with respect to the group law and let τ_s be the translation by a 4-torsion section *s*. $\sigma_{\varphi_{141}}$ and τ_s generate a finite fiber preserving automorphism group isomorphic to D_8 . Let Σ_{141} := $X_{141}/\langle \sigma_{\varphi_{141}}, \tau_s \rangle$ be the quotient surface and we denote its quotient morphism by $\pi_{141} : X_{141} \rightarrow \Sigma_{141}$. Now we are in position to state our result:

Theorem 0.2. $\pi_{141} : X_{141} \to \Sigma_{141}$ *is a versal D₈-cover*.

In comparison with the model in [12], this model has a nice description with respect to the action of the Galois group.

1. Preliminaries

Let S be a smooth minimal projective surface, and let Λ be a pencil of curves on S such that a general member is irreducible. Let $\bar{\varphi}_\Lambda: S \cdots \to \mathbb{P}^1$ be the rational map determined by Λ , and let $q: S_{\Lambda} \to S$ be the resolution of the indeterminacy of $\bar{\varphi}_{\Lambda}$. We denote the induced morphism from S_{Λ} to \mathbb{P}^1 by φ_{Λ} . We may assume that φ_{Λ} is relatively minimal. Let us begin with the following lemma.

Lemma 1.1. Let σ be an automorphism of S. Suppose that $\bar{\varphi}_{\Lambda}^{\sigma} = \bar{\varphi}_{\Lambda}$ (we regard $\overline{\varphi}_{\Lambda}$ *as an element of* $\mathbb{C}(S_{\Lambda})$. *Then* σ *gives rise to a fiber preserving automorphism of* S_{Λ} (*By abuse of notation, we also denote it by* σ *).*

Proof. Since $\mathbb{C}(S) \cong \mathbb{C}(S_\Lambda)$, $\overline{\varphi}^{\sigma}_{\Lambda} = \overline{\varphi}_{\Lambda}$ implies $\varphi^{\sigma}_{\Lambda} = \varphi_{\Lambda}$. Hence a general fiber of φ_{Λ} goes to that of φ_{Λ} under σ . Let $\bar{\sigma}$ be the induced birational map from S_{Λ} to itself induced by σ . Let $\mu: \hat{S}_{\Lambda} \to S_{\Lambda}$ be a succession of blowing-ups so that (i) $\hat{\sigma}$:= $\bar{\sigma} \circ \mu$ becomes a birational morphism and (ii) the number of the blowing-ups is minimal. It is well-known that $\hat{\sigma}$ is a composition of blowing-downs. Let E_1, \ldots, E_r be the exceptional divisors for μ , and let F_1, \ldots, F_s be those for $\hat{\sigma}$. We may assume that F_1 is the (−1) curve for the first blow-down. Since F_1 can not be any of E_i

 $(i = 1, \ldots, r)$, $F_1 E_i \geq 0$ $(i = 1, \ldots, r)$. Since

$$
-1 = F_1 K_{\hat{S}_{\Lambda}} = F_1 \left(\mu^* K_{S_{\Lambda}} + \sum_{j=1}^r m_j E_j \right) = F_1 \mu^* K_{S_{\Lambda}} + F_1 \left(\sum_{j=1}^r m_j E_j \right),
$$

we have $F_1\mu^*K_{S_A} \leq -1$. Hence $\mu(F_1)$ is not any irreducible component in a fiber of φ_{Λ} . Since the image of $\mu(F_1)$ by σ is a point, this implies that a general fiber of φ_{Λ} does not go to that of φ_{Λ} under $\hat{\sigma}$, which leads us to a contradiction. \Box

EXAMPLE 1.2. Let (x, y) be an inhomogeneous coordinate of $\mathbb{P}^1 \times \mathbb{P}^1$. The pencil on $\mathbb{P}^1 \times \mathbb{P}^1$ in Introduction is given by

$$
\Lambda: \left\{ \lambda_0(x-1)^2(y-1)^2 + \lambda_1 xy = 0 \right\}_{[\lambda_0, \lambda_1] \in \mathbb{P}^1}.
$$

Let σ and τ be the automorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$ given by

$$
(x^{\sigma}, y^{\sigma}) = (y, x), (x^{\tau}, y^{\tau}) = \left(y, \frac{1}{x}\right).
$$

 σ and τ generate a finite automorphism group isomorphic to D_8 . Since the rational function on $\mathbb{P}^1 \times \mathbb{P}^1$,

$$
\frac{(x-1)^2(y-1)^2}{xy},
$$

is invariant under σ and τ , one can apply Lemma 1.1 to this case. In fact, it follows that $(\mathbb{P}^1 \times \mathbb{P}^1)_\Lambda = X_{141}$, $\varphi_\Lambda = \varphi_{141}$, and σ , τ fiber preserving automorphisms of X_{141} . By Example 4.7, Chapter III in [11], both σ and τ are the compositions of isogenies and translations. In particular, the corresponding isogenies should be isomorphisms as an elliptic curve. By Theorem 10.1, Chapter III in [11], the automorphisms of X_{141} as an elliptic curve are only the identity and $\sigma_{\varphi_{141}}$. Since $\sigma \circ \tau$ has a fixed point (1, 0), the induced fiber preserving automorphism on X_{141} is non-trivial and fixes a section, O. Hence we may assume that $\sigma \circ \tau = \sigma_{\varphi_{141}}$ on X_{141} , by regarding O as the zero. Also if τ is the composition of $\sigma_{\varphi_{141}}$ and a translation, then $\tau^2 = id$ on X_{141} . This implies that we may assume that τ is a translation by a 4-torsion section *s*.

EXAMPLE 1.3. Let $N = \mathbb{Z}^{\oplus 2}$ and let Δ_i ($i = 1, ..., 6$) be 2-dimensional cones in $N \otimes \mathbb{R}$ given by

$$
\Delta_1 = \mathbb{R}_{\geq 0}e_1 + \mathbb{R}_{\geq 0}(e_1 + e_2) \qquad \Delta_2 = \mathbb{R}_{\geq 0}(e_1 + e_2) + \mathbb{R}_{\geq 0}e_2
$$

\n
$$
\Delta_3 = \mathbb{R}_{\geq 0}(-e_1) + \mathbb{R}_{\geq 0}e_2 \qquad \Delta_4 = \mathbb{R}_{\geq 0}(-e_1) + \mathbb{R}_{\geq 0}(-e_1 - e_2)
$$

\n
$$
\Delta_5 = \mathbb{R}_{\geq 0}(-e_1 - e_2) + \mathbb{R}_{\geq 0}(-e_2) \qquad \Delta_6 = \mathbb{R}_{\geq 0}(-e_2) + \mathbb{R}_{\geq 0}e_1,
$$

where $e_1 = {}^t(1, 0)$, $e_2 = {}^t(0, 1)$. Let $\Sigma = \bigcup_{i=1}^6 \Delta_i$ and $X_{D_{12}} = T_N \text{emb}(\Sigma)$ (see [10, $\S1.2$]). The subgroup, G, of GL(2, \mathbb{Z}) generated by

$$
\sigma=\left(\begin{array}{c} 0\ 1 \\ 1\ 0 \\ \end{array}\right),\ \ \tau=\left(\begin{array}{c} 0\ \ 1 \\ -1\ \ 1 \\ \end{array}\right)
$$

is isomorphic to D_{12} . Since G preserves Σ as above, D_{12} acts on $X_{D_{12}}$. An explicit description is as follows:

Let $\{f_1, f_2\}$ be the basis of Hom(N, Z) dual to $\{e_1, e_1 + e_2\}$ and let $x = e(f_1)$ and $y = e(f_2)$. (x, y) gives an affine coordinate of the affine open set, U_{Δ_1} , determined by Δ_1 . Then

$$
(x^{\sigma}, y^{\sigma}) = (y, x), (x^{\tau}, y^{\tau}) = \left(\frac{1}{y}, xy\right).
$$

Consider the pencil on X which is given on U_{Δ_1} by

$$
\{\lambda_0(xy) + \lambda_1(xy + 1)(x + 1)(y + 1) = 0\}_{[\lambda_0, \lambda_1] \in \mathbb{P}^1}
$$

on U_{σ_1} . Since

$$
\frac{xy}{(xy+1)(x+1)(y+1)}
$$

is D_{12} -invariant, one can apply Lemma 1.1 to this case. In this case, X_{Λ} coincides with the rational elliptic surface $\varphi_{6321} : X_{6321} \to \mathbb{P}^1$ (the notation is due to [6]). The following facts on X_{6321} are well-known:

(i) X_{6321} is so-called the elliptic modular surface attached to

$$
\Gamma_1(6) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 6 \right\},\
$$

and has four singular fibers and their types are of I_6 , I_3 , I_2 and I_1 (see [1] and [6]). (ii) The group of sections, $MW(X_{6321})$, is isomorphic to $\mathbb{Z}/6\mathbb{Z}$ (see [6]).

In our case, $\varphi_{\Lambda} = \varphi_{6321}$, and σ and τ generate a fiber preserving automorphism group of X_{6321} isomorphic to D_{12} . By the same argument to that in Example 1.2, we may assume that it coincides with one given by the inversion with respect to the group law and the translation by a 6-torsion section.

We here raise a question concerning Example 1.3.

Question 1.4. Let $M_{D_{12}}$ be the quotient of $X_{D_{12}}$ with respect to the D_{12} -action in Example 1.3. Is the D_{12} -cover $X_{D_{12}} \to M_{D_{12}}$ versal? In other words, is $X_{6321} \to$ Σ_{6321} a versal D_{12} -cover, where Σ_{6321} is the quotient by the inversion with respect to the group law and the translation by 6-torsion?

2. Proof of Theorem 0.2

Let σ and τ be the automorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$ as in Example 1.2. They give rise to a finite automorphism group isomorphic to D_8 . Put $\Sigma_{D_8} := \mathbb{P}^1 \times \mathbb{P}^1/\langle \sigma, \tau \rangle$, and we denote the quotient morphism by $\varpi_{D_8} : \mathbb{P}^1 \times \mathbb{P}^1 \to \Sigma_{D_8}$. Theorem 0.2 follows from Example 1.2 and the proposition below.

Proposition 2.1. $\varpi_{D_8} : \mathbb{P}^1 \times \mathbb{P}^1 \to \Sigma_{D_8}$ is versal.

We need two lemmas to prove Proposition 2.1.

Lemma 2.2. Let $\pi: Y \to Z$ be a D_8 -cover. Then there exist non-constant ratio*nal functions* ψ_1 *and* ψ_2 *such that*

(i) $(\psi_1^{\sigma}, \psi_2^{\sigma}) = (\psi_2, \psi_1),$ (ii) $(\psi_1^{\tau}, \psi_2^{\tau}) = (\psi_2, 1/\psi_1),$ (iii) $\psi_1/\psi_2 \notin \mathbb{C}$ *and* (iv) $\psi_1 \psi_2 \neq 1$.

Proof. By the normal basis theorem (see [5, p.229]), there exists $\theta \in \mathbb{C}(Y)$ such that $\{\theta^{\tau^i}, \theta^{\sigma \tau^i}\}$ ($i = 0, 1, 2, 3$) form a basis of $\mathbb{C}(Y)$ as a vector $\mathbb{C}(Z)$ -space. Put

$$
\psi_1 = \frac{\theta + \theta^{\sigma} + \theta^{\tau^3} + \theta^{\sigma \tau^3}}{\theta^{\tau^2} + \theta^{\sigma \tau^2} + \theta^{\tau} + \theta^{\sigma \tau}}, \quad \psi_2 = \frac{\theta + \theta^{\sigma} + \theta^{\tau} + \theta^{\sigma \tau}}{\theta^{\tau^2} + \theta^{\sigma \tau^2} + \theta^{\tau^3} + \theta^{\sigma \tau^3}}.
$$

Both ψ_1 and ψ_2 are non-constant rational functions since $\{\theta^g | g \in D_8\}$ is a basis over $\mathbb{C}(Z)$, and the statements (i) and (ii) are straightforward. If $\psi_1 = c\psi_2$ for some $\in \mathbb{C}$, we have $\psi_1 = \pm \psi_2$ by (i). If this happens, then we infer that $\psi_2^2 = \pm 1$ by (ii), but this is impossible as ψ_2 is non-constant. Suppose that $\psi_1 \psi_2 = 1$. Then $\psi_2/\psi_1 = 1$ by (i). This contradicits to (iii). □

Lemma 2.3. *Let* ψ_1 *and* ψ_2 *be the rational functions as in* Lemma 2.2. *Then* $\mathbb{C}(Y) = \mathbb{C}(Z)(\psi_1, \psi_2).$

Proof. Choose a rational number c not equal to ± 1 and we put $\psi = \psi_1 + c\psi_2$. It is enough to see that $\psi \neq \psi^g$ for all $g(\neq 1) \in D_8$. (i) $\psi \neq \psi^{\tau}$. If $\psi = \psi^{\tau}$, we have

$$
\psi_1 - \psi_2 = c \left(\frac{1 - \psi_1 \psi_2}{\psi_1} \right).
$$

By Lemma 2.2, $1 - \psi_1 \psi_2 \neq 0$, $\psi_1 - \psi_2 \neq 0$. So

$$
c = \frac{\psi_1 - \psi_2}{1 - \psi_1 \psi_2} \psi_1 \neq 0.
$$

On the other hand, we have

$$
\left(\frac{\psi_1-\psi_2}{1-\psi_1\psi_2}\psi_1\right)^\sigma=\frac{\psi_2-\psi_1}{1-\psi_1\psi_2}\psi_2=-\frac{\psi_1-\psi_2}{1-\psi_1\psi_2}\psi_2.
$$

As $c^{\sigma} = c$, we have $\psi_1 = -\psi_2$, but this contradicts to Lemma 2.2, (iii). (ii) $\psi \neq \psi^{\tau^2}$. If $\psi = \psi^{\tau^2}$, we have

$$
c = \frac{(\psi_1^2 - 1)\psi_2}{(1 - \psi_2^2)\psi_1}.
$$

By Lemma 2.2, $c \neq 0$. On the other hand, we have

$$
\left(\frac{(\psi_1^2-1)\psi_2}{(1-\psi_2^2)\psi_1}\right)^\sigma=\frac{(1-\psi_2^2)\psi_1}{(\psi_1^2-1)\psi_2}=\frac{1}{c}.
$$

As $c^{\sigma} = c$, we have $c^2 = 1$. This contradicts to our choice of c. (iii) $\psi \neq \psi^{\tau^3}$. If $\psi = \psi^{\tau^3}$, we have

$$
c = \frac{\psi_1 \psi_2 - 1}{\psi_1 - \psi_2} \frac{1}{\psi_2}.
$$

By the similar argument to the first case, we infer $\psi_1 = -\psi_2$, but this is impossible. (iv) $\psi \neq \psi^{\sigma}$. If $\psi = \psi^{\sigma}$, we have $c = 1$, but this contradicts to our choice of c. (v) $\psi \neq \psi^{\sigma\tau}$, If $\psi = \psi^{\sigma\tau}$, $\psi_1^2 = 1$. This contradicts to Lemma 2.2. (vi) $\psi \neq \psi^{\sigma \tau^2}$. If $\psi = \psi^{\sigma \tau^2}$, we have $c = -\psi_1/\psi_2$. As $c = c^{\sigma}$, we have $\psi_1/\psi_2 = \psi_2/\psi_1$. This implies that $\psi_1 = \pm \psi_2$, but this contradicts to Lemma 2.2 (iii). (vii) $\psi \neq \psi^{\sigma \tau^3}$. If $\psi = \psi^{\sigma \tau^3}$, we have $\psi_2^2 = 1$, but this is impossible. \Box

Proof of Proposition 2.1. Let $\pi: Y \to Z$ be an arbitrary D_8 -cover. By Lemmas 2.2 and 2.3, there exist non-constant rational functions ψ_1 and ψ_2 such that (i) $\mathbb{C}(Y) = \mathbb{C}(Z)(\psi_1, \psi_2)$ and (ii) $(\psi_1^{\sigma}, \psi_2^{\sigma}) = (\psi_2, \psi_1)$ and $(\psi_1^{\tau}, \psi_2^{\tau}) = (\psi_2, 1/\psi_1)$. Define the D_8 -equivalent rational map $\Psi: Y \cdots \to \mathbb{P}^1 \times \mathbb{P}^1$ by

$$
p\in Y\mapsto (\psi_1(p),\psi_2(p))\in\mathbb{P}^1\times\mathbb{P}^1.
$$

 \Box

This shows Proposition 2.1.

Now Theorem 0.2 follows from Proposition 2.1 and Example 1.2. We end this section with the following example.

EXAMPLE 2.4. Let

$$
\rho\colon D_8\to\operatorname{GL}(2,\mathbb{C})
$$

be the representation given by

$$
\rho(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \ \rho(\tau) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

Let $\tilde{\rho} = 1_{D_8} \oplus \rho$, and define the D_8 -action on \mathbb{P}^2 by

$$
g([z_0, z_1, z_2]) = [z_0, z_1, z_2](\tilde{\rho}(g))^{-1}, \quad [z_0, z_1, z_2] \in \mathbb{P}^2.
$$

Put $X_1 = \mathbb{P}^2$ and $M_1 = \mathbb{P}^2/D_8$ (note that $X_1 \to M_1$ is the versal D_8 -cover by [12, Proposition 4.1]). Let u and v be the rational functions of \mathbb{P}^2 given by z_1/z_0 and z_2/z_0 , respectively. Then one can check

$$
\{\theta^g\}_{g\in D_8},\ \theta=\frac{1}{1-u-2v}
$$

form a basis over $\mathbb{C}(M_1) = \mathbb{C}(u, v)^{D_8}$. To see this, let

$$
A := \left(\begin{array}{cccccc} \theta & \theta^{\tau} & \theta^{\tau^2} & \theta^{\tau^3} & \theta^{\sigma} & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} \\ \theta^{\tau} & \theta^{\tau^2} & \theta^{\tau^3} & \theta & \theta^{\sigma\tau^3} & \theta^{\sigma} & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} \\ \theta^{\tau^2} & \theta^{\tau^3} & \theta & \theta^{\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^{\sigma} & \theta^{\sigma\tau} \\ \theta^{\tau^3} & \theta & \theta^{\tau} & \theta^{\tau^2} & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^{\sigma} \\ \theta^{\sigma} & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta & \theta^{\tau} & \theta^{\tau^2} & \theta^{\tau^3} \\ \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^{\sigma} & \theta & \theta^{\tau} & \theta^{\tau^2} & \theta^{\tau^3} \\ \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^{\sigma} & \theta^{\sigma\tau} & \theta^{\tau^2} & \theta^{\tau^3} & \theta & \theta^{\tau} \\ \theta^{\sigma\tau^3} & \theta^{\sigma} & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\tau} & \theta^{\tau^2} & \theta^{\tau^3} & \theta \end{array}\right),
$$

and check that det $A \neq 0$. The explicit forms of ψ_1 and ψ_2 with respect to the normal basis $\{\theta^g\}_{g \in D_8}$ are as follows:

$$
\psi_1 = -\frac{(-2 + 6u^3 + 9u - 9uv^2 - 13u^2 + 5v^2)}{(2 + 6u^3 + 9u - 9uv^2 + 13u^2 - 5v^2)}
$$
\n
$$
\times \frac{(1 + u + 2v)(1 + 2u + v)(1 + 2u - v)(1 + u - 2v)}{(-1 + u + 2v)(-1 + 2u + v)(-1 - v + 2u)(-1 + u - 2v)}
$$
\n
$$
\psi_2 = -\frac{(2 + 9u^2v - 5u^2 - 6v^3 + 13v^2 - 9v)}{(-2 + 9u^2v + 5u^2 - 6v^3 - 13v^2 - 9v)}
$$
\n
$$
\times \frac{(1 + u + 2v)(1 + 2u + v)(-1 - v + 2u)(-1 + u - 2v)}{(-1 + u + 2v)(-1 + 2u + v)(1 + 2u - v)(1 + u - 2v)}
$$

838 H. TOKUNAGA

Hence we have a D_8 -equivalent rational map from $\mathbb{P}^2 \to \mathbb{P}^1 \times \mathbb{P}^1$. Note that the existence of this rational map gives another proof for Proposition 2.1.

ACKNOWLEDGEMENT. The author thanks for the referee for his/her comments on the first version of this article.

References

- $[1]$ A. Beauville: Les familles stables de courbes elliptiques sur \mathbb{P}^1 ademettant quatre fibres singu*larities*, C. R. Acad. Sci. Paris S´er. I Math. **294** (1982), 657–660.
- [2] J. Buhler and Z. Reichstein: *On the essential dimesion of a finite group*, Compositio Math. **106** (1997), 159–179.
- [3] D.A. Cox and W.R. Parry: *Torsion in elliptic curves over* $k(t)$, Compositio Math. 41 (1980), 337–354.
- [4] C.U. Jensen, A. Ledet and N. Yui: Generic polynomials, Mathematical Sciences Research Institute Publications, Cambridge University Press, 2002.
- [5] S. Lang: Algebra, Addison-Wesley, (1965).
- [6] R. Miranda and U. Persson: *On extremal rational elliptic surfaces*, Math. Z. **193** (1986), 537–558.
- [7] M. Namba: *On finite Galois coverings of projective manifolds*, J. Math. Soc. Japan, **41** (1989), 391–403.
- [8] M. Namba: *Finite branched coverings of complex manifold*, Sugaku Expositions **5** (1992), 193–211.
- [9] I. Naruki: *Configurations related to maximal rational elliptic surface*; Complex analytic singularities, Adv. Studies in Pure Math. **8**, Kinokuniya, Tokyo, 1986, 315–347
- [10] T. Oda: Convex bodies and algebraic geometry, Egebnisse der Math. **15**, Springer-Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo, 1988.
- [11] J.H. Silverman: The arithmetic of elliptic curves, Springer-Verlag, 1986.
- [12] H. Tokunaga: 2*-dimensional versal* ⁴*-covers and rational elliptic surfaces*, to appear in Séminaire et Congrés, Société Mathematique de France.
- [13] H. Tsuchihashi: *Galois coverings of projective varieties for the dihedral groups and the symmetric groups*, Kyusyu J. Math. **57** (2003), 411–427.

Department of Mathematics Tokyo Metropolitan University 1-1 Minami-Ohsawa Hachioji Tokyo 192-0397, Japan e-mail: tokunaga@comp.metro-u.ac.jp