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Introduction

Let G be a finite group. LeX and be normal projective varietigsis called
a G -cover ofY if there exists a finite surjective morphismX — Y such that the in-
duced morphismr*: C(¥Y) — C(X) gives a Galois extension with G&l(X)/C(Y)) =
G, whereC(X) and C(Y) denote the rational function fields &f arid , respectively.

Derinimion 0.1. A G-coverw: X — M is said to be versal if it satisfies the fol-
lowing property:

For anyG -coverr: Y — Z, there exist a rational map: Z--- — M and a Zariski
open setU inZ such that
() v|y:U — M is a morphism, and
(i) #—Y(U) is birational toU x, X over U .

One could say the investigation of versal -covers is a gegenstudy of generic
or versalG -polynomials (see [2] and [4]). The notion of vér&acovers implicitly ap-
peared in [7], [8], and is defined explicitly in [12], [13]. i$ known that there exists
a versalG -cover for any finite groug  ([8, Theorem 2.4]). Thmelsion of the ver-
sal G -cover given by Namba, however, is equak{6). Hence it does not seem to be
tractable in practical use. We need to find a tractable maaleGf. So far it has been
done for some cases by ad-hoc methods in ([12], [13]).

In this note, we consider versdlg-covers, whereDg is the dihedral group of or-
der 8, i.e.,Dg = (0, 7| 0> =74 =(07)? = 1). It is known that any versabg-cover has
dimension at least 2 (see [2]), and one of such models wa® giv§l2]. The purpose
of this article is to give another new model, which is desadilas follows:

Let p141: X141 — P! be the rational elliptic surface obtained by blowing-up ébas
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points of the (2 2)-pencil o®* x P! given by

{Xo(so — s1)%(t0 — 12) + Aa(sosator 1) = o] S

As for X141, the following facts are well-known:
(i) Xi41 is so-called the elliptic modular surface attached to

Ii(4) ::{(‘C’ z> ESL(Z,Z)‘ (‘C’ 2) - <é j) mod4},

and 141 has three singular fibers and their types ardof I, and I; (see [3, p.350]).
(ii) The group of sectionsMW Xa41), is isomorphic toZ/4Z (see [6] or [9]).

Let o, be the involution onXi4; induced by the inversion with respect to
the group law and letr; be the translation by a 4-torsion section o, and
7, generate a finite fiber preserving automorphism group isphiorto Dg. Let
Y141 = Xaa1/{o,.,,, Ts) be the quotient surface and we denote its quotient morphism
by m41: X141 — Z141. NOw we are in position to state our result:

Theorem 0.2. 741 X141 — X141 IS @ versal Dg-cover

In comparison with the model in [12], this model has a nicecdpton with re-
spect to the action of the Galois group.

1. Preliminaries

Let S be a smooth minimal projective surface, and Aet  be a peiccurves
on S such that a general member is irreducible. Lgt: §--- — P! be the rational
map determined byA , and let S, — S be the resolution of the indeterminacy
of pA. We denote the induced morphism frofi, B by ¢x. We may assume
that ¢, is relatively minimal. Let us begin with the following lemma

Lemma 1.1. Leto be an automorphism of. Suppose thafpg = o5 (we regard
oA as an element of£(S,)). Theno gives rise to a fiber preserving automorphism
of Sp (By abuse of notatignwe also denote it by).

Proof. SinceC(S) = C(Sa), ¥% = @a implies ¢ = pa. Hence a general fiber
of ¢» goes to that ofp, undero. Let o be the induced birational map fror$i,
to itself induced byo. Let u: S, — S be a succession of blowing-ups so that
(i) 0 := ocou becomes a birational morphism and (ii) the number of the ivigwps is
minimal. It is well-known thato"is a composition of blowing-downs. Lef, ..., E,
be the exceptional divisors fqt, and letFy, ..., F; be those foro” We may assume
that F;1 is the (1) curve for the first blow-down. Sincéi can not be any ofE;
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i=1...,r), RE; >0 (=1 ...,r). Since

r r
—1=FK; =F | "Ks, +Y mjE; | = Fip*Ks, +Fu | Y _mjEj |,
j=1 j=1

we have Fiu*Ks, < —1. Henceu(F1) is not any irreducible component in a fiber
of pa. Since the image of:(F1) by o is a point, this implies that a general fiber
of o, does not go to that op, unders, which leads us to a contradiction. ]

ExavpLe 1.2. Let (r, y) be an inhomogeneous coordinatePdfx P!, The pencil
on P! x P! in Introduction is given by

A {Xolx = 1P(y — 1 + Maxy = 0}[A0.>\1]e111>1‘

Let ¢ and r be the automorphisms &' x P! given by
[eg g T T 1
(x ’Y):(y’x), (x ,)’):()”;>

o and 7 generate a finite automorphism group isomorphiclig Since the rational
function onP* x P,

(x = 1P(y — 1
xy ’

is invariant underc and 7, one can apply Lemma 1.1 to this case. In fact, it fol-
lows that P! x PY), = X141, va = @141, and o, 7 fiber preserving automorphisms of
X141. By Example 4.7, Chapter 1l in [11], both and 7 are the compositions of iso-
genies and translations. In particular, the correspondsogenies should be isomor-
phisms as an elliptic curve. By Theorem 10.1, Chapter Ill1f]] the automorphisms
of X141 as an elliptic curve are only the identity amd,,,. Sinceo o 7 has a fixed
point (1, 0), the induced fiber preserving automorphismXag; is non-trivial and fixes

a section,0 . Hence we may assume that 7 = o,,, On X141, by regardingO as
the zero. Also ifr is the composition ob,,,, and a translation, then? = id on X141.
This implies that we may assume thatis a translation by a 4-torsion section

Exavple 1.3. LetN =7Z% and letA; ( = 1...,6) be 2-dimensional cones
in N ® R given by

Ay =Rxpe1 + Rxo(e1 +€2) Ay =Rxo(e1 +€2) + Rxoe
Az =R>o(—€1) + R>0€2 Ag=R>o(—€1) + R>o(—€1 — €2)
As =Rxo(—€1 — €2) +R>o(—€2) Ap = Rxo(—€2) + Rxo€y,
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wheree; = (1, 0), e; = /(0, 1). Let T :U,.GZl A; and Xp,, = TyembE ) (see [10,
§1.2]). The subgroupG , of GL(Z) generated by

(01 (01
“\10) "7 11
is isomorphic toD12. Since G preserveX as abovb;, acts onXp,,. An explicit
description is as follows:
Let { f1, f2} be the basis of Hon\, Z) dual to {e1, e; + €2} and letx =e(f1)

andy =e(f2). (x, y) gives an affine coordinate of the affine open #&t,, determined
by A;. Then

1
(xG" yg) = (yv x)v (xTv yT) = <;7x.y) .
Consider the pencil orX  which is given dm, by

{Mo(xy) + Aa(xy + D)(x + 1) +1) = Gpyg, g ep

on U,,. Since

Xy
(xy+1)(x + 1) +1)

is Djp-invariant, one can apply Lemma 1.1 to this case. In this ,casg coin-
cides with the rational elliptic surfacgesz1: Xes21 — P! (the notation is due to [6]).
The following facts onXgs2; are well-known:

(i) Xes21 is so-called the elliptic modular surface attached to

n@y:{<i§>esuzzﬂ<jz>;z(éj)nmd%,

and has four singular fibers and their types ardfis, I, and I; (see [1] and [6]).
(i) The group of sectionsMW Xs321), is isomorphic toZ/6Z (see [6]).

In our case,pr = we321, @and o and T generate a fiber preserving automorphism
group of X321 isomorphic toD1,. By the same argument to that in Example 1.2, we
may assume that it coincides with one given by the inversigh vespect to the group
law and the translation by a 6-torsion section.

We here raise a question concerning Example 1.3.

Question 1.4. Let Mp,, be the quotient ofXp,, with respect to theDi»-action
in Example 1.3. Is theDi,-cover Xp,, — Mp,, versal? In other words, iXg321 —
Y321 @ versalDip-cover, whereXgso; is the quotient by the inversion with respect to
the group law and the translation by 6-torsion?
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2. Proof of Theorem 0.2

Let o and 7 be the automorphisms @& x P! as in Example 1.2. They give rise
to a finite automorphism group isomorphic . Put ¥, := P! x P!/(o, 7), and we
denote the quotient morphism hyp,: P* x P! — X,,. Theorem 0.2 follows from
Example 1.2 and the proposition below.

Proposition 2.1. wp,: P! x P! — X, is versal
We need two lemmas to prove Proposition 2.1.

Lemma 2.2. Letw:Y — Z be a Dg-cover. Then there exist non-constant ratio-
nal functionsy; and ), such that
(i) (F,¥§) = W2, ),
(i) (Y1, 93) = @2, 1/¢),
(ii)) 11/¢2 ¢ C and
(iv) Y1y 7 1.

Proof. By the normal basis theorem (see [5, p.229]), theiste& € C(Y) such
that {67,0°7} (i =0, 1, 2 3) form a basis of (Y) as a vectorC(Z)-space. Put

0+00‘+0T3+607’3 9+00‘+97’+907’

wl = 97’2 + 90’7’2 + 07 + Qo7 ’ 'QZJZ = 97’2 + 90’7’2 + 07’3 + 90’7’3 :

Both v1 and i, are non-constant rational functions siné$ | g € Dg} is a basis
over C(Z), and the statements (i) and (ii) are straightforward{f = cip, for some
¢ € C, we haveyy = £, by (i). If this happens, then we infer that; = +1 by (i),
but this is impossible ag, is non-constant. Suppose thaty, = 1. Theny,/¥; = 1
by (i). This contradicits to (iii). ]

Lemma 2.3. Let ¢»; and vy be the rational functions as ihemma 2.2.Then
C(Y) = C(Z)(¥1, ¥2).

Proof. Choose a rational number not equahid and we puty) =1 + ci)o. It
is enough to see that # ¢ for all g(# 1) € Ds.
(i) ¥ #Y7. If p =297, we have

Y1 —9P2=c <71 _QZWZ) .
By Lemma 2.2, - ¢11)2 # 0, ¥1 — 2 # 0. So
o= 1 — P2 01 £0.

1— iz
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On the other hand, we have

(wl—wzw) :wz—wlw: Y1 — 12
1ty T—gn ° 1= 4nin
As ¢? = ¢, we havey; = —,, but this contradicts to Lemma 2.2, (iii).

(i) ¥ #¢™ . If Y =9¢7, we have

P2.

(7/) )2
T (- Y3 V2

By Lemma 2.2,c # 0. On the other hand, we have

((w% - 1)¢2> _ Q=) _
(wl 1)w2 c’

(11— v3)n

As ¢ = ¢, we havec? = 1. This contradicts to our choice of
(i) 1 #¢7. If =4, we have

_tia—11
Y1 — 2 by

By the similar argument to the first case, we infer= —1,, but this is impossible.
(iv) v £, If v =47, we havec =1, but this contradicts to our choicecof

(V) ¥ Zyo7. If ¢ =4°7, 7 = 1. This contradicts to Lemma 2.2.

(Vi) 1 9o If p =¢°7, we havec =1 /1bo. AS ¢ =c°, we haveys /i, = /1.
This implies thaty; = +1,, but this contradicts to Lemma 2.2 (iii).

(vii) ¥ # 47 If 1 = ¢°7", we havey2 = 1, but this is impossible. O

Proof of Proposition 2.1. Letr: Y — Z be an arbitraryDg-cover. By Lem-
mas 2.2 and 2.3, there exist non-constant rational furstion and v, such that

(i) C(Y) = C(2) (Y1, ¢2) and (ii) (7,v5) = (2, ¢1) and @1, ¢3) = (Y2, 1/1a).

Define the Dg-equivalent rational magy Y --- — P! x P! by

p €Y — (¥1(p), ¥2(p)) € P x PL.

This shows Proposition 2.1. ]

Now Theorem 0.2 follows from Proposition 2.1 and Example. M& end this
section with the following example.
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ExampLE 2.4. Let
p: Dg — GL(2, C)

be the representation given by

/01 /(01
p(o)—(lo),p(T)—(_lo)-

Let 5= 1p, @ p, and define theDg-action onP? by

8([z0, 21, 22) = [20, 21, 2A(B(g) ~*,  [20, 21, 22 € P2

Put X; =P? and My =P?/Dg (note thatX; — M, is the versalDg-cover by [12,
Proposition 4.1]). Letu andv be the rational functions Bf given by zi/zo
and z,/zo, respectively. Then one can check

1

8 = -
{6} eas 0 1—u—2v

form a basis ovefC(M1) = C(u, v)P¢. To see this, let

0 07’ 97’2 07’3 9(7 9(77' 00’7’2 9(77'3

o 0T 97—3 9 p°oT> go  poT gor

3

07" 07 0 67 o7 o7 g° goT

97’3 9 07’ 97’2 90’7’ 90’7’2 90"1’3 90’

0o 6°7 6°7° 6°T° 6 0T 07 0"

07 6°7° 6°T° ¢° 9 0T 67 67
3

00’7’2 00’7’3 00’ 9(77' 07’2 97’ 6 07’

3 2 2

00’7’ 9(7 9(77' 00’7’ 07’ 97’ 07’3 6

and check that det # 0. The explicit forms ofy; and ¢, with respect to the normal
basis{6%},cp, are as follows:

(=2 + 6u® + u — uv? — 13u? + 507)
C(2+6uB+9u — uv? + 132 — 5v2)
QL+u+20)1+2 v )(1+2 —v)(1+u—2v)
(1+u+2)-1+2u +v)(1—v+2u)(—1+u — 2v)
2+ W%y - 5u? — 603 + 13?2 — )
V2 = T (—2+ W%+ 5uZ — 603 — 1302 — Q)
QL+u+20)Q1+2 +v)E1l—v+2u)(—1+u—2v)
(-1l+u+2v)1+2u +v)(1+2 —v)(1+u — 2v)

Y1 =
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Hence we have @g-equivalent rational map fror®> — P! x P!, Note that the ex-
istence of this rational map gives another proof for Prapmsi2.1.
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