THE SCHUR INDICES OF THE CUSPIDAL UNIPOTENT CHARACTERS OF THE FINITE CHEVALLEY GROUPS $E_7(q)$

Dedicated to Professor Herbert Pahlings on his 65th birthday

MEINOLF GECK

(Received July 8, 2003)

Abstract

We show that the two cuspidal unipotent characters of a finite Chevalley group $E_7(q)$ have Schur index 2, provided that q is an even power of a (sufficiently large) prime number p such that $p \equiv 1 \mod 4$. The proof uses a refinement of Kawanaka’s generalized Gelfand–Graev representations and some explicit computations with the CHEVIE computer algebra system.

1. Introduction

Throughout this paper, let G be a simple algebraic group of adjoint type E_7. Assume that G is defined over the finite field \mathbb{F}_q, with corresponding Frobenius map $F: G \rightarrow G$. There are precisely two cuspidal unipotent characters of G^F denoted by $E_7[\pm \xi]$ where $\xi = \sqrt{-q}$; see the table in [2], §13.9.

The purpose of this paper is to determine the Schur index of $E_7[\pm \xi]$, at least if the characteristic of \mathbb{F}_q is large enough. Modulo this condition on the characteristic, this completes the determination of the Schur indices of the unipotent characters of finite groups of Lie type; see [12], [5] and the references there.

By [4], Table 1, the character values of $E_7[\pm \xi]$ generate the field $\mathbb{Q}(\xi)$. Furthermore, by [4], Example 6.4, we already know that the Schur index is 1 if $p \not\equiv 1 \mod 4$ or if q is not a square, where p is the characteristic of \mathbb{F}_q. Thus, the remaining task is to determine the Schur index when q is a square and $p \equiv 1 \mod 4$.

Theorem 1.1. Assume that q is an even power of a (sufficiently large) prime p such that $p \equiv 1 \mod 4$. Then the characters $E_7[\pm \xi]$ have Schur index 2.

Here, p is “sufficiently large” if Lusztig’s results [11] on generalized Gelfand–Graev characters hold; it is conjectured that this is the case if p is good for G.

The idea of the proof is as follows. We have already seen in [5], §4, that $E_7[\pm \xi]$ occur with multiplicity 1 in a generalized Gelfand–Graev character Γ_u, where u is a

2000 Mathematics Subject Classification : Primary 20C15; Secondary 20G40.
Table 1. The weighted Dynkin diagram for the unipotent support of the cuspidal unipotent characters in type E_7

![Dynkin diagram]

certain unipotent element in G. Here, we shall use a refinement of the construction of Γ_u to show that, under the given assumptions on p and q, the characters $E_7[\pm \xi]$ occur with odd multiplicity in an induced character which cannot be realized over $\mathbb{Q}(\xi)$. By standard arguments on Schur indices, this implies that $E_7[\pm \xi]$ cannot be realized over $\mathbb{Q}(\xi)$. At some stage, the proof relies on the fact that, in Lusztig’s parametrization of the irreducible characters of G^F, the function Δ occurring in [10], Main Theorem 4.23, takes value -1 on the labels corresponding to $E_7[\pm \xi]$.

Furthermore, we rely on some explicit computations in G^F. However, we shall only use computations with the root system and the irreducible characters of the Weyl group of G, for which the CHEVIE system [6] is a convenient tool.

2. Generalized Gelfand–Graev characters for type E_7

A short summary of the construction of generalized Gelfand–Graev characters is given in [5], §2. Assume that q is a power of a “good” prime $p \neq 2, 3$. Let Φ be the root system of G with respect to a fixed maximally split torus T. Let C be the unipotent class of G whose weighted Dynkin diagram $d: \Phi \to \mathbb{Z}$ is given in Table 1. (The notation in that table also defines a labelling of the simple roots in the root system of G.) The class C is the “unipotent support” of the two cuspidal unipotent characters of G^F; see [5], §4, and the references there.

Given the weight function $d: \Phi \to \mathbb{Z}$ specified by the diagram in Table 1, we define unipotent subgroups

$$U_{d,2} := \prod_{\alpha \in \Phi^+ \atop d(\alpha) \geq 2} X_\alpha$$

and

$$U_{d,1} := \prod_{\alpha \in \Phi^+ \atop d(\alpha) \geq 1} X_\alpha,$$

where X_α is the root subgroup in G corresponding to the root α. (It is understood that the products are taken in some fixed order.) The generalized Gelfand–Graev character associated with an element in C^F is obtained by inducing a certain linear character from $U_{d,2}^F$. We have $C_G(u)/C_G(u^2) \cong \mathbb{Z}/2\mathbb{Z}$ for $u \in C$. Thus, C^F splits into two classes in the finite group G^F. By Mizuno [13], Lemma 28, representatives of these
two G^F-classes are given by

$$y_{74} = x_{20}(1)x_{21}(1)x_{23}(1)x_{28}(1)x_{31}(1),$$

$$y_{75} = x_{20}(1)x_{21}(1)x_{28}(1)x_{24}(1)x_{23}(1)x_{25}(1)x_{36}(\xi),$$

where ξ is a generator for the multiplicative group of \mathbb{F}_q and where the subscripts correspond to the following roots in Φ^+:

- $20 : \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,$
- $21 : \alpha_1 + \alpha_3 + \alpha_4 + \alpha_5,$
- $23 : \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6,$
- $24 : \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,$
- $25 : \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$
- $28 : \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5,$
- $31 : \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$
- $36 : \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7.$

(Attention: Here, we use the labelling of the roots as given by the CHEVIE system [6], which is slightly different from that of Mizuno.) We note that both y_{74} and y_{75} lie in $C \cap U_{d,2}^F$. Now let us fix

$$u \in \{y_{74}, y_{75}\} \subseteq C \cap U_{d,2}^F;$$

the above expressions show that

$$u = \prod_{\alpha \in \Phi^+} x_\alpha(\eta_\alpha) \quad \text{where } \eta_\alpha \in \mathbb{F}_q.$$

Then we define a linear character $\varphi_u : U_{d,2}^F \to \mathbb{C}^\times$ by the formula

$$\varphi_u\left(\prod_{\alpha \in \Phi^+} x_\alpha(\xi_\alpha)\right) = \chi\left(\sum_{\alpha \in \Phi^+} c_\alpha \eta_\alpha \xi_\alpha\right) \quad \text{for all } \xi_\alpha \in \mathbb{F}_q,$$

where $c_\alpha \in \mathbb{F}_q$ are certain fixed constants (independent of the η_α and ξ_α) and where $\chi : \mathbb{F}_q^+ \to \mathbb{C}^\times$ is a fixed non-trivial character of the additive group of \mathbb{F}_q; see [5], Definition 2.1, for more details. It will actually be convenient to choose χ in the following special way. Let $\chi_0 : \mathbb{F}_p^+ \to \mathbb{C}^\times$ be a fixed non-trivial character of the additive group of \mathbb{F}_p. Then we take χ to be

$$\chi := \chi_0 \circ \text{Tr}_{\mathbb{F}_q/\mathbb{F}_p}$$

where $\text{Tr}_{\mathbb{F}_q/\mathbb{F}_p} : \mathbb{F}_q^+ \to \mathbb{F}_p^+$ is the trace map. Now we have

$$\text{Ind}_{U_{d,2}^F}^{G^F}(\varphi_u) = [U_{d,1}^F : U_{d,2}^F]^{1/2} \cdot \Gamma_u,$$

where Γ_u is the generalized Gelfand–Graev character associated with u. We have seen in [5], Corollary 4.3, that

$$\langle E_7[\pm \xi], \Gamma_u \rangle_{G^F} = 1 \quad \text{for suitable } u \in \{y_{74}, y_{75}\}.$$
(Here, and throughout the paper, we denote by \((\ , \)_A\) the standard inner product on the character ring of a finite group \(A\).)

We will now refine the construction of \(\Gamma_u\). The strategy for doing this has already been outlined in [5], §4. For this purpose, we shall assume from now on that

\[q \text{ is an even power of } p. \]

Since \(G\) is simple of adjoint type, we have an \(\mathbb{F}_q\)-isomorphism

\[
h: \prod_{7 \text{ factors}} k^x \to T, \quad (x_1, \ldots, x_7) \mapsto h(x_1, \ldots, x_7),
\]

such that \(\alpha_i(h(x_1, \ldots, x_7)) = x_i \) for \(1 \leq i \leq 7\). In particular, we have \(T^F = \{h(x_1, \ldots, x_7) \mid x_i \in \mathbb{F}_q^x\}\). We shall set

\[
t := h(v^{1/2}, 1, 1, v^{1/2}, 1, v^{1/2}, 1) \in T^F
\]
as in the proof of [5], Lemma 4.1, where \(v\) is a generator for the multiplicative group of \(\mathbb{F}_p \subset \mathbb{F}_q\) and \(v^{1/2}\) is a square root of \(v\) in \(\mathbb{F}_q\). (The square root exists since \(q\) is an even power of \(p\).) Then \(t\) has the property that \(\alpha(t) = v\) for all roots \(\alpha\) involved in the expressions for \(y_{74}\) or \(y_{75}\) as products of root subgroup elements; furthermore, we have \(\alpha(t) = 1 \) for all roots \(\alpha\) such that \(d(\alpha) = 0\). The element \(t\) has order \(2(p - 1)\) and \(H := \langle t \rangle\) normalizes \(U_{d,2}\). We set

\[
s_1 := h(-1, 1, 1, -1, 1, -1, 1) = t^{p-1} \in T^F.
\]

Note that \(\alpha(s_1) = 1\) for all roots \(\alpha \in \Phi^+\) which are involved in the expressions of \(y_{74}\) and \(y_{75}\) as products of root subgroup elements. Thus, \(s_1\) fixes the character \(\varphi_u\), and so we can extend \(\varphi_u\) to \(U_{d,2}^F, \langle s_1 \rangle\). Actually, there are two such extensions which we denote by \(\tilde{\varphi}_u\) and \(\tilde{\varphi}'_u\). Their values are determined by

\[
\tilde{\varphi}_u(xs_1) = \varphi_u(x) \quad \text{and} \quad \tilde{\varphi}'_u(xs_1) = -\varphi_u(x) \quad \text{for all } x \in U_{d,2}^F.
\]

Definition 2.1. Let \(u \in \{y_{74}, y_{75}\}\). Then we set

\[
\psi_u := \text{Ind}_{U_{d,2}^F, \langle s_1 \rangle}^{U_{d,2}^F, H}(\tilde{\varphi}_u) \quad \text{and} \quad \psi'_u := \text{Ind}_{U_{d,2}^F, \langle s_1 \rangle}^{U_{d,2}^F, H}(\tilde{\varphi}'_u).
\]

Thus, we have

\[
\text{Ind}_{U_{d,2}^F, \langle s_1 \rangle}^{U_{d,2}^F, H} (\varphi_u) = \psi_u + \psi'_u \quad \text{and} \quad [U_{d,1}^F : U_{d,2}^F]^{1/2} \cdot \Gamma_u = \tilde{\Gamma}_u + \tilde{\Gamma}'_u,
\]

where

\[
\tilde{\Gamma}_u := \text{Ind}_{U_{d,2}^F, \langle s_1 \rangle}^{U_{d,2}^F, H} (\varphi_u) = \text{Ind}_{U_{d,2}^F, H}^{U_{d,2}^F} (\psi_u),
\]
The following result provides some crucial information concerning ψ_{u} and ψ'_{u}.

Proposition 2.2. Recall that q is an even power of p. Then, with the above notation, the following hold.

(a) Both ψ_{u} and ψ'_{u} are irreducible characters of $U_{d,2}^{F,H}$.
(b) ψ_{u} can be realized over \mathbb{Q}.
(c) ψ'_{u} is rational-valued but cannot be realized over \mathbb{Q}. In fact, ψ'_{u} has non-trivial local Schur indices at ∞ and at the prime p.

Proof. (see also the argument of Ohmori [14], p. 154.) Let

$$x := \prod_{\alpha \in B_{2}, \alpha \neq 0} x_{\alpha}(\xi_{\alpha}) \in U_{d,2}^{F}$$

and

$$y_{X} := \sum_{\alpha \in B_{2}, \alpha \neq 0} c_{\alpha} \eta_{\alpha} \xi_{\alpha},$$

where $\xi_{\alpha} \in F_q$. Then, as in the proof of [5], Proposition 2.3, we have

$$\varphi_{u}(t^{i}xt^{-i}) = \chi(\nu^{i}y_{X}) \quad \text{for } 1 \leq i \leq 2(p - 1).$$

In particular, this implies $\text{Stab}_{H}(\varphi_{u}) = (s_{1})$. Hence, by Clifford theory, the induced character

$$\text{Ind}_{U_{d,2}^{F,H}}^{U_{d,2}^{F,H}}(\varphi_{u}) = \psi_{u} + \psi'_{u}$$

has inner product 2. Thus, we ψ_{u} and ψ'_{u} must be irreducible, proving (a).

Next we prove (b). Using Mackey’s formula and relation (1), we have that

$$\text{Ind}_{U_{d,2}^{F,H}}^{U_{d,2}^{F,H}}(\varphi_{u})(x) = \sum_{i=1}^{2(p-1)} \varphi_{u}(t^{i}xt^{-i}) = \sum_{i=1}^{2(p-1)} \chi(\nu^{i}y_{X})$$

$$= \sum_{i=1}^{2(p-1)} \chi_{0}(\nu^{i} \text{Tr}_{q^{d}/q}(\gamma_{X})) = \left\{ \begin{array}{cl} 2(p-1) & \text{if } \text{Tr}_{q^{d}/q}(\gamma_{X}) = 0, \\ -2 & \text{if } \text{Tr}_{q^{d}/q}(\gamma_{X}) \neq 0. \end{array} \right.$$

In particular, this shows that the values are rational integers. Thus, $\psi_{u} + \psi'_{u}$ is rational-valued. Now assume, if possible, that ψ_{u} is not rational-valued. Then the characters ψ_{u} and ψ'_{u} must be algebraically conjugate. Consequently, ψ_{u} and ψ'_{u} occur with the same multiplicity in every rational-valued character. Now, by the Mackey formula and Frobenius reciprocity, we have

$$\left\langle \psi'_{u}, \text{Ind}_{H}^{U_{d,2}^{F,H}}(1_{H}) \right\rangle_{U_{d,2}^{F,H}} = \left\langle \text{Ind}_{U_{d,2}^{F,H}}^{U_{d,2}^{F,H}}(\varphi'_{u}), \text{Ind}_{H}^{U_{d,2}^{F,H}}(1_{H}) \right\rangle_{U_{d,2}^{F,H}}$$

$$= \left\langle \text{Res}_{(g_{1})}^{U_{d,2}^{F,H}}(\varphi'_{u}), 1_{(g_{1})} \right\rangle_{U_{d,2}^{F,H}}.$$
= 0,
since $\tilde{\varphi}_u'(s_1) = -1$. (Here, the symbol $\mathbf{1}$ stands for the unit character.) By a similar argument, since $\tilde{\varphi}_u(s_1) = 1$, we also have

$$\left\langle \psi_u, \text{Ind}^{U_{d^2,2}^F|H}_{U_{d^2,2}^F|H}(1_H) \right\rangle_{U_{d^2,2}^F|H} = 1.$$

Thus, ψ_u and ψ_u' do not occur with the same multiplicity in some rational-valued character, a contradiction. Thus, our assumption was wrong and so both ψ_u and ψ_u' are rational-valued. But then the above multiplicity 1 formula implies that ψ_u can be realized over \mathbb{Q}, by a standard argument concerning Schur indices (see Isaacs [8], Corollary 10.2).

Finally, we prove (c). We begin by showing that the local Schur index at ∞ is non-trivial. In other words, we must show that ψ_u' cannot be realized over \mathbb{R}. For this purpose, by a well-known criterion due to Frobenius and Schur (see Isaacs [8], Chapter 4), it is enough to show that

$$\frac{1}{|U_{d^2,2}^F|} \sum_{g \in U_{d^2,2}^F} \psi_u'(g^2) = -1.$$

Now, in order to evaluate the above sum, we note that

$$\frac{1}{|U_{d^2,2}^F|} \sum_{g \in U_{d^2,2}^F} \psi_u(g^2) = 1,$$

since ψ_u can be realized over \mathbb{Q}. Thus, it will be enough to show that

$$\frac{1}{|U_{d^2,2}^F|} \sum_{g \in U_{d^2,2}^F} \text{Ind}^{U_{d^2,2}^F|H}_{U_{d^2,2}^F|H}(\varphi_u)(g^2) = \frac{1}{|U_{d^2,2}^F|} \sum_{g \in U_{d^2,2}^F} (\psi_u + \psi_u')(g^2) = 0.$$

Let $g \in U_{d^2,2}^F|H$ and write $g = xh$ where $x \in U_{d^2,2}^F$ and $h \in H$. Now the value of the above induced character on g^2 is zero unless $g^2 \in U_{d^2,2}^F$. Thus, we only need to consider elements $g = xh$ where $h = 1$ or $h = s_1$. So we must show that

$$\sum_{x \in U_{d^2,2}^F} \text{Ind}^{U_{d^2,2}^F|H}_{U_{d^2,2}^F|H} \left(\varphi_u\right)(x^2) + \sum_{x \in U_{d^2,2}^F} \text{Ind}^{U_{d^2,2}^F|H}_{U_{d^2,2}^F|H} \left(\varphi_u\right)(xs_1xs_1) = 0.$$

Now, since $U_{d^2,2}^F$ has odd order, the map $x \mapsto x^2$ defines a bijection of $U_{d^2,2}^F$ onto itself. Hence the first sum evaluates to

$$\sum_{x \in U_{d^2,2}^F} \text{Ind}^{U_{d^2,2}^F|H}_{U_{d^2,2}^F|H} \left(\varphi_u\right)(x^2) = |U_{d^2,2}^F| \cdot \left\langle \text{Ind}^{U_{d^2,2}^F|H}_{U_{d^2,2}^F|H} \left(\varphi_u\right), 1_{U_{d^2,2}^F|H} \right\rangle_{U_{d^2,2}^F|H} = 0,$$
Now consider the second sum. For this purpose, we note that $\alpha(S_1) = 1$ for all roots $\alpha \in \Phi^+$ which are involved in the expressions of γ_{14} and γ_{15} as products of root subgroup elements. Thus, if χ and γ_χ are as in (1), then we have

$$\gamma_{(\chi S_1)^2} = \sum_{\alpha \in \Phi^+} c_\alpha \eta_\alpha(\alpha(S_1) + 1) \xi_\alpha = 2\gamma_\chi = \gamma_{\chi^2}.$$

Using once more Mackey’s formula as at the beginning of this proof, we see that

$$\text{Ind}_{U_{d;2}}^{U_{d;2},H}(\psi'_u)(x^2) = \sum_{i=1}^{2(p-1)} \chi(i^2 \gamma_{x^2}) = \sum_{i=1}^{2(p-1)} \chi(i^2 \gamma_{(x S_1)^2}) = \text{Ind}_{U_{d;2}}^{U_{d;2},H}(\psi'_u)(x S_1, x S_1)$$

for all $x \in U_{d;2}$. Consequently, the second sum also equals 0. Thus, we have shown that ψ'_u cannot be realized over \mathbb{R}. We shall now use some general properties of Schur indices; see Feit [3], §2, for references. First, since ψ'_u is rational-valued but ψ'_u cannot be realized over \mathbb{R}, the Schur index of ψ'_u is 2 (by the Brauer–Speiser theorem; see [3], 2.4). Furthermore, there exists at least one prime number l such that the l-local Schur index of ψ'_u is 2 (by the Hasse sum formula; see [3], 2.15). Thus, it will be enough to show that the l-local Schur index of ψ'_u is 1, for every prime $l \neq p$. Let l be such a prime. If $l \neq 2$, then ψ'_u is a character of l-defect 0 of $U_{d;2}^{F}$. So the l-local Schur index is 1 by [3], 2.10. Finally, if $l = 2$, then ψ'_u is a character of 2-defect 1 and, hence, lies in a block with a cyclic defect group of order 2. Consequently, that block contains only two irreducible characters and so ψ'_u remains irreducible as a 2-modular Brauer character. This implies again that the local Schur index is 1; see [3], 2.10.

3. A subgroup of type $D_6 \times A_1$

Our next aim is to compute the multiplicity of $E_7[\pm e]$ in $\tilde{\Gamma}_u$ and $\tilde{\Gamma}'_u$; see Definition 2.1. We already know that the multiplicity of $E_7[\mp e]$ in the sum $\tilde{\Gamma}_u + \tilde{\Gamma}'_u$ equals $[U_{d;1}^{F} : U_{d;2}^{F}]^{1/2}$, for suitable $u \in \{\gamma_{14}, \gamma_{15}\}$. We shall now try to compute the multiplicity in the difference $\tilde{\Gamma}_u - \tilde{\Gamma}'_u$. For this purpose, we take a closer look at the semisimple element S_1 and its centralizer. Let

$$G_1 := \langle T, X_\alpha \mid \alpha \in \Phi_1 \rangle \quad \text{where} \quad \Phi_1 := \{\alpha \in \Phi \mid \alpha(S_1) = 1\}.$$

Using the CHEVIE function ReflectionSubgroup, we check that the root system Φ_1 has type $D_6 \times A_1$; a system of simple roots in Φ_1 is given by

$$\Pi_1 = \{\alpha_2, \alpha_3, \alpha_5, \alpha_7, \alpha_{14}, \alpha_{18}, \alpha_{28}\}.$$
where
\[\alpha_{14} := \alpha_1 + \alpha_3 + \alpha_4, \quad \alpha_{18} := \alpha_4 + \alpha_5 + \alpha_6, \quad \alpha_{28} := \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5. \]

(Here, the numbering of the roots is the same as that given by CHEVIE.) The corresponding Dynkin diagram and the restriction of the weight function \(d \) to \(\Pi_1 \) are given in Table 2. Furthermore, one can check, using CHEVIE (for example), that

\[N_W(W_1) = \{ w \in W \mid w(\Phi_1) \subseteq \Phi_1 \} = W_1 \]

where \(W_1 := \langle w_\alpha \mid \alpha \in \Phi_1 \rangle \subset W \) is the Weyl group of \(G_1 \) (and where we denote by \(w_\beta \) the reflection with root \(\beta \), for any root \(\beta \in \Phi \)).

Lemma 3.1. We have \(C_G(S_1) = G_1 \); in particular, \(C_G(S_1) \) is connected.

Proof. By Carter [2], §3.5, we have \(C_G(S_1)^0 = G_1 \). Hence, \(G_1 \) is a normal subgroup in \(C_G(S_1) \). So it is enough to show that \(N_G(G_1) = G_1 \). Let \(g \in N_G(G_1) \). Then \(gTg^{-1} \) is a maximal torus in \(G_1 \) and so there exists some \(g_1 \in G_1 \) such that \(gTg^{-1} = g_1Tg_1^{-1} \). Thus, we have \(g_1^{-1}g \in N_G(T) \) and so \(g \in G_1N_G(T) \). Hence, we may assume without loss of generality that \(g \in N_G(T) \cap N_G(G_1) \). Now, for any \(g \in N_G(T) \cap N_G(G_1) \) and any \(\alpha \in \Phi_1 \), we have \(gX_{\alpha}g^{-1} = X_{w(\alpha)} \subseteq G_1 \), where \(w \) is the image of \(g \) in \(W = N_G(T)/T \). Thus, we have \(w(\Phi_1) \subseteq \Phi_1 \) and so \(w \in W_1 \) (see the above remarks). This implies \(g \in G_1 \), as required.

Let \(C_1 \) be the conjugacy class of \(y_{74} \) in \(G_1 \) and denote by \(d_1 : \Phi_1 \to \mathbb{Z} \) the corresponding weighted Dynkin diagram. Using the identification results in [1], Theorem 11.3.2, it is straightforward to check that, under the natural matrix representation of a group of type \(D_6 \times A_1 \), the elements \(y_{74} \) and \(y_{75} \) correspond to matrices with Jordan blocks of size 1, 1, 2, 5, 5 (where the block of size 2 comes from the \(A_1 \)-factor). Hence, using [2], §13.1, we see that \(d_1 \) is given by the restriction of \(d \) to \(\Phi_1 \), as specified in Table 2. Furthermore, we notice that the above roots can all be written as sums of roots in \(\Pi_1 \). Thus, we have

\[y_{74}, y_{75} \in C_1 \cap U_{d_1,2}^F, \]
where $U_{d,2}$ is the unipotent subgroup of G_1 defined with respect to d_1.

Lemma 3.2. Let $u \in \{\gamma_74, \gamma_75\}$. Then we have $\dim \mathcal{B}_u^1 = 4$ (where \mathcal{B}_u^1 denotes the variety of Borel subgroups of G_1 containing u) and

$$C_{G_1}(u)/C_{G_1}(u)^\circ \cong C_{G}(u)/C_{G}(u)^\circ \cong \mathbb{Z}/2\mathbb{Z}.$$

Proof. Let $u := \gamma_74$. The formula for $\dim \mathcal{B}_u^1$ follows from [2], §13.1. To prove the remaining statements, we note that

$$s_1 \in S := \{h(x, x^{-2}, x^{-2}, x^3, x^{-2}, x, 1) \mid x \in k^x\} \subseteq C_{G_1}(u).$$

Furthermore, one checks that $Z(G_1) = \{t \in T \mid \alpha(t) = 1 \text{ for all } \alpha \in \Phi_1\} = \langle s_1 \rangle$. Thus, since S is connected, we have $Z(G_1) \subseteq C_{G_1}(u)^\circ$.

Now let $\pi : G_1 \to H_1$ be the adjoint quotient of G_1, where H_1 is a semisimple group of adjoint type $D_5 \times A_1$. Let \bar{u} be the image of u in H_1. Then, by Carter [2], §13.1, we know that $C_{H_1}(\bar{u})/C_{H_1}(\bar{u})^\circ \cong \mathbb{Z}/2\mathbb{Z}$. Furthermore, π induces a surjective homomorphism

$$C_{G_1}(u)/C_{G_1}(u)^\circ \twoheadrightarrow C_{H_1}(\bar{u})/C_{H_1}(\bar{u})^\circ \cong \mathbb{Z}/2\mathbb{Z}$$

with kernel given by the image of $Z(G_1)$ in $C_{G_1}(u)/C_{G_1}(u)^\circ$. Since $Z(G_1) \subseteq C_{G_1}(u)^\circ$, that image is trivial and so the above surjective map is also injective. \qed

Proposition 3.3. Let $u \in \{\gamma_74, \gamma_75\} \subseteq C \cap U_{d,2}^F$. Then, as we already noted, we have $u \in C_1 \cap U_{d,2}^F$ and so the corresponding generalized Gelfand–Graev character Γ_u^1 of G_1^F is well-defined. We have

$$\tilde{\Gamma}_u(y s_1) - \tilde{\Gamma}_u'(y s_1) = \Gamma_u^1(y) \quad \text{for all } y \in G_1^F \text{ unipotent},$$

Proof. By the Mackey formula, we have

$$\tilde{\Gamma}_u(y s_1) = \text{Res}_{G_1^F}^{G_1^F}(\tilde{\Gamma}_u)(y s_1) = \text{Res}_{G_1^F}^{G_1^F}\left(\text{Ind}_{U_{d,2},s_1}^{G_1^F}(\tilde{\varphi}_u)\right)(y s_1)$$

$$= \sum_{z} \text{Ind}_{U_{d,2},s_1}^{G_1^F}\left(\text{Res}_{U_{d,2},s_1}^{G_1^F}(\tilde{\varphi}_u)\right)(y s_1),$$

where z runs over a set of representatives of the $(U_{d,2}^F, s_1, G_1^F)$-double cosets of G_1^F. Let us fix such a double coset representative, z say. Assume that the value at $y s_1$ of the corresponding induced character in the above sum is non-zero. Then $y s_1$ must be G_1^F-conjugate to an element in the subgroup $(U_{d,2}^F, s_1, G_1^F) \cap G_1^F$. Consequently, s_1 must be G_1^F-conjugate to an element in that subgroup. Since $\langle s_1 \rangle$ is a Sylow 2-subgroup of $U_{d,2}^F, s_1$, we conclude that all elements of order 2 in $U_{d,2}^F, s_1$ are of the form $x s_1 x^{-1}$.
where \(x \in U_{d,2}^F \). Thus, we have \(c^{-1} x c = z^{-1} x s_1 x^{-1} z \) for some \(c \in G_1^F \) and some \(x \in U_{d,2}^F \). Consequently, \(x^{-1} z c^{-1} \in C_G(s_1)^F = G_1^F \) and so \(z \in x G_1^F c \in U_{d,2}^F . G_1^F \). Thus, \(z \) represents the trivial double coset and so we can take \(z = 1 \). Using the fact that

\[
U_{d,2}^F \cap G_1^F = U_{d,2}^F \times \langle s_1 \rangle
\]

(where \(U_{d,2} \subseteq G_1 \) is the unipotent subgroup defined with respect to the weighted Dynkin diagram \(d_1 : \Phi_1 \to \mathbb{Z} \)) we find that

\[
\tilde{\Gamma}_u(y s_1) = \text{Ind}_{U_{d,2}^F \times \langle s_1 \rangle}^{G_1^F} (\varphi_u^1 \otimes 1_{\langle s_1 \rangle})(y s_1)
\]

where \(\varphi_u^1 \) denotes the restriction of \(\varphi_u \) to \(U_{d,2}^F \). Since \(s_1 \) is in the center of \(G_1 \), it is readily checked that

\[
\tilde{\Gamma}_u(y s_1) = \frac{1}{2} \varphi_u(s_1) \text{Ind}_{U_{d,2}^F}^{G_1^F} (\varphi_u^1)(y) = \frac{1}{2} \text{Ind}_{U_{d,2}^F}^{G_1^F} (\varphi_u^1)(y).
\]

By a completely analogous argument, we also obtain that

\[
\Gamma'_u(y s_1) = \frac{1}{2} \varphi'_u(s_1) \text{Ind}_{U_{d,2}^F}^{G_1^F} (\varphi'_u^1)(y) = -\frac{1}{2} \text{Ind}_{U_{d,2}^F}^{G_1^F} (\varphi'_u^1)(y).
\]

Thus, it remains to check that

\[
\Gamma_u^1 = \text{Ind}_{U_{d,2}^F}^{G_1^F} (\varphi_u^1).
\]

For this purpose, we must show that \(\varphi_u^1 \) indeed is the linear character of \(U_{d,2}^F \) required in the definition of \(\Gamma_u^1 \). Now, the definition of \(\Gamma_u^1 \) requires the choice of a non-degenerate bilinear form and of an opposition automorphism on the Lie algebra of \(G_1 \). However, the Lie algebra of \(G_1 \) is naturally contained in the Lie algebra of \(G \), with compatible Cartan decompositions. Thus, the chosen bilinear form and the chosen opposition automorphism restrict to the Lie algebra of \(G_1 \), and this implies that \(\varphi_u^1 \) is the required linear character of \(U_{d,2}^F \). \(\square \)

A formula of this kind has been stated (without proof) by Kawanaka in [9], Lemma 2.3.5; see also the Ph. D. thesis of Wings [16], §3.2.1.

Remark 3.4. Let \(g \in G^F \) and write \(g = g_s g_u = g_u g_s \) where \(g_s \in G^F \) is semisimple and \(g_u \in G^F \) is unipotent. Assume that \(g_s \) is not conjugate to \(s_1 \) in \(G^F \). Then we have

\[
(\tilde{\Gamma}_u - \Gamma_u')(g) = 0.
\]

Indeed, if the value is non-zero, then \(g \) must be \(G^F \)-conjugate to an element in \(U_{d,2}^F \cdot \langle s_1 \rangle \). But then \(g_s \) will also be \(G^F \)-conjugate to an element in that subgroup. Using a Sylow argument as in the above proof, we see that either \(g_s = 1 \) or \(g_s \) is
G^F-conjugate to s_1, as claimed. Furthermore, if $g_s = 1$, then it is readily checked that $\tilde{\Gamma}_u'(g) = \tilde{\Gamma}_u''(g)$.

Thus, in order to compute the scalar product of $E_7[\pm \xi]$ with $\tilde{\Gamma}_u - \tilde{\Gamma}_u''$, it will be enough to know the values of $E_7[\pm \xi]$ on elements of the form ys_1 where $y \in G_1^F$ is unipotent. Furthermore, since $E_7[\xi]$ and $E_7[-\xi]$ are complex conjugate and since $\tilde{\Gamma}_u$ and $\tilde{\Gamma}_u'$ are rational-valued, it will actually be enough to consider the sum $E_7[\xi] + E_7[-\xi]$. Now, by Lusztig [10], Main Theorem 4.23, we have

$$E_7[\xi] + E_7[-\xi] = R_{512_u} - R_{512_u'}.$$

(Note that the function Δ occurring in [10], 4.23, takes value -1 on the labels corresponding to the characters $E_7[\pm \xi]$.) Here, 512_u, $512_u'$ are the two irreducible characters of W of degree 512 and R_{512_u}, $R_{512_u'}$ are the corresponding “almost characters”, as defined by Lusztig [10], (3.7). For any $\phi \in \text{Irr}(W)$, we have

$$R_\phi := \frac{1}{|W|} \sum_{w \in W} \phi(w) R_{T_w,1};$$

here, $T_w \subseteq G$ is an F-stable maximal torus obtained from T by twisting with w and $R_{T_w,1}$ is the Deligne–Lusztig generalized character associated with the trivial character of T_w^F. Similarly, for any $\psi \in \text{Irr}(W_1)$, we denote by R_{ψ}^{1} the corresponding almost character of G_1^F.

Lemma 3.5. Let $\phi \in \text{Irr}(W)$ and write

$$\text{Res}_{W_1}^W(\phi) = \sum_{\psi \in \text{Irr}(W_1)} m(\phi, \psi) \psi \quad \text{where} \quad m(\phi, \psi) \in \mathbb{Z}_{\geq 0}.$$

Let $y \in G_1^F$ be a unipotent element. Then we have

$$R_\phi(ys_1) = \sum_{\psi \in \text{Irr}(W_1)} m(\phi, \psi) R_{\psi}^{1}(y).$$

Proof. The character formula for $R_{T_w,1}$ (see [2], Theorem 7.2.8) shows that

$$R_{T_w,1}(ys_1) = \frac{|C_w(\psi)|}{|W_1|} \sum_{\substack{n \in W_1 \\
 \text{and} \ n \sim \omega}} R_{T_{\psi}^{1},1}(y)$$

where the relation \sim means conjugacy in W. (Here, $R_{T_w,1}^{1}$ denotes a Deligne–Lusztig generalized character of G_1^F.) Thus, we have

$$R_\phi(ys_1) = \frac{1}{|W|} \sum_{\substack{n \in W_1 \\
 \text{and} \ n \sim \omega}} \frac{|C_w(\psi)|}{|W_1|} \phi(n) R_{T_{\psi}^{1},1}(y).$$
\[= \frac{1}{|W|} \sum_{w_1 \in W_1} \left(\frac{1}{|W|} \sum_{w \in W \atop w \sim w_1} |C_W(w)| \phi(w) \right) \Gamma^1_{u_1,y_1}(y) \]

Now, we have \(\phi(w) = \phi(w_1) \) and \(|C_W(w)| = |C_W(w_1)| \) for all \(w_1 \in W_1 \) such that \(w \sim w_1 \). Thus, we have

\[\frac{1}{|W|} \sum_{w \in W \atop w \sim w_1} |C_W(w)| \phi(w) = \frac{|C_W(w_1)|}{|W|} \phi(w_1) \sum_{w \in W \atop w \sim w_1} 1 = \phi(w_1). \]

Writing \(\phi(w_1) = \sum_{\psi} m(\phi, \psi) \psi(w_1) \), we obtain the desired expression. \(\square \)

Corollary 3.6. With the notation of Proposition 3.3 and Lemma 3.5, we have

\[\langle R_\phi, \hat{\Gamma}_u - \hat{\Gamma}^v_{u_1} \rangle_{GF} = \sum_{\psi \in \text{Irr}(W_1)} m(\phi, \psi) \langle R_\psi, \Gamma^1_{u_1} \rangle_{GF}, \]

for any \(\phi \in \text{Irr}(W) \) and \(u \in \{y_{74}, y_{75}\} \subseteq C_1 \cap U^F_{d_1,2} \).

Proof. Immediate from Proposition 3.3, Remark 3.4 and Lemma 3.5. \(\square \)

We now need some explicit information concerning the restriction of characters from \(W \) to \(W_1 \). Using the CHEVIE function *InductionTable*, we compute that

\[\text{Res}^W_{W_1}(512_d) \otimes \varepsilon = \langle [21, 3] \boxtimes 1 \rangle + \text{sum of } \psi \text{ where } \psi \in \text{Irr}(W_1) \text{ and } a_\psi > 4, \]

\[\text{Res}^W_{W_1}(512_d^v) \otimes \varepsilon = \langle [2, 31] \boxtimes 1 \rangle + \text{sum of } \psi \text{ where } \psi \in \text{Irr}(W_1) \text{ and } a_\psi > 4. \]

Here, \(1 \) denotes the unit character on the \(A_1 \)-factor of \(W_1 \) and \(\varepsilon \) denotes the sign character of \(W_1 \). The characters of the \(D_6 \)-factor are denoted by \([\lambda, \mu] \) where \(\lambda \) and \(\mu \) are partitions such that \(|\lambda| + |\mu| = 6 \). The \(a \)-invariant of a character is defined as in Lusztig [10], (4.1); in CHEVIE, these \(a \)-invariants are obtained by the function *LowestPowerGenericDegrees*. We have

\[a_\psi = 4 \quad \text{for } \psi = [21, 3] \boxtimes 1 \text{ and } \psi = [2, 31] \boxtimes 1. \]

With these explicit formulas, we can now prove the following result.

Proposition 3.7. Assume that the characteristic \(p \) is large enough, such that Lusztig’s formula in [11], Theorem 7.5, for the values of a generalized Gelfand– Graev holds for \(\Gamma^1_{u_1} \). By [5], Corollary 4.3, there exists some \(u \in \{y_{74}, y_{75}\} \) such that \(\langle E_7[\pm \xi], \Gamma^1_{u_1} \rangle_{GF} = 1 \). For this element \(u \), we have

\[\langle E_7[\pm \xi], \hat{\Gamma}_u - \hat{\Gamma}^v_{u_1} \rangle_{GF} = -1. \]
Proof. We have already mentioned in the remarks preceding Lemma 3.5 that
\[E_7[x] + E_7[-x] = R_{512_a} - R_{512_b}. \]

Since \(\Gamma_u \) and \(\Gamma'_u \) are rational-valued (see Proposition 2.2), we have
\[
\langle E_7[x], \Gamma_u - \Gamma'_u \rangle_{GF} = \frac{1}{2} \langle E_7[x], E_7[-x], \Gamma_u - \Gamma'_u \rangle_{GF} = \frac{1}{2} \langle R_{512_a} - R_{512_b}, \Gamma_u - \Gamma'_u \rangle_{GF}. \]

Now let \(\psi \in \text{Irr}(W_1) \) be a constituent in the restriction of \(512_a \) or \(512_b \) from \(W \) to \(W_1 \). Then, by Corollary 3.6, we must compute the scalar product \(\langle R_{\psi}, \Gamma'_u \rangle_{GF} \).

Let \(D \) denote the Alvis–Curtis–Kawanaka duality operation on the character ring of \(G_1 \); see Lusztig [10], (6.8). We have \(D(R_{\psi}) = R_{\psi \otimes \psi} \) and so
\[
\langle R_{\psi}, \Gamma'_u \rangle_{GF} = \langle D(R_{\psi}), D(\Gamma'_u) \rangle_{GF} = \langle R_{\psi \otimes \psi}, D(\Gamma'_u) \rangle_{GF}. \]

Now, in order to evaluate the above scalar product, it is enough to know the values of \(R_{\psi \otimes \psi} \) on the unipotent elements of \(G_1. \) By Shoji’s algorithm [15] and by [11], Corollary 10.9, we know that \(R_{\psi \otimes \psi}(y) = 0 \) if \(\dim \mathfrak{B}_u < a_{\psi \otimes \psi}. \) On the other hand, we have \(D(\Gamma'_u)(y) = 0 \) if \(\dim \mathfrak{B}_u < \dim \mathfrak{B}_y. \) (This follows from [11]; see the remarks in [4], (2.4).) Thus, the above scalar product is zero if \(a_{\psi \otimes \psi} > \dim \mathfrak{B}_u = 4. \) Taking into account the explicit information concerning the restrictions of \(512_a \) and \(512_b \) from \(W \) to \(W_1 \), we conclude that

\[
\langle E_7[x], \Gamma_u - \Gamma'_u \rangle_{GF} = \frac{1}{2} \langle R_{[21,3] \otimes 1} - R_{[2,31] \otimes 1}, D(\Gamma'_u) \rangle_{GF}. \]

Now [21, 3] \(\otimes \) 1 and [2, 31] \(\otimes \) 1 lie in the same family of characters of \(W_1 \); see [10], Chapter 4. The Fourier matrix (which has size \(4 \times 4 \)) for that family shows that
\[
R_{[21,3] \otimes 1} - R_{[2,31] \otimes 1} = -\rho_1 - \rho_2 \]
where \(\rho_1 \) and \(\rho_2 \) are unipotent characters of \(G_1. \) Now, we can explicitly compute the unipotent support of these two characters; see [11], §11, or [7], §3.C. This involves the knowledge of the Springer correspondence for \(G_1 \). Using the description of that correspondence in [2], §13.3, we find that \(\rho_1 \) and \(\rho_2 \) have unipotent support \(C_1. \) Thus, by the formula in [7], Remark 3.8, we have

\[
\langle \rho_i, D(\Gamma_{y_3}) + D(\Gamma_{y_3}'), G_1 \rangle = \langle D(\rho_i), \Gamma_{y_3} + \Gamma'_{y_3} \rangle_{G_1} = 1 \quad \text{for } i = 1, 2. \]

Note that \(C_{G_1}(y_3)/C_{G_1}(y_3)^{\circ} \cong \mathbb{Z}/2\mathbb{Z} \) by Lemma 3.2 and that \(D(\rho_1), D(\rho_2) \) are actual characters in the present situation; see [10], (6.8.2). Now we have \(u \in \{y_4, y_5\} \) and
we would like to show that

\[
\langle D(\rho_i), \Gamma_{u|G}^{\gamma_i} \rangle_{u|G} = \langle \rho_i, D(\Gamma_{u|G}^{\gamma_i}) \rangle_{u|G} = 1 \quad \text{for } i = 1, 2.
\]

This can be seen as follows. Fix \(i \in \{1, 2\}\). Since \(D(\rho_i)\) is an actual character, we certainly have \(\langle D(\rho_i), \Gamma_{u|G}^{\gamma_i} \rangle_{u|G} \geq 0\). Hence, using (2), the latter scalar product equals 0 or 1. Assume, if possible, that the scalar product is zero. Then the scalar product of \(-\rho_1 - \rho_2\) with \(D_G(\Gamma_{u|G}^{\gamma_i})\) would be \(-1\) or 0. Consequently, the scalar product in (1) would be \(-1/2\) or 0. Thus, the only possibility is that the scalar product in (1) equals 0. But this would mean that

\[
\langle E_7[\pm \xi], \Gamma_u + \Gamma_u^{\gamma_i} \rangle_{u|G} = \langle U_{d,1}^F : U_{d,2}^F \rangle^{1/2} \langle E_7[\pm \xi], \Gamma_u \rangle_{u|G} = \langle U_{d,1}^F : U_{d,2}^F \rangle^{1/2}
\]

is an even number, which is not true. So, our assumption was wrong and (3) holds. Inserting this into (1), we obtain the desired result.

\[\square\]

4. Proof of Theorem 1.1

By [5], Corollary 4.3, the Schur index of \(E_7[\pm \xi]\) is at most 2. Hence, we only need to show that \(E_7[\pm \xi]\) cannot be realized over \(\mathbb{Q}(\xi)\). Now, we have

\[
\langle E_7[\pm \xi], \Gamma_u \rangle_{u|G} = 1 \quad \text{for suitable } u \in \{y_{74}, y_{75}\}.
\]

So, using the formulas in Definition 2.1, we obtain that

\[
\langle E_7[\pm \xi], \Gamma_u + \Gamma_u^{\gamma_i} \rangle_{u|G} = \langle U_{d,1}^F : U_{d,2}^F \rangle^{1/2} = q^m \quad \text{for some } m \geq 1.
\]

Combining this with Proposition 3.7 and using Frobenius reciprocity, this yields

\[
\langle \text{Res}_{U_{d,2}^F}^{^H} (E_7[\pm \xi]), \psi_u \rangle_{U_{d,2}^F} = \langle E_7[\pm \xi], \Gamma_u \rangle_{u|G} = \frac{1}{2} (q^m + 1).
\]

Since \(p \equiv 1 \mod 4\), we also have \(q \equiv 1 \mod 4\) and so the above scalar product is an odd number. Now assume, if possible, that \(E_7[\pm \xi]\) can be realized over \(\mathbb{Q}(\xi)\). Then the restriction of \(E_7[\pm \xi]\) to \(U_{d,2}^F \cdot H\) can also be realized over \(\mathbb{Q}(\xi)\). Thus, by a standard argument on Schur induces ([8], Corollary 10.2), the Schur index of \(\psi_u^\gamma\) over \(\mathbb{Q}(\xi)\) divides the above odd number. Since the Schur index of \(\psi_u^\gamma\) over \(\mathbb{Q}(\xi)\) is at most 2 (see Proposition 2.2), it must be one. Thus, \(\psi_u^\gamma\) can be realized over \(\mathbb{Q}(\xi)\).

Now, since \(q\) is a square, we have \(\xi = \sqrt{-1}\). Furthermore, since \(p \equiv 1 \mod 4\), we have \(\sqrt{-1} \in \mathbb{Q}_p\) (the field of \(p\)-adic numbers). Hence \(\psi_u^\gamma\) can be realized over \(\mathbb{Q}_p\), contradicting Proposition 2.2(c). Thus, our assumption was wrong and so \(E_7[\pm \xi]\) cannot be realized over \(\mathbb{Q}(\xi)\).

Acknowledgements. I wish to thank Gerhard Hiss for a careful reading of the manuscript.
References

Institut Girard Desargues
Université Lyon 1
21 av Claude Bernard
69622 Villeurbanne cedex
France
e-mail: geck@desargues.univ-lyon1.fr