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Abstract
We show that the closure of a surface braid represented by a 4-chart with at

most one crossing is a ribbon surface.

1. Introduction

Kamada [3] gave a method to describe a surface braid by an oriented labeled pla-
nar graph, called a chart, and investigated modifications ofcharts which induce am-
bient isotopies of the closure of surface braids, represented by charts, inR4. These
modifications are called C-moves.

A surface braid of indexn is represented by ann-chart whose edges are of labeli with 1 � i < n. The closure of a surface braid represented by a 3-chart is a ribbon
surface [3].

In this paper we shall extend the Kamada’s result. Namely we shall show that the
closure of a surface braid represented by a 4-chart with at most one crossing is a rib-
bon surface.

An n-chart is an oriented labeled planar graph, which may be empty or have closed
edges without vertices calledhoops, satisfying the following four conditions (see Fig. 1):
(1) Every vertex has degree 1;4, or 6.
(2) The labels of edges are inf1;2; : : : ; n� 1g.
(3) In a small neighborhood of each vertex of degree 6, there are six short arcs, three
consecutive arcs are oriented inward and the other three areoutward, and these six are
labeledi and i + 1 alternately for somei, where the orientation and label of each arc
are inherited from the edge containing the arc.
(4) For each vertex of degree 4, diagonal edges have the same label and are oriented
coherently, and the labelsi and j of the diagonals satisfyji � j j > 1.
A vertex of degree 1;4 and 6 is called ablack vertex, a crossing, and awhite vertex
respectively.

Among six short arcs in a small neighborhood of a white vertex, a middle arc of
each consecutive three arcs oriented inward or outward is called a middle arc of the
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Fig. 1.

Fig. 2.
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Fig. 3.

white vertex (see Fig. 2). There are two middle arcs in a smallneighborhood of each
white vertex. A middle arc of odd label is called adistinguished arc. Around each
white vertex, there exists only one distinguished arc.

NOTE. (1) For each chart, the number of distinguished arcs is equal to the num-
ber of white vertices.Exploiting this fact is the main idea of this paper.

An edge is called afree edgeif its two vertices are black vertices. An edge is
called a terminal edgeif it contains one black vertex and one white vertex. An edge
is called aloop if it contains only one vertex.

A C-moveis a local modification of a chart in a disk as shown in Fig. 3 (see [3],
[2] for the precise definition). We often use C-I-M2 moves and C-III-1 moves. Two
charts areC-move equivalentif there exists a finite sequence of C-moves which turns
one of the two charts into the other.

For each chart0, let 
(0); w(0); and f (0) be the number of crossings, the
number of white vertices, and the number of free edges respectively. The triad
(
(0); w(0);�f (0)) is called thecomplexityof the chart. A chart is called aminimal
chart, if its complexity is minimal among the charts C-move equivalent to the chart
with respect to the lexical order of triads of integers.

NOTE. (2) Any terminal edge in a minimal chart contains a middle arc of its
white vertex.

Our main theorem is the following.
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Main Theorem. Any minimal4-chart with at most one crossing does not have a
white vertex.

The closure of a surface braid is aribbon surfaceif and only if it is ambient iso-
topic to the closure of a surface braid represented by a chartwithout white vertices
[3]. Thus, our theorem says that the closure of a surface braid represented by a 4-chart
with at most one crossing is a ribbon surface.

To make the argument simple, we assume thatthe charts lie on the2-sphere in-
stead of the plane.

For each 4-chart0, let 00 be the graph obtained from the chart0 by omitting
the hoops, the free edges. A complementary domain of a connected component of the
graph00 is called aroom. Choose a connected componentG of the graph00. Let G0
be the subgraph ofG that consists of the set of all the edges of label 2 and all their
vertices. A complementary domain of the graphG0 is called ahouse. A house con-
taining a crossing is called aspecial house. A non-specialhouse does not contain any
crossing. The chart in Fig. 1 has 14 rooms and 4 houses one of which is a special
house with 3 crossings.

TERMINOLOGY. (1) If a vertex or an edge is contained in the closure of a room
or a house, then we say that the vertex or the edgebelongsto the room or the house,
or that the room or the housepossessesthe vertex or the edge.
(2) Verticesor edgesare words for charts. Butpointsandsetsare not words for charts.

Now the following is the outline of the proof of Main Theorem.
We suppose that there exists a minimal 4-chart with a white vertex and at most

one crossing. If each connected component of the chart represents a ribbon surface,
then the 4-chart represents a ribbon surface. Thus, to proveMain Theorem by con-
tradiction, we take a connected 4-chart with at most one crossing andminimal number
of white verticesamong all 4-charts which do not represent ribbon surface. This means
that the chart satisfies the following condition.

CONNECTEDNESSCONDITION. If a 4-chart is C-move equivalent to the 4-chart
above, and if it has the same complexity as the 4-chart above,then it is never discon-
nected if we ignore hoops and free edges.

Proposition 1. For any minimal4-chart, any non-special house possesses no ter-
minal edges of label2.

Proposition 2. For any minimal 4-chart with at most one crossing, the special
house does not possess any terminal edge of label2.
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Proposition 3. For any minimal4-chart with at most one crossing, if the chart
has a white vertex but no terminal edge of label2, then there exists a non-special
house with connected boundary which possesses no distinguished arc.

Proposition 4. For any minimal4-chart, if a non-special house, with connected
boundary, possesses no terminal edge of label2, then the house possesses a distin-
guished arc.

Proposition 3 and Proposition 4 contradict each other. Together with Proposition 1
and 2, this means that Main Theorem has been proved.

2. Reducible triplet and proof of Proposition 1

We investigate rooms in minimal charts.
Let A be a terminal edge belonging to a roomR. Note that any room is an open

disk. Let XR be the closure of the roomR. Let D̄ be a disk andP̄ 1; P̄ 2; : : : ; P̄ n be
points on the boundary of the disk,�D̄, which are situated in a counterclockwise or-
der on the boundary of the disk. The points split the boundaryof the disk inton arcsĀ1; Ā2; : : : ; Ān where the boundary points of the arc̄Ai are P̄ i and P̄ i+1 we under-
stand the cyclic order̄P n+1 = P̄ 1. Let g : D̄! XR be a continuous map of the disk̄D
onto the closureXR of the room such that the following four conditions are satisfied
(see Fig. 4):
(1) The mapg maps the interior of the disk̄D onto the roomR homeomorphically;
hence the mapg maps the boundary of the disk onto the boundary of the roomR.
(2) The restriction of the mapg to the interior of the disk is orientation preserving.
(3) The mapg maps the interior of each arc̄Ai onto the interior of an edge belongs
to the room homeomorphically, where the interior of an arc means the maximal open
arc contained in the arc and the interior of an edge means thatthe set of the points in
the arc different from the vertices.
(4) g(Ā1) = g(Ān) = A.
Then the set

�g : D̄! XR ; P̄ 1; P̄ 2; : : : ; P̄ n ; Ā1; Ā2; : : : ; Ān	
is called anassociated setfor the roomR with respect to the terminal edgeA.

NOTES. (3) The labels ofg(Āk) and g(Āk+1) are same if and only ifg(Āk) is a
terminal edge (and henceg(Āk) = g(Āk+1)).
(4) If parities of the labels ofg(Āk) and g(Āk+1) are same and ifg(Āk) 6= g(Āk+1),
then g(Āk) and g(Āk+1) have a common crossing.
(5) If g(Āk) does not contain any crossing, then the parities of the labels of the three
edgesg(Āk�1), g(Āk), g(Āk+1) are not same.
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Fig. 4.

Fig. 5.

Let XR be the closure of a roomR. Let A andA0 be different edges inXR. Then
the pair of edges (A;A0) is said to beadmissible with respect to a diskE in XR pro-
vided that the following three conditions are satisfied (seeFig. 5):
(1) The diskE does not meet any edges except the two edgesA andA0.
(2) The diskE meets each of the two edges by an arc on�E.
(3) If we orient the disk so that the orientation of the arcA \ �E induced from the
one of the disk coincides with the orientation induced from the one of the edgeA,
then the orientation of the arcA0 \ �E induced from the one of the disk does not
coincide with the orientation induced from the one of the edge A0.
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Fig. 6.

Fig. 7.
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Let A0; A, andA00 be edges belong to a roomR such thatA is a terminal edge
of label 2, and the labels ofA0 andA00 are odd, where the two edgesA0 andA00 are
possibly same. Letfg : D̄ ! XR ; P̄ 1; P̄ 2; : : : ; P̄ n ; Ā1; Ā2; : : : ; Āng be an associated
set for the roomR with respect to the terminal edgeA. Without loss of generality,
we can assume thatA0 = g(Āi); A00 = g(Āj ), and i < j . Then the triplet (A0; A;A00) is
said to besemi-reducible with respect to a diskE in XR if it satisfies the following
condition (1). The triplet (A0; A;A00) is said to bereducible with respect to a diskE
in XR if it satisfies the following conditions (1) and (2).
(1) The edgeA splits the diskE into two disks, sayE1 and E2, so that the pair
(A0; A) is admissible with respect to one of the split disksE1 and E2, and the pair
(A;A00) is also admissible with respect to the other split disk (seeFig. 6).
(2) If the intersectiong(Āk) \ g(Āk+1) is a crossing for somek with i � k < j , then
the triplet (g(Āk); A; g(Āk+1)) is not semi-reducible (see Fig. 7).

Lemma 1. For any minimal4-chart, there is no reducible triplet.

Proof. We prove the lemma by contradiction. Suppose that there exists a reducible
triplet (A0; A;A00). Let R be the room possessing the reducible triplet and letfg : D̄!XR ; P̄ 1; P̄ 2; : : : ; P̄ n ; Ā1; Ā2; : : : ; Āng be an associated set for the roomR with re-
spect to the terminal edgeA. We may assume thatg(Āi) = A0, and g(Āj ) = A00 withi < j . We need the following claim to prove Lemma 1.

Claim 1. Let (g(Ās); A; g(Āt )) be a reducible triplet withi � s < t � j andt � s minimal. Then only one of the following three cases occurs:
CASE 1. g(Ās) = g(Āt ), t = s + 1.
CASE 2. g(Ās) 6= g(Ās+1) 6= g(Ās+2), t = s + 2, and the label ofg(Ās+1) is 2.
CASE 3. g(Ās) 6= g(Ās+1) = g(Ās+2), t = s + 3, and g(Ās+1) is a terminal edge

of label 2.

Proof of Claim. Since (g(Ās); A; g(Āt )) is reducible, the label ofA is 2 and the
labels ofg(Ās) and g(Āt ) are odd.

First of all, the label ofg(Ār ) (s < r < t) is 2. For, if the label ofg(Ār ) is
odd, then, by considering the orientation of the edgeg(Ār ), we find that the triplet
(g(Ās); A; g(Ār )) or (g(Ār ); A; g(Āt )) is reducible (see Fig. 8). This contradicts the
condition thatt � s is minimum.

Supposeg(Ās) = g(Ās+1). Then g(Ās) is a terminal edge by Note (3). Hence the
triplet (g(Ās); A; g(Ās+1)) is reducible. Since (s + 1)� s = 1 � t � s, we must havet = s + 1. This means Case 1 occurs.

Supposeg(Ās) 6= g(Ās+1). If the label ofg(Ās+1) is odd, thent = s + 1 by the fact
mentioned at the first of the proof. Since parity ofg(Ās) and g(Ās+1) is same,g(Ās)
and g(Ās+1) must have a common crossing by Note (4). This contradicts the second
condition for reducible triplet. Thus the label ofg(Ās+1) must be 2. Further suppose
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Fig. 8.

that g(Ās+1) 6= g(Ās+2). Then the label ofg(Ās+2) is odd. Thereforet = s + 2 by the
fact mentioned at the first of the proof. This means Case 2 occurs.

Supposeg(Ās) 6= g(Ās+1) = g(Ās+2). Then the label ofg(Ās+1) is 2. The edgeg(Ās+1) = g(Ās+2) is a terminal edge by Note (3). Hence the label ofg(Ās+3) is odd.
Thus t = s + 3 by the fact mentioned at the first of the proof. This means Case 3
occurs. Therefore Claim 1 has been proved.

Now continue the proof of Lemma 1. By Claim 1 it is enough to show that the
three cases never occur.

Case 1. Suppose thatg(Ās) = g(Ās+1), and that the triplet (g(Ās); A; g(Ās+1)) is
reducible. Then the edgeg(Ās) is a terminal edge by Note (3). Letv be the white
vertex of the terminal edge. Theng(Ās) = g(Ās+1) must contain a middle arc of the
white vertexv by Note (2). Hence the edgeg(Ās+2) does not contain a middle arc ofv. Since the label of the edgeg(Ās+1) is odd, the label ofg(Ās+2) is 2. Thus by a
C-I-M2 move betweenA and g(Ās+2), we have a new terminal edge of label 2 which
contains the white vertexv but does not contain a middle arc ofv (see Fig. 9). By a
C-III-1 move around the white vertexv, we can decrease the number of white vertices.
This contradicts the minimal complexity of the chart.

Case 2. Suppose thatg(Ās) 6= g(Ās+1) 6= g(Ās+2), t = s + 2, and that the la-
bel of g(Ās+1) is 2. Further suppose that the triplet (g(Ās); A; g(Ās+2)) is reducible.
Now (g(Ās); g(Ās+1)) or (g(Ās+1); g(Ās+2)) is not admissible. Suppose (g(Ās); g(Ās+1))
is not admissible. Letv = g(P̄ s+1). Since (g(Ās); g(Ās+1)) is not admissible,g(Ās+1)
does not contain a middle arc ofv. By a C-I-M2 move betweenA and g(Ās+1), we
have a new terminal edge of label 2 which contains the white vertex v but does not
contain a middle arc ofv (see Fig. 10). We get the same contradiction as above by
applying a C-III-1 move. Similar for the other case.
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Fig. 9.

Fig. 10.

Case 3. Suppose thatg(Ās) 6= g(Ās+1) = g(Ās+2), t = s+3. Further suppose that the
edgeg(Ās+1) is a terminal edge of label 2, and that the triplet (g(Ās); A; g(Ās+3)) is
reducible. Since the edgeg(Ās+1) is a terminal edge, it must contain the middle arc of
its white vertex. Hence the triplet (g(Ās); g(Ās+1); g(Ās+3)) is semi-reducible. Thus by
a C-I-M2 move betweenA and g(Ās+1), we have a new free edge without increasing
the number of white vertices and crossings (see Fig. 11). This contradicts the minimal
complexity of the chart.

We get a contradiction for every case. Therefore Lemma 1 has been proved.
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Fig. 11.

Proposition 1. For any minimal4-chart, any non-special house possesses no ter-
minal edges of label2.

Proof. LetH be a non-special house in a minimal 4-chart. Suppose that a ter-
minal edgeA of label 2 belongs to the houseH . Then the terminal edge belongs to
a room R in the house. Letv be the white vertex on the terminal edge. Since the
chart is minimal, the terminal edge contains a middle arc of the white vertexv. Let A0
andA00 be the edges of odd label belonging to the roomR such that both of the two
edges contain the white vertexv. Then the triplet (A0; A;A00) is semi-reducible. But
the house contains no crossing. Thus the triplet is reducible. This contradicts Lemma 1.
Thus the non-special house does not possess any terminal edge of label 2. Therefore
Proposition 1 has been proved.

3. Special rooms and proof of Proposition 2

A special pair is an admissible pair with a common crossing. A semi-reducible
triplet is called aspecial triplet if it contains a special pair (see Fig. 12). Aspecial
room is a room possessing a special pair. Anon-special roomdoes not contain any
special pair.

Lemma 2. In a minimal chart, only a special room is able to possess a terminal
edge of label2.
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Fig. 12.

Proof. We prove the lemma by contradiction. Suppose that a non-special roomR
possesses a terminal edgeA of label 2. Letfg : D̄!XR ; P̄ 1; P̄ 2; : : : ; P̄ n ; Ā1; Ā2; : : : ; Āng
be an associated set for the room with respect to the terminaledgeA. Suppose that
the roomR possesses a crossingv. Let v = g(Āk) \ g(Āk+1). Since the room is not
special, the pair (g(Āk);g(Āk+1)) is not special. Hence the triplet (g(Āk);A;g(Āk+1)) is
not semi-reducible. Therefore the triplet (g(Ā2); A; g(Ān�1)) is reducible. This contra-
dicts Lemma 1.

Lemma 3. Let A be a terminal edge of label2 belonging to a roomR, andfg : D̄ ! XR ; P̄ 1; P̄ 2; : : : ; P̄ n ; Ā1; Ā2; : : : ; Āng an associated set for the room with
respect to the terminal edgeA. Then in a minimal chart, the followings are satisfied.
(1) If g(Ā2) does not contain a crossing, then the edgeg(Ā2) contains a distinguished
arc of the vertexg(P̄ 3) and the edgeg(Ā3) contains a middle arc of the vertexg(P̄ 4).
(2) If g(Ān�1) does not contain a crossing, then the edgeg(Ān�1) contains a distin-
guished arc of the vertexg(P̄ n�1) and the edgeg(Ān�2) contains a middle arc of the
vertexg(P̄ n�2).

Proof. Suppose thatg(Ā2) does not contain a crossing. Then the edgeg(Ā2) is
not a terminal edge. Hence the edgeg(Ā3) is of label 2.
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We show that (g(Ā2); g(Ā3)) is admissible. If not,g(Ā3) does not contain a mid-
dle arc ofg(P̄ 3). Apply a C-I-M2 move betweenA and g(Ā3) to get a new terminal
edge without a middle arc of the vertexg(P̄ 3). We can apply a C-III-1 move to dis-
miss the vertexg(P̄ 3). This contradicts the minimal complexity of the chart. Therefore
(g(Ā2); g(Ā3)) is admissible.

Since (g(Ā2); g(Ā3)) is admissible, the pointg(P̄ 4) must be a white vertex. For, if
not, apply a C-I-M2 move betweenA and g(Ā3). If g(P̄ 4) is a black vertex, then we
get a new free edge. This means the complexity decreases. Since g(Ā3) is of label 2,g(P̄ 4) is not a crossing. Henceg(P̄ 4) is a white vertex.

Since (g(Ā2); g(Ā3)) is admissible and the pointg(P̄ 4) is a white vertex, the edgeg(Ā3) must contain a middle arc of the white vertexg(P̄ 4). For, if not, apply a C-I-
M2 move betweenA and g(Ā3). Then we have a new terminal edge which does not
contain a middle arc of vertexg(P̄ 4) without changing complexity of the chart. Now
we can apply a C-III-1 move to dismiss the vertexg(P̄ 4). This contradicts the minimal
complexity of the chart.

Now we show thatg(Ā2) contains a distinguished arc of the vertexg(P̄ 3) by con-
tradiction. Suppose thatg(Ā2) does not contain a middle arc of the vertexg(P̄ 3). Theng(Ā2) is not a loop. Henceg(P̄ 2) 6= g(P̄ 3). Since g(Ā2) does not contain a distin-
guished arc of the vertexg(P̄ 3) and the pair (g(Ā2); g(Ā3)) is admissible, the edgeg(Ā3) contains a middle arc ofg(P̄ 3). Let A0 be the odd labeled edge with the ver-
tex g(P̄ 3) different from the edgeg(Ā2) such that the pair (A0; g(Ā3)) is admissible.
Now apply a C-I-M2 move betweenA and g(Ā3). And then operate a C-I-M2 move
betweenA0 and g(Ān�1) (possiblyA0 = g(Ān�1)). Then we can use a C-I-M3 move
to dismiss the two white verticesg(P̄ 2) and g(P̄ 3) without increasing the number of
crossings. This contradicts the minimal complexity of the chart. Therefore the edgeg(Ā2) contains a distinguished arc of the vertexg(P̄ 3). This proves (1). The proof
of (2) is similar.

Proposition 2. For any minimal 4-chart with at most one crossing, the special
house does not possess any terminal edge of label2.

Proof. We prove the proposition by contradiction. Suppose that there exists a ter-
minal edgeA of label 2 in the special houseH of a minimal 4-chart with at most one
crossing. By Lemma 2, the terminal edgeA must belong to a special roomR.

Since the number of crossings is at most one, situation (1) orsituation (2) in
Lemma 3 occurs. Now we use the notation in Lemma 3.

Suppose that situation (1) occurs. There are two cases.
CASE 1. The edgeg(Ā3) belongs to only one room.
This means that if we take out the edgeg(Ā3) from the chart, then the chart is

disconnected. So apply a C-I-M2 move betweenA and g(Ā3) to get a new discon-
nected chart without increasing the number of white vertices such that each connected
component has a white vertex. This contradicts Connectedness Condition.
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Fig. 13.

Fig. 14.
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CASE 2. The edgeg(Ā3) belongs to two rooms.
Let R0 be the other room different from the roomR. We need the following claim.

Claim 2. There must be a special pair(g(Āk); g(Āk+1)) for some4 � k < n� 1
with (g(Āk); A; g(Āk+1)) semi-reducible.

Proof of Claim 2. The triplet (g(Ā2); A; g(Ān�1)) is not reducible by Lemma 1.
Hence there exists a special pair (g(Āk); g(Āk+1)) for some 2 � k < n � 1 with
(g(Āk); A; g(Āk+1)) semi-reducible. Since the edgeg(Ā2) does not contain a crossing
and the edgeg(Ā3) is of label 2, we have that 4� k.

Now continue Case 2. LetA0 be the odd labeled edge belonging to the roomR0
such that it has the common vertexg(P̄ 3) with the edgeg(Ā3) and that it is situated
next to the edgeg(Ā3). Let A00 be the odd labeled edge belonging to the roomR0
such that it has the common vertexg(P̄ 4) with the edgeg(Ā3) and that it is situated
next to the edgeg(Ā3). Here, if the edgeg(Ā3) is a loop, then we takeA0 = A00 (see
Fig. 13). Apply a C-I-M2 move betweenA and g(Ā3) to get a new terminal edgeA000
with the white vertexg(P̄ 4).

The edgeg(Ā3) is not a loop. For, ifg(Ā3) is a loop, then the roomR0 does not
possess a special pair. Hence the triplet (A0; A000; A00) is reducible (see Fig. 13). This
contradicts Lemma 1. Henceg(Ā3) is not a loop.

The room R0 does not possess the special pair (g(Āk); g(Āk+1)) indicated in
Claim 2. The roomR0 possibly contain the other special pair, say (B;B 0). But the
triplet (B;A000; B 0) is not semi-reducible. This means that the triplet (A0; A000; A00) is re-
ducible (see Fig. 14). This contradicts Lemma 1.

The proof for situation (2) is similar to the one for situation (1). Therefore Propo-
sition 2 has been proved.

4. Distinguished arcs and proofs of Proposition 3 and 4

We investigate properties of distinguished arcs. By Proposition 1 and Proposi-
tion 2, we can assume that our minimal chart is connected and has no terminal edges
of label 2.

Lemma 4. Every house with no terminal edge of label2 possesses an even num-
ber of distinguished arcs.

Proof. LetXH be the closure of a houseH possessing no terminal edge of la-
bel 2. LetY be the disk with holes obtained fromXH by cuttingXH along all edges
of label 2 which do not lie on the boundary ofXH . On the boundary ofY there are
two copies of each edge which do not lie on the boundary ofXH . Each copy inher-
its its orientation from the original edge. Now walk along the boundary component
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of Y . Orientation of edges changes when we pass the white vertex which possesses a
distinguished arc in the houseH . Therefore the house possesses even number of dis-
tinguished arcs.

Lemma 5. For a connected chart with no terminal edge of label2, let V be the
number of white vertices. For each non-negative integeri, let ni be the number of
houses which havei boundary components. Then we have

V = 2(n1 � 2)� 2
X
i�3

ni(i � 2):
Proof. LetE andF be the number of edges of label 2 and the number of houses,

respectively. Note that the graph, consists of the edges of label 2 and their vertices, is
a three regular graph. Thus we have

3V = 2E and F =
X
i�1

ni :
For each house withi boundary components, add (i�1) edges to make the boundaries
of the house connected without adding extra vertices. ApplyEuler’s theorem on the 2-
sphere. Then we have

V �
 
E +

X
i�2

ni(i � 1)

!
+ F = 2:

Put the previous two equations into the last equation. Then the result follows by elim-
inating E andF .

Proposition 3. For any minimal4-chart with at most one crossing, if the chart
has a white vertex but no terminal edge of label2, then there exists a non-special
house, with a connected boundary, which possesses no distinguished arc.

Proof. For each integeri, let ni be the number of houses withi connected bound-
aries andki be the number of houses withi connected boundaries but no distinguished
arc. Let V be the number of white vertices. Then by Lemma 4, we have

V � 2
X
i�1

(ni � ki):
Combining the equation in Lemma 5, we have

k1 � 2 +
X
i�2

(ni � ki) +
X
i�3

ni(i � 2):
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Thus there exist at least two houses with connected boundarybut no distinguished arc.
The special house may be one of the two houses. Therefore one of the two houses is
a desired house.

Lemma 6. In a minimal chart, there exists no room whose boundary consists of
exactly two edges such that parities of the two edges are different and that the odd
labeled edge does not contain a distinguished arc.

Proof. Suppose that there exists such a roomR with one odd labeled edgeA1

and one even labeled edgeA2. Since the odd labeled edge does not contain a distin-
guished arc, the edge is not a loop. Letv1 and v2 be the vertices of the edgeA1. LetR0 be the next room which possesses the edgeA1. For i = 1;2, let A0i be the even
labeled edge belonging to the roomR0 and containing the vertexvi .

The pair (A0
1; A0

2) is admissible. For, if not, first apply a C-I-M2 move betweenA0
1 andA0

2, and then apply a C-I-M3 move to dismiss the two verticesv1 and v2. This
contradicts the minimal complexity of the chart.

The pair (A1; A2) is admissible. For, if not, the pair (A0
1; A0

2) is not admissible by
condition (3) for charts.

Since the pair (A0
1; A0

2) is admissible, (A1; A0
1) or (A1; A0

2) is admissible. If (A1; A0
1)

is admissible then the edgeA1 contains a middle arc ofv1. If (A1; A0
2) is admissible

then the edgeA1 contains a middle arc ofv2. This contradicts the condition for the
odd labeled edgeA1.

Proposition 4. For any minimal4-chart, if a non-special house, with connected
boundary, possesses no terminal edge of label2, then the house possesses a distin-
guished arcs.

Proof. We prove the proposition by contradiction. Suppose that there exists a non-
special house with a connected boundary but without distinguished arcs nor terminal
edges of label 2. Among the rooms in the house, choose a room possessing the mini-
mal number of edges. Since neither terminal edges nor crossings belong to this house,
the room must possess exactly two edges. Since the house doesnot possess distin-
guished arcs, any odd labeled edge in this house does not contain a middle arc. This
contradicts Lemma 6.

Observing rooms more closely, we can show that any minimal 4-chart with at
most two crossings does not have any white vertex provided that the chart represents
a 2-sphere [1], [4].
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