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Abstract
We show that the closure of a surface braid represented bycleart-with at
most one crossing is a ribbon surface.

1. Introduction

Kamada [3] gave a method to describe a surface braid by anteddabeled pla-
nar graph, called a chart, and investigated modificationshafrts which induce am-
bient isotopies of the closure of surface braids, represemy charts, inR*. These
modifications are called C-moves.

A surface braid of index: is represented by am-chart whose edges are of label
i with 1 <i < n. The closure of a surface braid represented by a 3-chart iisbarr
surface [3].

In this paper we shall extend the Kamada’s result. Namely kel show that the
closure of a surface braid represented by a 4-chart with &t mioe crossing is a rib-
bon surface.

An n-chart is an oriented labeled planar graph, which may be empty oe bbsed
edges without vertices calldtbops satisfying the following four conditions (see Fig. 1):
(1) Every vertex has degree 4, or 6.

(2) The labels of edges are {4, 2,...,n — 1}.

(3) In a small neighborhood of each vertex of degree 6, thegesix short arcs, three
consecutive arcs are oriented inward and the other threewveard, and these six are
labeledi andi + 1 alternately for some, where the orientation and label of each arc
are inherited from the edge containing the arc.

(4) For each vertex of degree 4, diagonal edges have the ssekdnd are oriented
coherently, and the labelsand j of the diagonals satisfyi — j| > 1.

A vertex of degree 14 and 6 is called dlack vertex a crossing and awhite vertex
respectively.

Among six short arcs in a small neighborhood of a white vergexniddle arc of
each consecutive three arcs oriented inward or outward lisdca middle arc of the
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Fig. 2.
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white vertex (see Fig. 2). There are two middle arcs in a smeiljhborhood of each
white vertex. A middle arc of odd label is called distinguished arc Around each
white vertex, there exists only one distinguished arc.

NoTE. (1) For each chart, the number of distinguished arcs islequde num-
ber of white verticesExploiting this fact is the main idea of this paper

An edge is called dree edgeif its two vertices are black vertices. An edge is
called aterminal edgeif it contains one black vertex and one white vertex. An edge
is called aloop if it contains only one vertex.

A C-moveis a local modification of a chart in a disk as shown in Fig. 3(E3,

[2] for the precise definition). We often use C-I-M2 moves andll€l moves. Two
charts areC-move equivalenif there exists a finite sequence of C-moves which turns
one of the two charts into the other.

For each chartl’, let ¢(I'), w(I"), and f(I") be the number of crossings, the
number of white vertices, and the number of free edges régpc The triad
(c(T), w(I"), — f(I)) is called thecomplexityof the chart. A chart is called minimal
chart, if its complexity is minimal among the charts C-mowigalent to the chart
with respect to the lexical order of triads of integers.

NoTE. (2) Any terminal edge in a minimal chart contains a middle af its
white vertex.

Our main theorem is the following.
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Main Theorem. Any minimal4-chart with at most one crossing does not have a
white vertex

The closure of a surface braid isrdbon surfaceif and only if it is ambient iso-
topic to the closure of a surface braid represented by a chidinout white vertices
[3]. Thus, our theorem says that the closure of a surfacel begiresented by a 4-chart
with at most one crossing is a ribbon surface.

To make the argument simple, we assume that charts lie on the-sphere in-
stead of the plane

For each 4-charf, let I'” be the graph obtained from the chdrtby omitting
the hoops, the free edges. A complementary domain of a ctetheomponent of the
graphI” is called aroom Choose a connected componéntof the graphl”. Let G’
be the subgraph of; that consists of the set of all the edges of label 2 and alk thei
vertices. A complementary domain of the graph is called ahouse A house con-
taining a crossing is called special houseA non-specialhouse does not contain any
crossing. The chart in Fig. 1 has 14 rooms and 4 houses one ichvih a special
house with 3 crossings.

TERMINOLOGY. (1) If a vertex or an edge is contained in the closure of a room
or a house, then we say that the vertex or the daglengsto the room or the house,
or that the room or the hougessessethe vertex or the edge.

(2) Verticesor edgesare words for charts. Bysoints and setsare not words for charts.

Now the following is the outline of the proof of Main Theorem.

We suppose that there exists a minimal 4-chart with a whitgexeand at most
one crossing. If each connected component of the chart gept® a ribbon surface,
then the 4-chart represents a ribbon surface. Thus, to pktai@ Theorem by con-
tradiction, we take a connected 4-chart with at most onesargsandminimal number
of white verticesamong all 4-charts which do not represent ribbon surfacés fifeans
that the chart satisfies the following condition.

CONNECTEDNESSCONDITION. If a 4-chart is C-move equivalent to the 4-chart
above, and if it has the same complexity as the 4-chart alibes, it is never discon-
nected if we ignore hoops and free edges.

Proposition 1. For any minimal4-chart, any non-special house possesses no ter-
minal edges of label.

Proposition 2. For any minimal 4-chart with at most one crossinghe special
house does not possess any terminal edge of label
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Proposition 3. For any minimal4-chart with at most one crossingf the chart
has a white vertex but no terminal edge of lal&lthen there exists a non-special
house with connected boundary which possesses no distivegliarc

Proposition 4. For any minimal4-chart, if a non-special housewith connected
boundary possesses no terminal edge of lalZelthen the house possesses a distin-
guished arc

Proposition 3 and Proposition 4 contradict each other. ffegewith Proposition 1
and 2, this means that Main Theorem has been proved.

2. Reducible triplet and proof of Proposition 1

We investigate rooms in minimal charts.

Let A be a terminal edge belonging to a roak Note that any room is an open
disk. Let Xz be the closure of the roomk. Let D be a disk andl;l, 132,...,1;,1 be
points on the boundary of the diskD, which are situated in a counterclockwise or-
der on the boundary of the disk. The points split the bounddirthe disk inton arcs
A1, Ay, ..., A, where the boundary points of the arg are P; and P4, we under-
stand the cyclic ordeP,.; = P1. Let g: D — Xz be a continuous map of the digk
onto the closureXy of the room such that the following four conditions are Jecs
(see Fig. 4):

(1) The mapg maps the interior of the diso onto the roomR homeomaorphically;
hence the mag maps the boundary of the disk onto the boundary of the rgom

(2) The restriction of the mag to the interior of the disk is orientation preserving.
(83) The mapg maps the interior of each aré; onto the interior of an edge belongs
to the room homeomorphically, where the interior of an ar@ansethe maximal open
arc contained in the arc and the interior of an edge meanghbaset of the points in
the arc different from the vertices.

(4) g(A1) =g(A,) = A.

Then the set

{gD__>XR1 P_lvP_27~--vP_n; 14—1’14_27"'71411}

is called anassociated setor the roomR with respect to the terminal edgé.

NoTEs. (3) The labels ofg(/fk) and g(A_k+]_) are same if and only ig(A_k) is a
terminal edge (and hencg(Ax) = g(Ars1)).
(4) If parities of the labels of(A;) and g(A+1) are same and ig(Ax) # g(Axs1),
then g(A;) and g(A.1) have a common crossing.
5) If g(A_k) does not contain any crossing, then the parities of theldatethe three
edgesg(Ac_1), g(Ar), g(Aws1) are not same.
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Let X be the closure of a roomR. Let A and A’ be different edges itX. Then
the pair of edgesA, A’) is said to beadmissible with respect to a disk in X pro-
vided that the following three conditions are satisfied (Bag 5):

(1) The diskE does not meet any edges except the two edgesd A'.

(2) The disk E meets each of the two edges by an arcodn

(3) If we orient the disk so that the orientation of the a&c¢) 0E induced from the
one of the disk coincides with the orientation induced frdme bne of the edg&,
then the orientation of the ard’ N 9E induced from the one of the disk does not
coincide with the orientation induced from the one of the eedg.



A 4-CHART WITH AT MOST ONE CROSSING 419

~< -

or

g(A1) g(A)) ?[ 8(A1) )ngj )

Fig. 7.



420 T. NAGASE AND A. HIROTA

Let A’, A, and A” be edges belong to a rooR such thatA is a terminal edge
of label 2, and the labels o’ and A” are odd, where the two edges and A” are
possibly same. Letg: D — Xg; P1, Pa,..., Py A1, Ao, ..., A,} be an associated
set for the roomR with respect to the terminal edgé. Without loss of generality,
we can assume that’ = g(A_;), A" = g(A_j), andi < j. Then the triplet 4’, A, A”) is
said to besemi-reducible with respect to a digk in Xy if it satisfies the following
condition (1). The triplet 4’, A, A”) is said to bereducible with respect to a disk
in Xy if it satisfies the following conditions (1) and (2).

(1) The edgeA splits the diskE into two disks, sayE; and E,, so that the pair
(A’, A) is admissible with respect to one of the split disks and E», and the pair
(A, A”) is also admissible with respect to the other split disk (B&g 6).

(2) If the intersectiong(Xk) N g(A_k+1) is a crossing for somé with i <k < j, then
the triplet (g(A_k), A, g(A_k+l)) is not semi-reducible (see Fig. 7).

Lemma 1. For any minimal4-chart, there is no reducible triplet

Proof. We prove the lemma by contradiction. Suppose thaethgists a reducible
triplet (4’, A, A”). Let R be the room possessing the reducible triplet anc{getD_ —
Xg; P1, Py, ..., P, A1, As, ..., A,} be an associated set for the roaRnwith re-
spect to the terminal edge. We may assume thaf(A;) = A, andg(A;) = A” with
i < j. We need the following claim to prove Lemma 1.

Claim 1. Let (g(A_S),A,g(A_,)) be a reducible triplet withi < s < ¢ < j and
t —s minimal Then only one of the following three cases occurs

CASE 1. g(Ay)=g(A), t =s+1.

CASE 2. g(Ay) # g(Ass1) # g(As2), £ =5+ 2, and the label ofg(A,41) is 2.

CASE 3. g(A,) # g(Ass1) = g(Ays2), t =s+3, and g(A,+1) is a terminal edge
of label 2.

Proof of Claim. Since (A,), A, g(A,)) is reducible, the label oft is 2 and the
labels of g(A,) and g(A,) are odd.

First of all, the label ofg(A,) (s < r < t) is 2. For, if the label ofg(A,) is
odd, then, by considering the orientation of the e(gga_,.), we find that the triplet
(g(A,), A, g(A,)) or (2(A,), A, g(A,)) is reducible (see Fig. 8). This contradicts the
condition thatr — s is minimum.

Supposeg(fi) = g([sﬂ). Then g(/?s) is a terminal edge by Note (3). Hence the
triplet (g(A;), A, g(Ay+1)) is reducible. Sinces(+1)—s = 1 < ¢ — s, we must have
t =s+1. This means Case 1 occurs.

Supposeg(A_x) ;ég(A_5+1). If the label ofg(A_s+1) is odd, thenr = s +1 by the fact
mentioned at the first of the proof. Since parity gfA,) and g(A,+1) is same,g(A;)
and g(A_s+1) must have a common crossing by Note (4). This contradigtsserond
condition for reducible triplet. Thus the label g{A,+1) must be 2. Further suppose
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that g(As+1) # g(Ays2). Then the label ofg(A,+,) is odd. Thereforer = s + 2 by the
fact mentioned at the first of the proof. This means Case 2reccu
Supposeg(A) # g(Aﬁl) = g(As+2). Then the label ofg(AHl) is 2. The edge
g(Aﬁl) = g(As+2) is a terminal edge by Note (3). Hence the Iabelg()ﬁﬁg) is odd.
Thust = s + 3 by the fact mentioned at the first of the proof. This meanseCa
occurs. Therefore Claim 1 has been proved. Ul

Now continue the proof of Lemma 1. By Claim 1 it is enough towghbat the
three cases never occur.

Case 1. Suppose tha@(A,) = g(A,+1), and that the triplet g(A,), A, g(A,+1)) is
reducible. Then the edgg(A_S) is a terminal edge by Note (3). Lat be the white
vertex of the terminal edge. Theg(A_s) = g(A_s+1) must contain a middle arc of the
white vertexv by Note (2). Hence the ed@A_ﬁz) does not contain a middle arc of
v. Since the label of the edge(A,.1) is odd, the label ofg(A,+s) is 2. Thus by a
C-I-M2 move betweem and g(A,.,), we have a new terminal edge of label 2 which
contains the white vertex but does not contain a middle arc of(see Fig. 9). By a
C-1lI-1 move around the white vertex, we can decrease the number of white vertices.
This contradicts the minimal complexity of the chart.

Case 2. Suppose tha(A,) # g(Au1) # g(Agw2), ¢ = s + 2, and that the la-
bel of g(Aﬁl) is 2. Further suppose that the tnpl@((&) A, g(Aﬁz)) is reducible.
Now (g(A,), g(As+1)) OF (g(Ay+1). g(A,+2)) is not admissible. Supposg(@,), g(A+1))
is not admissible. Let = g(P+1). Since g(A,), g(A,+1)) is not admissible g(A,+1)
does not contain a middle arc of By a C-I-M2 move betweent and g(A,.1), we
have a new terminal edge of label 2 which contains the whirtexey but does not
contain a middle arc ob (see Fig. 10). We get the same contradiction as above by
applying a C-1ll-1 move. Similar for the other case.
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where Ai=g(A i) and possibly g(Ps)=g(Ps+2)

Fig. 10.

Case 3. Suppose tha{A,) # g(A1) = g(A,+2), £ = s+3. Further suppose that the
edgeg(A,+1) is a terminal edge of label 2, and that the triple(4;,), A, g(Ay+3)) is
reducible. Since the ed%A_m) is a terminal edge, it must contain the middle arc of
its white vertex. Hence the triplei(A,), g(A,+1), g(A,+3)) is semi-reducible. Thus by
a C-I-M2 move betweem and g(A_m), we have a new free edge without increasing
the number of white vertices and crossings (see Fig. 11s Tontradicts the minimal
complexity of the chart.

We get a contradiction for every case. Therefore Lemma 1 kas lproved. [
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where A= g(Ki)

Fig. 11.

Proposition 1. For any minimal4-chart, any non-special house possesses no ter-
minal edges of label.

Proof. Let H be a non-special house in a minimal 4-chart. Suppose that-a te
minal edgeA of label 2 belongs to the hous®#. Then the terminal edge belongs to
a room R in the house. Letv be the white vertex on the terminal edge. Since the
chart is minimal, the terminal edge contains a middle archefwhite vertexv. Let A’
and A” be the edges of odd label belonging to the ro@nrsuch that both of the two
edges contain the white vertax Then the triplet 4’, A, A”) is semi-reducible. But
the house contains no crossing. Thus the triplet is redeiciftis contradicts Lemma 1.
Thus the non-special house does not possess any terminalafdgbel 2. Therefore
Proposition 1 has been proved. [l

3. Special rooms and proof of Proposition 2

A special pairis an admissible pair with a common crossing. A semi-redacib
triplet is called aspecial tripletif it contains a special pair (see Fig. 12). gpecial
room is a room possessing a special pair.nAn-special roomdoes not contain any
special pair.

Lemma 2. In a minimal chart only a special room is able to possess a terminal
edge of label2.
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Proof. We prove the lemma by contradiction. Suppose thatraspecial roomR
possesses a terminal edgeof label 2. Let{g: D — Xz P1, P, ..., Py A1, Ao, ..., Ay}
be an associated set for the room with respect to the terneidgé A. Suppose that
the room R possesses a crossing Let v = g(Ax) N g(Ak+1) Since the room is not
special, the pairg(Ax), g(Ar+1)) is not special. Hence the tnpleg((Ak) A g(Ak+1)) is
not semi-reducible. Therefore the triplef(42), A, g(A,_1)) is reducible. This contra-
dicts Lemma 1. O

Lemma 3. Let A be a terminal edge of labe? belonging to a roomr, and
{g: D — Xr; Pl, Pz,.. P,,, Al,Az,.. A,,} an associated set for the room with
respect to the terminal edgé. Then in a minimal chartthe followings are satisfied
Q) If g(Ag) does not contain a crossing, then the e@qaz) contains a distinguished
arc of the vertexg(Pg) and the edgez(As) contains a middle arc of the vertex P,).
2) If g(An 1) does not contain a crossinghen the edg%r(An 1) contains a distin-
guished arc of the verteg(P_,,,l) and the edgeg(A_,,,g) contains a middle arc of the
vertexg(P,_2).

Proof. Suppose thag([z) does not contain a crossing. Then the e@ga_z) is
not a terminal edge. Hence the edg@s) is of label 2.
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We show thatg(A_z), g(A_g)) is admissible. If not,g(A_g) does not contain a mid-
dle arc Ofg(P_g). Apply a C-I-M2 move betweem and g(ng) to get a new terminal
edge without a middle arc of the verteg)(P_g). We can apply a C-llI-1 move to dis-
miss the verte>g(1;3) This contradicts the minimal complexity of the chart. Tdfere
(g(Ag) g(Az3)) is admissible.

Since @(Ag) g(Ag)) is admissible, the pomg(P4) must be a white vertex. For, if
not, apply a C-I-M2 move betweeA and g(A3). If g(P4) is a black vertex, then we
get a new free edge. This means the complexity decrease= (&14_3) is of label 2,

g(P4) is not a crossing. Hencg(P4) is a white vertex.

Since @(Az) g(A3)) is admissible and the p0|rgt(P4) is a white vertex, the edge

(Ag) must contain a middle arc of the white vertgkP,). For, if not, apply a C-I-
M2 move betweerd and g(A_g). Then we have a new terminal edge which does not
contain a middle arc of verteg(ﬂ) without changing complexity of the chart. Now
we can apply a C-IlI-1 move to dismiss the vert@dﬂ). This contradicts the minimal
complexity of the chart.

Now we show thatg(A_z) contains a distinguished arc of the vert@ﬁg) by con-
tradiction. Suppose that(A;) does not contain a middle arc of the vertgkP3). Then
g(Az) is not a loop. Henc%(Pg) # g(P3). Since g(Az) does not contain a distin-
guished arc of the vertex(P3) and the pair g(Az) g(A3)) is admissible, the edge
g(A3) contains a middle arc og(Pg) Let A" be the odd labeled edge with the ver-
tex g(P3) different from the edges(A,) such that the pair4’, g(As)) is admissible.
Now apply a C-I-M2 move betweed and g(A3) And then operate a C-I-M2 move
betweenA’ and g(A,_1) (possibly A’ = g(A,_ 1))- Then we can use a C-I-M3 move
to dismiss the two white verUceg(Pz) and g(P3) without increasing the number of
crossings. This contradicts the minimal complexity of theant. Therefore the edge
g(A_z) contains a distinguished arc of the vertg(d;g). This proves (1). The proof
of (2) is similar. ]

Proposition 2. For any minimal4-chart with at most one crossindhe special
house does not possess any terminal edge of label

Proof. We prove the proposition by contradiction. Suppdeg there exists a ter-
minal edgeA of label 2 in the special hous# of a minimal 4-chart with at most one
crossing. By Lemma 2, the terminal edgemust belong to a special room.

Since the number of crossings is at most one, situation (1¥itoation (2) in
Lemma 3 occurs. Now we use the notation in Lemma 3.

Suppose that situation (1) occurs. There are two cases.

Case 1. The edgeg(A_g) belongs to only one room

This means that if we take out the ede/\_g) from the chart, then the chart is
disconnected. So apply a C-I-M2 move betweénand g(A_g) to get a new discon-
nected chart without increasing the number of white vestisech that each connected
component has a white vertex. This contradicts Connectsd@endition.
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A 4-CHART WITH AT MOST ONE CROSSING 427

CASE 2. The edgeg(A_g) belongs to two rooms
Let R’ be the other room different from the room We need the following claim.

Claim 2. There must be a special palg(AL), g(Ars1)) for somed <k <n—1
with (g(Az), A, g(Ar+1)) semi-reducible

Proof of Claim 2. The triplet g(A,), A, g(A,_1)) is not reducible by Lemma 1.
Hence there exists a special paif(4:). g(As+1)) for some 2 < k < n — 1 with
(g(A_k), A, g(A_k+1)) semi-reducible. Since the edga{A_Z) does not contain a crossing
and the edg@(A_g) is of label 2, we have that £ . ]

Now continue Case 2. Let’ be the odd labeled edge belonging to the ro@m
such that it has the common vertg;@ﬁg) with the edgeg(A_g) and that it is situated
next to the edg%r(A_g). Let A” be the odd labeled edge belonging to the ro@n
such that it has the common vertg;@]i) with the edgeg(A_g) and that it is situated
next to the edg%(A_g;). Here, if the edg%r(A_g) is a loop, then we takel’ = A” (see
Fig. 13). Apply a C-I-M2 move betweer and g(As) to get a new terminal edge”
with the white verteXg(1;4).

The edgeg(A_g) is not a loop. For, ifg(A_g) is a loop, then the roonkR’ does not
possess a special pair. Hence the triplét, A", A”) is reducible (see Fig. 13). This
contradicts Lemma 1. HemﬂA_g) is not a loop.

The room R’ does not possess the special pai(AL), g(Axs1)) indicated in
Claim 2. The roomR’ possibly contain the other special pair, say, 8’). But the
triplet (B, A", B’) is not semi-reducible. This means that the triplet, (A", A”) is re-
ducible (see Fig. 14). This contradicts Lemma 1.

The proof for situation (2) is similar to the one for situati¢l). Therefore Propo-
sition 2 has been proved. Ll

4. Distinguished arcs and proofs of Proposition 3 and 4

We investigate properties of distinguished arcs. By Pribjpos 1 and Proposi-
tion 2, we can assume that our minimal chart is connected asdnb terminal edges
of label 2.

Lemma 4. Every house with no terminal edge of latiepossesses an even num-
ber of distinguished arcs

Proof. LetXy be the closure of a housH possessing no terminal edge of la-
bel 2. LetY be the disk with holes obtained froXi; by cutting X, along all edges
of label 2 which do not lie on the boundary af;. On the boundary ot there are
two copies of each edge which do not lie on the boundar)Xgf Each copy inher-
its its orientation from the original edge. Now walk alonge thoundary component
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of Y. Orientation of edges changes when we pass the white veréhvpossesses a
distinguished arc in the housd. Therefore the house possesses even number of dis-
tinguished arcs. O

Lemma 5. For a connected chart with no terminal edge of lal2llet V be the
number of white verticesror each non-negative integet, let n; be the number of
houses which havé boundary component§hen we have

V=201-2)-2) nili - 2).

i>3

Proof. LetE and F be the number of edges of label 2 and the number of houses,
respectively. Note that the graph, consists of the edgealwsl 12 and their vertices, is
a three regular graph. Thus we have

3V=2E and F :Zni.

i>1

For each house witth boundary components, adil{1) edges to make the boundaries
of the house connected without adding extra vertices. Ajplier's theorem on the 2-
sphere. Then we have

V—<E+Zn,-(i—1)>+F:2.

i>2

Put the previous two equations into the last equation. Thenrésult follows by elim-
inating E and F. U

Proposition 3. For any minimal4-chart with at most one crossingf the chart
has a white vertex but no terminal edge of lat&klthen there exists a non-special
house with a connected boundaryhich possesses no distinguished.arc

Proof. For each integer, let n; be the number of houses withconnected bound-
aries andk; be the number of houses withconnected boundaries but no distinguished
arc. Let V be the number of white vertices. Then by Lemma 4, aech

V> ZZ(H, — k;).

i>1

Combining the equation in Lemma 5, we have

by =2+ (i —k)+ Y ni(i —2).

i>2 i>3
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Thus there exist at least two houses with connected bouralgrpo distinguished arc.
The special house may be one of the two houses. Therefore fotte dwo houses is
a desired house. O

Lemma 6. In a minimal charf there exists no room whose boundary consists of
exactly two edges such that parities of the two edges arereliff and that the odd
labeled edge does not contain a distinguished. arc

Proof. Suppose that there exists such a roBmvith one odd labeled edgd,
and one even labeled edge. Since the odd labeled edge does not contain a distin-
guished arc, the edge is not a loop. hgtand v, be the vertices of the edgé;. Let
R’ be the next room which possesses the edgeFori = 1,2, let A} be the even
labeled edge belonging to the rooRi and containing the vertey;.

The pair A7, A}) is admissible. For, if not, first apply a C-I-M2 move between
A’ and A%, and then apply a C-I-M3 move to dismiss the two verticgsaind v,. This
contradicts the minimal complexity of the chart.

The pair (A1, A2) is admissible. For, if not, the paird, A}) is not admissible by
condition (3) for charts.

Since the pair 4/, A5) is admissible, 41, A}) or (A1, A}) is admissible. If 4, A))
is admissible then the edgé; contains a middle arc of;. If (A1, A}) is admissible
then the edgeA; contains a middle arc of,. This contradicts the condition for the
odd labeled edgei;. O

Proposition 4. For any minimal4-chart, if a non-special housewith connected
boundary possesses no terminal edge of lalZlthen the house possesses a distin-
guished arcs

Proof. We prove the proposition by contradiction. Supptse there exists a non-
special house with a connected boundary but without distéfged arcs nor terminal
edges of label 2. Among the rooms in the house, choose a rossessing the mini-
mal number of edges. Since neither terminal edges nor agsd$ielong to this house,
the room must possess exactly two edges. Since the housendbgmssess distin-
guished arcs, any odd labeled edge in this house does naicantmiddle arc. This
contradicts Lemma 6. ]

Observing rooms more closely, we can show that any minimehakt with at
most two crossings does not have any white vertex providatl ttre chart represents
a 2-sphere [1], [4].
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