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Abstract
In the context of Connes’ spectral triples, a suitable mot morphism is intro-
duced. Discrete groups with length function provide a ratexample for our def-
initions. Connes’ construction of spectral triples for gpoalgebras is a covariant
functor from the category of discrete groups with lengthclions to that of spec-
tral triples. Several interesting lines for future studytbé categorical properties of
spectral triples and their variants are suggested.

1. Introduction

The notions of morphism, as a generalization of “coordirtea@sformation,” and
respectively of category, as a generalization of “group rahgformations,” are going
to be central in all the attempts to reformulate the conceptphysical covariance in
an algebraic context (see for instance J. Baez [1]).

In the abstract framework of A. Connes’ Non-commutative @euy [7, 11],
where non-commutative manifolds are described by spettigles, a definition of
“morphism of spectral triples” is still missing in the liegure. With the present short
note, we intend to provide tentative definitions of “morphisand of “category of
spectral triples,” and to investigate some of their prapert

Since, as typical feature of every non-commutative geametetting, “non-
commutative spaces” are described dually by the categorispéctra” (categories of
representations) of their algebras of functions, definimgoaphism of non-commutative
spaces actually amounts to the specification of a functowdmt representations cat-
egories and, under this point of view, our work can also ben s&® an example of
“categorification” process in which sets are replaced byegates (see for example
J. Baez, J. Dolan [2] or L. lonescu [14]).

In the second part of this paper, we proceed to the congtructf a natural co-
variant functor, from the category of discrete groups epeipwith a length function,
to our category of spectral triples, that shows the validitythe proposed definition of
morphisms. We expect this functor to be just one particuameple in a class of func-
tors from suitable categories of “geometrical objects”He tategory of spectral triples.
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Actually this work is part of a much wider research project fBat, among
several other objectives, has the purpose to study an ajg@pnotion of non-
commutative (totally geodesic) submanifold and quotiernifold and the study of
some suitable functorial relations between the categafespectral triples and sgin
Riemannian manifolds. This program will be carried out inailen a forthcoming pa-
per [4]. The situations investigated here are usuful togmesll the relevant structures
involved without dealing with the complications arisingpiin “spinorial calculus” on
Riemannian spin manifolds.

Treatments of non-commutative geometry in a suitable caitegy framework,
mostly appealing to Morita equivalence, have already aggear a more or less ex-
plicit form. In [8, 9, 10] A. Connes shows how to transfer aagivDirac operator
using Morita equivalence bimodules and compatible conoestion them, thus lead-
ing to the concept of “inner deformations” of a spectral gety that encompasses
a formula for expressing the transformed Dirac operatorhia form D=D+A+
JAJ L. The categorical “ideology” becomes especially evidenbagnthe practitioners
of “non-commutative algebraic geometry” (see for example Kbntsevich and
A. Rosenberg [15, 16, 24]) and morphisms between non-coativet manifolds,
thought of as non-commutative spectra, have been proposé&d Kanin [18] in terms
of the notion of “Morita morphisms,” i.e. functors among repentations categories
that are obtained by tensorization with bi-modules.

The notion of morphism of spectral triples described in teguel is not as gen-
eral as possible, and several further generalizations @adeubtedly at hand.

In a wider perspective [5] a morphism of the spectral triplds, ;, D;), with
J =12, might be formalized as a “suitable” functét: 4,.# — a,.#, between the
categoriesy .# of A;-modules, having “appropriate intertwining” propertieghwthe
Dirac operatorsD;.

The morphisms described in the sequel are only a very speai& of that pic-
ture. However for the present purposes that level of geitenabuld be unnecessary,
and so we stick to the more restrictive definition provided bgmomorphisms
¢: Ay — A, of algebras with an intertwining operatofs: H; — H, between the
Dirac operators.

We can thus establish our main result, stating that Conr@sstouction of spectral
triples from group algebras is functorial in nature.

Whether these functors can be chosen to be full, if they ateneable to non-
monomorphic cases and, in a broader context, which othestdts into categories of
spectral triples can be obtained this way seem to be integequestions and we hope
to return to these and related issues elsewhere.

2. A category of spectral triples

In this section we define a “natural” notion of morphism betwespectral triples.
Examples will be provided in the next section 3.
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In order to facilitate the reader and to establish our notsti we start recalling
the definitions and key properties related to spectraléasipl

2.1. Preliminaries on spectral triples. A. Connes (see [7, 11]) has proposed a
set of axioms for “non-commutative manifoldstalled a (compact) spectral triple or
an (unbounded) K-cycle.

e A (compact)spectral triple (A, H, D) is given by:

— a unital pre-C-algebrd A;

— a representation : A — B(H) of A on the Hilbert spacé;

— a (non-necessarily bounded) self-adjoint operdioron H, called the Dirac

operator, such that:

a) the resolvent) — )=t is a compact operatokx € C \ R,®
b) [D,n(a)]- € B(H), for everya € A, where k, y]- := xy — yx denotes
the commutator ofv, y € B(H).
e The spectral triple is calle@venif there exists a grading operator, i.e. a bounded
self-adjoint operatoi” € B(H) such that:

r2=1dy; [T, 7(a)]_=0, YVaec A; [I',D]s=0,

where [, y]+ := xy + yx is the anticommutator of, y.
A spectral triple that is not even is callexdid
e A spectral triple isregular if the function

Byt — exp(t|D])x exp(it|DJ)
is regular, i.e.E, € C*(R, B(H)),* for everyx € Qp(A), wheré
QD("q') = Spar{n(ao)[D, 7'[(611)]7 e [D7 n(a,l)], | ne N, ap, ..., 0y € ‘A}

e The spectral triple isz-dimensionaliff there exists an integer such that the
Dixmier trace of|D|™" is finite nonzero.

e A spectral triple is#-summableif exp(—tD?) is a trace-class operator for
everyt > 0.

e A sgspectral triple isreal if there exists an antiunitary operatof: H — H
such that:

[7(a), Jr(®*)J"Y]_=0, Va,beA,

1At least in the case of compact, finite dimensional, Riemamnorientablespirt manifolds.

2SometimesA is required to be closed under holomorphic functional daku

3As already noticed by Connes, this condition has to be weskén the case of non-compact
manifolds, cf. [13, 12, 20, 21].

4This condition is equivalent ter(a), [D, 7 (a)]- € M=, Doms™, for all a € A, wheres is the
derivation given bys(x) :=[|D|, x]_.

SWe assume that foi = 0 € N the term in the formula simply reduces #dao).
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[[D,7(a)]-, Jx(b*)J ']_=0, Va,beA, firstorder condition
J?==+Idy;  [J, Ds =0;

and, only in the even case, J,[I']+ =0,

where the choice oft in the last three formulas depends on the “dimensierdf the
spectral triple modulo 8 in accordance to the following ¢abl

n 0}1|2|3|4]|5|6|7
JP=xldy |+ |+ | | = | = | =]+ |+
D=0 - [+ |- |- |—|+|-|-
[J,F]i:O — + — +

e A spectral triple is calleccommutativef the algebraA is commutative.

2.2. Morphisms of spectral triples. The objects of our category” will be
spectral triples A, , D). Given two spectral triplesA;, ;, D;), with j = 1,2, a
morphism of spectral tripless a pair

(¢, ®) € Mor»[(A1, H1, D1), (A2, Ha, D3)],

¢, D
(A1, Ha, D1) L2 (Ap, Mo, D),

where ¢: A1 — A, is a x-morphism between the pret@lgebras A,, A, and
®: H; — H» is a bounded linear map iB8(H,, H») that “intertwines” the representa-
tions 1, 2 0 ¢ and the Dirac operator®,, D;:

(2.1) wo(p(x)) o ® = D omy(x), Vx e Ay,
D2 od=do Dl,

i.e. such that the following diagrams commute for everg A;:

Hi —2>H, Hy —2>H,
Dll O ng 7Tl(x)l O lﬂ20¢(x)
Hi —2 H, Hy —>H,

Of course, the intertwining relation between the Dirac apmis makes sense only on
the domain ofD;. In the rest of the paper, we tacitly assume thatcarries the do-
main of D, into that of D».

Note also that such a definition of morphism implies quite rargg relationship
between the spectra of the Dirac operators of the two specipées.
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Loosely speaking, in the commutative case (see [4] for d@taone should expect
such definition to become relevant only for maps that “pnesdhe geodesic struc-
tures” (totally geodesic immersions and totally geodesionsersions). Clearly our def-
inition of morphism contains as a special case the notionuoftdry) equivalence of
spectral triples [11, pp.485-486].

2.3. Categories of real and even spectral triples. In the case of real spec-
tral triples, we can define a natural notion of morphism sympy requiring that the
morphisms be compatible with the real structures in theoWdhg sense: given two
real spectral triplesA;, H;, D;, J;), with j = 1,2, a morphism in ourcategory of
real spectral triples.#, will be a morphism of spectral triples

(¢, @) € Mor »[(A1, H1, D1), (A2, Hz, D)],
(A1, Ha, D1) @9, (A2, Ha2, D2),
such that® also “intertwines” the real structure operatofs J2:
(2.2) Jro®=do Jy,

i.e. such that the following diagram commutes:

Hy —2>H,
hl O lfz
Hy —>H,

In a completely similar way, we can consider even spectiples (A, H, D, T)
and define thecategory of even spectral triple%’,, considering only those morphisms

(¢, @)
(A1, H1, D1) — (A2, H2, D),

such that® “intertwines” with the parity operator§'y, I',, i.e. such that:
[Nod=>doly,
2.3) Hi —2>H,
Fll O lrz
[
Hi——H>

Again, in the case of real even spectral triples, T, D, J,T') we will obtain a
category of real even spectral triples;., choosing those morphisms that satisfy at
the same time both the intertwining conditions 2.2 and 2.8vab
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Of course the category”,. of real even spectral triples is in general a non-full
subcategory of both the categorie®, and ., which are in turn non-full sub-
categories of.

REMARK 2.1. According to our definition of morphisms, an automosphiof a
real spectral triple 4, H, D, J) in the categorical sense is given by a pair ) with
¢ € Aut(A) and ® € B(H) implementing¢ and commuting withD and J. If we had
required from the beginning thé appearing in (2.1) to be isometric, we would have
obtained an extension of the isometry subgroup of*Athe latter being the group of
diffeomorphisms preserving the K-homology class of thecspé triple introduced by
A. Connes [10, Section XI].

Define Q,(A) := spann (ao)[D, 7(a1)] - - - [D, 7 (a,)] | ao, ..., a, € A}, the space
of p-forms. Every morphismd(, ®): (A1, Ha, D1) — (A2, Ha, D2) of spectral triples
intertwines thep-forms according to the following formula:

N

Z (ag”)[P1, ma(a”)] -+ [Pr ma(af)]

N

Z (a$))[ Dz, m2(#(al))] - - - [ D2, 72(¢(a))) ] o .

REMARK 2.2. Our morphisms of spectral triples are compatible with inner
deformation of the metric (see A. Connes [8, 9, 10]) in thdofeing sense. Suppose
that @, ®): (A1, H1, D1) — (A2, Ha, D;) is a morphism of spectral triples. Let us
consider the two spectral triplesi{, Hi, D1 + A1) and (A, Ho, D, + A,) obtained by
Morita “self-equivalences” ofA; and A, using the “gauge potentialsA; € Q%,I(Al)
and A; € Q})Z(Az), respectively. We notice thatp(®) continues to be a morphism of
the “deformed” spectral triples if and only ib o A; = Ay o ®.

3. Discrete groups with weights

In order to prove the perfect mathematical naturality of ¢emtative definition
of morphism of spectral triples, we provide here one intiémgsexample of covariant
functor with values in our category”.

3.1. Preliminaries on group algebras. For the benefit of the reader, we set up
the framework by recalling a few properties of group algsh(at discrete groups) and
their representations.

Let G be a group equipped with the discrete topofogy

6with this topologyG is of course a topological group.
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We recall that, given a groug, we can always construct igroup algebraC[G],
that we will denote here byl := C[G]. The algebrads consists of all the possible
complex-valued functions o with finite supportAg = {f: G — C | f~}C —
{0}} is a finitese}, with sum and “scalar” multiplication by complex numberdided
pointwise: (f + h)(x) == f(x) + g(x), (¢ f)(x) = a(f(x)), and multiplication defined by
the “convolution” product: £ * h)(z) 1= 3, )=o) f(*)g(¥). It is quickly established
that A, with the previously defined operations, is a complex asgivel unital algebra

N 1L x= .
whose identity is §¢(x), wheres(x) := 0 * ;éy, and thatA; becomes a unital
. X FY

associative involutive algebra with the natural involatiff *)(x) := f(x~1).

Proposition 3.1. There exists a covariant functad from the category¥ of
groups with homomorphismso the category/ of associative complex unital invo-
lutive algebras with unital involutive algebra homomorginis that to every grougs
associates the group algebrdg.

Proof. We have to define the functor on morphisms i.e. giveromdmorphism
¢: H — G between two groupg/ and G, we have to define a unital involutive homo-
morphismAy: A¢ — Ay between the group algebras.

First of all notice that every grou@ can be naturally “embedded” inside its group
algebra bys“: G — Ag, z+— 8¢. The maps® is injective, unital (i.e.e — §5), mul-
tiplicative (i.e.8¢ 87 =49), involutive (i.e. §7)* =8%,).

Then recall that for a given grou@, (Ag,38%) is a free object ovelG in the
category of unital associative involutive algebras i.eergvunital multiplicative invo-
lutive functiony: G — B from G to a unital associative involutive algebia can
be “lifted” to a unital involutive algebra homomorphisd that makes the following
diagram commutative:

§G
G——Ag

W
v
v
B
Finally take in the above diagram respectivély= Ay, ¥: G — Ay defined byy =
8" o¢ in order to get the desired morphism of unital involutiveeddgas. A, := . The

associationg — A, is “functorial” i.e. respects compositions and identityndtions.
O

Proposition 3.2. On the complex vector spacd; there exists a natural inner

"Here e denotes the identity element of.
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product given by

(f Thy=Y" F)h(x).
xeG
With this inner product4 is a pre-Hilbert spaceThe completion ofd; with respect
to the previous inner product is a Hilbert space

The Hilbert space constructed in Proposition 3.2 is nafuralentified with the
Hilbert spacel?(G) := L?(G, i), where u is the counting measure on the discrete
group G. In the following we will always denote this Hilbert space Bi; := 12(G).

Proposition 3.3. There is a natural unital representationd: As — L(Ag) of
the group algebraAg over itself by left action(by convolutio). The representation
is faithful.

Proof. To every elemenf € As; we associate the elemen@(f): Ac — Ag
given by 2(f))(h) := f = h, for everyh € Ag.

From the definition ofz? it is clear thatzl(f) € L(Ag) and thatf — 72(f) is
a linear function:z2 € £L(Ag; L(Ag)).

By direct calculations$ is multiplicative and unital hence a representation.

The injectivity of z2 follows from the triviality of the kernel (as in any unital
left-regular representation): if # 0, thenzl(f)(8¢) = f %8S = f #0. O

Corollary 3.4. There is a natural faithful representation;: A — B(Hg) of
the group algebrad; as bounded operators on the Hilbert spake;.

Proof. The operatorrd(f) € L(Ag) is a bounded operator on the pre-Hilbert
spaceAg. To prove this note that iff = Y _, f(x)8¢, by the linearity ofz2, we
have rd(f) = 3 .cc f(x)7d(8Y) so that it is enough to prove the boundedness of the
operatorst2(8€) for all x € G. This follows immediately from the fact that(5¢) is
an isometry of the inner product spagk;:

|78 (57) @] = 187 % "= 3" |h ()" = JoIhG)P = 1l

zeG zeG

By linear extension theoremgg(f) extends to a bounded operatog (f) on Hg with
the same norm. ]

The representatioms: A — B(Hg), in Corollary 3.4, is nothing but théeft-
regular representatiorkg : C[G] — B(I3(G)).

Proposition 3.5. The exists a natural antilinear involutiodi; : Hs — Hg on the
Hilbert spaceHg.
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Proof. On the pre-Hilbert spacd;, the algebra involutions: Ac — Ag, de-
fined by f*(x) := f(x~1), is antilinear and isometric:

(1= faeDeg =) e => gl)f(x)=(g | f)

xeG xeG xeG

By linear extension theorem (for antilinear maps), theréstexa unique antilinear
extensionJs: Hg — Hg to the closureHs of Ag. The map Js is antilinear,
involutive, isometric. O

3.2. Preliminaries on weighted groups.

DEFINITION 3.6. By aweight on a groupG we mean a real-valued function
w: G — R. Given two weighted groups({ wg) and (H, wg), we say that a function
¢: G — H is aweighted homomorphisiift

¢: G — H is a group homomorphism andog = ¢*(wg) = wg o ¢.

A weight is calledproper if for every k € N, og'([—k, +k]) is a finite set inG.
Note that proper weights exist only on countable groups.

REMARK 3.7. A special case of weight on a grodj is given by the notion of
a length functionon a group [6] i.e. a function/;: G — R such that:

lg(xy) <lg(x) +lc(y), Vx,y€QG,
le(x™Y=l5(x), VxeG,

lg(x)=0 < x=¢, wheree € G is the identity element of.

Of course a length function is always positive since: ;) = lg(xx 1) < Ig(x) +
lg(x~1) =2s(x) for all x € G.

A weighted homomorphism of groups with length is calledisometry The pre-
vious conditions actually imply that every isometry is itjge:

¢(x) = en = lu(@(x)) =lu(en) =0 = Il(x) = 0= x =e¢g.
Proposition 3.8. The class of (proper) weighted groups with weighted homo-

morphisms forms a categaryrhe class of groups equipped with (@ropen length
function when the morphisms are the isometrissa full subcategory

8Here we follow the definition used by M. Rieffel [22, Section 2]
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Proof. The composition of weighted homomorphisms (respagt isometries)
¢:G— H andy: H — K is a weighted homomorphism (isometry):

(¥ 0 9)*(wx) = ¢* (Y *(wk)) = ¢*(wn) = wg-

For every object ¥, wy), the identity isomorphism: H — H is a weighted homo-
morphism (isometry) that satisfieg ot = ¢, andt o ¢ = ¢ for every composable
weighted homomorphismg, . U

Of course the category of normed spaces with linear norregovéng maps is a
(non-full) subcategory of the category of Abelian groupshwiength function (the
length function being the norm) and isometries as defined/almincide with the
well-known concept of norm-preserving maps in hormed space

Proposition 3.9. There is a covariant functord from the category¥; of groups
with injective homomorphism as arrowto the categoryp.s# of pre-Hilbert spaces
with isometries

In the same waywe have a covariant functoH from the category¥; of groups
with injective morphism to the category; of Hilbert spaces with isometries

The functorsA and H are left exact

Proof. The functor on objects is defined By Ag € po% and byG — Hg €
4 respectively.

To define the functor on morphisms, we first note that for amgmgigroupG, the
set{sY | x € G} is a (Hamel) basis for the vector spagg; that is orthomormal with
respect to the inner product ;.

If the function ¢: G — H is a monomorphism, the induced (linear) map
Ay Ag — Ap becomes an isometry because it maﬁsto (Sqi’(x) i.e. it sends an or-
thonormal basis to an orthonormal set.

Since A, is an isometry, it is bounded as a map frody to Hy and it can be
uniquely extended to an isometfy,: H¢g — Hp.

The associationg — Ay and ¢ — H, satisfy all the functorial properties. [

The following theorem is a well-known result of A. Connes [&mma 5]:

Theorem 3.10. To every pair(G, wg) where G is a discrete countable group
and wg is a weight function onG, we can associate a triplé A, Hg, D.,,) given
as follows
e s is the group algebra of; as defined above iSubsection 3.1.

e Hg is the Hilbert space of; as defined above iRroposition 3.2.
e The representation of the algebrds; on Hg is the left-regular representation
6. Ag — B(Hg) defined above irCorollary 3.4.
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e The Dirac operatorD,,, is the pointwise multiplication operator by the weight
function wg, i.e.

(Do) (x) = w6(x)6(x), Vx €G,

naturally defined on the domaift € Hq | Y, glwa(x) E(x)I1? < oo}

The triple (Ag, He, D) is a spectral triple if and only if the weighbs is prop-
er and such thatfor all x € G, the differences[w¢ — 1. (wg)]: G — R, are bounded
real-valued functions

Proof. Ag is a pre-C algebra: defining| f|| := |7c(f)|l#,, We see that the €
property || f* £l = | f11? is immediaté®.

The Dirac operatoD,,, is self-adjoint and has compact resolvent if and only if
wg 1S proper.

Every elementf € A can be written asf = > _; f(x)8°.

It follows that 7 (f) = Y, f(x)mc(8S) and we have:

D F ) [Py, 76 (89)]

xeG

< D O [[Dag. 76(57)]

xeG

I[ Do, 7 (I =

’

so that, in order to show the boundedness B, [, 7¢(f)] it is enough to show the
boundedness off},,, 7(6%)] for all x € G.
Now, from the fact thatrs(s€) is unitary inHg, we have:

[[Doc: 76 (59)]] = | Duce (87) = 76 (87) Do |
= |(Pow = 76 (89) Duga (69) ) 76 (59) |

= | Due = 76 (89) Duga (59) 7

and since, by direct calculation, we gets(8Y)D,,7c(8¢) ™t = Dy (), Where

(w6): y — wg(x~ty), we see that|[D,,, 7¢Il = Dy, — Drowe)ll. Since
Doy — D)l = llog — (w6)lleo = SUflwg(y) — wg(xy)l: y € G}, the asser-
tion is proved!. O

SWhere (wg): y = wg(x~1y) is the “left x-translated” ofwg.

101t must be pointed out that, denoting 15} (G) the closure ofAg in the norm defined above,
the correspondencé — C;(G) is not functorial, in general. It becomes so, for the full category
of amenable groups. In the case of non amenable groups we tdioawe finite dimensional spectral
triples (see A. Connes [6, Theorem 19]).

Hletu: G x G — T be a normalized-cocycle onG and consider the left-regular representation
of G twisted byu, defined by(xf(9))s¢ = u(y~1x~%, x)8%,. Then up to minor modifications the
same argument shows that the Dirac dperaugg also gives a spectral triple over the “twisted group
algebra” generated by the’ (59)'s.
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REMARK 3.11. In the case of length funtions on groups, the last ¢amdiof
Theorem 3.10 is automatically satisfied:

I6(y) — t:(l)(y) = l6(y) — lo(x™1y) < I6(x).
Lemma 3.12. A; C Hg is an invariant core for the operatoD,,,.

Proof. Suppose th& (£,7) € D,,. Since A is dense inHg, there is a se-
quenceé, i & with &, € Ag. We show that it is possible to choose the sequence
n—oo

&, € Ag in such a way thatD,,(&§,) —— 7. In fact, selecting an arbitrary well or-
deringn +— x, € G in the support set of, we can always defing, := Z’}zoé(x,-mfj

n—oo n—0o0

and check that, — & and alsoD,,(&§,) —— n so that €,7n) € Dy, |4, i.€. Ag
is a core forD,,.

Of course, sinces, has finite support,D,,(&,) also has finite support and so
D,.(&,) € Ag. In particular A is an invariant subspace fdp,,,. O

Lemma 3.13. Given the weightog: G — R on the groupG, the following con-
ditions are equivaleft:
Vx € G wg — 1c(wg) IS constant
wg =a+¢, wherewa is a constant andp: G — R is a homomorphismn
Vx € G, wg — t.(wg) is constant

wg (xzy™) — w6 (2971 = we(xz) — w6(z),  V¥x,y,z€G.

Proof. By direct calculation itvg =« +¢ thenwg — 7. (wg) and wg — ) (wg) are
constant. Thatvg — 7, (wg) being constant is equivalent to

3.1 wG(xg) = wg(g) —d (x77),

for some functionp: G — R. Takingx = g~ in the previous equation we haydg) =
wg(g) — wg(eg). Hence equation (3.1) implies

(3.2) $(xg) =¢(e) —¢ (x7Y)

and (takingg = eg) ¢(x) = —p(x~1). Substituting this in equation (3.2), we see that
is a homomorphism so that = o + ¢ with @ := w(eg). The same proof applies to the
casewg — 7,(wg) being constant. The last equation is easily reduced tovalguice to
the constancy ofvg — 7, (wg) by substitutions. ]

120perators and their graphs are denoted with the same symbol.
BBy definition, t/(wg): y = wg(yx~1) is the “right” translation ofwg by x.
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In view of their relevance for the construction of spectrgbles, weights satisfy-
ing the last condition in Theorem 3.10 deserve a special name

DEerFINITION 3.14. A weightwg on the groupG is said to be &irac weightif
wc — 17 (wg) are bounded functions, for everye G.

The following proposition is essentially a restatement loé tresults already ob-
tained by M. Rieffel [23, see the end of Section 2].

Proposition 3.15. Given a proper Dirac-weighted countable grodg, wg), the
anti-unitary operatorJ; defined inProposition 3.5is a real structure on the spectral
triple (Ag, Hg, D, ) if and only if eitherwg is a constant function ot is a homo-
morphism of groups

Proof. We have/Z = Idy,,.
By linear extension, the conditionV¢ D, )(§) = £(Dw, Jc)(§) for & € Hg holds
if and only if (JgDu,)(8%) = £(D., J5)(8Y), which is also equivalent to:

(3.3) wg(xfl) =twg(x) Vx e€G.
There is no problem at all to verify the property

(3.4) Vemc(g)Jg) o ma(f)§) = ma(f) o (J6me(g)J6)(E), V& € Hg.
In fact, for all f, g,& € Ag:

[76(f) 0 (Jom6 () I)I(E) = [ * Ja(g * (J6(§))) = f  (JE() * Jo(g))
= fx&x(Je(g)) = Jo(g * (J6(§)) * (Jo(f))
= (Jema(8)Jo)(f * &) = [(Joma(8)Ja) o ma()I(§)

and by linear extension theorem (singg, = (f), andrs(g) are all bounded) condi-
tion (3.4) holds for allé € Hg.
We now prove that the first order condition

(3.5) [Dog» 6 ()] 0 (J676(8)I6)(E) = (J676(8)JG) © [Dus» w6 (f)]-(6),

for all f,g € As and all¢ € Hg, holds if and only ifwg — t.(wg) are constant
functions. Since all the operators involved are boundedhenHilbert spaceHs, by

linear extension theorem, it is enough to check the first ro®ndition only for

every ¢ € Ag.

Let f =) 6 ()89, g =3 . e(»)8T andg =3 _;£(2)5¢ be three elements
in Ag. Substitution in equation (3.5) above and (anti-)lingayiteld

Y FE0NER - [Dug, 87]_ o (Jome (85) Jo) (57)

x,y.2€G
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= > F20)E@) - (Jome (87) J6) o [Dug. 871 (59).

x.y.26G
This last equation holds if and only if, for all, y, z € G:
(D8] o (Jame (39) J6) (6%) = (Jomo (6) J6) © [Py 5] (8)

By direct calculation we have:

[Dag: 871 ¢ (Joma (87) Jo) (87) = wg (x2y™?) = wg (2v71) 8,

(J676 (8) JG) © [Dag» 871 (87) = wg(x2) — 06(2)8¢,, -
Hence our result is that the first order condition (3.5) hdfdand only if

we (xzy 1) — w6 (zy 1) = 06(x2) — w6(z),  V¥x,y.z €G.

and this, by lemma 3.13, is equivalent to the fact thgt= o + ¢ whereo: G — R
is constant an@: G — R is a homomorphism of groups.

Now, equation (3.3) above, in the plus case, is equivalert 00 and so towg =
a being a constant. In the minus case, it is equivalent to0 and so tawg = ¢ being
a homomorphism of groups. O

REMARK 3.16. The spectral triple4q, Heg, D.,) is regular (see M. Rieffel [23,
end of Section 2]). For instance,,.|, 7¢(f)] and [[D,.|, [D, 7c(f)]] are bounded
for all f € As as a consequence of the following estimates which can benebitdy
repeating the argument in the proof of Theorem 3.10:

I[Pios1, 76 (BN]| = lItellwgl) = lwglllse < lITe(w6) — w6 lloo

I[Prwots [Po: 76 ED]]|| = It (w6) — w6l

and more generally

[1Dwsl, - [1Pus | 76 (87) ]+ ][] = lITx(w6) = w7
———
I[1Dwsl. - - - [IDagls [Pag. 6 (85)] ]+ ]| < lte(we) — wc ™
——

n

REMARK 3.17. On the real spectral tripled¢, Hg, D, Jc), it is impossible to
introduce a grading operatdt;, (unlesswg is the zero functiotf). This is because if
w¢ IS a non-zero constant the equatién,.,I' = —I'D,,, cannot be satisfied. On the
other hand, ifwg is a homomorphism, then we are in the cakeD,, = —D,. Jc

4In the casew; equal to zero, a convenient grading is givenib@) := 5.
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which, from the table at the end of Section 2.1, is incompatibith the existence of

a grading. Of course, “doubling” in an appropriate way thébelit spaceHs, we can

easily get another graded real spectral triple:

e the pre-C-algebra is the same group algebiy;

e the Hilbert space is given by the direct sty ® Hg;

e the representation afl; in Hg @ He is the direct sum representation; ® ng

i.e. for all f € Ag andé&,n € Hg:

—|7c(f) O §1 _ | [ra(NIE) .

moometniesn=["5" 1] [ =[FeAn)

e the Dirac operator is given by:

D, 0
D(uG @ (_D(UG) = |: OG _D } 1
oG

e the grading operator is given by:

10 1},
FG'_[l o]’

e the real structure is given by:

J 0
JG@JG:[(;} JGiI.

3.3. The functor: monomorphism case.

Theorem 3.18. There exists a covariant functog, from the category%” of
proper Dirac-weighted countable groups with weighted moomhisms to the cate-
gory of spectral triplesthat to every(G, w¢) associate{ A, Hg, Da,)-

Proof. We only need to prove existence of a functor on mongphisms
¢: G — H. It is our purpose to show that the paidy, H,) defined in Proposi-
tion 3.9 is a morphism

(Ag. Hy)

(AG, Hg, Do) (Ax, Hu, Do)

of spectral triples.
This amounts to showing that for evepye As and for everyé € Hg:

Hg o ma(f)E) = mu(Ag(f)) o Hy(£);
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and that:
(36) H¢ o Dwa(é) = Da)” o H(b(é)

The first property follows from the fact that, for every € As; and for every
& € Ag C Hg we have:

(Hg 0 w6 (fNE) = Ho(f &) = Ag(f % &) = Ap(f) % Ap(§) = 1 (Ag(f)) 0 Hy(§).

Since, for everyf € Ag, the bounded operatort, o 7 (f) and wy(Ay(f)) o Hy
coincide on the dense subspadg of Hg, the identity follows.
The second property is obtained from the fact that, for evesy A C Hg:

Hy © Dy () = Hy <Z 06(2)€(2)87 ) =Y w6(2E(2)H, (89)

zeG zeG

=Y w6(2)ER)SH, = D on(@R)ER)

zeG zeG

=D,, <Z$ (Z)Sﬁz)) =Dy, <Z$ (2)Hy (87 ))

zeG zeG

=D,, oHy <ZS(Z)83> = Dy, 0 Hy(8),

2eG

so that the two operators(, o D,, and D,, o H, coincide on the dense subspace
Ag of Hg. From the fact that4s is an invariant subspace fab,, and H,4, and
from Lemma 3.12 above, we see thal; is a core for both operators and the
equality (3.6) follows. ]

Proposition 3.19. Under the same assumptions asTiheorem 3.18jf the weight
w¢ is a group homomorphism or a constarthen (Ag, Hy) is a morphism of real
spectral triples ie.:

H¢OJG:JH OH¢.

Proof. For every elemen =) _;&(x)8¢ € Ag C Hg we have:

Hy o Jo (Zg@)@f) =Y Hyo o (E(x)8T) = > E@H, (Jo (89))

xeG xeG xeG
= D E()H, (374) = 3 EC)85(,)-
xeG xeG

= Ju (E@)S5) = D Ju o Hy (5(x)89)

xeG xeG
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= Ju o Hy (ngaf) )

xeG

This means that both the operatdi§, o Jo and Ju o H, coincide on the dense sub-
spaceAs of the Hilbert spaceHs and, since they are bounded, it follows by linear
extension theorem, that they are equal on allGf. J

REMARK 3.20. With the same notations developed in Remark 3.17, @asly
established thatA,, H, ® H,) is a morphism of graded spectral triples (with real
structure, when available). The associatiGn— Ag, ¢ — (Ag, Hg ® Hy) is func-
torial from the categorys” to the category” of spectral triples.

An automorphisma of G induces by functoriality an automorphist, of the
group algebrads implemented by the unitarg{, on the Hilbert spacé{; and, if o
is also weighted, A,. H,) is an automorphism of the spectral tripleld, Hg, D)
In particular, ifa := ad,, g € G, is inner, H, = ng(g)Jns(g)J is the image ofg
through the inner regular representation®f-°

Equivalence classes of monomorphisms categorically spomd to subobjects, in
our case, subgroups. Every subgrofpof the weighted group, wg) comes natu-
rally equipped with a weight functiomwy = wg |y Obtained by restriction of the orig-
inal weight function onG and the inclusion map: H — G is a morphism in¥®.
By Proposition 3.9 and Theorem 3.184,(7,) is a monomorphism from the spec-
tral triple (Ay, Hu, D,,) to the spectral triple A, Hg, D,.). Similarly, one has
the following:

Corollary 3.21. The functorg: 4“ — .7 is left exact every monomorphism of
groups gives rise to a monomorphism of spectral triples

Note however that the functof is not full: there are morphisms (even mono-
morphisms) of spectral triples over group algebras thatrateobtained from mono-
morphisms of groups. This fact might call for suitable maidifions of our setting that
could entail better functorial correspondences.

3.4. Preliminaries on charged groups and co-isometries.Before proceeding
further, we need to collect a few more facts about weights landths on groups.

DEFINITION 3.22. A charged groupis a weighted group(, wg) such that the
function |wg|: x — |wg(x)| is a length function orG.

A homomorphism ¢: G — H between charged groups is calledometric
if ¢*(lonl) = lws].

5Note that(Ag, Hg. D.,;), with A acting onH¢ by the (linearization of the) inner regular rep-
resentation ofG, is a spectral triple too.
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REMARK 3.23. Every group with length functionG( ;) is a charged group.

An isometric homomorphism between charged groups is cooti® with respect
to the metric topologies induced by the length functions.

Every weighted homomorphisg: G — H between charged groups& (wg) and
(H, wg) is isometric®,

The category of charged groups with isometric weighted iisms is a full sub-
category of the category of weighted groups with weightechomaorphisms.

DEFINITION 3.24. Let G,ws) and H, wy) be two weighted groups. A homo-
morphism of groupsp: G — H is called aco-weighted homomorphisif there ex-
ists a weighted homomorphism: H — G such that¢ o p = 1g. A co-weighted
homomorphism between two charged groups is said todssometricif |wg(p(g))l <
lwg(g)] for all g € G.

Lemma 3.25. Let (G, ;) be a group with length function and Iéf be a normal
subgroup ofG. The function/s,n: G/H — R defined by

l(;/H(xH) = Inf{lg(xh) | h e H}
is a length onG/H called thequotient length.

Proof. Using the normality o7 in G we see thaf{xyhk | h,k € H} = {xhyk |
h,k € H}. Hence this calculation follows:

lo/u(xyH) < lg(xhyk) < lg(xh) +lg(yk) Vh,k € H
= lg/u(xyH) — lg(xh) <lg(yk), VYh ke H

= lg/n(xyH) —lg(xh) <lg/u(yH), YheH

= lg/n(xyH) —lg/u(yH) < lg(xh), VYheH

= lg/u(xyH) — lg/u(yH) < lg/u(xH).

Since H is normal inG, we have{x *h |h € H} = {(xh)™* | h € H} and so:

lou (x™*H) =inf{lg (x7*h) | h € H} =inf{ic ((xh)™") | h € H}
& |nf{lg(xh) |he H} = lg/H(xH).

Finally, we have 0< I,y (H) =inf{lg(h) | h € H} < lg(ec) = 0. ]

Lemma 3.26. Let¢: G — H be a homomorphism between two groups &ndh
length function onG. We can define the push-forwagd(/;): ¢(G) — R as follows

(@a(l))(h) = inf{l(g) | ¢ € G, ¢(g) =h}, Vh € ¢(G).

160f course,¢ is continuous.
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The push-forward is a length function @#(G).

Proof. Under the natural isomorphis¢(G) ~ G/ Ker¢, the functiong,(/s) co-
incides with the functioris, kery defined above. O

REMARK 3.27. A co-weighted homomorphisgh: G — H between two charged
groups is a co-isometry if and only jfoy| = ¢e(lwgl).

Lemma 3.28. There is a category. whose objects are groups and whose mor-
phisms are epimorphisms

There is a category whose objects are charged groups and evirasphisms are
co-isometric homomorphisms

Proof. The composition of epimorphisms is another epimisrphand the compo-
sition of co-isometric homomorphisms is a co-isometric bamrphism. The identity
map of every group is a co-isometric homomorphism (henceneghism) that plays
the role of the identity in the category. ]

Corollary 3.29. There is a category, whose objects are Hilbert spaces and
whose morphisms are co-isometries

DerINITION 3.30. A covariant relator from the category«/ to the category#
is a pair (Rop, Rmor) Of relations, Rop, € Ob,, x Obyz between objects anRyor C
Mor ., x Morg between morphisms, such that:

(A, B) € Rob = (ta, ts) € Rmor

and, whenevew;, o, are composable morphisms i and whenevep;, 8, are com-
posable morphisms is:

(a2, B2), (1, B1) € Rmor = (a2 0 a1, B2 0 B1) € Rumor-

REMARK 3.31. A covariant functor is a covariant relator such thatl®o, and
Rmor are functions. Contravariant relators are defined in a amatay interchanging
the order of compositions.

Proposition 3.32. There is a contravariant relatof{ from the category¥, of
groups with epimorphisms to the categos# of Hilbert spaces with isometries

Proof. Hoyp is the function that to every objedd in ¥. associates the Hilbert
spaceHg € ..

We now define the relatiofyor. As we already know from Proposition 3.1, every
homomorphism¢: G — H is associated to a linear mag,: A¢ — Ay of pre-
Hilbert spaces.
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If ¢ is an epimorphism, the linear mag, is continuous if and only if Kep is
a finite subgroup ofG:

2 2
1A ()15 = A¢<Zf(x)sf> =D £,
xeG H xeG H
2 2
= Z( ST = Y fw
(3.7) yeH \xedp=1(y) g YEH [xe71(0)
2
SZ( D@ <> Y card(Ker)l f(x)P?
yeH \xep~Y(y) yeH xep1(y)

=) card(Kew)| f (x)| = card(Kem)|| /|5

xeG

It follows that in general the operatod, is an unbounded operator from the Hilbert
spaceHs to the Hilbert spacéy.

The operatorA, is densely defined because its domain contains the dense sub-
spaceAs C Hg. Hence there exists an adjoint operatdf that, in the case of finite
Ker¢, coincides with the “pull-back” operatof — f o, for f € Ay. Unfortunately,
when Kerg is not finite, 4, is not a closable operator.

Let us now denote byP the set of linear isometric operatoks C Hg x Hy such
that C C A,. The family P is an inductive partially ordered set and as such, by Zorn’s
lemma, it admits a maximal element. Every maximal oper&tom the family P is
necessarily surjective and so its adjoiGt: Hy — Hg is an isometry andC*™ = K
is a partial isometry with rang@ty.

Every maximal partial isometryC € P has a closure that is the adjoint operator
Hy, of an isometric operatot,, wherey: H — G is a monomorphism that is right
inverse to the epimorphism: G — H.

We now define a contravariant relathfiyor On morphisms by saying thap (K*) €
Hwmor if and only if K is a maximal isometry indg.

‘H will be a contravariant functor if and only if the set of maxhrpartial isome-
tries in Ay has cardinality one, which is equivalent to the fact thatehexists only
one “splitting homomorphism” for¢ i.e. there exists a unique/: H — G such

thatgp o = 1.
The same considerations can be applied to the full subagtegb (proper)
weighted groups. L]

REMARK 3.33. The relation between the kernel ¢fand the kernel ofA, is
given by:

Ker(p) = G N[85 + Ker(4,)], Ker(A4y) =8 + span(Kerg)).
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3.5. The functor: coisometric case.

Theorem 3.34. There exists a contravariant relatd® from the category?® of
proper Dirac-weighted groups with co-weighted homomaspis to the category of
spectral triples., that to every(G, wg) associateqAg, Hg, Do, )-

Proof. The relator on object$Ro, coincides with the functor defined in
Theorem 3.18.

We want to see that, on morphisms, the reldfy,, is defined in the same way
as in Proposition 3.32 i.€Ryor associates to every splitting weighted epimorphism
¢: G — H the family of pairs @y, H,), wherey is any weighted (mono)morphism
Y: H — G such thatp o = 1p.

Let : G — H be a co-weighted epimorphism of proper weighted groups. For
sure (see Proposition 3.1) we have tbdf: A — Apg is an involutive unital homo-
morphism of the group algebras.

If the homomorphism¢: G — H admits “right inverses” i.e. if there exist
weighted morphismsy: H — G such that¢ o ¥ = (g4, from Proposition 3.32 we
know that, for any such “right inverse{, the function,: Hs — Hy is an isom-
etry of Hilbert spaces. From the same Proposition 3.32 we ki®ow that the pair
(Pob. Rmor) Where the second relation is given Bywvor = {(Ay,Hy) | ¢ oy =
ta, ¢ € Morg.} is a contravariant relator.

From theorem 3.18, 4, Hy) is a morphism in the category of spectral triples
<, i.e. for all f € Ay and for all§ € Ay:

Hy o wu(f)E) = w6 (Ay(f)) o Hy(§)
Dy, o Hy(§) = Hy o D, (§). O

REMARK 3.35. The relator becomes a functor in case that it is passibkelect
canonically a splitting of the co-isometry (for example retcase of Hilbert spaces).

4. Conclusion and further remarks

In this work we have proposed a definition of morphism for $@edriples (and
their real and even variants).

Some remarks on further generalizations are in order. We pagsented here the
most elementary instructive example of functorial relasiobetween our proposed
category.” of spectral triples and other categories: in this specifgecde categories
¢ of proper Dirac-weighted groups with monomorphisms a#d of proper
Dirac-weighted groups with co-weighted homomorphismsheDtexamples involving
categories of Riemannian manifolds equipped with a ‘s@tructure will be dealt
with in [4].
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Other alternative variants of our definition of morphism gfestral triples are
worth investigating. For example we might substitute theeofsy” requirement of com-
mutation of the Dirac operators with the Hilbert space majth wome milder prop-
erty likel’: H¢ o) [Dg, JTG(f)] = [DH, JTH(.A¢(f))] o H¢.

As regards the specific examples of functorial relationidlesd here, several im-
mediate generalizations and comments come to mind. Amoa,thve mention:

Most of the facts presented here for the category of weightedips can be
rephrased for the category of “weighted” small categorieasaering the “con-
volution algebra” of a small category in place of the grougeaka.

The notions of weight and charge on a group can be further rgkzed by

considering functionsw: G x G — C having properties formally similar to
those of Hermitian forms and inner products. The Dirac dpesaD, associated
to these functionsv include, in the case of finite groups, all available Dirac op-
erators according to the classification of finite spectragdlds (see, for example,
T. Krajewski [17]).

The only possible choice of Dirac operatby,, on a weighted group(, o) that
is fully compatible with the requirements of a real zero disienal spectral triple,

where the real structurd is the one obtained by Tomita—Takesaki modular the-

ory (from the cyclic separating vectdrfG € Hg), is D, = 0. This fact asks for
some investigation on the mutual relationship between iaodiheory and non-
commutative geometry. We hope to discuss this point elsew8.
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