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Abstract
The purpose of this paper is to give an explicit statemenh wdfspect to a nu-
merical algorithm for finding balanced metrics, which hasadly been pointed out
by Donaldson [3].

1. Introduction

First of all, we shall recall the definition of balanced metri Let (X, L) be a
compact complex manifold of complex dimensionwith a very ample line bundle.
Let h be a Hermitian metric o, which defines a Bhler formay, := (vV/—1/(27))©(h)
on X, where®(h) is the curvature form induced by an unitary connection wibpect
to h. The metrich and the Kahler form w, define an inner product-, - ), on the
(N + 1)-dim vector spacé := HO(X, L) by

(S. S ::/ h(s, S)dV,,
X

wheredV,, = (1/(n1))wy is the volume form with respect th. Let {S, ..., Sy} be
an orthonormal basis with respect to the above inner proditet metric formowy, is
called balancedwhen the Bergman kernel

N
Bun(P) = ) IS(P)I
k=0

is constant onX.

The existence of balanced metrics is equivalent to the entist of the specific
projective embedding oK. For a basis{S} of E, Kodaira embedding theorem im-
plies a projective embedding

us): X < CPN
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by ys1(p) = [S(p) : -+ - : Sv(p)]- The embeddings, is calledbalancedwhen

N+1 SS;
Vo x Tiolsd?

d\/t*wps = (SI] )

whereV and wgs denote the volume oK and the Fubini-Study metric form o@8PN
respectively. At this moment, we find thatwes is balanced.

The existence of balanced metrics is closely related toilgyabf the projective
variety (X) c CPN in the sense of Geometric Invariant Theory (cf. [6], [9], ]12
Using the asymptotics of the Bergman kernel, Donaldson {&] &labuchi [7] proved
that the existence of a constant scalar curvature metrgg(in) implies asymptotic sta-
bility of (X, L).

The purpose of this paper is to carry out explicitly a nunwragorithm for find-
ing balanced metrics. This algorithm has already been médaby Donaldson in Re-
mark at the end of [3]. However, in view of the importance of broblem, it would
be interesting to carry out the procedure very explicitlgr Ehat purpose, we shall use
two maps defined by Donaldson as follows. ll&tand M be the set of metricé on
L such thatwy is a positive (11) form on X and the set of Hermitian metrics on
E respectively. We fix a base poitiy in . We can identify/C as the set of Khler
potentials, that is,

K= {¢ e C®(X)

/—1 —
who—788¢>0],

and M as the set of j + 1) x (N + 1) positive Hermitian matrices with respect to a
fixed basis ofE respectively. We define two maps @ and M.
e Define a map

Hilb: K — M
by

N+1
||S||En|b(h) = T/x 1SI2dV,,.

e For a givenH € M, let {§"} be an orthonormal basis d with respect toH,
which is occasionally abbreviated &-ONB. So we define a map

FSSM —= K
by

1
FH):=log——.
Pl
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Of course,FS(H) is independent of the choice of @i-ONB and

N
H (2 _
@1 Z |S< |FS(H) =1
k=0
We note that the induced formrgH) equals tOL’[kSH}a)Fs.

DeErINITION 1.1. A point he £ (resp. H € M) are called balanced if and
only if

FSoHilb(h)=h  (resp. Hilbo FS(H) = H).

By definitions, a balanced metric corresponds to a balaneéd (p, H) up to scalar
multiplication. Donaldson pointed out that the iterationttee map Hilbo FS: M — M
converges to a balanced point which is the minimiser of atfanal Z: M — R de-
fined in [3]. We denote Auf{, L) be the group of automorphisms of the pak, ()
and the trivial automorphism€* act by constant scalar multiplication on the fibre
of L. Our main result is the following.

Theorem 1.2. Fix a point Hy € M. Let H := HilboFS(H,_1). Suppose that
Aut(X, L)/C* is discrete If there is a balanced point i € M, then there is a con-
stanta > 0 such that{H,} converges taxH,, as | - oco. Moreover

(1.2) 2&%):mm20n:ym20m.

REMARK 1.3. The convergence stated above makes sense by virtue afptr-
ator norm when we regarth € M as a positive Hermitian matrix with respect to an
Ho-ONB.

2. A functional Z on M

Donaldson [3] proved that a balanced point kh is characterized as a critical
point of a functionalZ on M. In this section, we shall run though the definition and
the property ofZ (see [3] for the full details).

Fix a basis{S} of E. We regard anyH € M as a positive Hermitian matrix with
respect to{S}. Thus we have a map

logdet:M — R.

A different choice of a basis just changes this map by thetiatdof a constant. Cor-
respondingly, we introduce a functional d&. For a pathh; = e*hy with ¢g = 0 in
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K, we define

I: - R

1 .
Iny (1) ::f dt/ brdV,, .
0 X

This functional is equivalent to the well-known function@&F. [4])

by

1
O, (00 = duy () + 5 [ daof,
X

where

18 k+1 V=1 - ) e
tho(_¢l) = v gm/x(ﬁl o 33¢)1Aa)h0 /\a)ﬂ1

1 [t :
n n
_v/(‘) dt‘/x(l)t (a)ho—a)ht),

hence the functional is independent of the choice of a path.
We now define maps oft and M respectively as follows:

. ~ N+1
L :=logdetoHilb: £ — R, L=L—

I ki

Nz

Z=—|loFS:M — R, =7+ log det.

N+1
We note thatZ and Z are invariant by scalar multiplication oki and M respectively.
Donaldson [3] proved:
(1) A point h* € K (resp. H* € M) is balanced if and only if it is a critical point
of £ (resp.Z) on K (resp.M). Moreover, if there is a balanced point k& (resp. M),
then it is an absolute minimum of thé (resp.Z) on K (resp. M).
(2) The map HilbFS: M — M decrease¥, i.e., for anyH € M

(2.1) Z(H) = Z(Hilb o F§(H)).

Because of these two results, it seems reasonableHhat the main theorem would
converge to the minimiser of if balanced points exist.

3. Proof of Theorem 1.2

Fix a point Hy in M and let H, := Hilb o FS(H,_1). With respect to arHy-ONB,
we identify M as the set of l + 1) x (N + 1) positive Hermitian matrices. Then, we
can discuss th&oundednessf a subset/ = {H} C M.
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DEerFINITION 3.1. A subset/ c M is bounded if and only if there is a positive
constantR > 1 satisfying the following condition: For anil € U, there is a constant
yy > 0 such that

(3.1) ™ < min HE) < max—lH(g)| <vuR

R —éz0 |§] — e70 ]

Here maxxo(|H(£)[/|£]) is so-called the operator normiH|,, which is the largest
eigenvalue ofH, and minxo(|H(£)|/|£]) is the smallest one.

Note that when/ is bounded with respect to a basis Bf it is bounded with
respect to a different one, too.
We shall give a sufficient condition for the existence of hakd points inM.

Proposition 3.2. If the sequencégH,} is bounded {H,} has a subsequence which
converges to some point,He M such that

(3.2) Z(H) > Z(Hx) = inf Z(H))
for any H e M. In particular, Hy, is balanced

Proof. From the boundedness @i}, we find that there is a subsequence of
{» *H} which converges to some point iM. Since Z(H) = Z( 'H) decreases
monotonously with respect tQ so Z is bounded from below orH;}.

Now we shall show that the map Hi#li-S: M — M decreasesZ and logdet
respectively. (This can be also found from Lemma 4 and Lemnia [3].) For any
H e M, let H" := Hilb o FS(H).

n! ,
v (Z(H) = Z(HY)

= —F2, (- FS(H)) + F2, (- FS(H)
= Fp.yy (FS(H) —FS(H"))
(because of the cocycle property Eﬁ)

= FngH) <|Og ( NV 1 BwFs(H)))
cre ({8 )) 5 )
N+1 SH) V X N +1 FS(H) FS(H)
\%
> WFS(H) <|Og<N +1 wFS(H)))

(since the logarithm is a concave function)
> 0.
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The last inequality is one of the well-known properties of fanctionalJ,, ([1], [11]).
From the definition of HilbFS, we get

Tr(H'HY) = ZN+1/

=N+1,

ki
Z] O|SH‘h

OFS(H)

where {S"} is an H-ONB. So we find that logdet{’"H™") < 0. We remark that
Tr(H'H™Y) and log detH’H 1) are independent of the choice of a basiskf

Therefore, we find thaZ(H,) and logdeH, decrease monotonously, respectively.
Since Z(H,) is bounded from below, so we find that

(3.3) det(HH ™) - 1

as| — oo and that deH, is bounded. So{y} is also bounded. Consequently, we get
that there is a subsequence {¢1} which converges to some poitt,, € M.
To prove (3.2), it suffices to show that for aky € M ande > 0

(3.4) Z(H)> Z(H) — ¢

for | sufficiently large. Sincel-||+1H,*l is a Hermitian matrix w.r.t. anyH,-ONB, we
can take arH,-ONB {S} of E such thatH|+1H|*l is regarded as a diagonal matrix by

N1 S, Sk,
leag /%deFng),---,/ hz AVorsey | »
X Ykl S, X 2|y,

wherehg is a fixed base point ifC. So (3.3) implies that

N+1/ She 4,
2 - Vorsh)
v XZk|S<|ho |

for any | sufficiently large and = 0,..., N. The boundedness dH,} implies that
there is a constanRy > 1 independent of such that

A min |H|(‘§)|_maXIHl(éf)IETIRH
Ry ~ &70 €] £70  |&]

(3.5)

(3.6)

where H; is regarded as a matrix with respect to HRONB and r; is some positive
constant. Then, we find thad can be written by a diagonal matrix

(3.7 diagé™, ..., e™), lag +logm| < log Ry
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with respect to a suitablef-ONB {S} (which may benot the same a§g} in (3.5)).
By the one-parameter subgroup of ®L¢ 1, C)

At) := diag(e'®/?, ..., ea/?) O<t<l,

we denote a pathH (t) := TA(t)A(t) in M from H, to H, soH(0)=H, and H(1) = H.
Let f(t) := Z(H(t)). We have

d .. _d v (v
g [O = (1o FSHW) + (kzgak)

N+1
= D ESHD)) AV + ;
(38) —_‘/X & S( ()) WFES(H (1)) m ;ak
ake—tak & |2 v N
:‘/Zt—[gkzh"d b * 17 (22 %)
X Zeiak|$<|h0 k=0

The equality (3.8) holds, sincfe '3/} is an H(t)-ONB. Therefore we get

d X alif v o[
3.9) af(t)tz"__/; I8, N kX:;'ak
' Y (a +log )| &7 v o
- 0 g |
[ 2 8 0 B

whered\, denotesdV, From (3.5), (3.7) and (3.9), we have

FS(H) *

> —¢Viog Ry.

(3.10) % f(t) 0
t=

Donaldson proved thaZ is convex along geodesics iM (see Proposition 1 in [3],
and also [2], [9], and [12]), therefore we get

Z(H) = Z(H)) — &V log Ry

for | large enough. Since (3.2) means thd, is a minimiser (in particular, a critical
point) of Z on M, so Hy, is balanced. Hence, the proof is complete. ]

We shall prove the boundedness {1} if balanced points exist.

Proposition 3.3. Suppose thafut(X, L)/C* is discrete If there is a balanced
point Hy, in M, {H,} is bounded in M
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Proof. The existence of balanced points M implies that Z is bounded from
below on M. In the same manner as the proof of Proposition 3.2, we finddbtH,
is bounded. Now we normaliz®l (with respect to a fixed basiS} of E) to

Msi := {HsL := (detH) Y™DH | H e M} c M.

We note that this normalization unchangési.e., Z(H) = Z(Hs.), and thatMs, can
be identified asSL(N + 1, C)/SU(N +1).

The functional Z(Hs) on Ms. equals to Z(Hs) which also equals to
~(V/(M))FS, (~ FS(Hs). Let o € SN +1,C) with H. =50 and

TsTo.flo,flS
(]5(, 1 .= |Og T,
where S(p) := T(¢ 0 S(p), - - ., ¢ o Su(p)) is the column vector of the values of holo-
morphic sections ofL at p € X in a local trivializationg. It is clear thatg,-: is
well-defined and independent of the choice of local triziafion. Then, by using the
cocycle property ofF%, we get

(3.11) —Fo, (-FS(HsD)) = —F2,, (#,-) +C

for some constan€, where: is the projective embedding ok to CPN induced by
{S}. It is known by many authors thatF prs(%fl) is equivalent to a specific norm
|l - llcu on the set ofChow points that is to say,

llo ™ - CH(X)IIgx

3.12 ~V DR (@0) =
(3.12) (n+ 1F?,(#s-2) = log Il CH(X) 12,4

where CHK) is the Chow point ofi((X) (See Theorem 5 in [9] and [12]. See also
Section 3 in [10] for the detail of the norm mentioned above).

Since it is known that the assumption of Proposition 3.3 iegpkthe uniqueness
of balanced metrics (see Theorem 1 in [2]), so we find that foy ane parameter
subgroup{ot} of SL(N +1, C)

(3.13) Z(H) = Z("or01) > 00 as t — oo

due to the convexity ofZ along {o;}. From (3.11), (3.12) and (3.13), the numerical
criterion of GIT (cf. [5]) implies that(X) c CPN is Chow stable In other words,Z

is proper when we regard it as the functional 8(N+1, C). Since Z(H,) is bounded,
so {(H)s} is bounded inM. Therefore we find thatH,} is also bounded due to the
boundedness of dét. The proof is complete. ]

From Proposition 3.2 and the proof of Proposition 3.3, weaimbfl necessary and
sufficient condition for Chow stability of(X) ¢ CPN.
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Corollary 3.4. Let (X, L) be a complex manifold with a very ample line bundle
Suppose thaBut(X, L)/C* is discrete The projective variety Xc P(H(X, L)*) is
Chow stable if and only if the sequenfl,} as above is bounded

We shall prove Theorem 1.2.

Proof of Theorem 1.2. The assumption that AUt{)/C* is discrete, implies the
uniqueness of balanced metrics, so the sequéhig has a subsequence which con-
verges toxH., for some positive constamt due to Proposition 3.2 and Proposition 3.3.
Since deH, decreases monotonously with respect tand is bounded from below, so

(3.14) detH; — a(detHa)

as| — oo. Because of the proof of Proposition 3.2, the uniquenessatifnised met-
rics and (3.14), we find that any subsequenceldf} has a subsequence which con-
verges toaHs,. This means thafH;} converges taxH,,. The equality (1.2) follows
from (3.2). The proof is complete. U

4. Remarks

Donaldson proved (Theorem 2 in [2]): LeK(L) be a complex manifold with a
positive line bundlle. Suppose that AMt(L)/C* is discrete. If K, LK) admits a bal-
anced metriavk € ke (X) for all sufficiently largek and (¥/k)wyx converges inC®, its
limit w, has constant scalar curvature.

Hence it may be natural that the algorithm of balanced nepioved in this pa-
per would be considered as the algorithm of constant scalarature metrics (if it
exists). In particular, the author guesses that this alyoriwould substitute for Con-
tinuity method in the case of &hler-Einstein metrics. He also hope that this prospect
would be one of the approaches for trying the extension ofrétationship between
the existence of HKhler-Einstein metrics and the non-existence of multipligeal
sheaves defined by Nadel [8] to the case of constant scalaeatoue metrics.
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