ON POLYNOMIAL CURVES IN THE AFFINE PLANE

Mitsushi FUJIMOTO, Masakazu SUZUKI and Kazuhiro YOKOYAMA

(Received February 7, 2005, revised September 8, 2005)

Abstract

A curve that can be parametrized by polynomials is called a polynomial curve. It is well-known that a polynomial curve has only one place at infinity. Let C be a curve with one place at infinity. Sathaye presented the following question raised by Abhyankar: Is there a polynomial curve associated with the semigroup generated by pole orders of C at infinity? In this paper, we give a negative answer to this question using Gröbner basis computation.

1. Introduction

Let C be an irreducible algebraic curve in the complex affine plane \mathbf{C}^{2}. We say that C has one place at infinity, if the closure of C intersects with the ∞-line in \mathbf{P}^{2} at only one point P and C is locally irreducible at that point P.

Abhyankar-Moh [1,4,5] investigated properties of δ-sequences that are sequences of pole orders of approximate roots of curves with one place at infinity and obtained a criterion for a curve to have only one place at infinity. This result is called AbhyankarMoh's semigroup theorem. Sathaye-Stenerson [14] proved that, conversely, if a sequence S of natural numbers satisfies Abhyankar-Moh's condition then there exists a curve with one place at infinity having its δ-sequence S. Suzuki [16] made clear the relationship between the δ-sequence and the dual graph of the minimal resolution of the singularity of the curve C at infinity, and gave an algebro-geometric proof of the semigroup theorem and its inverse theorem due to Sathaye-Stenerson. Fujimoto-Suzuki [6] gave an algorithm to compute the defining polynomial of the curve with one place at infinity from a given δ-sequence.

A curve that can be parametrized by polynomials is called a polynomial curve. It is well-known that a polynomial curve has only one place at infinity. Let C be a curve with one place at infinity, and Ω the semigroup generated by pole orders of C at infinity. Sathaye [13] presented the following question for curves with one place at infinity raised Abhyankar: Is there a polynomial curve associated with Ω ? SathayeStenerson [14] suggested a candidate for a negative answer to this question; however, they could not give an answer to the question since a root computation for a huge polynomial system was required.

[^0]We found a negative answer to the Abhyankar's question using a computer algebra system. In this paper, we give its details.

2. Preliminaries

Through this paper, we set $\mathbf{N}=\{n \in \mathbf{Z} \mid n \geq 0\}$ and $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$. Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y)=0$ in the complex affine plane \mathbf{C}^{2}. Assume that $\operatorname{deg}_{x} f=m, \operatorname{deg}_{y} f=n$ and $d=\operatorname{gcd}(m, n)$. The dual graph corresponding to the minimal resolution of the singularity of C at infinity is of the following form [16]:

Definition 1 (δ-sequence). Let f be a defining polynomial of a curve C with one place at infinity. Let $\delta_{k}(0 \leq k \leq h)$ be the order of the pole of f on the curves corresponding to the edge nodes $E_{j_{k}}$ in the above dual graph. We call the sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ the δ-sequence of C (or of f).

We have the following fact, since $\operatorname{deg}_{x} f=m$ and $\operatorname{deg}_{y} f=n$.
FACT 1. $\delta_{0}=n, \delta_{1}=m$.
We set L_{k} for each $k(1 \leq k \leq h)$, the linear branches as shown in the following figure:

Definition $2((p, q)$-sequence $)$. Now, we assume that the weights of L_{k} are of the following form:

We define the natural numbers $p_{k}, q_{k}, a_{k}, b_{k}$ satisfying

$$
\begin{gathered}
\quad\left(p_{k}, a_{k}\right)=1, \quad\left(q_{k}, b_{k}\right)=1, \quad 0<a_{k}<p_{k}, \quad 0<b_{k}<q_{k}, \\
\frac{p_{k}}{a_{k}}=m_{1}-\frac{1}{m_{2}-\frac{1}{m_{3}-\ddots-\frac{1}{m_{r}}}} \quad \text { and } \quad \frac{q_{k}}{b_{k}}=n_{1}-\frac{1}{n_{2}-\frac{1}{n_{3}-\ddots} .} .
\end{gathered}
$$

We call the sequence $\left\{\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right), \ldots,\left(p_{h}, q_{h}\right)\right\}$ the (p, q)-sequence of C (or of f).

The following Abhyankar-Moh's semigroup theorem and its converse theorem by Sathaye-Stenerson are results for δ-sequence.

Theorem 1 (Abhyankar-Moh [1, 4, 5]). Let C be an affine plane curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of C and $\left\{\left(p_{1}, q_{1}\right), \ldots,\left(p_{h}, q_{h}\right)\right\}$ the (p, q)-sequence of C. We set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)$. We have then,
(i) $q_{k}=d_{k} / d_{k+1}, d_{h+1}=1(1 \leq k \leq h)$,
(ii) $d_{k+1} p_{k}=\left\{\begin{array}{ll}\delta_{1} & (k=1) \\ q_{k-1} \delta_{k-1}-\delta_{k} & (2 \leq k \leq h)\end{array}\right.$,
(iii) $q_{k} \delta_{k} \in \mathbf{N} \delta_{0}+\mathbf{N} \delta_{1}+\cdots+\mathbf{N} \delta_{k-1}(1 \leq k \leq h)$.

Theorem 2 (Sathaye-Stenerson [14]). Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of $h+1$ natural numbers. We set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$. Furthermore, suppose that the following conditions are satisfied:
(1) $\delta_{0}<\delta_{1}$,
(2) $q_{k} \geq 2(1 \leq k \leq h)$,
(3) $d_{h+1}=1$,
(4) $\delta_{k}<q_{k-1} \delta_{k-1}(2 \leq k \leq h)$,
(5) $q_{k} \delta_{k} \in \mathbf{N} \delta_{0}+\mathbf{N} \delta_{1}+\cdots+\mathbf{N} \delta_{k-1}(1 \leq k \leq h)$.

Then, there exists a curve with one place at infinity having the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$.
Suzuki [16] gave an algebro-geometric proof of the above two theorems by a consideration of the resolution graph at infinity. Further, Suzuki gave an algorithm for mutual conversion of a dual graph and a δ-sequence.

3. Construction of defining polynomials of curves

We shall assume that $f(x, y)$ is monic in y. We define approximate roots by Abhyankar's definition.

Definition 3 (approximate roots). Let $f(x, y)$ be a defining polynomial, monic in y, of a curve with one place at infinity. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be the δ-sequence of f. We set $n=\operatorname{deg}_{y} f, d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ and $n_{k}=n / d_{k}(1 \leq k \leq h+1)$. Then, for each $k(1 \leq k \leq h+1)$, a pair of polynomials $\left(g_{k}(x, y), \psi_{k}(x, y)\right)$ satisfying the following conditions is uniquely determined:
(i) g_{k} is monic in y and $\operatorname{deg}_{y} g_{k}=n_{k}$,
(ii) $\operatorname{deg}_{y} \psi_{k}<n-n_{k}$,
(iii) $f=g_{k}^{d_{k}}+\psi_{k}$.

We call this g_{k} the k-th approximate root of f.
We can easily get the following fact from the definition of approximate roots.

FACt 2. We have

$$
g_{1}=y+\sum_{j=0}^{\lfloor p / q\rfloor} c_{k} x^{k}, \quad g_{h+1}=f
$$

where $c_{k} \in \mathbf{C}, p=\operatorname{deg}_{x} f / d, q=\operatorname{deg}_{y} f / d, d=\operatorname{gcd}\left\{\operatorname{deg}_{x} f, \operatorname{deg}_{y} f\right\}$ and $\lfloor p / q\rfloor$ is the maximal integer l such that $l \leq p / q$.

Definition 4 (Abhyankar-Moh's condition). We call the conditions (1)-(5) concerning $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ in Theorem 2 Abhyankar-Moh's condition.

In [6], we presented the following theorem to give normal forms of defining polynomials of curves with one place at infinity, and detailed a method of construction of their defining polynomials by computer.

Theorem 3 ([6]). Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition (see Definition 4). Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ $(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$.
(1) We define $g_{k}(0 \leq k \leq h+1)$ as follows:

$$
\left\{\begin{array}{l}
g_{0}=x, \\
g_{1}=y+\sum_{j=0}^{\lfloor p / q\rfloor} c_{j} x^{j}, \quad c_{j} \in \mathbf{C}, p=\frac{\delta_{1}}{d_{2}}, \quad q=\frac{\delta_{0}}{d_{2}}, \\
g_{i+1}= \\
\quad g_{i}^{q_{i}}+a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \ldots \bar{\alpha}_{i-1}} g_{0}^{\bar{\alpha}_{0}} g_{1}^{\bar{\alpha}_{1}} \cdots g_{i-1}^{\bar{\alpha}_{i-1}} \\
\\
\quad+\sum_{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right) \in \Lambda_{i}} c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}} g_{0}^{\alpha_{0}} g_{1}^{\alpha_{1}} \cdots g_{i}^{\alpha_{i}}, \\
a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{i-1}} \in \mathbf{C}^{*}, \quad c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}} \in \mathbf{C} \quad(1 \leq i \leq h),
\end{array}\right.
$$

where $\left(\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{i-1}\right)$ is the sequence of i non-negative integers satisfying

$$
\sum_{j=0}^{i-1} \bar{\alpha}_{j} \delta_{j}=q_{i} \delta_{i}, \quad \bar{\alpha}_{j}<q_{j} \quad(0<j<i)
$$

and

$$
\Lambda_{i}=\left\{\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{i}\right) \in \mathbf{N}^{i+1} \mid \alpha_{j}<q_{j}(0<j<i), \quad \alpha_{i}<q_{i}-1, \sum_{j=0}^{i} \alpha_{j} \delta_{j}<q_{i} \delta_{i}\right\} .
$$

Then, $g_{0}, g_{1}, \ldots, g_{h}$ are approximate roots of $f\left(=g_{h+1}\right)$, and f is the defining polynomial, monic in y, of a curve with one place at infinity having the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$.
(2) The defining polynomial f, monic in y, of a curve with one place at infinity having the δ-sequence $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is obtained by the procedure of (1), and the values of parameters $\left\{a_{\bar{\alpha}_{0} \bar{\alpha}_{1} \cdots \bar{\alpha}_{i-1}}\right\}_{1 \leq i \leq h}$ and $\left\{c_{\alpha_{0} \alpha_{1} \cdots \alpha_{i}}\right\}_{0 \leq i \leq h}$ are uniquely determined for f.

4. Abhyankar's question and Sathaye-Stenerson's conjecture

DEFINITION 5 (planar semigroup). Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}(h \geq 1)$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition. A semigroup generated by $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ is said to be a planar semigroup.

Definition 6 (polynomial curve). Let C be an algebraic curve defined by $f(x, y)=0$, where $f(x, y)$ is an irreducible polynomial in $\mathbf{C}[x, y]$. We call C a polynomial curve, if C has a parametrization $x=x(t), y=y(t)$, where $x(t)$ and $y(t)$ are polynomials in $\mathbf{C}[t]$.

The following question was introduced by Sathaye [13].
Abhyankar's Question. Let Ω be a planar semigroup. Is there a polynomial curve with a δ-sequence generating Ω ?

Moh [11] showed that there is no polynomial curve with the δ-sequence $\{6,8,3\}$. But this is not a negative answer to the Abhyankar's question since there is a polynomial curve $(x, y)=\left(t^{3}, t^{8}\right)$ with the δ-sequence $\{3,8\}$ that generates the same semigroup as above. Sathaye-Stenerson [14] proved that the semigroup generated by $\{6,22,17\}$ has no other δ-sequence generating the same semigroup, and proposed the following conjecture on this question.

Sathaye-Stenerson's Conjecture. There is no polynomial curve having the δ sequence $\{6,22,17\}$.

By Theorem 3, the defining polynomial of the curve with one place at infinity having the δ-sequence $\{6,22,17\}$ is as follows:

$$
\begin{aligned}
f= & \left(g_{2}^{2}+a_{2,1} x^{2} g_{1}\right)+c_{5,0,0} x^{5}+c_{4,0,0} x^{4}+c_{3,0,0} x^{3}+c_{2,0,0} x^{2} \\
& +c_{1,1,0} x g_{1}+c_{1,0,0} x+c_{0,1,0} g_{1}+c_{0,0,0}
\end{aligned}
$$

where

$$
\begin{aligned}
g_{1}= & y+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}, \\
g_{2}= & \left(g_{1}^{3}+a_{11} x^{11}\right)+c_{10,0} x^{10}+c_{9,0} x^{9}+c_{8,0} x^{8}+\left(c_{7,1} g_{1}+c_{7,0}\right) x^{7} \\
& +\left(c_{6,1} g_{1}+c_{6,0}\right) x^{6}+\left(c_{5,1} g_{1}+c_{5,0}\right) x^{5}+\left(c_{4,1} g_{1}+c_{4,0}\right) x^{4} \\
& +\left(c_{3,1} g_{1}+c_{3,0}\right) x^{3}+\left(c_{2,1} g_{1}+c_{2,0}\right) x^{2}+\left(c_{1,1} g_{1}+c_{1,0}\right) x+c_{0,1} g_{1}+c_{0,0} .
\end{aligned}
$$

Since a curve has one place at infinity and genus zero if and only if it has polynomial parametrization (see [2] or [3]), $\{6,22,17\}$ is a negative answer to the Abhyankar's question if it can be shown that the above type curve does not include a polynomial curve.

We summarize elementary facts about polynomial parametrizations (see [8], [9]).
DEFINITION 7 (proper polynomial parametrization). A polynomial parametrization $(x, y)=(u(t), v(t))$, where $u, v \in \mathbf{C}[t]$, is called proper if and only if t may be expressed as a rational function in x, y.

FACT 3. Any polynomial curve has a proper polynomial parametrization.
FACT 4. Let C be a polynomial curve defined by an irreducible polynomial equation $f(x, y)=0$ in the complex affine plane \mathbf{C}^{2}. Let $(x, y)=(u(t), v(t))$ be a proper polynomial parametrization of C. Then $\operatorname{deg}_{t} u=\operatorname{deg}_{y} f$ and $\operatorname{deg}_{t} v=\operatorname{deg}_{x} f$.

Now we assume that there exists a polynomial curve having the δ-sequence $\{6,22,17\}$. Thus, the defining polynomial f of C has the above form using the approximate roots g_{1} and g_{2}. By Fact 1 and Fact 4, this curve has the following polynomial parametrization:

$$
\left\{\begin{array}{l}
x=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+a_{4} t^{2}+a_{5} t+a_{6} \\
y=t^{22}+b_{1} t^{21}+b_{2} t^{20}+b_{3} t^{19}+\cdots+b_{20} t^{2}+b_{21} t+b_{22}
\end{array}\right.
$$

The following lemma presented in [14] plays a vital role to generate polynomial systems corresponding to δ-sequences.

Lemma 1. Let C be a polynomial curve defined by $f(x, y)=0$ having the proper polynomial parametrization $(u(t), v(t))$ and the δ-sequence $\left\{\delta_{0}, \delta_{1}, \delta_{2}\right\}$. Let g_{2} be the second approximate root of f. Then $\operatorname{deg}_{t} g_{2}(u(t), v(t))=\delta_{2}$.

Proof. This follows immediately from the form of $f\left(=g_{3}\right)$ obtained by Theorem 3.

By this lemma, all formal terms with t-degree more than 17 in $g_{2}(x(t), y(t))$ must be eliminated. We get the polynomial system I from the coefficients of these terms. Furthermore, we can successively eliminate some variables by using polynomials with the form: $c z-h\left(w_{1}, w_{2}, \ldots, w_{s}\right)$ in I, where $c \in \mathbf{C}^{*}, z, w_{1}, w_{2}, \ldots, w_{s}$ are variables and $h \in \mathbf{C}\left[w_{1}, w_{2}, \ldots, w_{s}\right]$. As a result, we obtain the polynomial system with 11 variables and 17 polynomials.
$\{6,22,17\}$ is a negative answer to the Abhyankar's question if the polynomial system I does not have a root. For such a huge polynomial system it is suitable to compute the Gröbner basis of the ideal. However, it has been impossible to compute the Gröbner basis of I under well-known term orderings, even using a computer with 8 GB of memory.

5. A negative answer to Abhyankar's question

We find a lighter candidate for a negative answer to the Abhyankar's question. Let C be a curve with one place at infinity defined by a polynomial equation $f(x, y)=0$ in the complex affine plane \mathbf{C}^{2}. Let M be the surface obtained by the minimal resolution of the singularity of C at infinity, and E the exceptional curve on M. We assume that $E_{0}, E_{1}, \ldots, E_{i_{h}}$ are irreducible components of E, where the numbering of indices is by the ordering generated in the process to get M. The holomorphic 2form $\omega=d x \wedge d y$ in \mathbf{C}^{2} extends to a meromorphic 2-form on M. The canonical divisor $K=(\omega)$ has the support on E. We get $K=\sum_{l=0}^{i_{h}} k_{l} E_{l}$, where k_{l} is the zero order of ω on E_{l}. We call the zero order $k_{i_{n}}$ of ω on $E_{i_{n}} k$-number. We obtain the following fact, since the proper transform of C intersects only $E_{i_{h}}$ on M.

FACT 5. $K \cdot C=k_{i_{h}}$.
The k-number corresponding to the δ-sequence $\{6,22,17\}$ is 20 . We classified δ sequences with genus ≤ 50 into groups that generate the same semigroups. Furthermore, we listed δ-sequences with the following three properties: (i) There is no other δ-sequence that generates the same semigroup. (ii) The number of generators is 3 . (iii) k-number ≥-1. Then, we obtained $\{6,15,4\},\{4,14,9\},\{6,15,7\},\{6,21,4\}$, $\{6,10,11\},\{4,18,13\}, \ldots$. We got $\{6,21,4\}$ as a negative answer to the Abhyankar's question using Gröbner basis computations for polynomial systems corresponding to these δ-sequences. We show its details below.

First, we need to prove the uniqueness of $\{6,21,4\}$ since the above-mentioned classification is for genus ≤ 50. Let $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ be a sequence of natural numbers satisfying Abhyankar-Moh's condition, where $h \geq 1$. Set $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}$ $(1 \leq k \leq h+1)$ and $q_{k}=d_{k} / d_{k+1}(1 \leq k \leq h)$.

Lemma 2. For any $k(1 \leq k \leq h), d_{k+1} \neq \delta_{k}$.
Proof. Assume that there exists a natural number $k(1 \leq k \leq h)$ such that $d_{k+1}=$ δ_{k}. We get $q_{k} \delta_{k}=\left(d_{k} / d_{k+1}\right) \delta_{k}=d_{k}$. From this and $d_{k}=\operatorname{gcd}\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{k-1}\right\}, q_{k} \mid \delta_{i}$ for each $i(0 \leq i \leq k-1)$. By Abhyankar-Moh's condition (5), it follows that there exists an integer $k_{0}\left(0 \leq k_{0} \leq k-1\right)$ such that $q_{k} \delta_{k}=\delta_{k_{0}}$. However, it must be $k_{0}=k-1$ from $q_{k} \delta_{k}=d_{k}$ and Abhyankar-Moh's condition (2). Thus, we obtain $d_{k}=\delta_{k-1}$ and $\delta_{k-1}>\delta_{k}$. We get $\delta_{0}>\delta_{1}>\cdots>\delta_{k-1}>\delta_{k}$, using the above result inductively, which is contradictory to Abhyankar-Moh's condition (1).

DEFINITION 8 (primitive). An element of a semigroup is called primitive if it is not a sum of two nonzero elements of the semigroup.

Lemma 3 ([14]). Let Ω be a semigroup and $\left\{\delta_{0}, \delta_{1}, \ldots, \delta_{h}\right\}$ a generators of Ω. If x is a primitive element of Ω, there exists a integer $k(0 \leq k \leq h)$ such that $x=\delta_{k}$.

Proof. By the definition of primitive elements, this assertion is clear.
Proposition 1. The planar semigroup generated by $\{6,21,4\}$ has no other sequence satisfying Abhyankar-Moh's condition.

Proof. Let Ω be the planar semigroup generated by $\{6,21,4\}$. 6,21 and 4 are primitive elements of Ω. Thus, by Lemma 3, 6,21 and 4 belong to any generating set of Ω. There are six possible cases for the order of 6,21 and 4 .
(i) $\{\ldots, 6, \ldots, 21, \ldots, 4, \ldots\}$: By $\operatorname{gcd}\{6,21,4\}=1$ and Abhyankar-Moh's condition (2), 4 is the last element of the sequence. $\operatorname{By} \operatorname{gcd}\{6,21\}=3, \operatorname{gcd}\{6,21,4\}=1$ and Abhyankar-Moh's condition (2), there is no element between of 6 and 21, and
also between of 21 and 4. Furthermore, by Lemma 2, 6 is the first element of the sequence. Thus, we get $\{6,21,4\}$.
(ii) $\{\ldots, 21, \ldots, 6, \ldots, 4, \ldots\}$: We get $\{21,6,4\}$ in the same way as (i). But this is contradictory to Abhyankar-Moh's condition (1).
(iii) $\{\ldots, 4, \ldots, 21, \ldots, 6, \ldots\}$: $\operatorname{By} \operatorname{gcd}\{4,21\}=1$, this case is impossible.
(iv) $\{\ldots, 21, \ldots, 4, \ldots, 6, \ldots\}$: By $\operatorname{gcd}\{21,4\}=1$, this case is impossible.
(v) $\{\ldots, 6, \ldots, 4, \ldots, 21, \ldots\}$: We get $\{6,4,21\}$ in the same way as (i). But this is contradictory to Abhyankar-Moh's condition (1).
(vi) $\{\ldots, 4, \ldots, 6, \ldots, 21, \ldots\}$: We get $\{4,6,21\}$ in the same way as (i). From $d_{1}=4, d_{2}=\operatorname{gcd}\{4,6\}=2, q_{1}=d_{1} / d_{2}=2$. Thus, $q_{1} \delta_{1}=12<\delta_{2}$. But this is contradictory to Abhyankar-Moh's condition (4).

As a consequence, the generating sequence of Ω satisfying Abhyankar-Moh's condition is only $\{6,21,4\}$.

We assume that there exists a polynomial curve having the δ-sequence $\{6,21,4\}$. The defining polynomial of this curve is as follows:

$$
f=g_{2}^{3}+a_{2,0} x^{2}+c_{1,0,1} x g_{2}+c_{1,0,0} x+c_{0,0,1} g_{2}+c_{0,0,0}
$$

where

$$
\begin{aligned}
g_{2}= & g_{1}^{2}+a_{7} x^{7}+c_{6,0} x^{6}+c_{5,0} x^{5}+c_{4,0} x^{4}+c_{3,0} x^{3} \\
& +c_{2,0} x^{2}+c_{1,0} x+c_{0,0}, \\
g_{1}= & y+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0} .
\end{aligned}
$$

By the substitution of g_{1} for g_{2} and changing parameters, we get

$$
\begin{aligned}
g_{2}= & y^{2}+a_{7} x^{7}+y\left(c_{3,1} x^{3}+c_{2,1} x^{2}+c_{1,1} x+c_{0,1}\right) \\
& +c_{6,0} x^{6}+c_{5,0} x^{5}+c_{4,0} x^{4}+c_{3,0} x^{3}+c_{2,0} x^{2}+c_{1,0} x+c_{0,0} .
\end{aligned}
$$

We can set $a_{7}=-1$ by the automorphism of $\mathbf{C}[x, y], x \mapsto-a^{-1 / 7} x, y \mapsto y$. By $x \mapsto x+c_{6,0} / 7$, we can remove the term $c_{6,0} x^{6}$. Further, by $y \mapsto y-\left(c_{3,1} x^{3}+c_{2,1} x^{2}+\right.$ $\left.c_{1,1} x+c_{0,1}\right) / 2$, we can remove the terms $y\left(c_{3,1} x^{3}+c_{2,1} x^{2}+c_{1,1} x+c_{0,1}\right)$. The proper polynomial parametrization of this curve is of the following form:

$$
\left\{\begin{array}{l}
x=t^{6}+a_{1} t^{5}+a_{2} t^{4}+a_{3} t^{3}+a_{4} t^{2}+a_{5} t+a_{6} \\
y=t^{21}+b_{1} t^{20}+b_{2} t^{19}+b_{3} t^{18}+\cdots+b_{19} t^{2}+b_{20} t+b_{21}
\end{array}\right.
$$

By the automorphism of $\mathbf{C}[t], t \mapsto t-a_{1} / 6$, we may remove the term $a_{1} t^{5}$ in $x(t)$. By Lemma 1, we get $\operatorname{deg}_{t} g_{2}(x(t), y(t))=4$. All formal terms with t-degree more than 4 in $g_{2}(x(t), y(t))$ must be eliminated. We obtain the polynomial system J from the coefficients of these terms. Furthermore, we can successively eliminate the variables
$b_{1}, c_{5,0}, c_{4,0}, c_{3,0}, c_{2,0}, c_{1,0}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}, b_{11}, b_{13}, b_{14}, b_{15}, b_{16}, b_{17}, b_{19}, b_{20}$ and b_{21} in this order by using polynomials with the form: $c z-h\left(w_{1}, w_{2}, \ldots, w_{s}\right)$ in J, where $c \in \mathbf{C}^{*}, z, w_{1}, w_{2}, \ldots, w_{s}$ are variables and $h \in \mathbf{C}\left[w_{1}, w_{2}, \ldots, w_{s}\right]$. As a result, we can get the polynomial system with 7 variables $\left\{a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{12}, b_{18}\right\}$ and 13 polynomials. We denote the obtained polynomial system by the same character J.

We used total degree reverse lexicographic ordering (DRL) with $a_{2} \succ a_{3} \succ a_{4} \succ$ $a_{5} \succ a_{6} \succ b_{12} \succ b_{18}$ to the Gröbner basis computation. The CPU time for the computation was 3 hours 40 minutes and the required memory 850 MB . The computation was conducted on a dual AMD AthlonMP $2200+(1.8 \mathrm{GHz})$ machine with 4 GB memory running FreeBSD 4.7. The computer algebra system used was Risa/Asir [12].

The obtained Gröbner basis $G_{\{6,21,4\}}$ of the ideal $\operatorname{Id}(J)$ was not $\{1\}$. However, the normal form of the coefficient p of the term with t-degree $=4$ in $g_{2}(x(t), y(t))$ with respect to $G_{\{6,21,4\}}$ is 0 . By the property of Gröbner bases for ideal membership, this shows that $p \in \operatorname{Id}(J)$. Thus, we get $\operatorname{deg}_{t} g_{2}(x(t), y(t))<4$. Since this is contradictory to $\operatorname{deg}_{t} g_{2}(x(t), y(t))=4$, there is no polynomial curve having the δ-sequence $\{6,21,4\}$. Consequently, $\{6,21,4\}$ is a negative answer to the Abhyankar's question.

Remark. We computed the Gröbner bases corresponding to the δ-sequences $\{6,15,4\},\{4,14,9\}$ and $\{6,15,7\}$, and obtained the normal forms of the coefficients of terms with t-degree δ_{2} in $g_{2}(x(t), y(t))$ with respect to them. However, they were not 0 unlike the case of $\{6,21,4\}$.

6. Gröbner basis computation using weighted ordering

It is well-known that Gröbner basis computation is accelerated by setting weights if the input polynomial system is quasi homogeneous (see [10]). The polynomial system J corresponding to the δ-sequence $\{6,21,4\}$ is quasi homogeneous by the constructing method, and J become homogeneous by setting the indices of each variable as weights. We get the following weighted ordering: $b_{18} \succ b_{12} \succ a_{6} \succ a_{5} \succ a_{4} \succ a_{3} \succ$ a_{2} with weights $\{18,12,6,5,4,3,2\}$.

After various trials and errors, we obtained the Gröbner basis of the ideal $\operatorname{Id}(J)$ by lexicographic ordering (LEX) with the above setting in a very short time and only 11 MB of memory. For verification of the results obtained by Asir and a comparison of computation time, we used another computer algebra system Singular 2.0.4 [7]. The results obtained by Singular coincided with Asir. The computation times are as follows:

δ-seq.	System	DRL	Sawada	Sawada weight DRL	Sawada weight LEX	Weight DRL	Weight LEX
	Asir	5884	2.17	0.28	0.26	0.24	0.17
	Singular	53 h	-	0.35	0.34	0.31	0.17

' h ' means hour. The time unit of values without ' h ' are seconds. The line '--' means out of memory. 'Sawada' is an automatic block ordering by Dr. Sawada in AIST (see [15]). Sawada ordering is obtained by a heuristic algorithm.

We tried to compute the Gröbner basis of $\{6,22,17\}$-type by using weighted ordering. Let I be the polynomial system corresponding to the δ-sequence $\{6,22,17\}$ (see Section 4). I has 11 variables $\left\{a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{2}, b_{8}, b_{12}, b_{14}, b_{18}, b_{20}\right\}$ and 17 polynomials. Further, I is also quasi homogeneous, and becomes homogeneous by setting the indices of each variable as weights. As the above, we get the following weighted ordering: $b_{20} \succ b_{18} \succ b_{14} \succ b_{12} \succ b_{8} \succ a_{6} \succ a_{5} \succ a_{4} \succ a_{3} \succ b_{2} \succ a_{2}$ with weights $\{20,18,14,12,8,6,5,4,3,2,2\}$. We obtained the Gröbner basis of the ideal $I d(I)$ by LEX with the above setting. The memory used was 116 MB . The computation times were as follows:

δ-seq.	System	DRL	Sawada	Sawada weight DRL	Sawada weight LEX	Weight DRL	Weight LEX
	Asir	-	-	303.8	382.8	2368	285.7
	Singular	-	-	92 h	92 h	326 h	78 h

Let $G_{\{6,22,17\}}$ be the obtained Gröbner basis of $\operatorname{Id}(I)$. Let q be the coefficient of the term with t-degree $=17$ in $g_{2}(x(t), y(t))$. Further, let \bar{q} be the normal form of q with respect to $G_{\{6,22,17\}}$. We got that the normal form of \bar{q}^{3} with respect to $G_{\{6,22,17\}}$ is 0 by Asir and Singular. This shows that $q \in \sqrt{\operatorname{Id}(I)}$. This is contradictory to $\operatorname{deg}_{t} g_{2}(x(t), y(t))=17$. Consequently, the Sathaye-Stenerson's conjecture is also true.

The data files for polynomial systems that appeared in this paper are available from http://www.fukuoka-edu.ac.jp/~fujimoto/abh2/.

Acknowledgement. The authors would like to thank Dr. Kinji Kimura, Prof. Masayuki Noro and Dr. Hiroyuki Sawada for many helpful suggestions on term ordering for efficient Gröbner basis computation.

References

[1] S.S. Abhyankar: Lectures on Expansion Techniques in Algebraic Geometry (Notes by B.Singh), Tata Institute of Fundamental Research Lectures on Mathematics and Physics 57, Tata Institute of Fundamental Research, Bombay, 1977.
[2] S.S. Abhyankar: What is the difference between a parabola and a hyperbola?, The Mathematical Intelligencer 10 (1988), 36-43.
[3] S.S. Abhyankar: Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs 35, American Mathematical Society, Providence, Rhode Island, 1990.
[4] S.S. Abhyankar and T.T. Moh: Newton-Puiseux expansion and generalized Tschirnhausen transformation I, II, J. Reine Angew. Math. 260 (1973), 47-83, 261 (1973), 29-54.
[5] S.S. Abhyankar and T.T. Moh: On the semigroup of a meromorphic curve; in Proceedings of the International Symposium on Algebraic Geometry Kyoto 1977 (M. Nagata, ed.), Kinokuniya Book Store, Tokyo, 1978, 249-414.
[6] M. Fujimoto and M. Suzuki: Construction of affine plane curves with one place at infinity, Osaka J. Math. 39 (2002), 1005-1027.
[7] G.-M. Greuel, G. Pfister and H. Schönemann: Singular 2.0.4 A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de.
[8] J. Gutierrez, R. Rubio and J. Schicho: Polynomial parametrization of regular curves, RISC-Linz Technical Report 00-17, Johannes Kepler University, Austria, 2000. Available from ftp://ftp.risc.uni-linz.ac.at/pub/techreports/2000/00-17.ps.gz.
[9] J. Gutierrez, R. Rubio and J. Schicho: Polynomial parametrization of curves without affine singularities, Computer Aided Geometric Design 19 (2002), 223-234, 673.
[10] K. Kimura and M. Noro: Automatic weight generator for Gröbner basis computation (in Japanese); in Computer Algebra-Design of Algorithms, Implementations and Applications, RIMS Kokyuroku 1395 (2004), 1-7.
[11] T.T. Moh: On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math. 340 (1983), 140-212.
[12] M. Noro, et al.: A computer algebra system Risa/Asir, http://www.math.kobe-u.ac.jp /Asir/asir.html.
[13] A. Sathaye: On planar curves, Amer. J. Math. 99 (1977), 1105-1135.
[14] A. Sathaye and J. Stenerson: Plane polynomial curves; in Algebraic Geometry and its Applications (C.L. Bajaj, ed.), Springer-Verlag, New York-Berlin-Heidelberg, 1994, 121-142.
[15] H. Sawada: Automatic Generation of Ranking of Variables for Efficient Computation of Groebner Bases in Engineering Applications; in Proceedings of the 6th International Workshop on Computer Algebra in Scientific Computing (CASC 2003), 2003, 319-328.
[16] M. Suzuki: Affine plane curves with one place at infinity, Annales Inst. Fourier 49 (1999), 375-404.

Mitsushi Fujimoto
Department of Information Education
Fukuoka University of Education
Munakata, Fukuoka 811-4192, Japan
e-mail: fujimoto@fukuoka-edu.ac.jp
Masakazu Suzuki
Faculty of Mathematics
Kyushu University
36, Fukuoka 812-8581, Japan
e-mail: suzuki@math.kyushu-u.ac.jp
Kazuhiro Yokoyama
Faculty of Mathematics
Kyushu University
36, Fukuoka 812-8581, Japan
e-mail: yokoyama@math.kyushu-u.ac.jp
Current address:
Department of Mathematics
Rikkyo University
Toshima-ku, Tokyo 171-8501, Japan
e-mail: yokoyama@rkmath.rikkyo.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 14H50; Secondary 13P10, 68W30.

