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Abstract

The paper deals with locally free sheavEs, on P? obtained from a morphism
P! x P! — P2 Bases ofH'(P? F,q) are explicitly given in terms of elements
of certain local cohomology modules, which built up canatlic a complex for
computing cohomology modules of locally free sheavesPén

1. Introduction

Let P" = Projk[Xo, X1, - .., Xn] be the projectiven-space over a field and F be
a locally free sheaf of finite rank oR". In [4], a new method is introduced to com-
pute cohomology modules of. The method involves a complex efvector spaces

0 7O Lz & 7, .. 0 0

in which ) depends only on the rank of and d® is determined by the transition
functions of F. It is shown that théth cohomology of the comple£®) is isomorphic
to the ith cohomology of 7. With computations of kernels and quotients @i, the
problem of algebraic geometry on computing cohomology bexoa problem of lin-
ear algebra. In terms of elements &, one may askvhat a basis of thec-vector
spaceH! (P", F) looks like For twisted diﬁerentialﬁzgn/,((m), this project is carried
out [4]. A basis of thec-vector space MP", Qf,  (m)) is exhibited, from which the
Bott formula

m—1\/m+n—-p
, f =0, 0<p<n, ;
L
1, for m=0, O<p=qg=<n;
dim, HY(P", g, , (M) =
—m-1)/=m+p for =n, 0<p<n m<p-n;
n_p _m E) q ) _p_ E) p y
0, otherwise

is recovered by counting the cardinality of the basis. lingkelaborated computations,
our approach to the Bott formula interprets the combinatarumbers in the formula.
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In this paper, we work on the project for some rank two locditbe sheaves of
modules on the projective plai®. Let Q be the quadric surface iR® defined by the
equationXoX; — X»X3. Via the Segre embedding is identifies withP! x P!, whose
invertible sheaves are classified g4, p,q € Z. We consider a projection from a
point of P2 to a plane, whose restriction 1@ is denoted byr. It is known that

dim, H' (P2, 7. Lp.q) = (-1 (p+ D)@+ 1)

ifr=0andp,q>0;orifr=1landp>0,g<0orp<0,g>0;orifr=2and
p,q < 0; and is zero otherwise [6, Proposition 12]. The modulecstme of injective
complexes defining sheaf cohomology is subtle. Our goal ianalyze H(P?, . Lp.q)
in terms of elements ofr(. L, 4)") to reveal its combinatorial nature.

Usually, the word “basis” stands for a minimal generating cfea free module.
However, a set may have different module structures. Todagonfusion, we reserve
the term only for a minimal generating set ofcavector space in this paper.

This paper is organized as follows.

e Section 2 recalls the construction &% for a locally free sheafF on the projec-
tive plane.

e Section 3 describes locally free sheavEs, obtained from a double cover of the
projective plane.

e Section 4 applies the construction of Section 2Ag.

e Section 5 analyzes the module structuredf).

e Section 6 gives bases of (@2, Fp q).

2. Complex for computing cohomology

Let F be a locally free sheaf of finite rank df'. We recall the construction of
the complexF® for the casen = 2. Givenp € P? = Proji[To, T1, T2]), the local
cohomology module

2
M(p) := Hy? (/\ Qo,, /K>

supported at the maximal ideal, of Op:, is an injective hull of the residue field
kp of Opz,. Elements ofM(p) can be written as generalized fractions, which we re-
ferred to [2, Chapter 2] or [5§7]. We recall three special cases bf(p) needed for
defining FO.

EXAMPLE 1.
e If p is the generic point oP?, we write M(P?) for M(p). Elements ofM(P?) are
of the form

FLIRE

f
g T T
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where f € I([To/Tz, Tl/Tz] and ge K[To/Tz, Tj_/Tz] \ (0)
e If p is the generic point of the lind, = 0, we write M(P!) for M(p). Elements
of M(P?) are of the form

To
Al d— d-2
g T T
1) i ;

T\
(%)
where f € k[T,/T1, To/T1] and g € «[T2/T1, To/T1] \ (T2/T2).

e If pis the closed poinfl, = T, = 0, we write M(P°) for M(p). Elements ofM (P°)
are of the form

faligl
g To To
T\ [T\
To) "\ To

where f € k[T1/To, T2/To] and g € «[T1/To, T2/To] \ (T1/To, T2/To).

&)

M(p), being an injective hull ofk,, is also a module over the completi(mﬂﬁz,p
of Opz,. This can be seen from the following properties of geneedlifractions.

Proposition 2 (Linearity Law).

WA fz) o]l [f To 12 To
—+ d=2d-=2 d 242 d 242
< a Tl | |2 T T1 L T T1
L T J L Tl T
WA fz) T T7 f T2 f T \To
d—= d — d Lg-2 —d—=d=—
<91 92/ To To | @ To To | @ To To

RONGINRIONG]

Proposition 3 (Vanishing Law). If f e (To/Ty)',
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If f is contained in the ideal generated I§¥:/To)' and (T»/To)!, then

g To To
T\ [T\
=)&)
Denominators of generalized fractionsT{(T1)' in (1) and {T1/To)', (T2/To)!
in (2)) can be any system of parameters(@®f. ,. The relations of generalized frac-
tions in different system of parameters are given by thesfamation law, which we

refer to [2, Lemma 2.3.ii] or [5, Lemma 7.2.b]. ElementsM{p) represented by gen-
eralized fractions are convenient to handle.

delde

EXAMPLE 4. Elements ofM(P% can be written as

h dE dE
To To

()2

Proof. Write f/g in (2) as fo/(1 — go), where fy € «[T1/To, T2/To] and gp €
(T1/To, T2/To)-

’

whereh € «[T1/To, To/To].

1 i+j—
(e g

is contained in the ideal generated Bl (To) and (To/To)!. Let

h=fo(l+go+g5+---+gy ).

By the linearity law and the vanishing law,

f T T B T T
—d-td=2 hd—td-2 < fo —h)dEdE
g To To | _ To To 1-g0 To To
T\ (T T\ (T (E)' (E)J
™) '\ T ) ') | ™)\ T
= T T
hd-td-2
To To

(2) ()
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Let J(p) be the quasi-coherer®@p.-module which is the constant shelf(p) on
{p})~, and zero elsewhere. We writ&(P?) (resp. J(C)) for J(p) if p is the generic
point of P? (resp. a curveC). In [3, 4], a residual complex

©) P)-> PIic)- P Im-o

curves closed points

on P? is described. (3) is an injective resolution 6f-2(—3). Tensoring withF and
Orp2(3), we get an injective resolution

FoIP)E)— Fo (P IC) @~ Fo (P Im) @ -0
of F. By definition, the cohomology of the complex
rP,redP)@E) —»r (IP’Z, F® (@ J(C)) (3))

4)
ST (IP’Z, F (@ J(m)) (3)) -0

is the cohomology ofF. It was observed in [4] that a subcomplg*) of (4) is quasi-
isomorphic to (4).

DEFINITION 5. Let {u;} (resp.{vi} and {w;j}) be a minimal generating set for
the free module F(D+(T2)) (resp. F(D+(T1)) and F(D+(Tp))) over Opz(D+(T2))
(resp. Op2(D+(T1)) and Op2(D+(To))). We define F© to be the submodule of (P?,
F ® J(P?)(3)) =I'(D+(T), F ® J(P?)(3)) generated by

To , T1 3
i Rd=d—=QT,.
Ui ® T, ® 15

We defineF® to be the submodule df (P?, F® J(P1)(3)) = ['(D+(Ty), F ® J(PYH)(3))
generated by

(5) v ® T3 (j eN).

We defineF®@ to be the submodule df (P?, F® J(P%)(3)) = I'(D+(To), F ® J(P°)(3))
generated by

T T
d—=d-—=
To To

5)-G)

wi ® ®T¢ (j.keN).
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Assume thatF has rankn. Then F@ is isomorphic ton copies of O%). As «-
vector spacesF© has a basis

T\ [T\ . To a5
6 o(=2) (2) d2dteT
© {u'®<T2> <T2> T, T2® 2
and 7@ has a basis

T\ T2 To
0) g2ql°
( T ) TT T

T\
T
and 7@ has a basis

T T
d-td-2
To To ) .
i ®T$|1<i<nand0< j,k

)

The coboundary maps of the residual complex (3) are decosdpimso

l1<i<nandO<jk¢,

(7) v ® ®T2|1<i<n 0<jandO<kyg,

(8)

Bp.q+ I(p) = JI(q)

for p, ¢ € P2. We recall two special cases 6f , needed for defining the coboundary
maps of F(*),

EXAMPLE 6.
e Let p be the generic point oP? and q be the generic point of the lin&, = 0.
Sp2p1 i= 8y 4 is determined by the mam(P?) — M(P?) satisfying

T | T

f T7 T fd=d—
9 —d=d=—r To To |,
®) g To To |: 8 0:|

where f ¢ K[T]_/To, T2/T0] and ge K[T]_/To, Tz/To] \ (0)
e Let p be the generic point of the lin& = 0 andq be the closed poinT, = T; = 0.
Sppo =8y 4 is determined by the maml (P!) — M (PP) satisfying

g To To To To
H

G ] LG

where f € k[T1/To, To/To] and g € «[T1/To, To/To] \ (T2/To).

AL faltgl
(10)
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In Example 1, elements dfl(P?) (resp.M(PY)) are represented in terms @§/T»
and T,/T, (resp.T,/T; and Ty/T1). We may use the formula

To
T3¢0 L - 3
Zded od_l_od
T T
) 0% ||

E 3 E 3
Ty To
to rewrite elements oM (P?) and M(P!) before applying (9) and (10).
Fori =0,1, the image ofF~) under the map

(idr ®pap ®ido,@) (P?) : I' (P2, F o J (P Q) —» I' (P2, F o J (P') (3))
is contained inF@).

DEFINITION 7. Fori = 0,1, let d®): FO-) _ 7@-) pe the restriction of
(ld]: ®8Pi+1_Pi ® idopz(S))(Pz) on j:(l—i)_

To maked®™) explicit, we consider igt ®pinpi ® ido @) on D4+(To). Restricted
to D+(T2) n D+(To),

by
Z (T2/ To)””

for some fj; € «[T1/To, To/To] and nj; > 0. In terms of these transition functions,

To | Th fi T | T
d°(u®d—=d—=T})=d° § : 04 ldleT?
<UI ® T. T ® 2) ® /T (T2/To)™ To To @l

We may use (11) to write the image df? in terms of the generators (5) of .
Restricted toD.(T1) N D+(To),

) Z (Tl/To)“u
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for somen;; > 0 andh;j € «[T1/To, To/To]. In terms of these transition functions,

T, T
d-2d-2
T T

(%)
Ty
T\ T T
h”<$> d%df
=dY > wi® ° 0 Y eTs
j T2
L To J

. T
hij d=—d—
" To

j E Nij —I E |
To "\ To

The following is our main tool.

d9 | v ® QT>

TS.

Theorem 8 ([4, Theorem 3.2]). The i-th cohomology ofF(®) is isomorphic to
H' (P2, 7).

3. Vector bundles 7y 4

Let S be the graded ring[Xo, X1, X2, X3]/(XoX1 — X2X3) over a fieldk. De-
note by x; the image ofX; under the canonical map[Xg, X1, X5, X3] — S. So, as
a k-algebra,S is generated byg, X1, X2, X3 With a relationxgx; = xoX3. Proj(S) is a
hypersurface of?® covered by three affine open sets:

Proj(S) = D+(x3) U D4+(X2) U D4(Xg — Xo).-

On D.(x3) and D.(x), the regular functions of Prdy form polynomial rings«[Xo/Xs,
X1/%3] and k[Xo/X2, X1/X2], respectively. OnD.(X; — Xo), its regular functions are

X1 X2 X3 X1 2 X1 X2 X3
K B . — — .
X1 —Xo X1 —Xo X1—Xo X1 — Xo X1 —Xo X1 — Xp X1 — Xo
We identify ProjS) with the fiber product of two projective lines, which can be-d

scribed using a Cartesian product (that is, the schemexPYgj(Y1] x. «[Zo, Z1])).
The identification is given by the homomorphism wofalgebras

Kk[Xg, X1, X2, X3] = «[Yo, Y1] X k[Zo, Z1],
Xo = YoZo,

X1 > Y123,
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X2 = Y1Zo,

X3 = YpZ;.
Let 71 andm, be the two projections from Pr@j to PL. For p,q € Z,
Lpq =7m;0(p) ® 7;0(0)
is an invertible sheaf on Pr@j, which is the sheaf associated to the graded module
«[Yo, Y1](P) x« «[Zo, Z1](Q).
On D.(x3), Lpq is generated bySZ{. On D.(xp), it is generated byr,Z].

Proposition 9. Let € > max0, —p, —q}. Lpq(D+(X1 — Xo)) is generated by
Y5 PZ5™/(x1 — %0)¢ and Y, PZ5TY/(xq — o)<

Proof. L£pq(D+(X1—Xo)) is generated by} Y) ZKZ! /(x, — xo)", where the indices
i,]j,k1,n>0 satisfyi +j =n+p andk+l =n+q. Restricting toD.(x) N D+(Xg — Xo),

Y(I)Y]! Zlézlj_ _ ( Xy )ﬂ—i—k—e ( X5 )k ( X3 )i Yf+pzi+q

(X1 — Xo)" X1 — Xo X1 =X/ \X1—X/ (X1 —Xo)*
Restricting toD.(Xp) N D+(Xg — Xop),

Y(i)Ylj Zézll _ ( Xo >n—j—l—e ( X2 )j ( X3 )I Y5+pz(e)+q

(X1 — Xo)" X1 — Xo X1 =X/ \X1—X/ (X1 —Xo)*

Since D, (X1 — Xp) is covered by the subsef3,(x1) N D.+(Xg —Xg) and D4 (Xg) N D4(Xg —
X0), Lp.q(D+(X1—Xo)) is generated by PZ5™ /(x1—xo) andY; PZ;™/(xy—x0)¢. O

Let O be the point ofP? \ Proj(S) with homogeneous coordinate, [l 0, 0]. Let
7 Proj(S) — P?
be the double cover dP? defined by the immersion Pr&( — P2\ {©} followed by
the projection from® to the planeXq = 0, which is identified withP? = Proj([To, Ti,
T,]). The morphismr is determined by the graded homomorphism
K[TO’ Tlv T2] - K[X07 le X27 X3]

given by

To = X1 — Xo,
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T1 = Xo,

Ty > Xs.
We consider the locally free sheaf of modules
Foq =mLpg

on P2, which has rank 2. OrD.(T2), Fpq is generated byxo/xs)Yy Z{ and YJ Z].
On D.(Ty), it is generated byxo/x2)Y,/Z§ and Y,"Z3.

Proposition 10. Lete =max0, —p, —q}. Fp.q(D+(To)) is generated by 3Zo/Ts*
and \Zy/T§™ if p =q <0, otherwise by ¥Pz5™/Ts and Y, "PZz{™/T;.

Proof. F,q(D+(To)) is generated by} Y] zKz! /T9, wherei, j,k,1,n > 0 satisfy
i+j=n+pandk+|=n+q. Note that, ifj andk are both positive, then

YOI Z6Z _ TaYoYiZE 'zt gt Tizzy

12
(12) T3 T 15 T T

if i andl are both positive, then

vz hvz Tzt

13 =
(13) T3 To T3 To T

Assume thain > ¢. Thenn,n+ p,n+q > 0 and

T YY) TZEZ)

vivizig |w o mer o Tk O
(14) 0’17071 _ 0
T LYeMZEZTt L,
T—OT, m 1,1>0,
(15) Yg+pzr01+q _ Ycr)1+p—1leg+q—lzl - Y(r)1+p—1zg+q—1
TOn TOn Ton—l ’
(16) Yln+pZ;1+q _ YOYln+pfleZ;+q—l N Y1n+p—1Z:er+q—l
TOn TOn Ton—l

We consider first the casp # q or p =g > 0, in which eithern+ p—-1> 0
orn+q—1> 0. Using (14), (15) and (16), induction am shows thatFp 4(D+(To))
is generated byr} Y] ZkZ! /T¢, wherei, j. k.| > 0 satisfyi + ] = e+ p andk +| =
e + . Applying (12) and (13) withn = ¢, we see thatF 4(D+(To)) is generated by
Y;PzZ5 /TS andY; Pz TS,

Now we consider the casp=q < 0. Assume thah > ¢+ 1. In this casen+p—
1=n+qg—1>0. Using (14), (15) and (16), induction anshows thatF 4(D+(To))
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is generated by /T¢ and Y} Y) ZKZ! /T¢*L, wherei, j,k, | > 0 satisfyi +j =e+p+1
andk+1 =€ +q+1. Applying (12) and (13) witm =€ + 1, we see thatFj, 4(D+(To))
is generated byoZo/T§*™, Y1Z1/T§™ and Y T§. The proposition follows from the
identity

YiZi YoZo 1

L ]
T05+l Toe+1 TOG

4. ComplexesF’)

From now on, we always assume thkat max0, —p, —q}. First we would like to
write down bases of the-vector spaces?-"g,)q explicitly.

DEefFINITION 11. Fori, j > 0, we define

. %o\ /%) To | T
di = (X_z) <X_:> Yzl od2d o TF € M( 7 © I(F)3)).

Fori, j,m, n e Z, we choosel > max{—i, —j} and define
T, | T
. Xo S+ X1 8+]j [d{d%—‘
Vp = <X_2) (X_z) Y25 ® T,\ %
(%)

T T
14.2

QTS

in T'(P2, Fpq ® J(PY)(3)) and

e (o) () |
™\ X — Xo X1 — Xo (X1 — Xo)* <T1>5+m <T2>8+n

To To

QTS

in T'(P2, Fpq ® J(PO)(3)).

The definitions ofvinj and me are independent of the choice 6f By Proposi-

tion 3,vg =0if i, >0 andw(C,, = WP, = 0if m <0 orn < 0. Sometimes,

Wi, are treated differently according to the valuespondqg. The following notations
are handy.

e o [ Wrlhserg 1 P=A<0;
" w2, otherwise.
WS = Wiiserpy I P=0<0;
e oe+n) | otherwise.

m(n+e+p)
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Proposition 12.
e The elementsi’, where i j > 0, form a basis of 7).
e The elements!), where i< 0 or j <0, form a basis of F1).
e The elementsv;, and wy,,, where mn > 0, form a basis of F@),.

Proof. As anOp(D+(T2))-module, Fp, 4(D+(T2)) has a minimal generating set
{Y3Z7. (xo/x3)Y§ Z1}. Indicated in (6), as a-vector spaceF{) has a basis consist-
ing of

To i T1 i TO T]_ Xo To i T]_ J T() T1
YW (=) (=) d=d=@T; and =Y/ZIo(=) (=) d=d=aT;
0 1(X)(Tz) <T2) T2 T2® 2 an Xs ° 1 ® T2 T2 T2 T2® 2’
where i, ] > 0. Since k[Xo/Xs, X1/X3] is freely generated by 1 andy/x3 as a

k[To/T2, T1/To]-module, these elements are exaatly, wherei, j > 0.
For the second statement of the proposition, we use the Hatt t

i+1)(j+1) _ ij
A0 =)
for anyi, j andn. Since]—"&gI is generated by alvl, it is also generated by those
v, vi® andvp! with i, j > 0 andn € Z. Note thatv® = vi0 = v} =0 if i,j > 0

andn < 0 by Proposition 3. The generating spt vi% vy | i, j,n > 0} for F&
is exactly {vy | i < 0 or j < 0}. To prove that they are linearly independent, we

recall (7) that
To jvoo To jvlo
Tl n> T]_ n

is a basis of]-'&a. Fori,j,n> 0,

(T To)'™ - (T ™!
) () (5

are contained in the subspace generated by thswith m < n and i,j > 0. This
implies thatv®, vi® andvQ! are linearly independent.

For the last statement of the proposition, there are twoscdéep = q < 0, the
elements

n> 0, jzo}

YoZo To To 3

-7 Q
Toe+1 E m E n
To/) "\ To
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where m,n > 0, form a basis of F?). These elements are exac

Winnserpy- If P79 0or p=q >0, the elements

T | T
€tp—et+q d_l d_2
Yy PZ, To To o T2
(X1 — Xo)* T\" (\"| °
To) "\ To
and
T T
etp—et+q ’V d_l d_2 —‘
Y, Pz] To To o T3
(X1 — Xo)¢ o

() (2

where m,n > 0, form a basis of7{?). These elements are

W21((€n++2)+p) as seen from the computation:
dE dE
Y5+ng+q ® TO T() ®T3
(Xl—XO)e E m E n 0
To ’ To
T | T
e d-tq2?
_( Xo )EqYSPZiq(@ T0 To
Xi=%) (a—xo) | (T\™ T\
L To ' To
and

T T
T d-td-2
Y Pz] To To & T3
0

o —x) & m n
|
X1

T T
e+p Ye+pze+q d_ d_
0 4 g

(Xl - Xo) (X1 — Xo)*

To To

T]_ m T2 n+e+p
(=) (=) ]

The coboundary maps OF,(;EJ have easy descriptions.

®Ts =

10
m(n+e+q

€+q)0

exactlyierg)

® T3 =W

m(n+e+q)

0(e+p)

Wm(n+e+ O

569

) and

and
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Proposition 13.
0);ii = y,(PH)(a+])
dOyii _Vifjl q+] ’
d(l)VH = WE: :?)7(](1;‘(‘[')11-6+ p+q)*
Proof. The proposition follows from direct computations:
X i X i Ye+pze+q T —i—j—e T T
(%) () £y (F) " ekaTon
X1 =X/ \ X1 =X/ (X1 —Xo) To To To
Tlde
X ! X I ystpzera To To
'_)( ° ) ( : ) 0 ! ® i+j+e ®T03
Xt =%/ \X1 =%/ (X1—Xo)* (T2>

To

u'l

Tszo
X i+e+p X jte+q T T
( 0) (_1> Ylng® 1 1 ®_|_13

X_2 X5 E i+j+e
Ty

T n—§—i—j—e T T.
&) e

i _ ( Xo >5+i ( X; >5+j Yf+ng+q ?0
Vy = ®
X1 —Xo X1 —Xo (X1 — Xo)¢

T1\" dTl de
> X \" xi \" Pz ® To To To
X1 —Xo X1 —Xo (X1 — Xo)¢ T\ T\
To "\ T
_ ( Xo >8+i+e+q ( X1 )8+j+e+p Y5+pzi+q
X1 — Xo X1 — Xo (X1 — Xo)¢
T\" T, T
(_1) LEPNH
To To To 3

T S+i+j+e T S+n+2¢+p+q ®TO
To "\ To

— (i +P)
= Wii+j—n)(n+e+p+q)*

+i)(g+]j
= Vi(fjl)(q J)’
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5. Module structure of .7-'5?21

We need polynomiald; and g, with integer coefficients which are defined induc-

tively:
fi=01=0
and

farr = fn + 0n,

On+1 = X + Xy
for n > 1. Induction onn, it is easy to see that
7 On(L + frea) = Gnea(1 + ) = (=X)"
If a andb are elements in a commutative ring satisfyiog= b + a, then
b" = (1 + fa(a))b + gn(a).
fn, and g, are divisible byX. With f = f,/X andg =g,/X,
b" — b =a(f(a)b+g(a)).
This is a special case of the following lemma.

Lemma 14. Let a and b be elements in a commutative ring satisfyifig b+a.
Then for any ny,n;,1 > 0 and n, > 0, there exist fg € Z[X] and h € Z[X, Y]
such that

b™ = (1 +af(a))b™ +ag(a)(l — b)™ +a h(a, b).

Proof. We consider first the case that > 0. Choosehgs, hgo, h11, h12 € Z[X]
such that

(18) b™ — b = a(hox(a)b + hox(a)),
b™ — b = a(hi1(a)b + hix(a)).
With hg = hgy — hi1 + hg, — hyp and g= ho2 — h12, we have
b™ =b™ +ag(a)(1 — b) + ahy(a)b.

Note that 1-b also satisfies the condition {1b)? = (1—b)+a. Chooseh,1, hy, € Z[X]
such that

(19) (1-b)™ — (1 —b) = a(h21(a)(1 — b) + hxp(a)).
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With h; = hg — aghp, and h, = —ag(hy; + hyy), we have
b" =h™ +ag(a)(1 — b)"2 + abhy(a) + a(1 — b)h,(a).
Fix ng, ng, no. Assume that for ah > 1, there existf, g, hy, hy € Z[X] such that
b™ = (1 +af(a))b™ +ag(a)(1 — b)™ + a'bh,(a) + a (1 — b)h,(a).
Choosehyy, hyo, hoi, hoo € Z[ X] such that (18) and (19) hold. Then

b = (1 +af(a) +a hy(a))b™
+a(g(a) +a' "hy(a))(1 - b)™
+a"b(—hy(a)hii(a) — hi(@)hi2(a) — ha(a)hzo(a))
+a " (1 — b)(—hz(a)hz1(a) — h2(a)hz2(a) — ha(a)hiz(a)).

This induction process oh proves the lemma for the case > 0.
Now we consider the case thap = 0. Choosef, g, hi1,h12 € Z[X] and h €
Z[X, Y] such that (18) and

b" = (1 +af(a))b™ +ag(a)(1 — b) + a'h(a, b)
hold. Denote

ﬁhﬂ@ = 1—ahyi(a) + (ah(a))® — (ahu(@)) + - + (—ahy(a)) ™

by abusing the notation. Then

b = <1 +af(a) — Lﬁ)) ™

1+ahyi(a)
ah;»(a)
1+ahy;(a)

+ag(a) <1 + ) +4d (h(a, b) — ag(a)(—hu(a))'b) . O

For the rest of this paper, we consider elements

X2X3

T (X1 — %0)?'
- X

T X1 — Xo

in the ring I'(D+(X1 — Xo), Proj(S)), which satisfy the conditio? = b+ a. The multi-
plications of elements irj’-",(fz1 by a andb are easy to describe:

i —\i+D)(j+1
aWr#m_W§nn)(l )’
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ij —wi(+1)
bwy,, =w .

The condition (1- b)? = (1 —b) +a also holds. The multiplication by 4 b gives rise
to a negative sign:

(1= b)'wih, = (=1 i)
This is the reason that we include the condition “sum” in th#ofving definition.

DEFINITION 15. An elementw € .7-',()224 is approximated byw.  (resp.wg, ), de-
noted byw =~ wy,, (resp.w =~ wg, ), if their difference orsumw £ wg,, (resp.w %+
wz ) is contained in thec-vector subspace generated by the elemwﬁsand wizj
with i < m.

Proposition 16. Letim>0and neZ. If p=qgq <0,

(20) W(r)ri1(n+e+ p) ~ W%nv

(21) Wirr?(n+g+q) ~ W%n'

If p#qg or p=q > 0, the approximation(20) holds fore + p > 0 and the approxi-
mation (21) holds fore +q > 0.

Proof. We prove only (20) and leave (21) to the reader. So we ltlee assump-
tione+p>0if p#Zqor p=qg > 0. We choosef,g € Z[X] and h € Z[X, Y]
such that

b — a™ha. b) = {(1 +af(@)b+ag(@)(b - 1) f p=q=0;
(1 +af(a))b¢*P +ag(a)(b — 1)**9, otherwise.

Then

Oi < = hiw00 < =
m(n+e+p) Wmn = b Wm(n+e+p) —Wmn = af(a)w,

<

m(n+p—q)

-

w mn?

+ag(aw

from which we get the required approximation (20). ]

mn»
n, then {(wp,,, WiJmn=0 is @ basis of F¢). More generally, ifw;,, ~ wg,, and wy,, —

mn’
wir o~ wz - for somew;; contained in the subspace generated\/\lﬁ/with i <m+l|

for a fixed | independent oim and n, then {w/,,, W/, Jmn-o is still a basis of]-‘,(f_()q.

This observation is useful accompanied with the followiagtf

2 i ~ ~ it
If Wi Wi, € F@ satisfy wy,, ~ wg, and wy,, ~ wg,, for all positive m and

Proposition 17. Leti,m > 0 and ne Z. Assume that g¢q or p=q > 0.

Oi > o WS ; -
Wininterp) T Wintnep—q) ~ Winne if e+p=0.
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~ W2

i0 P —
Wlm(n+e+q) + Wé(n+q7 D) mn If €+q=0.

Proof. We prove only the first approximation and leave theosddo the reader.
So we have the conditions+ p = 0 ande +q > 0. We choosef,g € Z[X] and
h € Z[ X, Y] such that

b' = (1 +af(a))b+ag(@)(b — 1)* + a™h(a, b)
= (1+af(a)) + (L +af(a))(b — 1) +ag(a)(b — 1) + a™h(a, b).

Sincee +q > 0, we may also choosé’, g’ € Z[X] and h’ € Z[ X, Y] such that
1-b=(1+af'(@)(1—b)* +ag/(a) +a™n'(a, b).
Then

Oi
m(n+e+p)

= (L+af@)Werp + (L +af @)W, +ag@w

W

(¢+0)0
m(n+e+p)

=(1+af (a))W?n(zn+e+ p ag(a)(1 +af (a))wg](szrEer)
— (~1)9(1 +af @)@ +af @MW, | +ag@wiD?

m(n+e+p) m(n+e+p)*
From the equality
Wg(n+e+p) + (_l)“qwﬁw(mpfq) - W%n
=a(f(a) — g'(a) —af(@g'@)wn,
— (—1)"%a(f(a) + /(@) +af (@) () Wi p_q) + 2H@WH s p_)-
we get the required approximation. O

Corollary 18. Let Wy, Wy, € F ). Assume thatfor each m and n

/o — 00
Winn = Wm(n+g+p)v

/7 _WjO

Wmn = m(n+e+q)

/

for some positive i and.jThen {w/,. is a basis of FZ).

/
Wmn} m,n>0

Proof. If e + p ande + q are both zero, thep = q < 0. Proposition 16 proves
the corollary. Ife + p > 0 or e +q > 0, the corollary follows from Proposition 16 and
Proposition 17. [

In Section 6, we need also the following approximations.
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Proposition 19. Leti,m > 0 and ne Z. Assume that g¢q or p=q > 0. There
exist g, gz € Z[X] such that

Wity Y £ g (@Wicsqn ¥ Wi If €+ P=0;

Wi PO £ AG()Wscappn ¥ Wi i €+ =0.

Proof. We prove the second approximation and leave the firshe¢ reader. So
we have the conditions+p > 0 ande+q = 0. Choosef,, g, € Z[X] and h, € Z[ X, Y]
such that

(1—b) = (1 +af(@)(1 — b)**P +ag(a) + a™*Ph,(a, b).

Then
Wg]ﬁe_p)o = Wi(fiffi p)(n+e+p)
= (—1)* (L +af @)W + (—1) ag(@)W(mepyecry:
from which we get the required approximation. ]

6. Cohomology of Fp 4

Proposition 20. Let p,q > 0. HY(P?, 7 q) = HA(P?, Fpq) = 0. The elementsi',
where0 <i <q and0 < j < p, form a basis ofHO(IP’z,]-‘p,q).

Proof. In this propositiong = 0. d@ul =P~ = if and only ifi < q and
j < p. Those non-zera©@u'l are linearly independent. Therefore the elemarits
where 0<i <qg and 0< j < p, form a basis of IQi(IP’z,]-'p,q).

Now we compute the images of .
e Forindicesi < pandj <q, vy is the image ofu@ (- Therefored®v] = 0.
e Forindicesi <0 andj > q,

0(j —aq+p—i)

Ol _
d®vg =w(iL gy -

where the indexj —q+ p—1i is positive.
e For indicesj <0 andi > p,

W\ = \pi—P+a—])0

d*Vo = Wi_pyg-i) -
where the index — p+q — j is also positive. B
As noted in Corollary 18, except thos¢ being images ofd®, images of othen,
form a basis of7(?). This implies H(P?, 7 q) = H*(P?, Fppq) = 0. O

~ Proposition 21. Let g < 0 < p. HY(P2, Fpq) = H (P2, Fpq) = 0. The elements
vy, where0 <i < p and q< j <0, form a basis ofH (P2, Fp q).
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Proof. In this propositiore = —g. The conditione + p > 0 holds. The images
of ul are linearly independent. Therefore(®?, F,,) = 0. Other assertions of the
proposition follows from the computations of the imagesvg;f
e Forindicesi < p andj <q, V| is the image ofu@)(P-), Therefored®v = 0.

e For indicesi <0 andj > q,

0(j —qg+p—i)

@ = ~ S
d™NVo = Wi gy isp-gq) X Wi —q)-i)

by Proposition 16. The latter elements are exactly thege with positive indicesm
and n.
e Forindicesj < 0 andi > p, by Proposition 19, there existy € Z[X] such that

&N < ~ W=
d*vg £ (@)W _g)j) ~ Wi g j)-

The latter elements are exactly thosg , with positive indicesm andn.
e Forindices O<i < pandq<j <0, wewrittm=p—i andn=j —qg. With
the polynomialsf; and g; defined in the beginning of Section 5,

ij 0
(22) d®vg = W™ = (1 + fmen(@)Wotn_q) + Imen(@Won_g)-

Asm—-p=-i <0,

O(p—a) — \p< _
Wa(m—g) = Wn(m—p) = O-
Apply the relation
01 — 2/ 0(P—Q) 01 00
Wnim-a) = Wnm—q) — fp-a(@Wnm_q) — p-a(@Wnm_q)

_ 01 00
= —fp-a(@Wnm-_q) — Ip-a(@Wrm_q)

repeatedlyl times to (22), we get

d(l)Vioj =1+ frn(@)(— fpq (a))lwg%m—Q)
— (L + fan@)(L = Fp-q(@) + (Fp-q@)° = -+-)gp-a(@Wom_q)

+ Om+n (a)Wg?m—q)'
Forl > n,
(fp-q(@) Whn—qy = 0 = (fp-q(@)) Woin—q)-

Without ambiguity, we may write

Cl(l)vioj = (1 + fnen(a)) ( Om+n (@) Op—q(@) > 0

1+ fmn(@) 1+ fpq(@/ "™9
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p-a-1
gi(@) gi+1(a)
=@+ frn@) ) (1 +fi(@) 1+ fi1+1(a)> Wi

i=m+n

By (17),
p-g-1 i
dOv = (1 + frnen(a (=2) w2
(¢ frenl®) % @+ @)+ fea@) MmO
Sincea™"wd9 =0, d®vg =0 for 0<i < pandq < <O. O

Similarly, we have the following proposition.

Proposition 22. Let p < 0 < q. H(P?, Fpq) = H3(P?, Fpq) = 0. The elements
vo, where0 < j <q and p<i <0, form a basis ofH'(P?, Fpq)

Proposition 23. Let q < p < 0. H(P?, F,q) = HY(P?, Fpq) = 0. The elements
wz ., whereO <m < —p and0<n < —gq—m, together with the elementsz,, where
m>0,n> 0 and m+n < —p, form a basis ofH?(P? » Fo.a)-

Proof. In this propositione = —q. The images ol are exactly those/ioj with
indicesi < p and j < g. They are linearly independent. Thereforé(PF, Fpoq) =0.

Now we compute the |mages 0’{,
e Forindicesi < pandj <q, v is the image ofu@ (- Therefored®v] = 0.
e For indicesi <0 andj > q satisfyingp—i > q— j,

Wy =\ 0l-a+p=i) <
d"Vo =W(i—a)=i-a+p) ~ Wii-a)-)

by Proposition 16. The latter elements are exactly thege with positive indicesm
and n satisfyingm+n+ p > 0.
e Forindicesj < 0 andi > p satisfyingq—j > p—1,

1) ij _\(i—p+ra—j)0 o > H —
dvg =Wi ) R Wi I P=Q,
)1 < ~ W

d*Ng EWG_pyjiqop ¥ Wi | P>

by Proposition 16 and Proposition 17. The latter elemengseaactly thosewv ., with
positive indicesm and n satisfyingm+n+q > 0.
e For indicesj <0 andi > p satisfyinggq—j=p—i,

A1 _ 01 — 10
ANV — Wiy j) = —Wi-py-)-
If p=q,

Oy _ = - _w> ~ W
(23) AV = We_pi) = ~Wiop-i) ® Wi-p-)-
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If p> q, by Proposition 16 and Proposition 17, there are approximst

01 ~ s
Wi p)(-i) ~ Wi-p)(—j+a—p)

10 =< ~ W
Wi p) =) EWG-py-i+a-p) ~ Wi-p-i)

that is, their differences or sums are contained in the sadesgenerated by the ele-
mentswy,, andwg,, with m < i — p. For suitable negative signs and an inteber

1)1 <

dBvp +Iwg_

>
p-i+a-p) T Wi-p)(-i)

_ 01 =<
= (WE—p)) = Wi-py-i+q-p)
10 =< >
— (WeLpy—iy WG pyjea—p) = Wi—p-i))-

Therefore
(A1) < ~ W
(24) d"NVg WG oy agp) X Wi py -

The latter elements of (23) or (24) are exactly thegg, with positive indicesm and
n satisfyingm+n+q=0.

e In order to have indices > 0 and j < 0 satisfyingp —i > q — j, the condition
p > q has to be satisfied. With this condition, by Proposition h@&ré existg, € Z[ X]
such that

&N < ~ W=
dWvy £ agz(a)W(i—q)(—j) ~ Wi—p)(-)-

The latter elements are exactly thosg,, with indicesm > —p andn > 0 satisfying
m+n+q < 0. -

These computations show that the non-zero images'olofogether with the elements
w3, wherem > 0, n > 0 andm+n < —p, and the element®Z,, where O<m < —p
and O<n < —gq —m, form a basis of.7—',(f()q. This concludes the proposition. L]

Similarly, we have the following proposition.

Proposition 24. Let p < q < 0. H(P?, Fpq) = HY(P?, Fpq) = 0. The elements

wr ., where0 < m < —q and0 < n < —p—m, together with the elements;,,, where

m=> 0, n> 0 and m+n < —q, form a basis ofH?(P?, Fo.q)-

Counting the cardinality of the bases of (|2, Fp.q) given in previous proposi-
tions, we recover the following.

Corollary 25 ([6, Proposition 12]).

dim, H'(P?, Fpq) = (-1 (p+ 1)@ + 1)
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ifr=0and pg>0;orifr=1and p>0,g<0or p<0,q>0;orifr =2and
p,q < 0; and is zero otherwise
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