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Abstract
The isospectral property of the algebro-geometric doutdebBux transformation
is studied by an algebraic method. This is established byfyimy that the
algebro-geometric double Darboux transformation of tin¢h algebro-geometric
potential solves the evolution equation of the higher oidaY type. Applying these
results, the second Darboux-Léanpotential, which can be regarded as the 3-elliptic
solitons, is explicitly constructed by an elementary mdtho

1. Introduction

In this paper, we study the isospectral property of the atmgeometric double
Darboux transformation of the second order ordinary diffitial operator in the com-
plex domain

82
H(u) = e +u(x), xeC,

whereu(x) is the n-th algebro-geometric potential which satisfies a kind ajetesrate
condition concerned with the multiplicity of the discreteestrum obtained in [10].

In [9] and [10], some of the fundamental properties of thectpen of the algebro-
geometric Darboux transformation &f(u) have been clarified. Above all, in [9], the
spectral discriminant(x; u) and theM-eigenfunctionM(x, A; u)¥/2 are constructed by
an algebraic method, and, in [10], it is shown thaiifx; u) has the multiple rook;,
one can reduce the multiplicity of; by the algebro-geometric Darboux transformation

82
uy, (x) = u(x) — 2W log M(x, Aj; u)™2.

In the present paper, firstly, we define the algebro-geomeéwuble Darboux transfor-
mation ujf(x, &) of u(x) by

82
U (x, 8) = u; (x) — 2@ log F;, (X, §).
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where F;, (X, &) is the 1-parameter family of the specified eigenfunction-lc(ﬁjj) cor-
responding to the multiple spectrul; of H(u). Secondly, we show that (uj{f(x, £))

is the 1-parameter family of the isospectral differentigle@ator. We prove this by
showing thatuj’i"(x, &) solves the evolution equation of the higher order KdV type.
Lastly, applying these results to the second Eaeguation

2
_% f(x,A) +6p(x, ) f(x, 1) =Af(x, 1),

we construct the second Darboux-Larpotential

65 (X, 7.)(o(§)” — 3£¢o(§)9' (X, T.) + (27/4)93(z.)E?)
(#0(8) + (3/2)5 ' (X, 7))
for t = 7, such thatJ(z,) = 0, wheregp(x, t) is the Weierstrass elliptic function with

the periods 1 and, It > 0 and J(r) is the elliptic modular function. In [11], the
isomonodromic property of the second Darboux-Easquation

(l) u;,*o(xa ‘é:-:’ T*) =

2
@ 100+ U £, T 10 = 0

is studied. Moreover, in [12], applying these results, theows kinds of the exact so-
lutions of the elliptic Calogero system are constructece §&3, [4], [5], [6] and [7]
for another approach to the algebro-geometric potentidl tae double Darboux trans-
formation, which is mentioned as the double commutationhoetin them.

The contents of this paper are as follows.§&, the necessary materials are sum-
marized. In§3, the algebro-geometric double Darboux transformatiodeiined. In§4,
the isospectral property of the algebro-geometric douldebBbux transformation is dis-
cussed. Ing5, the second Darboux-Lampotential (1) is constructed.

2. Preliminaries

In this section, the necessary materials are summarizede¥¥e the reader to [9],
[10] and [13] for more precise information.

The A-operator associated with the differential operatt(u) is the formal pseudo
differential operator defined by

Au) = AN lysut Z1 i
~ \ax 2 ax 49x3)°
The functionsZ,(u), n € N defined by the recursion relation
3) Zou) =1, Zp(u)=AUZ,1(u), n=12,...

are the differential polynomials in(x). We call these differential polynomials the KdV
polynomials.
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Let V(u) be the linear span of all KdV polynomials ové&r. If dimV(u) =n+1,
thenu(x) is called then-th algebro-geometric potential and we write raifk) = n. In
[9], it is shown that ifu(x) is the n-th algebro-geometric potential, then there uniquely
exist the polynomialsaj(A;u), j = 0,1,...,n in the spectral parameter of degree
n— j +1 such that

(4) Znsa(U=2) = @i u)Zj(u — ).
i=0

Suppose thatu(x) is the n-th algebro-geometric potential. Thé-function
M(x, A; u) associated withu(x) is the differential polynomial defined by

M(X, ;1) = Zo(u = A) = Y aj (A u)Zj_a(u — A),
=1

wherea;j(A;u), j =1,...,n are the polynomials defined by (4).

REMARK. In [10], the notation F(x, A; u)” is used for theM-function M(x, A; u).
The spectral discriminan\(A; u) is defined by
(5) A u) = My(X, A;u)? — 2M(X, A U)Myy (X, 2 U) + 4(U(x) — A)M(X, A; u)?,
which is the polynomial of degreen2 1 in A with constant coefficients. The set
SpecH(u) ={x | A(x;u) =0} c C

is called theA-spectrum of the operatad (u).

The set Spetl(u) corresponds to the discrete spectrum of the operhitr). In
[9], it is shown that if A; € SpecH(u), then M(x, Aj;u)Y/? satisfies the eigenvalue
problem

(6) (H(u) = 4))M(x, 2j;u)Y? = 0.
We call M(x, Aj; u)¥/? the M-eigenfunction.

3. The algebro-geometric Darboux transformation

In this section, we explain the method of Darboux transfdioma which was orig-
inated by G. Darboux [1], and define the algebro-geometriwlifte) Darboux transfor-
mation.

For f(x, A) € ker(H(u)—A)\{0}, the Darboux transformation is the operatéfu*)
with the potentialu*(x) defined by

* 82
u*(x) = u(x) — Zﬁ log f(x, A).
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We sometimes call the potentiaf(x) itself the Darboux transformation.

The most essential fact related to the Darboux transfoomats the following
lemma.

Lemma 1 (Darboux [1]). Define the function ¢, «, 8, 1) by

g(X,a, B, 1) = f()(lk) (a+ﬂ/ f(x,A)zdx>,

then
(H(U*) - )")g(x’ o, 137 )\') =0

holds for arbitrary«, 8 € C.
This is called Darboux’s lemma. Moreover we have the follgyiamma.

Lemma 2 ([13]). Suppose ¢x, 1) € ker(H(u) — 1)\ {0}, and let

9
B =+ — +2q(x, 2
A ax T X, A).

where
I _f(x, A)
q(x, 4) = o log f(x, 1) = X7
then the identity
(7) B\ Zy(u) = B{" Zy(u").

holds

We call this formula (7) the fundamental identity of the Dauk transformation.
Now we define the algebro-geometric Darboux transformaftbe ADT) and the
algebro-geometric double Darboux transformation (the ARD

DEFINITION 1. The Darboux transformation of the algebro-geometricepiidl
u(x) by the correspondingv-eigenfunctionM(x, A;; u)/2, A; € SpecH (u)

32 82
© U3, () = U0 — 25 log M(x, Aj3U)2 = U(x) — =5 log M(X, 2;; u)

is called the algebro-geometric Darboux transformatitve ADT as the abbreviation).

By (6) and Lemma 1, we immediately have the following lemma.
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Lemma 3 (The eigenfunction o (u;l)). Let
9) M(X,Aj;u):/M(x,Aj;u)dx

and fix the integration constant arbitrarilthen the function £(x, &) defined by

¢, (£) + EM(X, Aj; 1)
M(x, Aj; u)t/2

(10 R (X, §) =

is the 1-parameter family of the eigenfunction of(h{j) associated with the eigen-
value kj, i.e,

(H(u;,) = 2j)Fy(x,. §) =0,

where ¢, (&) is an arbitrary function which depends only én

By this lemma, we can define the algebro-geometric doubldo@er transforma-
tion as follows.

DEFINITION 2. The algebro-geometric double Darboux transformatibe ADDT
as the abbreviationi (u;f(x, £)) is defined as the Darboux transformationl-«b(u;i (x))
by the eigenfunctionF, (x, &) defined by (10), i.e., the operator with the potential
u;{}"(x, &) defined by

82
U3 (x, §) = U3, (x) — 2==7 log Fy, (x. )

(11) :

= U() — 2, 10g(gs, () + EM(x, 5510,

If ¢,,(§) = 0 then the ADDTu;T(x,s) does not depend oA. Hence, in what
follows, we assume that,, (£) does not vanish identically.

On the other hand, as for the rank of the ADT of thith algebro-geometric po-
tential, we have the bounds

n—1< rankujj(x)g n+1

for all &; € SpecH (u) [13].

It is well known that ranluj{i(x) > n holds generically, while the degenerate case
rankujj(x) =n—1 occurs very exceptionally. For our purpose, this exceplicase is
important. It is shown in [10] that iti(x) is the n-th algebro-geometric potential, then
the ADT u’;j (x) is the f — 1)-th algebro-geometric potential if and only if Sped (u) #
¢ and X; € Speg, H(u), where

Speg, H(u) = {x; | The multiple roots ofA(A; u)},
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which we call the multiple spectrum dfi (u).

4. Isospectral property of the ADDT

In this section, we clarify the isospectral property of thgehro-geometric double
Darboux transformatiorH (uj’j"(x, £)).

Suppose that(x, n) is analytic with respect to the complex variabbegnd n. We
say that the 1-parameter family of the differential operati{v(x, )) is isospectral if
and only if H(v(x, n)) satisfies the Lax equation

d
(12) EH(U(X’ ) = [A(X, m), H(v(x, m)I,

where [A, B] = AB — BA is the commutator, and\(x, n) is the odd order ordinary
differential operator with respect to the variablewith a parameten. We show this
by verifying that the resulted potentiaﬁ(x, &) solves the evolution equation of higher
order non-stationary KdV type, and this evolution equat@am be expressed as the
Lax equation (12).

The double Darboux transformation method, or the doublencotation method
has been studied extensively by the functional analytichowtby many authors. See
e.g. [3], [4], [5], [6], and [7]. Different from these work# the present one, we study
its isospectral property by an algebraic method.

Now we prove that the potentiajj{?‘(x, &) solves the evolution equation of the
higher order KdV type with the time variable Suppose\; € Speg, H(u), and define
the functionsQ,, (x, &) and N;, (x, &) by

ol
Q)»j (Xv S) = & |Og F)\j (Xv S)’

N)Lj (Xv é:) = ZH(UIT(Xv g) - )"J) - Zak()"j , U)Zkfl(u;}k(xv é:) - )"J)

k=1

Then we have the following lemma.
Lemma 4. Ny, (X, &)F;,(x, §)? is independent of x
Proof. Define the first order differential operatdﬂéf)(g) by
BO(E) = £ +2Q,, (. £)
! X !
then, by Lemma 2, we have

B 24(U5, () — 1) = BPE)Z(U5 (X, 6) ~ 4)
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for all k > 0. Sincei; € Speg, H(u), as mentioned ir§3, ranku;j(x) =n— 1 holds.
Moreover, by the argument similar to that in [10, p.968], weehammediately

Zn(uj, () — & Zak(x, U)Zi-a (U, () — 4) =
k=1

Therefore, we have
BN, (x. £)
=B (z (6500~ ) ~ D a0 Ze (o iT<X’¥)—M)>

k=1

= Bij—)(g) (Zn(uj‘\j (X) —1j) — Zak()\,j JU) Zie-a (U3 (X) — AJ)) =0.

k=1
In other words, by the definition of the operath*’(g), we have

ZFAjX(Xﬂ é)NAj (X’ S)

=0.
F}\.j (X’ S)

BE(6)Ns, (X, §) = Nyyx(X, §) +
This implies

0]
a5 109N, (X, )F, (x, £)° = 0.
This completes the proof. U

By Definition 2, sinceg;, (§) does not identically vanish, we have immediately

o = 2 i I 1+ d —> __M(x, A
51 00.6) =000 ~ 255 109 (14 S, ) )

Since N, (x, &) is the differential polynomial im;f(x,é), it turns out that the func-
tion N;,(x, &) is the rational function of the new parametgr= &/¢;,(§). Similarly,
note that

1+nﬂ(x,kj;u)

G)\j(xa 77) M(X,)\.],u)l/z

. (s) Fu, (x.8) =

is the eigenfunction of the ADTH (uA ) corresponding to the eigenvalug, which is
the linear function ofy. On the other hand, we have

(1 + HM(X, )\fj ; u))ZNXJ’ (Xv S)
M(X, Aj : u) '

i @)2 Ny, (%, €)F3, (x, §)2 =
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The left hand side of the above is independentxadind rational inn. Hence we de-
note it hy;(n), i.e.,

hy, (n) = Ny, (X, £)F5, (X, ).

b, (S)2

Since the ADTuj{j (x) does not depend om, both G, (x, n) and @/91)G;, (X, n) solve
the eigenvalue problem

82
(H(u;) —2)f) = (‘ﬁ + (U}, (x) _Aj)) f(x) =
Moreover one easily verifies

0
W [G)\.j’ %G)\j] = 17

whereW[ f, gl = fg'— f’g is the Wronskian. Now we compute the derivati‘«‘ﬁci.‘dn)u;’]k
Since

82
upr(x, &) = ui (x) — ZW log Gy, (x, n),

and, as mentioned abovej{j (X) does not depend on, we have

= 83 9 G}‘JU(X 1)
_u/\J(x &) =— IongJ(x n) = —Zﬁm
_ _23 w[GA,-, GA;,]] _ 4G x(x, ? 4y (67 Fo x(X, g;
ax Gy (x,m) Gy, (%, m) Fy, (X, €)

On the other hand, one verifies

9 F. x(X, h
DN 00,6 = a2, (e ) < D

(n)
FAj(X’ 5)3 2

a kk
%u)\j (Xa E)

Hence, by the definition oN;,(x, §), we have

h,\,(ﬁ) 0 U
5 U, 6)
(13) )
=&< n(UFF(x, £) - Zak(x, U) Zica (U5 (x, 5)—A,-)>.
k=1

On the other hand, define thek(2 1)-th order differential operatoAx(x, Aj;n) by

Ac(X, Xj5m)
K

1 9 18 i
= EZ (ZI (U:{T(X, £) —/\j)a—x - Ea_xz' (uj’f(x,g) —M)) H(UIT(X,E) —)»j)k |,

1=0
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then we have

%zk(u;j(x, £) = Aj) = [Ac(x, Aj5m), H(UT(x, &) — 4j)]-

(cf. [9, pp.411-412] and its references.) Hence we have

0 —~
a—ﬂUiT(x, £) — [A(x. Aj; ), H(U(x, £) — 4;] = 0,
where
o~ 2 n
A(X, Aj;m) = ——h)\‘ o) <An(X, Ajin) — Zak()‘j TU)AC (X, A 77)) )
! k=1

Since[ A, 2j] =0 and

0 d
G106 ) = M (U0 6).

hold obviously, we finally obtain the Lax representation

d —~
a (U (x, ) = [AXx, A5 1), H (U (x, £))].

This shows that the evolution equation (13) is of Lax typent&e we have the fol-
lowing theorem.

Theorem 1. The 1-parameter family of the ordinary differential operator
H (u;’f(x, £)) is isospectral

As for the phase space of the isospectral roW(x,s), we have the following
theorem.

Theorem 2. The linear relation
n
Zowa (U5 (%, 8) = 45) = 3 a3 ) Zi(U3(x, €) = ) = 0
k=0

holds for arbitrary &.

Proof. Since

h)tj (77)¢AJ (5)2

NAj (Xv S) = FA (X, %-)2 >
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one can express the derivativel {x)~ N, k=1,2, 3 in terms ofF;; and its deriva-
tive, i.e.,

and

FoxoxF2 — OF; xxFaxFo, +12F3
NAjXXX = _2h)\1¢fj XXX PXXEAXE A AjX ‘

5
Fx,»

Moreover, by Lemma 1, it turns out thayB; solves the differential equation

82
<_W (U9 - M)) f(x) = 0.

Hence we have

. —FyxxFAj +2F2,
u)\J(Xvé)_)“J = - F}? J
i

and

iu**(x £) = _F)\jXXXF)LZj +5F}\jXXF)\jXF)\.j _4F)L3.X
2 Ko
ax F2

By straightforward calculation using these expressiomg easily verifies

. _rou » N, 103N,
T MU = 2N (,8) = SNy, + (U = 4) 7

Voax 4 ax3

On the other hand, we have

0

aXA(uj‘{’j" — ANy, (%, §)

n
51\(@? — 1) <Zn(UI}" —Ap) = Y & u)Zi s (U — )»J-)>
k=1
0 n
= & <Zn+1(UjT — )»j) - Zak(kj : u)Zk(uIT _ Aj)) )

k=1
Hence we have

Zna(U3F = 25) = > ady; W Zi (U5 = 4j) = c(8),

k=1
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where c(¢) depends on onl¥. In addition, applying Lemma 2 twice, one easily veri-
fies c(¢) = ap(rj). This completes the proof. Ul

By Theorem 2, ifA; € Speg, H(u), the ADDT induces the isospectral flow de-
scribed by the evolution equation of the higher order KdVetyf3) in the phase space

= {u(x)

However, the isospectral property discussed above is foome. Hence, next we
consider how the spectral discriminaﬁ(k; u;f(- , é)) depends on the deformation pa-
rameterg.

In [10, p.959, Theorem], it is shown that if; € Speg, H(u), then we have

Znsa(U(X) = 2}) = > a(rj; ) Zk(u(x) — 1;) = O¢ .
k=0

(14) rankuy (x) =n—1, A(Auf)= %
Therefore, we have

n—-2< rankuj{j(x, &) <n
for arbitrary & € CU {o0}. If rankuj{j(x, &) =n— 2, then, by (14), we have

A(x; )

A(%; u (- €)= m

Next, if rankuj{?‘(x, £) =n—1, then, by (14), we have

A(x;u)

A(%; u (- €)= m

Finally, if rankuj{?‘(x,é) =n, by Theorem 2, we have

A uir(-,8)) = AR u).

Thus, in all cases, we have the following theorem.

Theorem 3. The spectral discriminanA(A; uj’i"( . ,é)) is independent ok.

5. The second Darboux-Lang@ equation

In this section, we apply the results obtained in the aboveh®n-th Lamé
operator

2

Hun(x. 7)) = =53

+Up(X,7), neN,



888 M. OHMIYA AND M. URAKUBO

whereun(X, 7) = n(n + 1)p(x, t) is the n-th Lamé potential. It is well known that the
n-th Lamé potentialu, (X, ) is the n-th algebro-geometric potential. L&(P (1), Q(1))
be the resultant of polynomial@(x) and Q(1), and defineD(z;uy,) by

d
D(r;un) =R <A(}\; Un), ——A(%; Un)) .
da
Then D(z; uy,) is the meromorphic function of € H*, whereH* c C is the upper
half plane. Let
On ={t | D(r;uy) =0} C H",

which we call the lattice of degenerate periods associaiéd tve n-th Lamé potential
Un(X, 7). If T € ®y, then Speg H (un(x, 7)) # @ follows.
In [10, p.976,85], it is shown that

A ug) = =43+ go(T)h — ga(2).

and, sincegy(r)? —27gs(r)? # 0, ®; = ¢ follows. Hence, suppose that € ®,, n > 2,
and Aj € Speg, H(un(X, 7). Let Mq(X, Aj, 7,) be the M-function corresponding to
the n-th Lamé-Ince potentiau,(x, z,), i.e.,

Mn(X, A, 7.) = M(X, 2; n(n + L)p(X, 7).

By (11) in Definition 2, the ADDT ofun(X, 7,) is expressed as
92 _
Ups, (X, §) = un(X, 7)) — ZW log(¢s, (§) + EMn(x, A}, 7.)),

where Mn(x, Lj, ,) is defined by (9) forM = M,. We call the 1-parameter family of
the ordinary differential equation

2
10 = (U, (,8) = 21) 1) =0

the n-th Darboux-Lang equation of degenerate type.
Now we consider the second Darboux-L@amquation of degenerate type. First, we
compute theM-function Mx(x, A, ). The following formulas are well known.

(15) /(6. 7 = 4p(x, 7)° — Ga(e)p(x, 7) — Ga(7)
(16) (. 7) = 6p(x, 7 — 2ao(r)

9" (x, 7) = 12p(x, 1)’ (X, 7)
17) pM (x, 7) = 1200(x, 7)° — 180x(7)p(X, ) — 1203(7)
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On the otherhand, by the recursion relation (3), one has tflewing KdV poly-
nomials.

(18) ZO(U) =1

1
19) Zy(u) = 5u

1 3

2 7 — Ty + 22
( 0) z(U) 8u 8u

1 5 5 5
21 Z -~ v _ = //__/2+_3
(21) 3(u) 32U 16uu 32u 16u

Calculating the righthand side of (21) for= 6p, we have immediately

3 45 45 135
22 Z(6 o (1Y) Bt " 2 + 3.
(22) 3(6p) 6% L8 —gf TP

Eliminate p(V), »”, and g’ from the righthand side of (22) using (15), (16) and (17).
Then we have

63 27
z = g + — 0.
3(6¢) g B9+t 5
Similarly, by (18), (19) and (20), one verifies
3
Z,(6p) = 9p° + g% Z1(6p) = 3p, Zo(6p) =1

Therefore, we have the linear relation
21 27
Z3(6p) = 39221(650) + 59320(660)
This implies
21 27
(23) a(0;60) =0, &(0;6p) = Egz(f), ag(0; 6p) = ggs(f)

Hence, by [10, Lemma 2, pp.962-963], we have the followingpse expression of
the M-function Mx(x, A, 1);

Ma(X, &, T) = Zo(6g) + pr(1) Z1(6¢) + Po(*) Zo(6),
where
PL(}) =4, po(h) =22 — %192.
Therefore, we have

Ma(x, 2, ) = 9(x, T2+ Bip(x, 1) + 22 — J0o(r).
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Next we calculateA(); uy) according to the definition (5). Note that the righthandesid
of (5) does not depend ox. Hence it suffices to evaluate it &at=a such thatp(a) =
0. By (15) and (16), we have

1
'@ 1) =-g(r). 9" 1) 50()
By direct calculation, one verifies
Max(a, &, 7)? = —9gs(1)2?,

Ma(a, 2 )M ) = (42 = () ) (0o - 180500 ).
and

9 2
M, 4, )% = (AZ _ 21gz(r)) .
Hence we have
(24)  A(r;up) = —40° + 21g,(1)A> + 2705(T)A% — 27g,(7) A — 810,(7)s(7).

One can easily factorize the righthand side of (24) as

A ) = ~4(2 ~ 36:(0) (° — JenteNn - en(r).

Hence SpegH(uz) #Z ¥ holds if and only ifgx(r) = 0. Note thatgy(r) = O holds if
and only if J(t) = g2(v)3/(go(7)® — 27g3(r)?) = 0. Sincegy(e?"'/3) = 0, the modular
invariance ofJ(t) implies
- ae R +p (a b

_ +
@2—{7: —m, c d)GSL(Z,Z)}CH

Suppose that, € ©,, then we have

Ma(X, A, 7,) = A% + 3p(X, T.)A + 9 (X, T,)2.
Sincegy(t,) =0,
(25) A(r;up) = —412 (AS - 277 gs(f*)>
holds. Hence SpegH (ux(x, 7.)) = {0} and

Ma(x, 0, 7,)¥2 = 3p(x, 7.) € kerH(uy)
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follow. Therefore, by (8), the ADTU; (X) is given by

U5 6(X) = U2(X) — aa—:z logMa(x, 0, 7.) = 20(X, 7.) — ;(gxf(gz
and, by Lemma 1, we have
30 € kerH (u3 ).
On the other hand, we have
(26) M2(X, 0, 7,) = / 9 (X, 7,)? dx = :—;p’(x, ).

Hence, by direct calculation, we obtain the explicit expres of the eigenfunction
Fo(x, &) defined by (10) forxj = 0;

Fo(x, &) = #o(£) +3§{f)i60)/(X, 'L’*)’

where ¢o(§) is an arbitrary analytic function of. Therefore, by (11) and (26), we
obtain the explicit expression

2
U0, ) = ual) — 2 0g (9u(e) + 360 (x, )

_ Bp(x, .)(d0(§)* — B6¢o(E)' (X, 7) + (27/4)ga(7.)5)
(@) + (3/k ' (X, T.))? ’

which is the second Darboux-La@potential (1). Note that

Uz%(X, 0, 7.) = 6p(X, 7) = U2(X)

holds. Hence, by Theorem 1, the 2-nd Darboux-Eaequation (2) is the isospectral
family of the differential equations on the tor&s, = C/Z & Zz,, and, by Theorem 3
and (25),

SpecH (u3( - , §)) = SpecH (up) = {0, 3- 27/3g3(z.)"%)

follows. By (13) and (23), it turns out that(x, n) = u3%(x, &, 7.) solves the evolution
equation

27) _ho(ﬂ)ai 10°

3 B 27 0
X, 1) = —=—=v(X,n) + = v(X, n)—v(X, n) + ==0a(z..) —v(X, 1),
> nv( 21 = g aeav () + gu(x n) o v(x. n) + T0s(m) o v(X, n)
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wheren = &/¢o(¢). The equation (27) coincides with the original KdV equatiafter
slight change of variable. Actually, by the straightfordiaralculation, one can verifies
that if we define the complex time variableby the indefinite integral

1/ 1
t=tn) = 4_1/ ho(n) dn

such thatt(0) = 0 and the functiorV(x, t) by

27
V(Xv t) = U;*O(X, é,-:v T*) + —93(1'*),
12
then, V(x, t) solves the KdV equation
Vv _ a3V Vv
= _ 6V_
ot 9x8 X

with the initial condition

V(X, 0) = 6p(X, Ty).

Although the calculation ofy(n) is very complicated, if we use the computer algebra
system, we can compute it explicitly as

1 2187
ho(n) =1+ 5(135? — 144c%)n? + T(CZ —chn?,

wherec = 2-%/3gs(z,) V3.

The solutionV (x, t) has been constructed previously in [2] by the method of the
algebraic geometry. On the other hand, in [11], the isomoomoit property of the
second Darboux-Lagequation (2) is studied for

27 1/2
$o(§) = (—ng(f*)éz + C) , c#0.

Moreover, in [12], several kinds of the exact solutions of thi&d elliptic Calogero
system

d2g;

3
Gz = 6296 —fer). BO=0 =123
k=1

oy
are explicitly constructed using the pole expansion of thieteon V(x,t) constructed
above and the specific covering map of the elliptic curve dkier projective line.
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