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Abstract
In this article we study a priori upper bounds of subsolutions satisfying a

certain differential inequality (�) below on a non-compact complete Riemannian
manifold (M; g) without any Ricci curvature condition. Our method depends on
a volume estimate of open subsets where those solutions satisfy a certain strong
subharmonicity. Several applications in conformal deformation of metrics and value
distribution of harmonic maps are given.

1. Introduction

Let (M; g) be a connected Riemannian manifold of dimensionm and �g the
Laplacian defined by�gu := Tracegrru for a smooth functionu on M. Through-
out this article (M; g) is always assumed to benon-compact completeand connected
unless otherwise stated. We are interested in a priori upperbounds of a non-negative
smooth functionu satisfying the following differential inequality:

�gu + ku� lua+1 � 0(�)

on M where k and l are continuous functions onM, and a > 0 is a constant re-
spectively. A differential geometric interpretation of a priori upper bounds of such a
subsolution appears in conformal deformation of metrics and value distribution of har-
monic maps and has been studied under a certain curvature condition of g. Neverthe-
less our method does not depend on any curvature condition ofg and depends only on
a volume estimate of an open subset whereu satisfies a certain strong subharmonicity.
It can be stated as follows.

Theorem 1.1. Let a smooth function u on M satisfy the following differential in-
equality

�gu � Cua+1

(1 + r�)b
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on an open subsetfu > Æg 6= ; for certain constants C> 0, a > 0 and Æ > 0, where
r� is the distance function from a fixed point x� of M. If b < 2 (resp. b = 2), then

lim inf
r!+1 log Vx�(r )

r 2�b
= +1 �

resp: lim inf
r!+1 log Vx�(r )

logr
= +1� ;

where Vx�(r ) is the volume of the geodesic ball Bx�(r ) centered at a fixed point x� 2
M and of radius r> 0.

This result is a refinement of Theorem 1.1 in [18] and plays a crucial role to show the
following a priori upper estimate ofu satisfying (�).

Theorem 1.2. Let u be a non-negative smooth function satisfying the differential
inequality (�) on M and the functions k and l in(�) satisfy the following condition

k � Hl for some constant H� 0

and

l � L

(1 + r�)b
for certain constants L> 0 and b2 R

on M respectively. Suppose the following volume growth condition either

lim inf
r!+1 log Vx�(r )

r 2�b
< +1 if b < 2;(1)

or

lim inf
r!+1 log Vx�(r )

logr
< +1 if b = 2:(2)

Then

sup
M

u � H1=a:
Especially u vanishes identically if H= 0.

REMARK 1.1. The above volume growth condition is weaker than a decaycon-
dition of Ricci curvature studied in [14, 15] (cf. [14], Theorem A and [15], Theo-
rem 0.2). Actually in view of the Laplacian comparison theorem (cf. [6]), if there exist
constantsC � 0 andb � 2 such that

Ricg(x) � �C(1 + r�(x))2(1�b)
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for any x 2 M, then one can see that

lim sup
r!+1

log Vx�(r )

r 2�b
< +1 if b < 2

�
resp. lim sup

r!+1
log Vx�(r )

logr
< +1 if b = 2

� :
In caseb = 2 the above pointwise lower bound condition of Ricci curvature can be
replaced by the following weaker condition. Namely if the negative partRM;� of the
Ricci curvature of (M; g) satisfies the following

Z
Bx� (r )

Rp
M;� d�g = O(r k)

for any r > 0 and positive integersp; k with p > m� 1 and p=(2p + k)(m� 1) � 1,
then the condition (2) is satisfied (cf. [7], Theorem 1.1 and Corollary 1.2).

As an applications of Theorem 1.2, we can show the following.

Theorem 1.3. Under the condition either(1) or (2) of Theorem 1.2for b � 2,
suppose(M; g) has dimension m� 2 and the scalar curvature sg of g satisfies the
following inequality

sg � � L

(1 + r�)b
for some constant L> 0

on M. Then any conformal transformation f of(M; g) which preserves sg i.e., the
scalar curvature Kf �g of f �g coincides with sg is an isometry(cf . Corollary 3.1
and [14], Corollary 1).

Theorem 1.1 is deeply related to a generalized maximum principle for the Laplacian�g on a complete manifold (M; g). In fact we can show the following in terms of our
formulation.

Theorem 1.4. Suppose the condition either(1) or (2) of Theorem 1.2is satisfied
for b � 2, and a smooth function u is bounded from above on M. Then for any" > 0
and x2 M, there exists a point x" of M such that

u(x) � u(x");(i)

�gu(x") < "
(1 + r�(x"))b

:(ii)

Furthermore if 0 � b � 2 and there exists a continuous function� on a real line
such that�gu � �(u) on M, then one can take the above point x" which satisfiesjruj(x") < " simultaneously.
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REMARK 1.2. In [18], Theorem 2.3 we have announced that a generalized max-
imum principle for�g can be induced under the condition (1) forb = 0 in Theo-
rem 1.2. However its proof is incomplete and so the problem isstill unsolved except
the above case (cf. [10]).

By Theorem 1.4 we can restore several results stated in [18],§3, Applications without
proof. For instance we get the following.

Theorem 1.5. Under the condition either(1) or (2) of Theorem 1.2for b � 2,
suppose that f: (M; g) ! (N; h) is a harmonic map to an Hadamard manifold(N; h)
and the energy densitye( f ) of f satisfies the following inequality

e( f ) � C

(1 + r�)b
for some constant C> 0

on M. Then the image of f is unbounded. In particular if (N; h) is an n-dimensional
Euclidean space(Rn; ge) provided with Euclidean metric ge and the condition either(1)
or (2) of Theorem 1.2is satisfied for0 � b � 2, then the image of f can not be
contained in any non-degenerate cone ofRn (cf . Corollary 3.6, Theorem 3.7,and [9],
Theorem B).

In the second section we give the proof of the above results except Theorems 1.3
and 1.5. Their applications including those theorems are given in the third section.

REMARK 1.3. In preparation of this work, an article [11] has been published by
S. Pigola, M. Rigoli and A.S. Setti. In the paper they study a priori upper bounds of
u satisfying (�) from a view of volume growth condition of complete manifolds and
give certain applications related to our results. However their method can not allow us
to study the caseb = 2, i.e., (M; g) has a polynomial volume growth. The upper bound
2 of b is originated from the fact that�g is the 2-Laplacian which is a special case
of the p-Laplacian�g;p defined by�g;pu := div(jrujp�2ru) for u 2 C1(M).

2. A volume estimate for a strong subharmonicity of solutions

Let (M; g) be a complete non-compact Riemannian manifold of dimension m as
in the introduction andr� the distance function from a fixed pointx� 2 M. We restate
Theorem 1.1 in the introduction.

Theorem 2.1. Let u be a smooth function on(M; g) satisfying the inequality

(2.1) �gu � C1ua+1

(1 + r�)b
on fu > Æg 6= ; for C1 > 0; a > 0 and Æ > 0:
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If b < 2 (resp. b = 2), then

lim inf
r!+1 log Vx�(r )

r 2�b
= +1 �

resp: lim inf
r!+1 log Vx�(r )

logr
= +1� :

Proof. We may assume supM u = +1. If u� := supM u < +1, then puttingv :=
1=(u� � u) (u does not attainu� on fu > Æg by (2.1)) one can verify that�gv �
C1Æa+1v2=(1 + r�)b on fv > Æ�g with Æ� := 1=(u� � Æ) > 0. We have only to discuss
by replacingu by v for a = 1. Since we can assume thatfu > Æ + C2g 6= ; for any
C2 > 0, we replaceu by u=(Æ + C2) and C1 by C := C1(Æ + C2)a > 0 respectively,
and setk� := 1=(1 +r�)b in (2.1). The inequality (2.1) can be modified into the follow-
ing form:

(2.2) �gu � Ck�ua+1 on M� := fu > 1g 6= ;:
From the above observation, we can take the constantC arbitrarily large in (2.2). We
choose a non-negative smooth convex function� on a real lineR such that�(t) � 0
if t � 1, �(t) > 0, �0(t) > 0, �00(t) � 0 if t > 1 and �0(t) � 1 if t > 1 + � for a
sufficiently small� > 0 and a Lipschitz continuous function! on M such that 0�! � 1, Supp(!) � Bx�(2r ), ! � 1 on Bx�(r ), and jr!j � 1=r . By using (2.2), a direct
calculation shows the following for anyp and q > 0:

div
�!2qr�(up)

�� p�0(up)
�
(p�1)!2qup�2jruj2+!2qup�1�gu+2q!2q�1up�1hr!;rui	

� p�0(up)
�
(p�1)!2qup�2jruj2+C!2qk�up+a�2q!2q�1up�1jruj jr!j	:

By integrating the both sides and hypothesis, for any" > 0 we get

(p� 1)
Z !2q�0(up)up�2jruj2 dvg + C

Z !2qk��0(up)up+a dvg

� 2q
Z !2q�1�0(up)up�1jrujjr!jdvg

� " Z !2q�0(up)up�2jruj2 dvg +
q2

"
Z !2(q�1)�0(up)upjr!j2 dvg:

For " = (p� 1)=2> 0 we obtain

(2.3)
Z !2qk��0(up)up+a dvg � 2q2

C(p� 1)

Z !2(q�1)�0(up)upjr!j2 dvg:
By settingq = (p + a)=a > 1 in (2.3), the following holds:

(2.4)
Z !2(p+a)=ak��0(up)up+a dvg � 2(p + a)2

a2(p� 1)C

Z !2p=aup�0(up)jr!j2 dvg:
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The Hölder inequality yields the following:Z !2p=aup�0(up)jr!j2 dvg

� �Z !2(p+a)=ak��0(up)up+a dvg

�p=(p+a) �Z
k�p=a� �0(up)jr!j2(p+a)=a dvg

�a=(p+a) :
Since there existsr0 � 2 depending onC such thatBx�(r ) \ M� 6= ; for any r � r0,
by substituting the above inequality into the right hand side of (2.4), we get
(2.5)Z

Bx� (r )
k��0(up)up+a dvg �

�
2(p + a)2

a2(p� 1)C

�(p+a)=a Z
Bx� (2r;r )

k�p=a� �0(up)jr!j2(p+a)=a dvg:
where Bx�(2r; r ) := Bx�(2r ) n Bx�(r ) for any r � r0. We set

F(r; p) :=
Z

Bx� (r )
�0(up) dvg > 0

for any r � r0 and p > 1. Sincer�2(1 + r�)b � 24(1 + r )b�2 for 1 � r � r� � 2r and
b � 2, the right-hand side of (2.5) can be estimated as follows:

�
2(p + a)2

a2(p� 1)C

�(p+a)=a Z
Bx� (2r;r )

k�p=a� �0(up)jr!j2(p+a)=a dvg

� �b(r )F(2r; p)

�
25(p + a)2

a2(p� 1)C(1 + r )2�b

�(p+a)=a ;
where�b(r ) = (1 + r )�b if b � 0 and�b(r ) = (1 + 2r )�b if b < 0. Since�0(up) > 0
if and only if u > 1, by combining this estimate with (2.5), we get for anyr � r0

and p > 1

(2.6) F(r; p) � �b(r )F(2r; p)

�
25(p + a)2

a2(p� 1)C(1 + r )2�b

�(p+a)=a ;
where�b(r ) = 1 if b � 0 and�b(r ) = (1 + 2r )�b if b < 0. If r � 1 and b � 2, then
we set

p(r ) :=
a2C(1 + r )2�b

29
:

Since we may assume thatp(r ) � a + 2 for any r � 1 by taking C arbitrarily large,
we get

25(p(r ) + a)2

a2(p(r )� 1)C(1 + r )2�b
� 1

2
for any r � 1:
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By putting p = p(r ) and F(r ) := F(r; p(r )) in (2:6), we have

(2.7) F(r ) � �b(r )F(2r )

�
1

2

�(p(r )+a)=a
for any r � r0:

We fix r with r > 2r0 � 4 and assumeb < 2. Since there exists an integerk � 1 with
2�(k+1) < r0=r � 2�k, by putting r j = 2j r0 and using (2.7), we can see

F(r0) � �b(r )log2(r =r0)

�
1

2

��Pk�1
j =0 p(r j )+a

�.
a

F(rk)

� r1�b(r )log2(r =r0)

r

�
1

2

�aCr2�b=213�2b

F(r );
which implies

aC log 2

213�2b
� maxf�b;0g (log(1 + 2r ))2

r 2�b log 2
� log F(r )

r 2�b

for any r � r (C;a;b) with a sufficiently larger (C;a;b) > r0. By taking r (C;a;b) so
large again we get

aC log 2

214�2b
� log F(r )

r 2�b

for any r � r (C;a;b). Since we can takeC arbitrarily large andF(r ) � Vx�(r ) by
supR �0 = 1, we attain the conclusion. Ifb = 2, then by�2(r ) � 1 we get the following
by the same argument as above:

F(r0) � �r1

r

�(aC=29)+1
F(r );

which implies

aC

29
� log F(r )

logr

for any r with r � r (C;a;2)� 0. Therefore we attain the conclusion similarly.

Now we are in a position to show Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2. Iffu > H1=ag 6= ;, then taking" > 0 with fu > (H +")1=ag 6= ;, u satisfies�gu � C1ua+1=(1 + r�)b on fu > Æg for C1 = "L=(H + ")
and Æ = (H + ")1=a. However this contradicts the volume growth condition in view of
Theorem 2.1.

As a corollary of Theorem 1.2 we get the following.
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Corollary 2.2. Let u be a non-negative smooth function u satisfying the differen-
tial inequality (�) and the function k(resp. l ) in (�) satisfy the following

k � K

(1 + r�)c

�
resp: l � L

(1 + r�)b

�
for K � 0 (resp. L > 0) and c (resp. b) 2 R

on M. If the condition either(1) or (2) of Theorem 1.2is satisfied for b� minf2; cg,
then

sup
M

u � �K

L

�1=a :
Especially u vanishes identically on M if K= 0.

Proof. Sincek � (K=L)l if b � c, the assertion follows from Theorem 1.2 im-
mediately.

The difference of two solutions of (�) can be estimated as follows (cf. [19], Theo-
rem 4.9).

Corollary 2.3. Let u1 and u2 be non-negative solutions of the equality

�gu + ku� lua+1 = 0

on M, where h and k satisfy the assumption ofTheorem 1.2 respectively. If
the condition of either(1) or (2) of Theorem 1.2 is satisfied for b� 2, then
supM ju1 � u2j � H1=a.

Proof. By settingw := (u1 � u2)2, one can verify thatw satisfies the inequality�gw � �2kw + 2lw(a=2)+1 on M. Hence the conclusion follows from Theorem 1.2
immediately.

Here we show Theorem 1.4 stated in the introduction.

Proof of Theorem 1.4. We may assume thatu does not attainu� := supM u <
+1 on M. We put "� := minf";u� � u(x)g=(1 + minf";u� � u(x)g) > 0 for a fixed
constant" > 0 and pointx 2 M respectively. We setw := 1=(1 + u� � u) > 0 and

Mp := fy 2 M;wp(y) > 1� "�g and �p :=

�
y 2 M;�gwp(y) < "�w2p(y)

(1 + r�(y))b

�

for any positive integerp. One can verify thatMp � Mq and �p � �q for any p >
q � 1 in view of the equality�gwp = (p=q)wp�q�gwq + p(p � q)wp+2jruj2. By
Theorem 2.1 the volume growth condition implies that�p := Mp\�p is a non-empty,
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and unbounded subset ofM for any p otherwisewp satisfies 1� "� < sup�p
wp < 1

and�gwp � "�w2p=(1 +r�)b on fwp > sup�p
wpg 6= ;. Moreover if y 2 �p for p � 1,

then one can see thatu(x) � u(y) and

(2.8) �gu(y) < "�
p(1 + r�(y))b

� (p + 1)(1� "�)1=pjruj2(y):
The estimate 2.8 implies that any point of�1 is the desired one. To show the latter
half assertion, supposejruj � � on �1 for a constant� > 0. Clearly we can verify
that �p � �q for p > q � 1, and

T+1
p=1�p = ; becauseu < u� on M. Hence for

each pointyp 2 �p we get �(u�) = lim p!+1 � �u(yp)
� � lim p!+1�gu(yp) = �1

by (2.8). This is a contradiction.

As a direct consequence of Theorems 1.4 and 2.1 we can obtain the following simi-
larly to an aspect by Cheng and Yau (cf. [3], Corollary).

Corollary 2.4. Let u be a smooth function satisfying the inequality

�gu � �(u)

(1 + r�)b

on M, where� is a continuous function onR such that

�(t) � C"ta+1 for any t� " with certain constants a> 0; " > 0 and C" > 0:
If the condition either(1) or (2) of Theorem 1.2is satisfied for b� 2, then supM u �" and �(supM u) � 0. Especially if u� 0 and � satisfies the above property for any
small " > 0, then u� 0. Moreover infM jruj = 0 if 0� b � 2.

REMARK 2.1. As a related topic, Tachikawa showed a non-existence theorem of
harmonic maps fromRm to an Hadamard manifold with negative sectional curvature
under a certain non-degenerate condition which is similar to the condition (3.2) be-
low (cf. [17], Theorem 1). His result can be also induced by applying Corollary 2.4
to �(t) = sinh�t (� > 0) andb = 2 (see the inequality (2.2) in [17], p.152).

We can also get the following theorem which is related to a priori bound estimates of
solutions for a certain Poisson equation (cf. [19], Corollary 4.3).

Corollary 2.5. Let u be a smooth solution of the following equation

�gu =
�(u)

(1 + r�)b

on M, where � is a continuous function on a real line such that�(t) � C+ta+1

(resp. �(t) � C�t3) for t � �+ � 0, a > 0 and C+ > 0 (resp. t � �� � 0 and
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C� > 0). If the condition either(1) or (2) of Theorem 1.2is satisfied for b� 2, then�� � infM u � supM u � �+. Especially if �+ = �� = 0, then u � 0. Moreover
infM jruj = 0 if 0� b � 2.

3. Applications in differential geometry

Let (M; g) be a complete non-compact Riemannian manifold of dimension m� 2
and f : (M;g) ! (N;h) a smooth map to a Riemannian manifold (N;h). f : (M;g) !
(N;h) is said to be aconformal immersionif there exists a smooth functionu > 0 on
M satisfying f �h = u4=(m�2)g (resp. f �h = ug) if m � 3 (resp.m = 2). It is known
that u satisfies the following equality onM:

(3.1)
m� 3 =⇒ cm�gu� sgu + K f �hu(m+2)=(m�2) � 0; cm :=

4(m� 1)

(m� 2)

m = 2 =⇒ �g logu� sg + K f �hu � 0;
where sg (resp. K f �h) is the scalar curvature ofg (resp. the pull backf �h of h by
f ). First we state the following theorem (cf. [14], Theorem 1).

Theorem 3.1. Suppose f: (M; g) ! (N; h) is a conformal immersion such that

K f �h � minfsg;0g and Kf �h � � L

(1 + r�)b
for some constant L> 0

on M. If the condition either(1) or (2) of Theorem 1.1is satisfied for b� 2, then f
is distance decreasing, i.e., supM u � 1.

Proof. By applying Theorem 1.2 tok = �minf0; sgg=cm, l = �K f �h=cm, H = 1
anda = 4=(m�2) (resp.a = 1) for m� 3 (resp.m = 2), we can get the conclusion.

We get the following from Theorem 3.1 immediately (cf. [14],Corollary 1 & the ref-
erences, and [19], Theorem 4.7).

Corollary 3.2. Under the condition either(1) or (2) of Theorem 1.2for b � 2,
suppose(M; g) has dimension m� 2 and the scalar curvature sg of g satisfies the
following:

sg � � L

(1 + r�)b
for some constant L> 0

on M. Then any conformal transformation f of(M; g) which preserves sg i.e., the
scalar curvature Kf �g of f �g coincides with sg is an isometry.

By applying this to the identity map ofM we get the following (cf. [14], Corollary 2).
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Corollary 3.3. Under the same hypothesis asCorollary 3.2suppose h is a con-
formal metric of g whose scalar curvature coincides with sg. Then h= g.

Corollary 2.2 yields the following (cf. [13], Corollary 4.2and [15], Theorem 0.2 &
Corollary 0.1).

Corollary 3.4. Under the condition either(1) or (2) of Theorem 1.2for b � 2,
suppose the scalar curvature of g is non-negative on M and S isa smooth function
satisfying

S� � L

(1 + r�)b
for some constant L> 0

on M. Then the metric g cannot be conformally deformed to any metric of scalar cur-
vature S.

REMARK 3.1. In the above results it is not necessary to control the lower bound
of sg. The reader should see [11] (resp. [14, 15]) which studies the case�C1 � sg ��C2=(1 + r�)b (resp.�C1=(1 + r�)2(b�1) � sg � �C2=(1 + r�)b) for certain constants
C1;C2 and b with C1 � C2 > 0 andb � 2 respectively.

REMARK 3.2. If l asymptotically behaves like�1=(1 + r�)b for b > 2 and k �
0, then an existence theorem of non-trivial solutionsu satisfying the equation�geu =
lua+1 is known on anm� 3 dimensional Euclidean spaceRm provided with Euclidean
metric ge (cf. [2], Theorem II).

The rest of this section is devoted to give several applications of Theorem 1.1 related
to value distribution of maps. First we begin with the following (cf. [4], Theorem 3.1,
[12], Theorem 2.17, and [18], Theorem 3.5).

Theorem 3.5. Let f : (M; g) ! (N; h) be a smooth map to an Hadamard man-
ifold (N; h) whose sectional curvature is bounded from above by a non-positive con-
stant K. Suppose the energy densitye( f ) and tension field� ( f ) of f satisfy the fol-
lowing

e( f ) � C1

(1 + r�)b
and k� ( f )k � C2

(1 + r�)c
for certain constants C1 > 0 and C2 � 0

on M respectively. If the condition either(1) or (2) of Theorem 1.2is satisfied for
b � minf2; cg and 2

p�KC1 > C2 � 0 (resp. 2C1 > C2 � 0) for K < 0 (resp. K = 0),
then f is unbounded, i.e., the image f(M) of M can not be relatively compact in N.

Proof. By lettingr y be the distance function from a pointy 2 N n f (M) 6= ;, we
set u(x) := f ��(r y) with �(t) = cosh(C3t)=2 for C3 =

p�K if K < 0 and C3 = 1 if
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K = 0. By combining the composition law of maps (cf. [5], (2.20), Proposition) with
the Hessian comparison theorem (cf. [6],§2), the following estimate holds (cf. [12],
(2.22)):

�gu � 2C3u

�
C3e( f )� 1

2
k� ( f )k tanh

�
C3 f �r y

�� :
By hypothesis we can see

�gu � C3(2C3C1 � C2)u

2(1 +r�)b
> 0

on M. If f is bounded, thenu is bounded from above and infM u > 0. Howeveru
does not attain its supremum onM by the above inequality. By puttingw = 1=(supM u�
u) > 0, a direct calculation shows the following:

�gw � C4w2

(1 + r�)b
for some constant C4 > 0

on M. On the other hand Corollary 2.4 implies thatw should vanish identically. This
is a contradiction.

Especially by lettingC2 = 0 we get the following immediately (cf. [12], Theorem 2.12).

Corollary 3.6. Under the condition either(1) or (2) of Theorem 1.2for b � 2,
suppose that f: (M; g) ! (N; h) is a harmonic map to an Hadamard manifold(N; h)
and the energy densitye( f ) of f satisfies

(3.2) e( f ) � C

(1 + r�)b
for some constant C> 0

on M. Then f is unbounded.

In case (N; h) = (Rn; ge), we can show the following which is a more precise result
than Corollary 3.6 (cf. [9], Theorem B, [1], Theorem 3 and [18], Theorem 3.3).

Theorem 3.7. Let f : (M; g) ! (Rn; ge) be a harmonic map satisfying the con-
dition (3.2) for 0� b � 2. If the condition either(1) or (2) of Theorem 1.2is satisfied
for 0 � b � 2, then the image of f can not be contained in any non-degeneratecone
of Rn.

Proof. The idea of proof is due to [9], Theorem B (see also [1]). Assume there
exists a unit vector� at the origin ofRn such thath f (x); �i=k f (x)k � Æ for a fixed
constantÆ > 0 and anyx 2 M. Here h ; i (resp.k � k) is the inner product (resp. the
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norm) relative toge. Let Rn�1 be the subspace ofRn which is orthogonal to� and f
the Rn�1-component of the position vectorf , i.e. f := f � h f; �i�. We may assume
that h f; �i2 � Æ2



f ; f

� � 1 on M. For a constanta with Æ > a > 0, we set

Fa := �h f; �i +
q

a2



f ; f
�
+ 1� 0:

Since the setf f (x); Fa(x) � Fa(x�)g is contained in a compact set for anya with
0< a < Æ� Æ0 and a fixed pointx� 2 M, there exists a small constanta > 0 such that

(3.3) a2h f (x); f (x)i � 1

for any x 2 Ma := fx; Fa(x) � Fa(x�)g. We fix such a constanta and put F := Fa �
Fa(x�). Clearly F is bounded from above andF(x�) = 0. A direct calculation shows

(3.4) h f�X; �i2 � 2
�kF�Xk2 + a2 �k f�X � h f�X; �i�k2� k f k2	

for any X 2 T Mx and x 2 M. The harmonicity of f implies

(3.5) �gF � a2Pm
i =1 k f�Xi � h f�Xi ; �i�k2�

a2



f ; f
�
+ 1
�3=2

for an orthogonal basisfXi g in T Mx and x 2 M. By applying Theorem 1.4 to� �
infM �gF � 0 (see (3.5)) and puttingu = F in (2.8) there exists a sequencefxng of
points of M such that
(3.6)

(i) F(xn) > 0; (ii) jrF j2(xn) < 1

n(1 + r�(xn))b
and (iii) �gF(xn) < 1

n(1 + r�(xn))b
:

By putting kn := (1 + r�(xn))b, if kn
Pm

i =1 k f�Xi � h f�Xi ; �i�k2(xn) tends to zero, then
kn
Pm

i =1h f�Xi ; �i2(xn) also tends to zero by the conditions (3.3), (3.4) and (ii) of(3.6),
and sokn

Pm
i =1 k f�Xi k2(xn) = 2kne( f )(xn) tends to zero. However this contradicts (3.2).

Hence there exists a constantC5 > 0 such thatkn
Pm

i =1k f�Xi � h f�Xi ; �i�k2(xn) �
C5 > 0 for any n. However this again contradicts the condition (iii) of (3.6) in view
of (3.3) and (3.5).

We can show the following distance decreasing property of holomorphic maps of com-
plex manifolds (cf. [20], Theorem 2, [16], Theorem 1, and [14], Theorem 3).

Theorem 3.8. Let f : (M; g) ! (N; h) be a holomorphic map from an m-
dimensional complete non-compact Kähler manifold (M; g) to a complex hermitian
manifold (N; h). Let RM;� (resp. H SN) be the negative part of the pointwise lower
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bound of the Ricci curvature of g(resp. the pointwise upper bound of the holomorphic
sectional curvature of h). Suppose

RM;� � K

(1 + r�)c
and H SN( f ) � � L

(1 + r�)b

on M for certain constants K� 0, L > 0, b and c. If b � minf2; cg, thensupM e( f ) �
2�K=(�+1)L, where� is the maximal rank of d f. Especially f is constant if the Ricci
curvature of g is non-negativ.

Proof. Sinceb � 2(b� 1) for b � 2, by hypothesis the Ricci curvature ofg can
be supported from below by�K=(1 + r�)2(b�1). Hence the condition either (1) or (2)
of Theorem 1.2 is satisfied as stated in the introduction. On the other hand since the
energy densitye( f ) of f satisfies the inequality

�g loge( f ) � �2RM;� � � + 1� H SN( f )e( f );
where e( f ) 6= 0 (cf. [16], Proposition 4), the conclusion follows by applying Corol-
lary 2.2 to u = e( f ), k = 2H=(1 + r�)c and l = K (� + 1)=�(1 + r�)b respectively.

We can also show the following volume decreasing property ofholomorphic maps of
complex manifolds (cf. [8],§1, [7], Theorem 3.5 & Corollary 3.6, and [18], Theo-
rem 3.7).

Theorem 3.9. Let f : (M; g) ! (N; h) be a holomorphic map from an m-
dimensional complete non-compact Kähler manifold (M; g) to a complex hermitian
manifold (N; h) of the same dimension. Let SM;� be the negative part of the scalar
curvature SM of g. Let uf denote the ratio f�VN=VM of the volume forms VM rela-
tive to g and VN relative to h respectively. Suppose

SM;� � K

(1 + r�)c
and RicN( f ) � � L

(1 + r�)b

on M for certain constants K� 0, L > 0, b and c. If the condition either(1) or (2)
of Theorem 1.2is satisfied for b� minf2; cg, then supM u f � (2K=mL)2m.

Proof. By lettingu := u1=2m
f , u satisfies the following inequality onfu > 0g (see

[7], the proof of Theorem 3.5):

�g logu � 1

2m
SM � 1

4
RicN( f )u2:

To get the conclusion we have only to apply Corollary 2.2 tok = �(1=2m)SM;� and
l = �(1=4) RicN( f ) respectively.
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If the scalar curvature is non-negative, then the Ricci curvature is bounded from below
and so the condition (1) of Theorem 1.2 is satisfied forb = 1. By settingK = 0 in
Theorem 3.9 we obtain the following immediately.

Corollary 3.10. Let (M; g) be a complete K̈ahler manifold whose scalar curva-
ture is non-negative. Let f : (M; g) ! (N; h) be a holomorphic map of complex man-
ifolds with the same dimension such that

RicN( f ) � � L

1 + r�
on M for some constant L> 0. Then f degenerates everywhere on M.
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