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A LEVI-FLAT IN A KUMMER SURFACE

WHOSE COMPLEMENT IS STRONGLY PSEUDOCONVEX

TAKEO OHSAWA
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Abstract
It is shown that certain Kummer surface admits a Levi flat hypersurface whose

complement is strongly pseudoconvex.

Introduction

It has long been know that some compact complex manifolds admit Levi-flats,
which are by definition smooth real hypersurfaces separating the ambient manifolds lo-
cally into two Stein open subsets. For instance, for any compact complex manifoldM,
CP1-bundles overM with structure groupPSL(2;R) admit subbundles with fiberRP1

as Levi-flats. Since the complements of Levi-flats are locally pseudoconvex in the am-
bient manifolds, their function theoretic properties are of interest. In the case ofCP1-
bundles over compact Riemann surfaces, it is known that the complement of such a
Levi-flat is a proper modification of a Stein space, or equivalently a strongly pseudo-
convex manifold by Grauert’s theorem [2], if and only if thePSL(2;R)-bundle isnot
PSL(2;C)-equivalent to aU (1)-bundle (cf. [1]).

Recently, Y.-T. Siu [4] established a remarkable result which says that there ex-
ist no Levi-flats of classC8 in CPn if n � 2. Generalizing his method, the author
classified the real analytic Levi-flats in complex tori of dimension two into two types,
i.e. holomorphically flat ones and Levi scrolls, the latter being with Stein complements
remarkably (cf. [3]). In particular, it turned out that there exist Levi-flats in the product
of two elliptic curves such that their complements are Stein.

In view of these facts, it seems natural to make an effort toward classifying the
Levi-flats in other complex surfaces.

The purpose of the present note is to suggest that such an effort might be reward-
ing by showing that there exists a Levi-flat with strongly pseudoconvex complement in
a Kummer surface, or equivalently there exists a Levi scrollin the product of two el-
liptic curves which is invariant under the involution (p;q) 7! (�p;�q) and free from
the fixed points.
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1. Construction of the Levi-flat

Let us recall the following dichotomy for Levi-flats in the two dimensional tori.

Theorem 1.1 (cf. [3]). Let T be a complex torus of dimension two and let S�
T be a real analytic Levi-flat. Then one of the following holds.
1) S is holomorphically flat, i.e. S is the union of flatly embedded complex sub-
manifolds of codimension one in T.
2) There exists an elliptic curve C, a holomorphic submersion� from T onto C, and
fibers C1; : : : ;C2n of � for some n2 N such that� jS is surjective and has critical
fibers C1; : : : ;C2n. (S is called a Levi scroll in this case.)

For simplicity we shall restrict ourselves to the case wherethe torus T is the
productC � C and� is the projection to the second factor.

Then we put

C = C=(Z + Z� ) Im � > 0;
6 = f[z] 2 C j [z] = [�z]g ([z] := z + Z + Z� )

and

60 =

�
[z] 2 C

���� [z] =

��z +
1 + �

2

�� :
We define� ; � 0 2 Aut C by

� ([z]) = [�z]; � 0([z]) =

��z +
1 + �

2

� :
Clearly � 2 = � 02 = id and6 (resp.60) is the set of fixed points of� (resp.� 0).

Note that� acts on60.
Lemma. There exists a meromorphic1-form ! on C with poles at60 such that� �! = �! and ResP ! 2 f1;�1g for any P2 60.
Proof. Let600 = 6 + 1=4, let � 00 be the involution with fixed point set600, and

let f : C ! C=fid; � 00g be the natural projection to the factor space by the action
of fid; � 00g. Let � be the inhomogeneous coordinate ofC=fid; � 00g (' CP1) such that��1(f0;1g) = 60. Since� interchanges the zeros and the poles of� , we have

!0 := � � f �(d log� )� f �(d log� ) 6= 0:
Multiplying a nonzero constant to!0, we obtain the desired!.
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We put

A =

�
a 2 C

���� �
2� i

Z 1

0
(! + a dz) 2 R

�

B =

�
b 2 C

���� �
2� i

Z �=2
0

(! + b dz) 2 R + Z�� :
Clearly A\ B 6= ;.

Now we takec 2 A\ B, fix a point z0 2 6, and define a closed real hypresurface
S0 in C � (C n60) by

S0 =

�
([w]; [z])

���� Im

�w +
�

2� i

Z z

z0

(! + c dz)

�
=

Im �
4

or
3 Im�

4

� :
By the period condition on!+c dz, S0 is well defined.S0 is invariant under� because
of the antisymmetricity of! and dz. It is easy to see thatS0 is smooth inT because
of the residue condition on!.

Since S0 is a Levi scroll andS0 \ (6 � 6) = ; we are done. Namely, we have a
compact real analytic Levi-flatS = S0

Æfid; � g in the regular part of the complex space
T=fid; � g, so that a Levi-flat in a Kummer surface as the preimage of the desingular-
ization of T=fid; � g. Strong pseudoconvexity of the complement is obvious.

2. Notes and remarks

1. The above method is obviously applicable to construct invariant Levi scrolls in
non-simple Abelian surfaces, or more generally in ellipticfiber bundles over compact
Riemann surfaces.
2. There exist obvious invariant Levi-flats inC � C which are holomorphically flat.
But they are not so interesting at least in their own right.
3. Classify the (real analytic) Levi-flats in Kummer surfaces.
4. The author does not know how to prove or disprove the existence of (nontrivial)
Levi-flats in general ellipticK3 surfaces.
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ADDED IN PROOF. Quite recently, M. Brunella found a serious gap in Siu’s pa-
per [4], which means that the classifications of Levi-flats inCP2 and complex 2-tori
are not yet complete. In particular, we must take back the dichotomy in Theorem 1.1.
However, this does not affet the validity of the result in thepresent article.
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