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A LEVI-FLAT IN A KUMMER SURFACE
WHOSE COMPLEMENT IS STRONGLY PSEUDOCONVEX
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Abstract
It is shown that certain Kummer surface admits a Levi flat hgpdace whose
complement is strongly pseudoconvex.

Introduction

It has long been know that some compact complex manifoldsitabevi-flats,
which are by definition smooth real hypersurfaces sepaydtin ambient manifolds lo-
cally into two Stein open subsets. For instance, for any @@npomplex manifoldM,
CP*-bundles overM with structure groupPSL(2, R) admit subbundles with fibeRP*
as Levi-flats. Since the complements of Levi-flats are Igcpieudoconvex in the am-
bient manifolds, their function theoretic properties afeimerest. In the case ofP-
bundles over compact Riemann surfaces, it is known that tmeptement of such a
Levi-flat is a proper modification of a Stein space, or eqardy a strongly pseudo-
convex manifold by Grauert’s theorem [2], if and only if tRSL(2, R)-bundle isnot
PSL(2, C)-equivalent to aJ(1)-bundle (cf. [1]).

Recently, Y.-T. Siu [4] established a remarkable resultclwhsays that there ex-
ist no Levi-flats of classC® in CP" if n > 2. Generalizing his method, the author
classified the real analytic Levi-flats in complex tori of @insion two into two types,
i.e. holomorphically flat ones and Levi scrolls, the latteiny with Stein complements
remarkably (cf. [3]). In particular, it turned out that tkeexist Levi-flats in the product
of two elliptic curves such that their complements are Stein

In view of these facts, it seems natural to make an effort tdwdassifying the
Levi-flats in other complex surfaces.

The purpose of the present note is to suggest that such am efight be reward-
ing by showing that there exists a Levi-flat with strongly ypdeconvex complement in
a Kummer surface, or equivalently there exists a Levi sdrolthe product of two el-
liptic curves which is invariant under the involutiop,(@) — (—p, —q) and free from
the fixed points.
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1. Construction of the Levi-flat

Let us recall the following dichotomy for Levi-flats in the emdimensional tori.

Theorem 1.1 (cf. [3]). Let T be a complex torus of dimension two and let S
T be a real analytic Levi-flatThen one of the following holds
1) S is holomorphically flati.e. S is the union of flatly embedded complex sub-
manifolds of codimension one in. T
2) There exists an elliptic curve ,Ga holomorphic submersion from T onto G and
fibers G, ..., Cy of # for some ne N such thatr|S is surjective and has critical
fibers G,...,Con. (S is called a Levi scroll in this cage

For simplicity we shall restrict ourselves to the case whine torusT is the
productC x C andx is the projection to the second factor.
Then we put

C=C/(Z+Z7) Imt >0,
={[ZeClld=[-2} ([d:=2z+Z+Z)

and

Y= {[z] ceclg= [—z+ 1;’”.

We defines, o’ € AutC by

a(@)=1-2. o'(@)= -2+ 3" ].

Clearly 62 = ¢’? = id and = (resp.X’) is the set of fixed points of (resp.o’).
Note thato acts onX'.

Lemma. There exists a meromorphitform » on C with poles atx’ such that
o*w=—-w and Res w € {1, —1} for any Pe ¥'.

Proof. LetX” = ¥ +1/4, let o” be the involution with fixed point seE”, and
let f: C — C/{id,o”} be the natural projection to the factor space by the action
of {id, ¢”}. Let ¢ be the inhomogeneous coordinate ®f{id, o”} (~ CP?) such that
¢71({0, o0}) = ¥'. Sinceo interchanges the zeros and the poles; pfve have

wo = c* f*(dloge) — f*(dlog¢) # 0.

Multiplying a nonzero constant t@g, we obtain the desired.
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We put
- 1
A= — + R
{ae@‘szo(w ad? e }
T 7/2
B:{beC—_/ (a)+bdz)eR+Zr}.
2mi 0

Clearly AN B # 0.
Now we takec € AN B, fix a pointzy € ¥, and define a closed real hypresurface
S in C x (C\Y) by

5= {([w],[Z]) ‘ Im<w+2%/z:(w+cdz)> =M o 3'2”’}.

By the period condition om+cdz & is well defined.& is invariant unde because
of the antisymmetricity ofv anddz It is easy to see tha® is smooth inT because
of the residue condition omw.

Since' Sy is a Levi scroll andSy N (= x £) = ¢ we are done. Namely, we have a
compact real analytic Levi-fIaS:§0/{id, o} in the regular part of the complex space
T/{id, o}, so that a Levi-flat in a Kummer surface as the preimage of #gsndular-
ization of T/{id, o}. Strong pseudoconvexity of the complement is obvious. [

2. Notes and remarks

1. The above method is obviously applicable to construcariant Levi scrolls in
non-simple Abelian surfaces, or more generally in elligtter bundles over compact
Riemann surfaces.

2. There exist obvious invariant Levi-flats @ x C which are holomorphically flat.
But they are not so interesting at least in their own right.

3. Classify the (real analytic) Levi-flats in Kummer surface

4. The author does not know how to prove or disprove the engsteof (nontrivial)
Levi-flats in general ellipticK 3 surfaces.

ACKNOWLEDGEMENT. The author thanks to A. Fujiki and K. Yoshikawa for
stimulating discussions.

ADDED IN PROOF Quite recently, M. Brunella found a serious gap in Siu’s pa-
per [4], which means that the classifications of Levi-flatstf? and complex 2-tori
are not yet complete. In particular, we must take back thaadamy in Theorem 1.1.
However, this does not affet the validity of the result in fresent article.
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