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Abstract
The leading coefficient of the Alexander polynomial of a knotis the most

informative element derived from this invariant, and the growth of orders of the first
homology of cyclic branched covering spaces is also a familiar subject. Accordingly,
there are a lot of investigations in each subject. However, there is no study which
deals with both subjects in the same context. In this paper, we show that the two
subjects are closely related inp-adic number theory and dynamical systems.

1. Introduction

The leading coefficient of the Alexander polynomial1K (t) of a knot K is a well-
known invariant for detecting fibered knots. The Alexander polynomial of a fibered
knot is always monic [22]. The converse is not always true, but it holds for many
knots, for example, alternating knots [21]. Moreover the monic condition characterizes
fibered knots in the sense of realization [2, 24].

The leading coefficient of the Alexander polynomial of a knotis also related to
the commutator subgroupG0

K of the knot groupGK = �1(S3 n K ). The abelianaization
of G0

K is finitely generated if and only if the leading coefficient is�1 [4, 25].
The r -fold cyclic coveringXr (K ) branched over a knotK is a fundamental object

in the knot theory because topological invariants of it are also invariants of the knot.
In [8], Gordon studied the growth of the order ofH1(Xr (K ); Z) with respect tor and
asked whether the growth is exponential in the case where some zeros of1K (t) are
not a root of unity. More than 15 years later, this question wasaffirmatively answered
by Riley [26] and González-Acuña and Short [7] independently.

As Gordon commented, the difficulty in computing the growth of orders arises
from the case in which all zeros belong to the unit circle but some are not a root of
unity (e.g.152(t) = 2t2�3t + 2). In this case, the standard norm is useless. Riley [26]
overcomed this difficulty usingp-adic analysis. On the other hand, González-Acuña
and Short [7] calculated the growth by showing that it is equal to the Mahler mea-
sure of the Alexander polynomial. Moreover, in their introduction, González-Acuña
and Short remarked on the possibility of interpreting the growth as the entropy of a
dynamical system.
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In this paper, we clarify the dynamical system which was predicted by
González-Acuña and Short and also explain that thep-adic approach of Riley is useful
in essence.

Solenoidal dynamical systems are natural generalizationsof toral dynamical sys-
tems. The entropy of solenoidal dynamical systems was first calculated by Juzvinskiı̆
[11] and latterly re-calculated by Lind and Ward [18] employing p-adic number theory.
Furthermore Einseidler and Ward [5] also investigated the relation between the Mahler
measure and the entropy of a solenoidal dynamical system associated with a Fitting
ideal of a module.

Applying the above results of solenoidal dynamical systemsto knot theory, we
refine some topics on the Alexander polynomial of a knot. In the following paragraph,
we exhibit some of our results, where apparently different topics are closely related.
The reason of this connection is explained in Corollary 3 below.

Let 1K (t) =
Pn

i =0 ai t i (a0an 6= 0) be the Alexander polynomial of a knotK and�i

the zeros (counted with multiplicity) of1K (t). Then,
(1) the leading coefficient of1K (t) is

logjanj = X
p<1

X
j�i jp>1

logj�i jp
(Corollary 4), and
(2) the growth of order of the first homology of ther -fold cyclic covering branched
over K is

lim
r!1jH1(�)j6= 0

logjH1(Xr (K ); Z)j
r

=
X
p�1

X
j�i jp>1

logj�i jp
(Corollary 1).
Here, j � jp are the p-adic norm normalized withjpjp = p�1 on the field of p-adic
numbersQp, and j � j1 is the standard norm on the field of real numbersQ1 = R.

(we assume that the embeddingsQ! Qp are fixed.)
In our study, we also establish the following:

• The distribution of the zeros measures a “distance” of the Alexander module from
being finitely generated as aZ-module. (Section 3.2)
• In [8], the primary interest in investigating the growth (2)might be to study the
periodicity of H1(Xr (K ); Z). However, the growth also measures complexity of the
Alexander module naturally in a sense of solenoidal dynamical systems. This means
that this growth can be interpreted as volume growth in an adele ring. (Section 3.1)

We have a few comments on this study, which might make it a little more
attractive:

The Alexander polynomial of a knot is defined as a greatest common divisor of
the initial Fitting ideal (elementary ideal) of the Alexander moduleH1(X1(K ); Z) as
a Z[t�]-module. Here, the indeterminatet is identified with the meridian action on
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H1(X1(K ); Z) where X1(K ) is the infinite cyclic cover ofX(K ) = S3 n K . Then, by
tensoring with the rational numbersQ, the Alexander polynomial is also the generator
of the Fitting ideal of the moduleH1(X1(K ); Q) as aQ[t�]-module, and hence it is
the characteristic polynomial of the meridian action onH1(X1(K );Q), up to units (see
Theorem 6.17 in [16]).

While the rational homologyH1(X1(K ); Q) gives a nice explanation of the
Alexander polynomial, the information on the leading coefficient an is lost in
H1(X1(K );Q) becausean is a unit inQ[t�]. On the other hand, the entropy is advan-
tageous to manage this difficulty because we can replaceH1(X1(K ); Z) with
H1(X1(K ); Q) with preserving the entropy (cf. Step 1 in the proof of Proposition 1).

In [26], Riley also proved a result on thep-part of jH1(Xr (K ); Z)j. He obtained
the upper bounds for thep-parts: jH1(Xr (K ); Z)j(p) < AH p Er n, where A, H , E, n are
constants depending on a knot and these upper bounds are bestpossible (up to a con-
stant multiplier). That is, while eachp-part grows at most polynomially with respect
to r , nevertheless the whole ofjH1(Xr (K ); Z)j can grow exponentially. (Silver and
Williams [28] also studied this topic. Unfortunately, thispart of their results had been
already established by Riley. However they discussed this topic under mild conditions.)

In this paper, thep-adic coefficient homology groupH1(X1(K ); Qp) plays an
important role in studying the distribution of zeros (Theorem 1). This approach was
motivated by the previous paper [23], in which we discussed an analogy between the
reciprocity of1K and the functional equation in the Weil conjecture. Likewise, p-adic
(co)homology theory has been also investigated to approachthe Weil conjecture (cf. [9]).

We should mention [10] for the pro-p and p-adic method in the Alexander-Fox
theory and its application top-homology groups in analogy with Iwasawa theory, and
refer to [12].

2. Solenoidal entropy and Alexander polynomial

A solenoid6d is, by definition, a compact connected finite-dimensional abelian
group, which arose from a generalization of the torusTd. The following theorem,
which was given by Lind and Ward [18], plays a key role for our results.

Proposition 1 (Lind and Ward [18]). Let T be an automorphism of an d-
dimensional solenoid6d. Then,
(1) the entropy of T is the sum of the entropies of the automorphisms of Qd

p derived
from T

h(T ;6d) =
X
p�1 h

�
T ; Qd

p

�
,

and
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(2) the p-adic entropy is computed by the eigenvalues�1, : : : , �d of the induced auto-
morphism in GL(d, Q) as follows:

h
�
T ; Qd

p

�
=
X

j�i jp>1

logj�i jp.

We shall identify the topological entropy and the measure theoretic entropy by the
formula of Bowen [1]:

hd(T) = lim"!0
lim sup

n!1
"
�1

n
log�

 
n�1\
k=0

T�k B(e, ")
!#

,

whereB(e, ") is an open"-ball of the identity element with respect to an invariant met-
ric d, � is a Haar measure andT is a surjective endomorphism on a locally compact
abelian group. In other words, we regard the entropy as the topological entropy and
also the measure theoretic entropy with respect to a Haar measure.

In [18], Lind and Ward computed the entropy of solenoidal automorphisms with
intrinsic arguments. As the proof is helpful in understanding our results, we provide
an outline here. However we strongly recommend the reader torefer to the original
paper.

Outline of the proof. STEP 1. Because the dual group of6d can be embedded
into Qd, lim�! 0n

�= Qd for 0n = (1=n!)6̂d. That is, Q̂d �= lim � 0̂n. Hence there are

Kn such that0̂n
�= Q̂d=Kn and consequentlyh(T ; Q̂d) = h(T ; 0̂n) + h(T ; Kn). Because

h(T ; 0̂n) = h(T ;6d) for any n and h(T ; Kn)! 0 asn!1, we obtain that

h(T ;6d) = h(T ; Q̂d).

STEP 2. The entropy on the full solenoid̂Qd can be lifted to the entropy on the
adele ringAd

Q becauseAQ=Q �= Q̂. So, we have

h(T ; Q̂d) = h
�
T ; Ad

Q

�
.

STEP 3. Since the adele ring is a restricted direct product space,the entropy on
it can be decomposed into the entropies of local components,i.e.

h
�
T ; Ad

Q

�
=
X
p�1 h

�
T ; Qd

p

�
.

STEP 4. Finally, as thep-adic norm is the module onQp (i.e. �(a � ) = jajp�( � )
for any a 2 Qp, where� is a Haar measure), we have

h
�
T ; Qd

p

�
=
X

j�i jp>1

logj�i jp.
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To connect the Alexander polynomial with a solenoidal automorphism, we need
the following lemma.

Lemma 1. For any knot, the dual group of the first homology group of an infinite
cyclic cover H1(X1(K ); Z) is a n-dimensional solenoid. Here, n is the degree of the
Alexander polynomial of the knot.

Proof. It is sufficient to prove thatH1(X1(K );Z) is a discrete torsion-free abelian
group which has finite-rankn. Rapaport [25] and Crowell [4] proved thatH1(X1(K );Z)
is torsion-free and has finite rankn. (Here, the rank ofA means the cardinality of any
maximal set ofZ-linearly independent elements ofA.)

Because the Alexander polynomial is equal to the characteristic polynomial of the
meridian action onH1(X1(K ); Q), up to multiplication by a unit, the following theo-
rem follows immediately from Proposition 1 and Lemma 1.

Theorem 1. Let �i be the zeros(counted with multiplicity) of the Alexander poly-
nomial of a knot. Then,
(1) the entropy of the meridian action on the p-adic Alexander module;
tp : H1(X1(K ); Qp)! H1(X1(K ); Qp) is

h(tp) =
X

j�i jp>1

logj�i jp,

where j � jp are the p-adic norms, and

(2) the entropy of dual action of meridian̂t : Ĥ1(X1(K );Z)! Ĥ1(X1(K );Z) is h(t̂) =P
p�1 h(tp), that is

h( t̂ ) =
X
p�1

X
j�i jp>1

logj�i jp.

3. Applications

3.1. Growth of order of homology of branched cyclic coveringspaces. In
this section, we study the relation between thep-adic norm of the zeros of1K and
the growth of orders of the first homology groups of ther -fold cyclic coverings ofS3

branched overK . The r -fold cyclic covering branched overK is the (Fox) completion
of the unbranched covering ofS3nK which associated with a surjective homomorphism
G = �1(S3 n K )! Z=r Z (for precise definition, see [3, 16]).

The order of the first homology group of this space can be computed by the fol-
lowing formula.
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Proposition 2 (Fox [6], Weber [30]). Let Xr (K ) be the r-fold cyclic covering of
S3 branched over K. Then, the order of the first homology group of Xr (K ) is given by

jH1(Xr (K ); Z)j =
�����

r�1Y
d=1

1K

 
exp

 
2d�p�1

r

!!�����.
By convention, jH1(Xr (K ); Z)j = 0 means that H1(Xr (K ); Z) is an infinite group.

DEFINITION 1 (logarithmic Mahler measure [19]). For non-zero Laurent poly-
nomial f (x) with integral coefficients, the logarithmic Mahler measureof f is
defined by

m( f ) =
Z 1

0
log
�� f
�
exp

�
2� t
p�1

���� dt.

The growth of ordersjH1(Xr (K ); Z)j is expressed by the logarithmic Mahler mea-
sure of the Alexander polynomial, which was proved by González-Acuña and Short [7].

Proposition 3 (González-Acuña and Short [7]).

lim
r!1jH1(�)j6= 0

logjH1(Xr (K ); Z)j
r

= m(1K ).

REMARK 1. In [27], Silver and Williams generalized the result of González-Acuña
and Short [7] to links and also pointed out that Proposition 3holds, though the orderjH1(Xr (K ); Z)j is replaced with the order of the torsion subgroupjT H1(Xr (K ); Z)j.

Note that the Mahler measure is deeply related to the entropy of an algebraic dy-
namical system, which is found in [17] for example. In this paper, we use a more
suitable result which was proved by Einseidler and Ward [5].

Proposition 4 ((Einseidler and Ward [5])). Let 0! Fn ! � � � ! F1
�1�! F0 !

M ! 0 be a finite free resolution of theZ[t�]-module M and J(�1) the initial Fitting
ideal. Let �t a natural automorphism of M which is induced by the shift of the in-
determinate t. Then the entropy of̂�t is

h(�̂t ) = m(gcd(J(�1))).

By combining Proposition 2 and 4, we can see that the growth oforders gives
another method to compute the entropy in Theorem 1. Therefore, we can obtain the
following corollary.
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Corollary 1.

lim
r!1jH1(�)j6= 0

logjH1(Xr (K ); Z)j
r

=
X
p�1

X
j�i jp>1

logj�i jp,

where�i are the zeros of the Alexander polynomial1K (t).

Proposition 3 and Corollary 1 are similar. However, the eachterms
Pj�i jp>1 logj�i jp

of the right hand side of Corollary 1 make sense in a dynamicalsystem. Actually,
Corollary 1 can be rewritten in the following form:

lim
r!1jH1(�)j6= 0

logjH1(Xr (K ); Z)j
r

=
X
p�1 h(tp),

whereh(tp) is the entropy of the meridian actiontp: H1(X1(K );Qp)! H1(X1(K );Qp).
In other words, we resolved the growth into the sum of thep-adic entropies, which
are related to the Haar measure on thep-adic numbers fieldsQp (cf. Step 4 in the
proof of Proposition 1).

Similarly to González-Acuña and Short [7], we also obtain the following property
as a special case of Corollary 1.

Corollary 2 (Riley [26], González-Acuña and Short [7]).Let Xr (K ) be the r-fold
cyclic covering branched over K. Then, if the Alexander polynomial1K (t) have zeros
which are not roots of unity, the finite values of the order of the first homology groupjH1(Xr (K ); Z)j grows exponentially with respect to r.

Proof (Indirect proof). Because all�i belong to the valuation ringO p =
�
x 2Qp

��
jxjp � 1

	
by Corollary 1, f (t) =

Q
i (t � �i ), which is1(t) up to constant multiples,

belongs toZp[t ] \ Q[t ], where Zp = fx 2 Qp j jxjp � 1g. This holds for any prime
p. Hence f (t) 2 Z[t ]. (Another way to see this is to prove Corollary 4 before the
proof of Corollary 2. But in this proof, the condition1(1) = �1 is not necessary.)
Consequently, the zeros of the Alexander polynomial must beroots of unity, becausej�i j � 1 and Kronecker’s theorem [15].

3.2. Leading coefficient of Alexander polynomial. In this section, we apply
Theorem 1 to a criterion for the Alexander module being finitely generated as a
Z-module. By the corollary below, we can regard the entropiesh(tp) for all primes
p <1 as obstructions for being finitely generated.

Corollary 3. Let h(tp) be the entropy of the meridian action on the p-adic
Alexander module H1(X1(K ); Qp). If the Alexander module H1(X1(K ); Z) is finitely
generated asZ-module, then the entropies h(tp) are equal to zero for all finite primes
p <1.
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Proof. The Alexander moduleH1(X1(K ); Z) is finitely generated if and only if

Ĥ1(X1(K ); Z) is isomorphic to then dimensional torus, which is a quotient of
H1(X1(K ); R). By the well-known result for toral automorphisms, the entropy of the

meridian action onĤ1(X1(K ); Z) is

h(t) =
X
j�i j>1

logj�i j,
where�i are eigenvalues of the meridian action onH1(X1(K ); R).

This entropy must be equal to the entropy in Theorem 1-(2). Therefore, the en-
tropies of the meridian action onH1(X1(K ); Qp) are zero for anyp <1, that is

h(tp) =
X

j�i jp>1

logj�i jp = 0 for p <1.

These obstructions give a new viewpoint for the leading coefficient of the Alexander
polynomial. The following Corollary means that the entropies h(tp) are summands of
the leading coefficient of the Alexander polynomial.

Corollary 4. Let �i be the zeros of1K (t) =
Pn

i =0 ai t i . Then the leading co-
efficient of1K (t) is the sum of the entropies of the meridian action on the p-adic
Alexander module H1(X1(K ); Qp) for finite prime p< 1. In other words, the fol-
lowing equation holds:

logjanj = X
p<1

X
j�i jp>1

logj�i jp.

Proof. Let f (t) = 1K (t)=an =
Q

(t � �i ) and s the least common multiple of the
denominators of the coefficients off (t). Then,X

p<1 h(tp) =
X
p<1

X
j�i jp>1

logj�i jp = log s.

Because1K (1) = �1, the coefficients are relatively prime (an, : : : , a1) = 1. Hence
s = janj. (The above argument is essentially found in the proofs of Theorem 3 in [18]
and Theorem 2 in [26].)

Since1K (1) =�1 for any knot, the Alexander polynomial can be completely de-
termined (up to�1) by the zeros. Hence the leading coefficient is also determined.
On the other hand, Corollary 4 shows that the leading coefficient is resolved into the
p-adic entropy and consequently can be recovered from the zeros.
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3.3. Final remarks.

3.3.1. Determining knots by cyclic branched covers. In [14], Kojima showed
that prime knots are determined by their cyclic branched covers. So, there might be a
method to compute the Alexander module by the data of cyclic branched covers.

The growth of ordersjH1(Xr (K );Z)j does not determine completely the Alexander
module H1(X1(K ); Z). However the growth measures complexity of the Alexander
module from a dynamical viewpoint, and also it is a similar invariant to the leading
coefficient of the Alexander polynomial.

In addition, it still remains open whether infinitely many branched covers are nec-
essary for determining the knot.

3.3.2. Volume conjecture. The volume (or Kashaev) conjecture [13, 20] expects
that the asymptotic behavior of the Kashaev invariant (= thespecialization of the col-
ored Jones polynomial) implies the hyperbolic volume of thecomplement of a hyper-
bolic knot.

In general, topological entropy picks up natural measures by the variational princi-
ple. In other words, topological entropy is related to natural measure theory (for more
details, see Capter 8 in [29]).

In this paper, the asymptotic behavior of the special valuesof the Alexander poly-
nomial is related with the entropy of an action on the adele ring of Q. Consequently,
the asymptotic behavior is related to the volume growth withrespect to the Haar mea-
sure on the adele ring.

In general, when an asymptotic behavior is interpreted as anentropy, it can be
related naturally to measure theory. Does this strategy work out for the volume
conjecture?
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