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Abstract
The leading coefficient of the Alexander polynomial of a kristthe most
informative element derived from this invariant, and thewgh of orders of the first
homology of cyclic branched covering spaces is also a famdlubject. Accordingly,
there are a lot of investigations in each subject. Howevegret is no study which
deals with both subjects in the same context. In this paper,show that the two
subjects are closely related madic number theory and dynamical systems.

1. Introduction

The leading coefficient of the Alexander polynomiak (t) of a knotK is a well-
known invariant for detecting fibered knots. The Alexandetypomial of a fibered
knot is always monic [22]. The converse is not always truet iblnolds for many
knots, for example, alternating knots [21]. Moreover the maondition characterizes
fibered knots in the sense of realization [2, 24].

The leading coefficient of the Alexander polynomial of a ki®talso related to
the commutator subgrou@ of the knot groupGk = 71(S*\ K). The abelianaization
of G is finitely generated if and only if the leading coefficientdd [4, 25].

Ther-fold cyclic covering X;(K) branched over a kndk is a fundamental object
in the knot theory because topological invariants of it as® anvariants of the knot.
In [8], Gordon studied the growth of the order Bif (X, (K); Z) with respect tar and
asked whether the growth is exponential in the case wheree staros of Ak (t) are
not a root of unity. More than 15 years later, this question affismatively answered
by Riley [26] and Gonzalez-Acufia and Short [7] independentl

As Gordon commented, the difficulty in computing the growthooders arises
from the case in which all zeros belong to the unit circle baine are not a root of
unity (e.g.As,(t) = 2t — 3t +2). In this case, the standard norm is useless. Riley [26]
overcomed this difficulty usingp-adic analysis. On the other hand, Gonzalez-Acufa
and Short [7] calculated the growth by showing that it is egoathe Mahler mea-
sure of the Alexander polynomial. Moreover, in their introtion, Gonzalez-Acufa
and Short remarked on the possibility of interpreting thewgh as the entropy of a
dynamical system.
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In this paper, we clarify the dynamical system which was joted by
Gonzalez-Acufia and Short and also explain thatpkedic approach of Riley is useful
in essence.

Solenoidal dynamical systems are natural generalizatidn®ral dynamical sys-
tems. The entropy of solenoidal dynamical systems was faktutated by Juzvinski
[11] and latterly re-calculated by Lind and Ward [18] emplay p-adic nhumber theory.
Furthermore Einseidler and Ward [5] also investigated #iation between the Mahler
measure and the entropy of a solenoidal dynamical systewciassd with a Fitting
ideal of a module.

Applying the above results of solenoidal dynamical systémdknot theory, we
refine some topics on the Alexander polynomial of a knot. & fihllowing paragraph,
we exhibit some of our results, where apparently differemids are closely related.
The reason of this connection is explained in Corollary 3wel

Let Ag(t) = Zi"zoa;t‘ (agan 7 0) be the Alexander polynomial of a knét and «;
the zeros (counted with multiplicity) oA (t). Then,

(1) the leading coefficient oAk (t) is

loglas| = > Y loglei[p

p<00 |aj|p>1

(Corollary 4), and
(2) the growth of order of the first homology of thefold cyclic covering branched
over K is

lim log|H1(X; (K); Z)| _ Z Z logleri |

r—>00 r
[Hi()I#0 P=<00 |o [p>1

(Corollary 1).
Here, | - |, are the p-adic norm normalized witip|, = p~ on the field of p-adic
numbersQp, and| - | is the standard norm on the field of real numb&rs = R.
(we assume that the embeddinGs— Q, are fixed.)

In our study, we also establish the following:
e The distribution of the zeros measures a “distance” of thexahder module from
being finitely generated as Zmodule. (Section 3.2)
e In [8], the primary interest in investigating the growth @jght be to study the
periodicity of Hi(X;(K); Z). However, the growth also measures complexity of the
Alexander module naturally in a sense of solenoidal dynahsystems. This means
that this growth can be interpreted as volume growth in areadeg. (Section 3.1)

We have a few comments on this study, which might make it &e lithore
attractive:

The Alexander polynomial of a knot is defined as a greatestnommdivisor of
the initial Fitting ideal (elementary ideal) of the Alexardmodule Hi(X,(K); Z) as
a Z[t*]-module. Here, the indeterminateis identified with the meridian action on
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H1(Xso(K); Z) where X« (K) is the infinite cyclic cover ofX(K) = S*\ K. Then, by
tensoring with the rational numbef3, the Alexander polynomial is also the generator
of the Fitting ideal of the moduléd: (X (K); Q) as aQ[t*]-module, and hence it is
the characteristic polynomial of the meridian action laf(X..(K); Q), up to units (see
Theorem 6.17 in [16]).

While the rational homologyH;(X.(K); Q) gives a nice explanation of the
Alexander polynomial, the information on the leading caifint a, is lost in
H1(Xo(K); Q) because, is a unit inQ[t*]. On the other hand, the entropy is advan-
tageous to manage this difficulty because we can replegéX..(K);Z) with
H1 (X0 (K); Q) with preserving the entropy (cf. Step 1 in the proof of Pr&ifion 1).

In [26], Riley also proved a result on thg-part of |[Hy(X;(K); Z)|. He obtained
the upper bounds for the-parts: [Hi(X; (K); Z)|®® < AHPEr" where A, H, E, n are
constants depending on a knot and these upper bounds arpdssgtle (up to a con-
stant multiplier). That is, while eacp-part grows at most polynomially with respect
to r, nevertheless the whole gH1(X;(K); Z)| can grow exponentially. (Silver and
Williams [28] also studied this topic. Unfortunately, thpsrt of their results had been
already established by Riley. However they discussed tiui tunder mild conditions.)

In this paper, thep-adic coefficient homology group:(X.(K); Qp) plays an
important role in studying the distribution of zeros (Thewor 1). This approach was
motivated by the previous paper [23], in which we discusseduaalogy between the
reciprocity of Ax and the functional equation in the Weil conjecture. Likexyig-adic
(co)homology theory has been also investigated to appriteckiVeil conjecture (cf. [9]).

We should mention [10] for the prp-and p-adic method in the Alexander-Fox
theory and its application t@-homology groups in analogy with lwasawa theory, and
refer to [12].

2. Solenoidal entropy and Alexander polynomial

A solenoid =9 is, by definition, a compact connected finite-dimensionatliah
group, which arose from a generalization of the tofifs The following theorem,
which was given by Lind and Ward [18], plays a key role for oasults.

Proposition 1 (Lind and Ward [18]). Let T be an automorphism of an d-
dimensional solenoiccd. Then
(1) the entropy of T is the sum of the entropies of the automamzhisf Q% derived
from T

h(T; =% =" h(T;Q}),

p=oc

and
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(2) the p-adic entropy is computed by the eigenvalugs . ., 14 of the induced auto-
morphism in Gl(d, Q) as follows

h(T;Q5) = > loglilp.

[Ailp>1

We shall identify the topological entropy and the measusotétic entropy by the
formula of Bowen [1]:

n-1
ha(T) = lim lim sup|:—— Iogu(ﬂ T *B(e, s)>i|

k=0

where B(e, €) is an opere-ball of the identity element with respect to an invarianttme
ric d, u is a Haar measure antl is a surjective endomorphism on a locally compact
abelian group. In other words, we regard the entropy as theldgical entropy and
also the measure theoretic entropy with respect to a Haasunea

In [18], Lind and Ward computed the entropy of solenoidaloautrphisms with
intrinsic arguments. As the proof is helpful in understawgdour results, we provide
an outline here. However we strongly recommend the readeefer to the original

paper.

Outline of the proof. $Ep 1. Because the dual group afY can be embedded
into @Y, lim Iy = Q¢ for Iy = (1/n) 4. That is, Q9 = lim ['h. Hence there are
Kn such thatl, = Q9/K, and consequentin(T; Q%) = h(T; [',) + h(T; K,). Because
h(T; ') = h(T; =% for any n and h(T; K,) — 0 asn — oo, we obtain that

h(T; =% = h(T; Q9).

STEP 2. The entropy on the full solenoi@® can be lifted to the entropy on the
adele ringA?Q becausedy/Q = Q. So, we have

h(T; Q%) = h(T; AY).

STeP 3. Since the adele ring is a restricted direct product spteeentropy on
it can be decomposed into the entropies of local componéwts,

h(T; A3) = > h(T; QY).

p=co

STEP 4. Finally, as thep-adic norm is the module o, (i.e. u(a-) =lalpu(-)
for any a € Qp, wherep is a Haar measure), we have

h(T; Q%) = > loglrilp. O

A ‘p>1
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To connect the Alexander polynomial with a solenoidal awgrhism, we need
the following lemma.

Lemma 1. For any knot the dual group of the first homology group of an infinite
cyclic cover H(X«(K); Z) is a n-dimensional solencidHere n is the degree of the
Alexander polynomial of the knot

Proof. It is sufficient to prove that;(X.(K);Z) is a discrete torsion-free abelian
group which has finite-rank. Rapaport [25] and Crowell [4] proved thik (X, (K);Z)
is torsion-free and has finite rank (Here, the rank ofA means the cardinality of any
maximal set ofZ-linearly independent elements &) Ul

Because the Alexander polynomial is equal to the charatiepolynomial of the
meridian action onH1 (X, (K); Q), up to multiplication by a unit, the following theo-
rem follows immediately from Proposition 1 and Lemma 1.

Theorem 1. Letw; be the zerogcounted with multiplicity of the Alexander poly-
nomial of a knot Then
(1) the entropy of the meridian action on the p-adic Alexander dui®

tp: H1(Xoo(K); Qp) — Hi(Xe(K); Qp) is

h(tp) = > loglip,

Jeti [ p>1

where]| - |, are the p-adic normsand
(2) the entropy of dual action of merididh Hy(Xw(K);Z) — Fi(Xwo(K); Z) is h(f) =
prw h(tp), that is

h®)=>" > logleilp.

p=<00 |aj|p>1

3. Applications

3.1. Growth of order of homology of branched cyclic coveringspaces. In
this section, we study the relation between th@dic norm of the zeros oAk and
the growth of orders of the first homology groups of théold cyclic coverings ofS®
branched oveK. Ther-fold cyclic covering branched ovef is the (Fox) completion
of the unbranched covering &\ K which associated with a surjective homomorphism
G =mi(S*\ K) — Z/rZ (for precise definition, see [3, 16]).

The order of the first homology group of this space can be costpby the fol-
lowing formula.
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Proposition 2 (Fox [6], Weber [30]). Let X (K) be the r-fold cyclic covering of
S® branched over K Then the order of the first homology group of, ¢K) is given by

o (eof*572))

By convention|H. (X (K); Z)| = 0 means that H(X;(K); Z) is an infinite group

[Hi(X (K); Z)I =

DEFINITION 1 (logarithmic Mahler measure [19]). For non-zero Laurentypo
nomial f(x) with integral coefficients, the logarithmic Mahler measwé f is
defined by

m(f) = /01 log| f (exp(27t+v/=1))] dt.

The growth of ordergHi (X, (K); Z)| is expressed by the logarithmic Mahler mea-
sure of the Alexander polynomial, which was proved by Gogz#cufia and Short [7].
Proposition 3 (Gonzalez-Acufia and Short [7]).

loglH1(X: (K); Z)| _
r

lim
r—00
[H1(-)[#0

m(Ak).

REMARK 1. In[27], Silver and Williams generalized the result of Galez-Acufia
and Short [7] to links and also pointed out that Propositioho®ls, though the order
|H1(X; (K); Z)| is replaced with the order of the torsion subgrdiipH; (X, (K); Z)|.

Note that the Mahler measure is deeply related to the entréb@mn algebraic dy-
namical system, which is found in [17] for example. In thippa we use a more
suitable result which was proved by Einseidler and Ward [5].

Proposition 4 ((Einseidler and Ward [5])). Let0 - F, — -+ — F; % Fo —
M — 0 be a finite free resolution of th&[t*]-module M and {¢,) the initial Fitting
ideal. Let oy a natural automorphism of M which is induced by the shift af th-
determinate t Then the entropy o is

h(a) = m(ged((41))).

By combining Proposition 2 and 4, we can see that the growtlordérs gives
another method to compute the entropy in Theorem 1. Therefee can obtain the
following corollary.
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Corollary 1.

. loglHi(X (K); Z)| _
Jim, . =>" > loglailp,
[H1(-)I#0 p=<00 |aj|p>1

wherew; are the zeros of the Alexander polynomiagk (t).

Proposition 3 and Corollary 1 are similar. However, the etm:hnszwl‘p>1 log|ai|p
of the right hand side of Corollary 1 make sense in a dynanmsgatem. Actually,
Corollary 1 can be rewritten in the following form:

log|H1(X: (K); Z
i, IPORD
[H1()I#0 p<oco

whereh(tp) is the entropy of the meridian actiopt Hi(Xoo(K); Qp) = H1(Xoo(K); Qp).
In other words, we resolved the growth into the sum of flradic entropies, which
are related to the Haar measure on i@dic numbers field€), (cf. Step 4 in the
proof of Proposition 1).

Similarly to Gonzalez-Acufia and Short [7], we also obtaia fbllowing property
as a special case of Corollary 1.

Corollary 2 (Riley [26], Gonzalez-Acufia and Short [7])et X (K) be the r-fold
cyclic covering branched over KThen if the Alexander polynomialk (t) have zeros
which are not roots of unifythe finite values of the order of the first homology group
[H1(X; (K); Z)| grows exponentially with respect to r

Proof (Indirect proof). Because alf belong to the valuation ring’, = {x € @p |
[X]p < 1} by Corollary 1, f(t) = [];(t — i), which is A(t) up to constant multiples,
belongs toZp[t] N Q[t], whereZ, = {x € Q, | |X|p < 1}. This holds for any prime
p. Hence f(t) € Z[t]. (Another way to see this is to prove Corollary 4 before the
proof of Corollary 2. But in this proof, the conditioA(1l) = 1 is not necessary.)
Consequently, the zeros of the Alexander polynomial mustdmts of unity, because
laj] < 1 and Kronecker's theorem [15]. Ul

3.2. Leading coefficient of Alexander polynomial. In this section, we apply
Theorem 1 to a criterion for the Alexander module being flpitgenerated as a
Z-module. By the corollary below, we can regard the entropiég) for all primes
p < oo as obstructions for being finitely generated.

Corollary 3. Let h(tp) be the entropy of the meridian action on the p-adic
Alexander module HX..(K); Qp). If the Alexander module HX..(K); Z) is finitely
generated asZ-module then the entropies () are equal to zero for all finite primes
p < oo.
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Proof. The Alexander modulél; (X~ (K); Z) is finitely generated if and only if
m) is isomorphic to then dimensional torus, which is a quotient of
Hi1 (X (K); R). By the well-known result for toral automorphisms, therepy of the
meridian action onH;(X«(K); Z) is

ht)= ) loglail,

Jeti |>1

whereq; are eigenvalues of the meridian action bia(X(K); R).
This entropy must be equal to the entropy in Theorem 1-(2)erdfore, the en-
tropies of the meridian action oH1(X.(K); Qp) are zero for anyp < oo, that is

h(tp) = Y logleilp =0 for p < ooc. O

e ‘p>1

These obstructions give a new viewpoint for the leadingfadent of the Alexander
polynomial. The following Corollary means that the entespi(t,) are summands of
the leading coefficient of the Alexander polynomial.

Corollary 4. Let o; be the zeros ofAk(t) = > at'. Then the leading co-
efficient of Ak (t) is the sum of the entropies of the meridian action on the pg-adi
Alexander module HX(K); Qp) for finite prime p< co. In other words the fol-
lowing equation holds

loglaal = ) ) logleilp.

p<00 |aj|p>1

Proof. Let f(t) = Ak(t)/an =[](t — @) and s the least common multiple of the
denominators of the coefficients df(t). Then,

D h(tp)=>" > loglail, = logs.

p<oo p<00 |aj|p>1
BecauseAk (1) = +1, the coefficients are relatively primey(...,a) = 1. Hence
s=lay|. (The above argument is essentially found in the proofs afofém 3 in [18]
and Theorem 2 in [26].) O

Since Ak (1) =+1 for any knot, the Alexander polynomial can be completely de
termined (up to+1) by the zeros. Hence the leading coefficient is also detexdhi
On the other hand, Corollary 4 shows that the leading coefficis resolved into the
p-adic entropy and consequently can be recovered from theszer
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3.3. Final remarks.

3.3.1. Determining knots by cyclic branched covers. In [14], Kojima showed
that prime knots are determined by their cyclic branchedervSo, there might be a
method to compute the Alexander module by the data of cycbmdhed covers.

The growth of ordergH;(X;(K);Z)| does not determine completely the Alexander
module Hi1(X«(K); Z). However the growth measures complexity of the Alexander
module from a dynamical viewpoint, and also it is a similavainant to the leading
coefficient of the Alexander polynomial.

In addition, it still remains open whether infinitely manyahched covers are nec-
essary for determining the knot.

3.3.2.  Volume conjecture. The volume (or Kashaev) conjecture [13, 20] expects
that the asymptotic behavior of the Kashaev invariant (=dpecialization of the col-
ored Jones polynomial) implies the hyperbolic volume of toenplement of a hyper-
bolic knot.

In general, topological entropy picks up natural measugethb variational princi-
ple. In other words, topological entropy is related to naltumeasure theory (for more
details, see Capter 8 in [29]).

In this paper, the asymptotic behavior of the special vahfethe Alexander poly-
nomial is related with the entropy of an action on the adetg 6f Q. Consequently,
the asymptotic behavior is related to the volume growth wétbpect to the Haar mea-
sure on the adele ring.

In general, when an asymptotic behavior is interpreted ardaropy, it can be
related naturally to measure theory. Does this strategykwart for the volume
conjecture?
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