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Abstract
Existence andSO(3)�SO(3)-congruence of Lagrangian immersion from oriented

2-dimensional Riemannian manifold to the Riemannian product of 2-spheres are
studied. In particular, we will show that two minimal Lagrangian immersions
are SO(3) � SO(3)-congruent if and only if the corresponding angle functionsare
coincide.

1. Introduction

Lagrangian submanifolds in symplectic manifolds are one ofthe most important
object in geometry, and Hermitian symmetric spaces are essential examples among
symplectic manifolds. To study Lagrangian submanifolds ofHermitian symmetric spaces
from differential geometric viewpoint, the following problems are fundamental: (i) Find
the condition for which there exists Lagrangian isometric (in particular minimal) im-
mersion fromn-dimensional Riemannian manifold to Hermitian symmetric space M̃ .
(ii) For given two Lagrangian (minimal) isometric immersions x1, x2 from a Riemann-
ian manifold M to Hermitian symmetric spacẽM , find the condition for whichx1 and
x2 are congruent by a holomorphic isometry ofM̃ . When M̃ is a complex space form,
the results are already known (cf. [2]), but for higher rank cases, it seems that there
are no such results. On the other hand, recently it was shown [5] that totally geo-
desic Lagrangian torusS1 � S1 in S2 � S2 has Hamiltonian volume minimizing prop-
erty. In this paper we will obtain existence andSO(3)� SO(3)-congruence theorems
for Lagrangian isometric (minimal) immersions from 2-dimensional oriented Riemann-
ian manifolds toS2�S2 with respect to complex structure (J, J), where J denotes the
complex structure onS2 which is determined by an orientation.

With respect to submanifoldsx : M ! M1 � M2 in product manifolds, the almost
product structureP̃ plays an important role (cf. [6]). For example if each tangent space
of M is invariant underP̃, then M is decomposed as a product manifold andx is a
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product immersion. For a Lagrangian surfaceM2 in S2�S2, we introduceangle func-
tion ' on M2, by measuring the behavior of each tangent spaceTpM2 under the action
of P̃. We note that' is also described by the Kähler angle ofM2 in S2 � S2 with
respect to another complex structure (J, �J) whose associated symplectic structure is
the twisted product form (cf. [7],§3.4).

We will show that two Lagrangian isometric immersions from 2-dimensional ori-
ented Riemannian manifoldM2 to S2 � S2 are SO(3)� SO(3)-congruent if and only
if each second fundamental tensor and angle function coincide (Theorem 2). Here we
note that the full holomorphic isometry groupG of S2 � S2 with respect to (J, J) is
generated bySO(3)�SO(3) and the mapS2�S2 ! S2�S2, (x1, x2) 7! (x2, x1). Then
the above result does not hold forG (Remark 1).

Next, we will show that when the Lagrangian isometric immersion is minimal, the
congruence class is determined by only the angle function (Theorem 4). For Lagrang-
ian submanifolds in Kähler manifolds, Gauss and Codazzi equations are expressed as
intrinsic equations, because the second fundamental form is described by a symmetric
(0, 3)-tensor fieldsT on the submanifold. But in general these equations do not guaran-
tee the existence of such Lagrangian isometric immersion. Nevertheless we will prove
(Theorem 5) that on a simply connected Riemannian 2-manifold M2, if certain two
equations with respect to the metric and a function' in M2 hold, which are essentially
equivalent to Gauss and Codazzi equations, then there exists a Lagrangian isometric
minimal immersion fromM2 to S2 � S2 such that' is the corresponding angle func-
tion. As a special case, whenM2 is a domain ofR2 and both of the metric and the
function ' are rotationally symmetric, Gauss and Codazzi equations are written as two
nonlinear ordinary differential equations of second order. By using a solution of the
equation, we can obtain non-trivial minimal Lagrangian surfaces inS2� S2. Note that
minimal Lagrangian surfaces inS2 � S2 are studied in [1] from different viewpoint.

The authors would like express their gratitude to the referee for his/her careful
reading of the manuscript and valuable suggestions.

2. Lagrangian surfaces inS2 � S2

Let M̃ be a Kähler manifold of complex dimensionm with Kähler form � and
complex structureJ. Let M be a realm-dimensional submanifold and letx : M !
M̃ be a Lagrangian immersion, i.e.,x�� = 0 on M, or equivalently, for any tangent
vector X of M, J X is contained in the normal space toM. We denote the Levi-Civita
connection ofM by r and � is the second fundamental form ofM ! M̃ . Then we
have the following (cf. [2]).

h� (X, Y), J Zi = h� (Y, Z), J Xi = h� (Z, X), JYi,(2.1)

r?
X (JY) = JrXY,(2.2)

for tangent vectorsX,Y and Z of M wherer? is the connection on the normal bundle.
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Let S2 be a unit sphere inR3. For any p 2 S2, we define a linear transformation
J of the tangent spaceTpS2 of S2 at p as

(2.3) Jv = p� v
by the vector product� of R3, so J is a complex structure onS2. Then the special or-
thogonal groupSO(3) acts naturally forS2 and is the isometry group for the Riemann-
ian metric on S2 which is induced by the standard inner product ofR3. Moreover
SO(3) preservesJ. Standard symplectic form� on S2 is given by�p(u, v) = (p�u) �v,
where u, v 2 TpS2 and � is the induced Riemannian metric onS2 by the inclusion
S2 � R3.

We define a complex structurẽJ on S2 � S2 by

(2.4) J̃(X1, X2) = (J X1, J X2)

for all tangent vectors (X1, X2) to S2�S2. Let h , i be the product metric onS2�S2

defined by

h(X1, X2), (Y1, Y2)i = X1 � Y1 + X2 � Y2.

Then h , i is a Hermitian metric andS2� S2 is a Kähler manifold with respect to the
complex structureJ̃. S2 � S2 is considered as a symplectic manifold with symplectic
form �̃ = (pr1)�� + (pr2)�� , where pr1, pr2 : S2� S2 ! S2 are projection maps into first
factor and second factor, respectively, and� is the standard symplectic form onS2.

Let P̃ be the tensor field of type (1, 1) onS2 � S2, defined by

(2.5) P̃(X1, X2) = (X1, �X2).

Then we have (cf. [6])

P̃2 = 1,(2.6)

hP̃ X, Yi = hX, P̃Yi,(2.7)

traceP̃ = 0,(2.8)

r̄ P̃ = 0(2.9)

whereX,Y are any tangent vectors ofS2�S2 andr̄ denotes the Levi-Civita connection
of S2� S2. P̃ is called thealmost product structureof S2� S2. (2.4) and (2.5) imply

(2.10) P̃ J̃ = J̃ P̃.

Let M2 be an oriented Riemannian manifold of dimension 2 and let

(2.11) x : M2 ! S2 � S2, x(p) = (x1(p), x2(p))
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be a Lagrangian immersion, i.e.,x��̃ = 0. If fe1, e2g is an orthonormal basis for the
tangent spaceTpM2 at p 2 M2, which is compatible with the orientation ofM2, thenf J̃e1, J̃ e2g is an orthonormal basis for an orthogonal complementT?

p M2 of TpM2.

Thus fe1, e2, J̃ e1, J̃ e2g is an (oriented) orthonormal basis forTx(p)(S2�S2). So we put

(2.12) P̃x�X = x�P X + J̃ x�QX

for X 2 TpM2 where P and Q are linear endomorphisms inTpM2. Then it follows
from (2.6)–(2.10) that

traceP = 0, P2 � Q2 = 1, P Q + Q P = 0,(2.13)

hP X, Yi = hX, PYi, hQX, Yi + hX, QYi = 0,(2.14)

h(rX P)Y, Zi = h� (X, QY), J̃ Zi + h� (X, Y), J̃ QZi,
h(rX Q)Y, Zi = h� (X, Y), J̃ P Zi � h� (X, PY), J̃ Zi.(2.15)

Then, from (2.13), there exists an orthonormal basisfe1, e2g of TpM2 compatible with
the orientation ofM2 and ' 2 [��=4, �=4] such that

(2.16)

�
Pe1 = cos 2'e1, Pe2 = �cos 2'e2,
Qe1 = �sin 2'e2, Qe2 = sin 2'e1.

Here we note that suchfe1, e2g is uniquely determined up toei 7! �ei (i = 1, 2).
Clearly ' is continuous and when' 2 (��=4, �=4), ' is differentiable. We call' the
angle functionfor a Lagrangian immersionx from an oriented 2-dimensional Riemann-
ian manifold M2 to S2 � S2.

Next we show that the angle function' is essentially same as the Kähler angle of
M2 in S2� S2 with respect to the complex structure (J, �J). Let f be an immersion
of an oriented 2-dimensional manifoldM into a Kähler manifold (̃M , J). The Kähler
angle of f is defined to be the angle betweenJ f�e1 and f�e2 for an orthonormal ba-
sis fe1, e2g compatible with the orientation ofM. On S2 � S2, we consider another
complex structure (J, �J) as

(J, �J)(X1, X2) = (J X1, �J X2)

for (X1, X2) 2 T(S2� S2). Then the corresponding symplectic form is nothing but the
twisted product form (pr1)�� � (pr2)�� .

By (2.5), (2.16) and identificationsT M �= T M � f0g, T M �= f0g � T M, we have

x�e1 =

�
x�e1 + P̃x�e1

2
,

x�e1 � P̃x�e1

2

�
= (cos'(cos'x�e1 � sin' J̃ x�e2), sin'(sin'x�e1 + cos' J̃ x�e2)),
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x�e2 =

�
x�e2 + P̃x�e2

2
,

x�e2 � P̃x�e2

2

�
= (sin'(sin'x�e2 + cos' J̃ x�e1), cos'(cos'x�e2 � sin' J̃ x�e1)),

where we considerx�e1 and x�e2 as vectors inR3 � R3. For p 2 M, if we put

(2.17)
V1(p) := cos'(p)(x�)pe1 � sin'(p) J̃(x�)pe2,

V2(p) := cos'(p)(x�)pe2 � sin'(p) J̃(x�)pe1,

then the above equations are written as

(2.18) x�e1 = (cos'V1, sin' J̃ V2), x�e2 = (sin' J̃ V1, cos'V2).

So we may regard as

(2.19)
V1(p), J V1(p) = J̃ V1(p) 2 Tx1(p)S

2,

V2(p), J V2(p) = J̃ V2(p) 2 Tx2(p)S
2,

where J is the complex structure ofS2 defined by (2.3), and (x1(p), x2(p)) 2 S2� S2

as (2.11), andV1, J V1, V2, J V2 are R3-valued vector fields onM2.

Proposition 1. Let ': M2 ! [��=4,�=4] be the angle function of a Lagrangian
isometric immersion from an oriented surface M2 to (S2 � S2, J̃ = (J, J)). Then the
Kähler angle with respect to the complex structure(J, �J) of S2 � S2 is equal to�=2 � 2'. Consequently, when ' � ��=4 the immersion x is�-holomorphic with
respect to(J, �J).

Proof. Letfe1,e2g be the orthonormal basis ofM2 compatible with the orientation
of M2 given by (2.16). For the complex structure (J, �J), we have

(J, �J)x�e1 = (cos'J V1, sin'V2),

by (2.18) and (2.19). Hence, usingkJ V1k = kV2k = 1, we get

h(J, �J)x�e1, x�e2i = sin 2' = cos

��
2
� 2'�.

Now we study some special class of Lagrangian surfaces inS2 � S2. We will
calculate the second fundamental tensor� and the mean curvature vectorH of the
product immersion. Let xi : I i ! S2 (i = 1, 2) be curves in a 2-sphere with arclength
parametersi , and letx : I1� I2 ! S2 be the product immersion defined byx(s1, s2) =
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(x1(s1),x2(s2)). If �i (i = 1,2) are curvatures of spherical curvesxi , then we getx00i (si ) =�i (si )J x0i (si )� xi (si ). So we have

(2.20)

�� ��s1
,
��s1

�
= (�1(s1)J x01(s1), 0),

�� ��s2
,
��s2

�
= (0, �2(s2)J x02(s2)),

and

2H = �� ��s1
,
��s1

�
+ �� ��s2

,
��s2

�
= (�1(s1)J x01(s1), �2(s2)J x02(s2)).

Consequently the product immersionx is minimal if and only if �1 � �2 � 0, that is,
eachxi is a great circle ofS2. Hence, we have

Proposition 2. Let x be a product immersion: M1 � M2 ! S2 � S2. If x is a
minimal immersion, then x is totally geodesic and each Mi (i = 1, 2) is a great circle
of S2.

For the Lagrangian immersionx, if ' � 0, then we haveP2 = 1 by (2.13). Hence, we
can decomposeT M2 = T1M�T�1M whereT1M is an eigenspace of eigenvalue 1 ofP
and T�1M is an eigenspace of eigenvalue�1 of P. SinceT1M and T�1M are totally
geodesic distributions onM2, we can see thatM2 is a product manifoldM1�M2 and
x is a product immersion.

Now we back to the general case and we will deduce fundamentalequations for
Lagrangian surfaces inS2 � S2. It follows from (2.15) that

(2.21) h(rX P)e1, e1i = 2 sin 2'h J̃� (e1, e2), Xi.
On the other hand,

(2.22)

h(rX P)e1, e1i = hrX(Pe1)� PrXe1, e1i
= hrX(cos 2'e1), e1i � hrXe1, Pe1i
= �2 sin 2'(X').

Hence, we obtain from (2.21) and (2.22)

sin 2'fX' + h J̃� (e1, e2), Xig = 0.

We get also from calculation ofh(rX Q)e1, e2i
cos 2'fX' + h J̃� (e1, e2), Xig = 0.
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ThereforeX' + h J̃� (e1, e2), Xi = 0 for all X 2 TpM2, i.e.,

(2.23) grad' = � J̃� (e1, e2).

By calculatingh(rX P)e1, e2i, we have

(2.24) sin 2'fh� (e1, e1), J̃ Xi � h� (e2, e2), J̃ Xig = 2 cos 2'hrXe1, e2i.
Let ! be a connection form with respect to the orthonormal frame field fe1, e2g on M2,
which is given by

rXe1 = !(X)e2, rXe2 = �!(X)e1.

By (2.1), h� (ei , ej ), J̃ eki are symmetric fori , j , k = 1, 2. We put

(2.25)
T0 = h� (e1, e1), J̃ e1i, T1 = h� (e1, e1), J̃ e2i,
T2 = h� (e1, e2), J̃ e2i, T3 = h� (e2, e2), J̃ e2i.

It follows from (2.23) that

(2.26) grad' = T1e1 + T2e2

and from (2.24) that

(2.27)

�
2!(e1) cos 2' = (T0 � T2) sin 2',
2!(e2) cos 2' = (T1 � T3) sin 2'.

Next, we consider the equations of Gauss and Codazzi for a Lagrangian surface
M2 in S2 � S2. The curvature tensor̄R of S2 � S2 satisfies

R̄(X, Y)Z =
hY, ZiX � hX, ZiY + hP̃Y, ZiP̃ X� hP̃ X, ZiP̃Y

2

for any X, Y, Z 2 T(S2 � S2) (cf. [6]). So we have

hR̄(e1, e2)e2, e1i =
1 + hPe1, e1ihPe2, e2i � hPe2, e1i2

2

=
sin2 2'

2

for an orthonormal basisfe1, e2g of M2 satisfying (2.16). Hence, the Gauss equation is

(2.28) K =
sin2 2'

2
+ T0T2 + T1T3 � (T1)2 � (T2)2
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for the Gauss curvatureK = hR(e1, e2)e2, e1i of M2. Normal components (̄R(e1, e2)ei )?
of R̄(e1, e2)ei (for i = 1, 2) to M2 are

(R̄(e1, e2)ei )
? =

hPe2, ei i J̃ Qe1 � hPe1, ei i J̃ Qe2

2

=
sin 4'fhe2, ei i J̃ e2 � he1, ei i J̃ e1g

4
.

We define the covariant derivative of� as

(rX� )(Y, Z) = r?
X� (Y, Z)� � (rXY, Z)� � (Y, rX Z).

Then the Codazzi equations are given by

(re1� )(e2, ei )� (re2� )(e1, ei ) =
sin 4'fhe2, ei i J̃ e2 � he1, ei i J̃ e1g

4
.

Hence,

(2.29)

8>>>>><
>>>>>:

h(re1� )(e1, e2)� (re2� )(e1, e1), J̃e1i = �sin 4'
4

,

h(re1� )(e2, e2)� (re2� )(e1, e2), J̃e2i =
sin 4'

4
,

h(re2� )(e1, e1)� (re1� )(e1, e2), J̃e2i = 0,h(re1� )(e2, e2)� (re2� )(e1, e2), J̃e1i = 0.

By (2.2), we have

h(rei � )(ej , ek), J̃el i = ei h� (ej , ek), J̃ el i � h� (ej , ek), J̃rei el i
� h� (rei ej , ek), J̃el i � h� (ej , rei ek), J̃ el i.

Therefore from (2.29), the Codazzi equations are written as

e1T1 � e2T0 + !(e1)(T0 � 2T2) + 3!(e2)T1 = �sin 4'
4

,(2.30)

e1T3 � e2T2 + 3!(e1)T2 + !(e2)(T3 � 2T1) =
sin 4'

4
,(2.31)

e1T2 � e2T1 + !(e1)(2T1 � T3) + !(e2)(2T2 � T0) = 0.

Note that the last equation is also derived from (2.26).
When' � ��=4, it follows from (2.1) and (2.15) that� � 0 and we getK � 1=2

from (2.28). Hence, we have

Proposition 3. Let M2 be a2-dimensional Riemannian manifold and let x: M2 !
S2�S2 be a Lagrangian isometric immersion. If the angle function' defined by(2.16)
is identically equal to��=4, then x is totally geodesic and the Gauss curvature of M2

is K � 1=2.
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It is well-known thatS2�S2 is holomorphically isometric to complex 2-dimensional
complex quadricQ2. And totally geodesic submanifolds in complex quadricsQm are
classified by Chen and Nagano [3].

EXAMPLE . Let ��: S2 ! S2�S2 be a Lagrangian immersion given by (x, y,z) 7!
((x, y,�z), (x, y,�z)), where (x, y, z) is an orthogonal coordinate system onR3. Then
we can see that the angle function' of �� is identically equal to��=4.

3. Existence ofSO(3)� SO(3)-valued frame fields

In this section, we study integrability conditions for existence of Lagrangian iso-
metric immersionx : M2 ! S2 � S2 by using some frame fieldM ! SO(3)� SO(3).

Now we consider Lagrangian immersionx : M2 ! S2 � S2 with which the angle
function satisfies' 2 (��=4,�=4). Let V1(p), V2(p) be vectors inR3 defined by (2.17).
By (2.19), at eachp 2 M2,��1(p) = (x1(p), V1(p), J V1(p)),�2(p) = (x2(p), V2(p), J V2(p))
(3.1)

are orthonormal frames inR3 respectively. By the definition (2.3) of the complex struc-
ture J on S2, we can see that (�1(p), �2(p)) 2 SO(3)� SO(3).

Now, we calculate Ricci identity (i.e., integrability conditions) for two frame fields�1(p) and �2(p), namely,

(De1 De2 � De2 De1 � D[e1,e2])�1(p) = 0,

(De1 De2 � De2 De1 � D[e1,e2])�2(p) = 0,

where D is the Euclidean connection ofR6 = R3 � R3. We denote the frames as
(x1, V1, J V1), (x2, V2, J V2), and also denotee1, e2 instead ofx�e1, x�e2 for simplicity.
Note that fore1 = (e1 + P̃e1)=2 + (e1 � P̃e1)=2, (e1 + P̃e1)=2 (resp. (e1 � P̃e1)=2) is an
eigenvector ofP̃ with eigenvalue 1 (resp.�1) and is contained inTx1(p)S2 (resp.Tx2(p)S2).
Then from (2.12), (2.16), (2.17) and (2.19), we obtain

De1x1 = D(e1+P̃e1)=2x1 =
e1 + P̃e1

2

= cos'V1,

De1x2 = D(e1�P̃e1)=2x2 =
e1 � P̃e1

2

= sin'J V2.

By calculating De2x1, De2x2 similarly, we have

(3.2)

�
De1x1 = cos'V1, De2x1 = sin'J V1,
De1x2 = sin'J V2, De2x2 = cos'V2.
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To get Dei Vj and Dei (J Vj ), we first calculateDei ej and Dei ( J̃ej ). By (2.25), (2.17)
and (2.19), we have

De1e1 = hDe1e1, x1ix1 + hDe1e1, x2ix2 + r̄e1e1

= �he1, De1x1ix1 � he1, De1x2ix2 +re1e1 + � (e1, e1)

= �cos2 'x1 � sin2 'x2 + !(e1)e2 + T0 J̃ e1 + T1 J̃e2,

where r̄ denotes the Levi-Civita connection onS2� S2. Note thatx1 and x2 are con-
sidered as unit normal vector fields of the inclusionS2 � S2 ,! R3 � R3. Similar
computations yield

De2e1 = !(e2)e2 + T1 J̃ e1 + T2 J̃ e2,

De1e2 = �!(e1)e1 + T1 J̃ e1 + T2 J̃ e2,

De2e2 = �sin2 'x1 � cos2 'x2 � !(e2)e1 + T2 J̃e1 + T3 J̃e2,

De1( J̃e1) = �T0e1 � T1e2 + !(e1) J̃ e2,

De2( J̃e1) = �cos' sin'x1 + cos' sin'x2 � T1e1 � T2e2 + !(e2) J̃e2,

De1( J̃e2) = cos' sin'x1 � cos' sin'x2 � T1e1 � T2e2 � !(e1) J̃e1,

De2( J̃e2) = �T2e1 � T3e2 � !(e2) J̃ e1.

(2.17), (2.26), (2.27) and these equations imply

De1V1 = De1fcos'e1 � sin' J̃e2g
= (e1')f�sin'e1 � cos' J̃e2g + cos'De1e1 � sin'De1( J̃ e2)

= �cos'x1 + f!(e1) cos' + sin'T2ge2 + f!(e1) sin' + cos'T0g J̃ e1

= �cos'x1 + f!(e1) sin 2' + T0 cos2 ' + T2 sin2 'gJ V1.

Similar computations yield

(3.3)

8>><
>>:

De1V1 = �cos'x1 + �J V1, De2V1 = � J V1,
De1(J V1) = ��V1, De2(J V1) = �sin'x1 � �V1,
De1V2 =  J V2, De2V2 = �cos'x2 + ÆJ V2,
De1(J V2) = �sin'x2 � V2, De2(J V2) = �ÆV2

where

(3.4)

8>><
>>:
� = !(e1) sin 2' + T0 cos2 ' + T2 sin2 ',� = !(e2) sin 2' + T1 cos2 ' + T3 sin2 ', = �!(e1) sin 2' + T0 sin2 ' + T2 cos2 ',Æ = �!(e2) sin 2' + T1 sin2 ' + T3 cos2 '.
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Using (2.27), we get

(3.5)

8>><
>>:
� sin' = !(e1) cos' + T2 sin',� cos' = !(e2) sin' + T1 cos', cos' = �!(e1) sin' + T2 cos',Æ sin' = �!(e2) cos' + T1 sin'.

By differentiating (3.4) and using (2.27), we obtain

(3.6)

8>><
>>:

ei� = ei (!(e1)) sin 2' + (ei T0) cos2 ' + (ei T2) sin2 ',
ei� = ei (!(e2)) sin 2' + (ei T1) cos2 ' + (ei T3) sin2 ',
ei  = �ei (!(e1)) sin 2' + (ei T0) sin2 ' + (ei T2) cos2 ',
ei Æ = �ei (!(e2)) sin 2' + (ei T1) sin2 ' + (ei T3) cos2 '.

(3.2), (3.3) and (3.5) imply

(3.7)
De1 De2x1 � De2 De1x1 � D[e1,e2]x1 = 0,

De1 De2x2 � De2 De1x2 � D[e1,e2]x2 = 0.

Next, we compute (De1 De2 � De2 De1 � D[e1,e2])V1. From (3.2), (3.3), (3.5) and (3.6),
we get

De1 De2V1 � De2 De1V1 � D[e1,e2]V1

=

��
1

2
+ e1(!(e2))� e2(!(e1)) + !(e1)2 + !(e2)2

�
sin 2'

+ fe1T1 � e2T0 + !(e1)T0 + !(e2)T1g cos2 '
+ fe1T3 � e2T2 + !(e1)T2 + !(e2)T3g sin2 '�J V1.

By the definition of the Gauss curvature,

(3.8) K = hR(e2, e1)e1, e2i = e2(!(e1))� e1(!(e2))� !(e1)2 � !(e2)2,

the equation (De1 De2 � De2 De1 � D[e1,e2])V1 = 0 is equivalent to�
1

2
� K

�
sin 2' + fe1T1 � e2T0 + !(e1)T0 + !(e2)T1g cos2 '

+ fe1T3 � e2T2 + !(e1)T2 + !(e2)T3g sin2 ' = 0.

By similar computations forJ V1, V2 and J V2, we obtain
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Proposition 4. Let x: M2 ! S2 � S2 be a Lagrangian isometric immersion such
that x is not�-holomorphic with respect to(J, �J). Let V1, J V1, V2, J V2 beR3-valued
vector fields on M2 defined by(2.17)and(2.19). Then(i) (De1 De2�De2 De1�D[e1,e2])V1 =
0 and (De1 De2 � De2 De1 � D[e1,e2])(J V1) = 0 are equivalent to

(3.9)

�
1

2
� K

�
sin 2' + fe1T1 � e2T0 + !(e1)T0 + !(e2)T1g cos2 '

+ fe1T3 � e2T2 + !(e1)T2 + !(e2)T3g sin2 ' = 0,

(ii) ( De1 De2 � De2 De1 � D[e1,e2])V2 = 0 and (De1 De2 � De2 De1 � D[e1,e2])J V2 = 0 are
equivalent to

(3.10)

��1

2
+ K

�
sin 2' + fe1T1 � e2T0 + !(e1)T0 + !(e2)T1g sin2 '

+ fe1T3 � e2T2 + !(e1)T2 + !(e2)T3g cos2 ' = 0.

4. The Maurer-Cartan equation for Lagrangian immersions

Let G be a Lie group andg be Lie algebra ofG. we denote a basis forg by
e1, : : : , en and the dual basis fore1, : : : , en by  1, : : : ,  n. Theng-valued 1-form�
on G is defined as� =

Pn
i =1 ei 
  i . If we put d(ei 
  i ) = ei 
 d i and [ei 
  i ^

ej 
  j ] = [ei , ej ] 
  i ^  j , then we have

d�(ek, el ) =
X

i

ei 
 d i (ek, el )

=
X

i

ei 
 fek( i (el ))� el ( i (ek))�  i ([ek, el ])g
= �X

i

ei 
  i ([ek, el ])

= �[ek, el ],

�t(ek, el ) =

 X
i , j

[ei , ej ] 
  i ^  j

!
(ek, el )

=
X
i , j

[ei , ej ]( i (ek) j (el )�  i (el ) j (ek))

= [ek, el ] � [el , ek]

= 2[ek, el ].

Hence� satisfies

d� = �1

2
[� ^�].
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This equation is called theMaurer-Cartan equationand theg valued 1-form� on G
which satisfies the equation is called theMaurer-Cartan form. The following theorem,
due to Cartan (cf. [4]), is the key result of this paper.

Theorem 1. Let G be a Lie group with Lie algebrag and Maurer-Cartan form�. (i) Let M be a manifold on which there exists ag-valued1-form 8 satisfying

(4.1) d8 = �1

2
[8 ^8].

Then for any point p2 M there exists a neighborhood U of p and a map f: U ! G
such that f�� = 8. (ii) Given maps f1, f2 : M ! G, then f�1� = f �2� if and only if
f1 = La Æ f2 for some fixed a2 G, where L is the left translation on G.

When G is the special orthogonal groupSO(n), the Lie algebrag for SO(n) is
o(n) which is the set of all skew-symmetric matrices of degreen. It is known that the
Maurer-Cartan form� on SO(n) is given by� = g�1 dg with the condition�+ t� = 0
for g 2 SO(n) (cf. [4]).

Now, we want to find the conditions for existence and congruence for Lagrangian
isometric immersionsM2 ! S2�S2 by using Theorem 1. It is known thatS2 is a homo-
geneous space ofSO(3) and we may identifyS2 with the quotient spaceSO(3)=SO(2).
Thus S2 � S2 is identified with the homogeneous spaceSO(3)� SO(3)=SO(2)� SO(2).

Let fe1, e2g be an oriented orthonormal frame field onM2 satisfying (2.16), and letf 1, 2g be the dual 1-forms forfe1, e2g. Then (�1(p), �2(p)) is a SO(3)�SO(3)-valued
frame field overM2, given by (3.1). So we consider the Maurer-Cartan equation for
this frame field.

For �1 = (x1, V1, J V1) and �2 = (x2, V2, J V2), it follows from (3.2) and (3.3) that

D�1 = �181, D�2 = �282,

where81 and82 are o(3)-valued 1-forms onM2, given by

81 =

0
B� 0 �cos' 1 �sin' 2

cos' 1 0 �� 1 � � 2

sin' 2 � 1 + � 2 0

1
CA,(4.2)

82 =

0
B� 0 �cos' 2 �sin' 1

cos' 2 0 � 1 � Æ 2

sin' 1  1 + Æ 2 0

1
CA.(4.3)

Now SO(3)�SO(3)-congruence Theorem for Lagrangian isometric immersion M2 !
S2 � S2 is obtained as:
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Theorem 2. Let M2 be a connected and oriented2-dimensional Riemannian mani-
fold and let x1, x2 : M2 ! S2 � S2 be Lagrangian isometric immersions with which
the angle functions'1, '2 take the values in(��=4, �=4). We denote� i (i = 1, 2) the
second fundamental forms of xi , respectively, and Ti (X, Y, Z) = h� i (X, Y), J̃ Zi, the
corresponding symmetric tensor fields on M2. Then there is an isometry g2 SO(3)�
SO(3) such that x2 = g Æ x1 if and only if '1 = '2, and T1 = T2 hold.

Proof. If '1 = '2, T1 = T2, theno(3) valued 1-forms81,82 on M2 given by (4.2),
(4.3) are the same values respectively. Thus the result follows from Theorem 1 (ii).

REMARK 1. The full holomorphic isometry group ofS2 � S2 with respect to
the standard product metric and the complex structure (J, J) is generated (cf. [1]) by
SO(3)� SO(3) and

� : S2 � S2 ! S2 � S2, � (x1, x2) = (x2, x1).

Then the congruence theorem for the full holomorphic isometry group of S2�S2 is not
true as Theorem 2. LetC(�i ) (i = 1, 2) be oriented circles inS2 with constant curvature�i and suppose�1 < �2. If we put M1 = C(�1) � C(�2) and M2 = C(�2) � C(�1),
then bothM1 and M2 are Lagrangian surfaces inS2� S2 by product immersions. We
can see thatM1 and M2 are not congruent underSO(3)� SO(3) but congruent under
full holomorphic isometry groupof S2 � S2. The angle functions' of Mi are both
identically equal to 0, but the quantitiesT0, T3 defined by (2.25) are different, because
of (2.20). As we saw in Proposition 2, the product immersion of C(�1) � C(�2) into
S2 � S2 is minimal if and only if �1 = �2 = 0.

We prove the equivalence of the Ricci identity for the frame field (3.1) and the
Maurer-Cartan equation foro(3)-valued 1-forms (4.2) and (4.3).

Proposition 5. Let M2 be an oriented Riemannian manifold of dimension2, letfe1, e2g be an orthonormal frame field on M2 compatible with the orientation of M2,
and let f 1,  2g be the dual1-forms for fe1, e2g. Suppose' : M2 ! (��=4,�=4) and
T0, T1, T2, T3 : M2 ! R are functions on M2 such that the equations(2.26) and (2.27)
hold. Let81,82 be o(3)-valued1-forms on M2 defined by(4.2) and (4.3), respectively.
Then the Maurer-Cartan equations(4.1) for 81, 82

d8i = �1

2
[8i ^8i ]

are equivalent to the Ricci identity, (3.9) and (3.10).

Proof. D�i = �i8i implies

Dei De2�i = De1(�i8i (e2)) = �i (8i (e1)8i (e2) + e181(e2)),
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De2 De1�i = �i (8i (e2)8i (e1) + e281(e1)), D[e1,e2]�i = �i8i ([e1, e2]).

Hence we obtain

(De1 De2 � De2 De1 � D[e1,e2])�i = �i (d81(e1, e2) + [8i (e1), 8i (e2)])

= �i

�
d8i +

1

2
[8i ^8i ]

�
(e1, e2).

This equation means that the Ricci identity ((3.9) and (3.10)) is equivalent tod8i +
(1=2)[8i ^8i ] = 0.

According to Theorem 1 (i), we get the existence theorem for Lagrangian iso-
metric immersionM2 ! S2 � S2.

Theorem 3. Let (M2, g) be a simply connected oriented Riemannian manifold of
dimension2. Suppose that there exists an orthonormal frame fieldfe1, e2g on M2 com-
patible with the orientation of M2, functions Ti : M2 ! R (i = 0, 1, 2, 3)and ': M2 !
(��=4, �=4) such that they satisfy

(4.4)

8<
:

grad' = T1e1 + T2e2,
2!(e1) cos 2' = (T0 � T2) sin 2',
2!(e2) cos 2' = (T1 � T3) sin 2'

for the connection form! on M2 with respect tofe1, e2g. If the Gauss equation

(4.5) K =
sin2 2'

2
+ T0T2 + T1T3 � (T1)2 � (T2)2

and two equations of Codazzi

e1T1 � e2T0 + !(e1)(T0 � 2T2) + 3!(e2)T1 = �sin 4'
4

,(4.6)

e1T3 � e2T2 + 3!(e1)T2 + !(e2)(T3 � 2T1) =
sin 4'

4
(4.7)

hold, then there is the Lagrangian isometric immersion x: M2 ! S2�S2 and the func-
tion ' is the angle function for x. The second fundamental form� of x is then given
by (2.25).

Proof. If the Gauss equation (4.5) and the Codazzi equations(4.6), (4.7) hold,
then the left hands of the Ricci identities (3.9) and (3.10) are written as the same form

fT2(T2 � T0) + T1(T1 � T3)g sin 2' + 2f!(e1)T2 � !(e2)T1g cos 2'.
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Hence (4.4) implies that this term is equal to zero. By Proposition 5, Theorem 1 (i)
and Theorem 2, we can construct frame fieldp 7! (�1(p), �2(p)) of (3.1) on M2. Con-
sequently the Lagrangian isometric immersion

x : M2 ! S2 � S2, p 7! (x1(p), x2(p))

is constructed by the above frame field and the projection

(�1(p), �2(p)) 7! (x1(p), x2(p)).

5. Minimal Lagrangian surfaces in S2 � S2

In this section, we study minimal Lagrangian immersionsx : M2 ! S2 � S2 with
which the angle function satisfies' 2 (��=4,�=4). The Lagrangian immersionx is min-
imal if and only if the second fundamental form� of x satisfies

P
i =1,2h� (ei , ei ), J̃ ej i = 0

for j = 1, 2, or equivalently

T0 + T2 = 0 and T1 + T3 = 0,

where Tj ( j = 0, 1, 2, 3) are the components of second fundamental form ofx with
respect to the orthonormal frame fieldfe1, e2g of (2.16). By (2.26), T1 and T2 are
determined by' and, in the case of minimal Lagrangian immersions, Theorem 2is
described as:

Theorem 4. Let M2 be an oriented2-dimensional Riemannian surface and
x1, x2: M2 ! S2�S2 be minimal Lagrangian immersions. Let 'i : M2 ! (��=4,�=4)
be the angle function of xi (i = 1, 2). Then there is an isometry g2 SO(3)� SO(3)
such that x2 = g Æ x1 if and only if '1 = '2.

Using (2.26) and' 2 (��=4, �=4), we see that (2.27) is equivalent to

(5.1)

�!(e1) = �(e2') tan 2',!(e2) = (e1') tan 2',

where! is the connection form with respect tofe1, e2g. Then by (2.26) and (5.1), the
Gauss equation (4.5) is

(5.2) K =
sin2 2'

2
� 2kgrad'k2.

According to (5.1), we get that the Codazzi equations (2.30)and (2.31) are written as
the single equation

(5.3) e1(e1') + e2(e2')� 3!(e1)(e2') + 3!(e2)(e1') = �sin 4'
4

.
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Then using the definition of Gauss curvature (3.8) and (5.1),we can see that (5.2)
and (5.3) are equivalent. By the definition of the Laplacian

4' = e1(e1') + e2(e2')� !(e1)e2' + !(e2)e1',

and (5.1), (5.3) is written as

(5.4) 4' + 2kgrad'k2 tan 2' = �sin 4'
4

.

To show the existence of Lagrangian isometric minimal immersion M2 ! S2�S2,
we want to find desirable orthonormal frame fieldfe1, e2g on M2 in Theorem 3. Letfē1, ē2g be a given oriented orthonormal frame field onM2 with connection form ¯!.
Let � be a function onM2 and put

�
ē1(�) = cos�ē1 + sin�ē2,
ē2(�) = �sin�ē1 + cos�ē2.

Then the connection form ¯!� with respect tofē1, ē2g is written as

!̄� = hrē1(�), ē2(�)i = d� + !̄.

Hencefē1(�), ē2(�)g and !̄� satisfy (5.1) if and only if

�
d�(ē1) = �!̄(ē1)� (ē2') tan 2',
d�(ē2) = �!̄(ē2) + (ē1') tan 2'

hold with given (angle) function'. Consequently integrability condition of these equa-
tions are

0 = (rd�)(ē1, ē2)� (rd�)(ē2, ē1)

= ē2(d�(ē1))� ē1(d�(ē2))� d�(rē2ē1) + d�(rē1ē2)

= �ē2
�!̄(ē1)

�� ē2(ē2') tan 2' � 2(ē2')2

cos2 2'
+ ē1(!̄(ē2))� ē1(ē1') tan 2' � 2(ē1')2

cos2 2'
+ !̄(ē2)2 � !̄(ē2)(ē1') tan 2' + !̄(ē1)2 + !̄(ē1)(ē2') tan 2'

= �K �4' tan 2' � 2kgrad'k2

cos2 2' .
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If the Gauss equation (5.2) and the Codazzi equation (5.4) hold, then this term van-
ishes, and the existence of orthonormal frame fieldfe1, e2g on M2 satisfying (5.1) are
guaranteed. If we put functionsT1 and T2 on M2 as grad' = T1e1 + T2e2, then the as-
sumptions of Theorem 3 are satisfied in this case. Hence for existence of Lagrangian
isometric minimal immersions, we obtain the following:

Theorem 5. Let M2 be a simply connected oriented Riemannian manifold of di-
mension2 and let K be the Gauss curvature of M2. Suppose there exists a function' : M2 ! (��=4, �=4) such that

K =
sin2 2'

2
� 2kgrad'k2,

4' + 2kgrad'k2 tan 2' = �sin 4'
4

.

Then there exists a Lagrangian isometric minimal immersionx : M2 ! S2 � S2 such
that ' is the angle function of x.

Next, we rewrite Theorem 5 in the case whenM2 is a domainU in R2 with an
isothermal coordinate. Let (x, y) be an orthogonal coordinate system ofU and suppose
U has a metric

(5.5) ds2 = g(x, y)2(dx2 + dy2)

for some functiong = g(x, y) > 0, (x, y) 2 U and let ' : U ! (��=4, �=4) be a
function. We use the notation thatgx = �g=�x, gy = �g=�y and also'x = �'=�x,'y = �'=�y. If we put e1 = (1=g)(�=�x), e2 = (1=g)(�=�y), then fe1, e2g is an or-
thonormal frame field onU . The connection form! with respect to the basisfe1, e2g
are written as

!(e1) = hre1e1, e2i = �he1, [e1, e2]i = �gy

g2
,

!(e2) = hre2e1, e2i = �he2, [e1, e2]i =
gx

g2
.

So the Gauss curvatureK on U is

K = e2(!(e1))� e1(!(e2))� !(e1)2 � !(e2)2

= �gxx + gyy

g3
+

(gx)2 + (gy)2

g4

= �40 log g

g2
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where40 = �2=�x2 + �2=�y2. From

kgrad'k2 = (e1')2 + (e2')2 =
('x)2 + ('y)2

g2
,

the Gauss equation (5.2) is

(5.6) 40 log g = 2(('x)2 + ('y)2)� g2 sin2 2'
2

and from

4' = e1(e1') + e2(e2')� !(e1)e2' + !(e2)e1'
=
'xx + 'yy

g2

=
40'
g2

,

we get for the Codazzi equation (5.4)

(5.7) 40' = �2(('x)2 + ('y)2) tan 2' � g2 sin 4'
4

.

Since any 2-dimensional Riemannian manifold is conformally flat, the metric is
locally isometric to (5.5). Thus the Gauss equation (5.2) and the Codazzi equation (5.4)
for any minimal Lagrangian surface ofS2 � S2 are locally written as (5.6) and (5.7).
Hence Theorem 5 is written as follows:

Theorem 6. Let U be a simply connected domain inR2. Suppose g: U ! (0,1)
and ' : U ! (��=4, �=4) are solutions of two equations

40 log g = 2(('x)2 + ('y)2)� g2 sin2 2'
2

,

40' = �2(('x)2 + ('y)2) tan 2' � g2 sin 4'
4

(40 = �2=�x2 + �2=�y2).

Then there exists a minimal Lagrangian immersion x: U ! S2 � S2 such that the in-
duced metric to x on U satisfies(5.5) and ' is the angle function of the immersion x.

Finally, we consider Theorem 6 in the case wheng and the angle function' are
rotationally symmetric onU .
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Fig. 1. solution curve in (r , g)-plane

Theorem 7. Let I1, I2 � [0, 1) be intervals with I1 \ I2 6= ;. Suppose g: I1 !
(0,1) and ' : I2 ! (��=4, �=4) are solutions of the system of ordinary differential
equations

(5.8)

8>><
>>:

g00 =
(g0)2

g
� g0

r
+ 2g('0)2 � g3 sin2 2'

2
,

'00 = �2('0)2 tan 2' � '0
r
� g2 sin 4'

4
.

Then there exists a minimal Lagrangian immersion x from a simply connected domain
U in R2 to S2� S2 such that' is the angle function of x for the solution(g(r ), '(r ))
of (5.8).

Proof. It is well known that

��x
= cos� ��r � 1

r
sin� ��� ,

��y
= sin� ��r +

1

r
cos� ��� ,

10 =
�2

�r 2
+

1

r

��r +
1

r 2

��� ,

where (x, y) and (r , �) denote the orthogonal coordinates and the polar coordinates of
R2, respectively. Then the two equations in Theorem 6 are written as (5.8).

Figs. 1, 2, 3 are numerical solution curves of (5.8) with initial conditionsg(1) = 1,'(1) = �=8 and g0(1) = '0(1) = 0 with 0.01� r � 11.3.



FUNDAMENTAL THEOREM OF LAGRANGIAN SURFACES 849

Fig. 2. solution curve in (r , ')-plane

Fig. 3. solution curve in (g, ')-plane



850 M. KIMURA AND K. SUIZU

References

[1] I. Castro and F. Urbano:Minimal Lagrangian surfaces inS2 � S2, preprint.
[2] B.-Y. Chen: Intrinsic and extrinsic structures of Lagrangian surfacesin complex space forms,

Tsukuba J. Math.22 (1998), 657–680.
[3] B.-Y. Chen and T. Nagano:Totally geodesic submanifolds of symmetric spacesI, Duke Math.

J. 44 (1977), 745–755.
[4] P. Griffiths: On Cartan’s method of Lie groups and moving frames as appliedto uniqueness

and existence questions in differential geometry, Duke Math. J.41 (1974), 775–814.
[5] H. Iriyeh, H. Ono and T. Sakai:Integral geometry and Hamiltonian volume minimizing property

of a totally geodesic Lagrangian torus inS2 � S2, Proc. Japan Acad. Ser. A Math. Sci.79
(2003), 167–170.

[6] G.D. Ludden and M. Okumura:Some integral formulas and their applications to hypersurfaces
of Sn � Sn, J. Differential Geometry9 (1974), 617–631.

[7] A. Cannas da Silva: Lectures on Symplectic Geometry, Lecture Notes in Math.1764, Springer,
Berlin, 2001.

Makoto Kimura
Department of Mathematics
Interdisciplinary Faculty of Science and Engineering
Shimane University
Matsue, Shimane, 690–8504
Japan
e-mail: mkimura@riko.shimane-u.ac.jp

Kaoru Suizu
Department of Mathematics
Seikyo Gakuen High School
Kawachi-nagano, Osaka, 586–8585
Japan
e-mail: suizu@seikyo.ed.jp


