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Abstract
The class of invariant affine reflection algebras is the most general known exten-

sion of the class of affine Kac–Moody Lie algebras, introducedin 2008. We develop
a method known as “affinization” for the class of invariant affine reflection algebras,
and show that starting from an algebra belonging to this class together with a cer-
tain finite order automorphism, and applying the so called “affinization method”, we
obtain again an invariant affine reflection algebra. This canbe considered as an im-
portant step towards the realization of invariant affine reflection algebras.

1. Introduction

The class of affine Kac–Moody Lie algebras has been of great interest in the past
fifty years, mostly for its applications to various areas of Mathematics and Theoretical
Physics. This has been a strong motivation for mathematicians to extend this class.
Among such extensions, the most important ones are the classof extended affine Lie
algebras[1], the class oftoral type extended affine Lie algebras[11, 21], the class of
locally extended affine Lie algebras[18] and the most recent one which covers all of
the previous ones, the class ofinvariant affine reflection algebras(IARA’s for short),
introduced in 2008 by E. Neher [19].

One of the central concepts of the theory of affine Kac–Moody Lie algebras and
its extensions, which has captured the interest of many mathematicians, is the concept
of “realization”. Historically, the most popular way of realizing affine Lie algebras and
their generalizations is a developed version of a method known as “affinization”, due to
V. Kac [16, Chapter 8]. Roughly speaking, the method of affinization can be described
as follows. Letg be a Lie algebra from a classT , A the ring of Laurent polynomials,
and� a finite order automorphism ofg. Then applying the affinization method to these
data, one obtains another elementOg D Qg � C � D of the classT , where Qg is a sub-
algebra of the loop algebrag 
 A, C is a subspace contained in the center andD
consists of certain derivations.
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One knows that affine Kac–Moody Lie algebras, which are extended affine Lie al-
gebras of nullity one (see [4]), are obtained through the method of affinization starting
form finite dimensional simple Lie algebras, which are extended affine Lie algebras of
nullity zero. It is therefore natural to ask “whether it is possible to obtain (to realize)
extended affine Lie algebras of higher nullity from the ones with lower nullity, through
the affinization method. This question was positively answered by U. Pollmann [20],
where she realized extended affine Lie algebras of nullity 2,up to derivations and cen-
tral extensions, starting from the ones of nullity one. In the past two decades, there
have been several other attempts of applying the affinization method, either directly or
indirectly by using a closely related method, in order to realize extended affine Lie al-
gebras; see for example [8, 9, 10, 22]. In [5], the method of affinization was defined in
a general setting, in fact this setting provides a frameworkof producing new Lie alge-
bras from the old ones in a prescribed way. The mentioned workwas led to realization
of almost all centerless Lie tori (see [6, 2, 3]), a class of Lie algebras characterizing the
core modulo center of extended affine Lie algebras.

In this paper, we consider the method of affinization for the class of IARA’s, in
an extended way. Namely, in our method, the ring of Laurent polynomials is replaced
with a certain associative algebra, and moreover, the way ofinserting the central elem-
ents and derivations to the construction allows us to produce IARA’s of arbitrary higher
nullity from the ones we start with. So our work extends the results of [5], and in
part [13].

The paper is organized as follows. In Section 1, we gather preliminary definitions
and results needed throughout the work. In Section 2, we study two special types of
gradings imposed by certain automorphisms on the underlying Lie algebras. In Sec-
tions 3 and 4, we study the effect of these gradings on so-called toral pairs in general
and on IARA’s in particular. In the latter case, it is shown that if the corresponding
toral subalgebra is replaced with its degree zero homogeneous subspace, one gets a
new IARA with a generally different root system. In Section 5, as a by-product of the
results in earlier sections, we show that the fixed point subalgebra of an IARA under a
certain finite order automorphism is again an IARA. This gives a new perspective to an
old question, going back to [15], concerning the structure of fixed point subalgebras.
Finally, Sections 6 and 7 are devoted to our results on affinization of IARA’s. Roughly
speaking, we show that the outcome of “affinization” of an IARA under a certain auto-
morphism is again an IARA. We consider this as an important step towards realization
of IARA’s. We use our method to give examples of IARA’s which are neither locally
extended affine Lie algebras nor toral type extended affine Lie algebras.

The authors would like to thank Professor Eerhard Neher and Professor
Mohammad-Reza Shahriary for some helpful comments on the early version of this work.
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2. Preliminaries

In this section, we gather preliminary definitions and results which we need through-
out the paper. In this work, all vector spaces are consideredover a fieldF of character-
istic zero. For any vector spaceW, we denote its dual space byW?. For a nonempty
set S, by idS, we mean the identity map onS and by jSj the cardinal number ofS. If
R is an integral domain with the field of fractionsQ, A an R-module andS a subset of
A, we denote byhSi, the R-span ofS. A map (� , � ) W A� A! Q is called asymmet-
ric bihomomorphismif ( � , � ) is an R-module homomorphism on each component and
(a, b) D (b, a) for all a, b 2 A. For a symmetric bihomomorphism (� , � ) W A� A! Q,
the setA0

WD {a 2 A j (a, b) D 0I for all b 2 A} is called theradical of the form (� , � ).
We also set

S0
WD S\ A0 and S� WD Sn S0.

The elements ofS0 (resp.S�) are calledisotropic (resp.nonisotropic) elements of
S. A subsetS of A is called indecomposableor connectedif S� cannot be written as
a disjoint union of two its nonempty orthogonal subsets withrespect to (� , � ). In the
special case whenRD Z, the bihomomorphism (� , � ) is called apositive definite form
(resp.positive semidefinite form) if (a, a) > 0 (resp. (a, a) � 0) for all nonzeroa 2 A.
For a subsetS of A equipped with a positive semidefinite form (� , � ), we have

S0
D {� 2 S j (�, �) D 0} and S� D {� 2 S j (�, �) ¤ 0}.

DEFINITION 2.1. Let g be a Lie algebra andT � g a subalgebra, we callT a
toral subalgebra or anad-diagonalizablesubalgebra if

(2.2) g D
M

�2T?

g
�

(T)

where for any� 2 T?,

g
�

(T) WD {x 2 g j [t, x] D �(t)x, for all t 2 T}.

In this case (g, T) is called atoral pair, the decomposition (2.2) theroot space decom-
position of (g, T) and R WD {� 2 T?

j g
�

(T) ¤ 0} the root systemof (g, T). We will
usually abbreviateg

�

(T) by g
�

. Since any toral subalgebra is abelian,T � g0 and so
0 2 R unlessT D {0} D g. A toral subalgebra is called asplitting Cartan subalgebra
if T D g0, in this case (g, T) is called asplit toral pair.

Now let (g, T) be a toral pair with root systemR, namelyg D
L

�2R g
�

. Suppose
that g satisfies the following two axioms:
(IA1) g has an invariant nondegenerate symmetric bilinear form (� , � ) whose restriction
to T is nondegenerate.
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(IA2) For each� 2 Rn{0}, there existe
�

2 g
�

and f
�

2 g
��

such that 0¤ [e
�

, f
�

] 2 T .
One can see that for each� 2 R, there exists a uniquet

�

2 T which represents�
via ( � , � ) (i.e. �(t) D (t

�

, t) for all t 2 T) and that the map� W T ! T? given by
�(t) D (t, � ) is a monomorphism whose image contains span

F

R. Now it follows that
the bilinear form onT can be transferred to a bilinear form on span

F

R defined by

(�, �) D (t
�

, t
�

), for all �, � 2 span
F

R.

Here, we record the definition of an invariant affine reflection algebra, the main
object of this study.

DEFINITION 2.3 ([19, Section 6.7]). Let (g, T) be a toral pair with root system
R. Assumeg ¤ 0. The pair (g, T) (or simply g) is called aninvariant affine reflection
algebra (IARA for short) if it satisfies (IA1), (IA2) as above and (IA3) below:
(IA3) For every� 2 R with (�, �) ¤ 0 and for all x

�

2 g
�

, the adjoint map adx
�

is
locally nilpotent ong.

We call an invariant affine reflection algebra (g, T) division, if (IA2) is replaced
with the stronger axiom (IA2)0 below:
(IA2)0 For each� 2 R n {0} and any 0¤ e

�

2 g
�

, there exists f
�

2 g
��

such that
0¤ [e

�

, f
�

] 2 T .

REMARK 2.4. (i) In this work, we always assume for a toral pair (g, T) satis-
fying (IA1), the corresponding root system is not the zero set.
(ii) If ( g, T) is a split toral pair, then axiom (IA1) implies (IA2)0, in particular any
invariant affine reflection algebra with a splitting Cartan subalgebra is division. To see
this, one can combine Lemma 2.7 and (3.1) below.

Let us also recall the definition of an affine reflection system. This notion is due
to E. Neher [19, Chapter 3] but here we state an equivalent definition given in [12,
Definition 1.3].

DEFINITION 2.5. Let A be an abelian group equipped with a nontrivial symmet-
ric positive semidefinite form (�, �) and R be a subset ofA. The triple (A,(�, �),R), or R
if there is no confusion, is called anaffine reflection systemif it satisfies the following
3 axioms:
(R1) RD �R,
(R2) hRi D A,
(R3) for � 2 R� and � 2 R, there existd, u 2 Z

�0 such that

(� C Z�) \ RD {� � d�, : : : , � C u�} and d � u D (�, �_).

Each element ofR is called aroot. Elements ofR� (resp.R0) are callednon-isotropic
roots (resp. isotropic roots).
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The affine reflection systemR is called irreducible, if
(R4) R� is indecomposable.
Moreover, R is called tame, if
(R5) R0

� R�

� R� (elements ofR0 are non-isolated).
A locally finite root systemis, by definition, an affine reflection system for which

A0
D {0}, see [17, 12].

REMARK 2.6. It is shown in [19] that the root systemR of an IARA (g, T) is
an affine reflection system in theZ-span of R. We note that as in this caseR � T?

and F is of characteristic zero,theZ-span of R is a torsion free abelian group.

Lemma 2.7. Let (g, T) be a toral pair, with root system R, satisfying(IA1) and
(IA2). If � 2 R, x 2 g

�

, y 2 g
��

and [x, y] 2 T , then [x, y] D (x, y)t
�

.

Proof. We will show that [x, y]� (x, y)t
�

is an element of the radical of the form
on T ; then we are done as (� , � ) is nondegenerate onT . For this, supposet 2 T is
arbitrary. Then

([x, y] � (x, y)t
�

, t) D ([x, y], t) � (x, y)(t
�

, t)

D (x, [y, t ]) � (x, y)�(t)

D (x, �(t)y) � (x, y)�(t) D 0.

We recall that an algebraA is called G-graded, G an abelian group, ifA D
L

g2GAg, where eachAg is a subspace ofA, such thatAgAh
�AgCh for all g,h 2 G.

We will usually indicate this by saying “LetA D
L

g2G Ag be a G-graded algebra”.
Each Ag, g 2 G, is called ahomogeneous spaceand each element ofAg a homo-
geneous element. A subalgebraB of A is called agraded subalgebraif B D

L

g2G(B\
Ag). The supportof a G-graded algebraA is the set suppG A WD {g 2 G j Ag

¤ {0}}.
We usually use superscripts to indicate homogeneous spaces, however, whenA admits
two gradings, we use subscripts to distinguish two gradings, namelyA D

L

g2G Ag

andA D
L

q2Q Aq. In this case, we sayA admits acompatible(G, Q)-grading if for

all g 2 G, Ag
D

L

q2Q A
g
q whereA

g
q WD Ag

\ Aq. A bilinear form (� , � ) on a G-

graded algebraA D
L

g2G Ag is calledG-graded, if (Ag,Ah) D {0} for g, h 2 G with
gC h ¤ 0.

DEFINITION 2.8. Let A be a unital associative algebra. An elementa 2 A is
called invertible if there exists a unique elementa�1

2 A such thataa�1
D a�1a D 1.

SupposeA D
L

g2G Ag is G-graded, then it is called
• predivision G-graded, if every nonzero homogeneous space contains an invertible
element;
• division G-graded, if every nonzero homogeneous element is invertible;
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• an associative G-torus, if A is predivision graded and dimAg
� 1 for all g 2 G.

We close this section by recalling some facts from representation theory of
finite groups.

Let G be an arbitrary finite group. ByF [G], we mean the group algebra ofG over
F . Let {�1,: : : ,�n} be the set of all irreducible characters ofG in which �i corresponds
to an irreducible moduleVi . AssumeF contains all eigenvalues of allg 2 G acting on
Vi , 1� i � n. For each 1� i � n, define an elementei in F [G], by

(2.9) ei WD
�i (1)

jGj

X

g2G

�i (g
�1)g,

in which by jGj we mean the order of the groupG. It follows that {e1, : : : ,en} forms a
complete set of orthogonal idempotents inF [G], i.e. ei ej D Æi j ei ande1C� � �Cen D 1.
So if M is any F [G]-module, then

(2.10) M D
n
M

jD1

ej � M.

Now if � j W M ! ej � M is the projection ontoej � M, then
Pn

jD1 � j D id and
�i� j D Æi j �i .

Suppose now thatG is a finite cyclic group of order m, sayG D {1,� , : : : ,�m�1}.
Assume thatF contains anm-th primitive root of unity � . Since G is abelian, any
finite dimensional irreducibleG-module is one dimensional. Now it follows that for

� j W G! F , �

i
7! �

i j
I (0� i , j � m� 1),

�0, : : : , �m�1 form a complete set of irreducible characters ofG. Therefore, if M is
any F [G]-module, we haveM D

Lm�1
jD0 M j , where M j WD {x 2 M j � (x) D � j x}, and

(2.11) � j D
1

m

m�1
X

iD0

�

� j i
�

i .

3. Gradings induced by automorphisms

In this section, we consider two gradings induced by a finite order automorphism
on a toral pair, and study their basic properties. Letm be a fixed positive integer and
supposeF contains anm-th primitive root of unity � . Throughout this section, we
assume (g, T) is a toral pair, with root systemR, satisfying axioms (IA1) and (IA2)
of an IARA. Theng D

L

�2R g
�

where for each� 2 R,

g
�

D {x 2 g j [t, x] D �(t)x,for all t 2 T}.
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Also, by (IA1), g is equipped with an invariant nondegenerate symmetric bilinear form
( � , � ), such that the form restricted toT is nondegenerate. It is easy to see that for
any �, � 2 R, [g

�

, g
�

] � g
�C�

and [g
�

, g
�

] D {0} if � C � � R. Also as the form is
invariant, one sees that

(3.1) (g
�

, g
�

) D {0} unless � C � D 0, (�, � 2 R),

and concludes that

(3.2) ( � , � ) restricted tog
�

� g
��

, � 2 R, is nondegenerate.

In addition, by (IA1) and (IA2) for each� 2 R, there exists a unique elementt
�

2 T
such that�(t) D (t, t

�

) for all t 2 T .
Now let � be an automorphism ofg satisfying

(A1) �m
D idg,

(A2) � (T) D T ,
(A3) (� (x), � (y)) D (x, y) for all x, y 2 g.
For i 2 Z, let Ni be the image ofi in Zm under the canonical map (for the simplicity
of notation, we always denoteN0 by 0). Then setting

(3.3) g
Ni
WD {x 2 g j � (x) D � i x}

for each i 2 Z, it is easy to see thatg D
L

Ni2Zm
g
Ni which defines aZm-grading ong.

Also by (A2), one can define a similar gradingT D
L

Ni2Zm
T Ni on T , making T into

a graded subalgebra ofg. Using � , we may define an automorphism, denoted again
by � , on the vector spaceT? by � (�) WD � Æ �

�1, � 2 T?. Then �m
D idT? and so

� induces aZm-grading onT? as above. One can easily see that for each� 2 R,
� (g

�

) D g
� (�). Thus

(3.4) � (R) D R.

Note that, if Ni , Nj 2 Zm, x 2 g
Ni and y 2 g

Nj , then by (A3), (x, y) D (� (x), � (y)) D
(� i x, � j y) D � iC j (x, y). Thus (x, y) D 0 if i C j ¤ 0. Consequently

(3.5) ( � , � ) is a Zm-graded bilinear form ong.

For � 2 R, we define�(�) to be the restriction of� to T0. Since we may consider

any element� 2 (T0)? as an element ofT? by �(
P

Ni¤0 T Ni ) D 0, we can consider�(�)
as an element ofT?.

For j 2 Z, let � j W g! g
Nj be the projection ofg onto g

Nj with respect to the grad-

ing g D
P

Nj2Zm
g
Nj . We use the same notation� j for the projection ofT onto T Nj ,
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and T? onto (T?) Nj , with respect to theZm-gradings onT and T?, respectively. One
observes that

(3.6) � Æ � j D � j Æ � D �
j
� j .

Since the group{1, � , : : : , �m�1} acts ong, T and T?, the following lemma follows
immediately from (2.11).

Lemma 3.7. For any j 2 Z, we have� j D (1=m)
Pm�1

iD0 �
� j i
�

i .

For � 2 T?, define

(3.8) g
�(�) WD {x 2 g j [t, x] D �(t)x, for all t 2 T0}.

Then we haveg D
L

�(�)2�(R) g�(�) and

(3.9) g
�(�) D

X

{�2Rj�(�)D�(�)}

g
�

I � 2 R.

Lemma 3.10. For � 2 T?, �(�) D �0(�).

Proof. Suppose 0� j � m� 1 and t 2 T Nj . Then by Lemma 3.7, we have

�0(�)(t) D
1

m

m�1
X

iD0

�

i (�)(t)

D

1

m

m�1
X

iD0

�(��i (t))

D

1

m

 

m�1
X

iD0

�

� j i

!

�(t).

Now since� is a primitive m-th root of unity, we have
Pm�1

iD0 �
� j i
D 0 unless j D 0.

Thus �0(�)(t) D �(t) for t 2 T0 and �0(�)(t) D 0 for t 2
P

Nj¤0 T Nj . Therefore by the
way �(�) is defined, we have�(�) D �0(�).

We note that� (g
�(�)) D g

� (�(�)) D g
�(�), � 2 R. Thus for� 2 R and j 2 Z,

(3.11) � j (g
�

) � � j (g
�(�)) D g

Nj
�(�).
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Thanks to Lemma 3.10, we have�(�) D �0(�) D (1=m)
Pm�1

iD0 �
i (�) for � 2 T?,

so from now on and for the simplicity of notation, we denote all projectionsg! g0,
T ! T0 and T?

! (T?)0, with respect to the correspondingZm-gradings, by� , that is

(3.12) � D �0 D
1

m

m�1
X

iD0

�

i .

Lemma 3.13. Let  2 span
F

R. Then�(t


) D t
�( ) and it is the unique element

in T0 satisfying�( )(t) D (t, t
�( )) for all t 2 T0.

Proof. First, we note that by (3.4) and (3.12),�( ) 2 span
F

R. Now for t 2 T
and � 2 span

F

R, we have

(� (t
�

), t) D (t
�

, ��1(t)) D �(��1(t)) D � (�)(t).

Thus t
� (�) D � (t

�

). Using this, we are immediately done.

Now (3.9) together with Lemma 3.13 and the same argument as inLemma 2.7,
gives the following result.

Proposition 3.14. The pair (g, T0) is a toral pair, with root system�(R), satisfy-
ing axiom(IA1) of an IARA. Moreover, if � 2 R, x 2 g

�(�), y 2 g
��(�) and [x, y] 2 T0,

then [x, y] D (x, y)t
�(�).

Recall that we now have two gradings ong, namely theZm-grading induced from
automorphism� and the one induced from the set�(R). For � 2 R and h 2 Zm, set

gh
�(�) WD gh

\ g
�(�).

Since the adjoint action ofT0 stabilizesgh we have

(3.15) gh
D

M

�(�)2�(R)

gh
�(�).

Thus the following is established.

Lemma 3.16. The Lie algebrag admits a compatible(h�(R)i, Zm)-grading

g D
M

2h�(R)i,h2Zm

gh


such that for any h2 Zm, gh


D {0} whenever � �(R).
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Lemma 3.17. Let �, � 2 R and h, k 2 Zm.
(i) If �(�)C �(�) ¤ 0 then (g

�(�), g�(�)) D {0}.

(ii) If (gh
�(�), g

k
�(�)) ¤ {0}, then hC k D 0 and �(�)C �(�) D 0.

Proof. (i) Since the form (� , � ) is invariant, a standard argument as in the finite
dimensional theory, gives the result.

(ii) It follows from part (i) together with the fact that the form ong is Zm-graded
and nondegenerate.

Next, we use Lemma 3.13 to define a bilinear form on theF-span of�(R) by

(�(�), �(�)) WD (t
�(�), t

�(�)) D (�(t
�

), �(t
�

)).

We conclude this section with the following useful result which will be used in
the sequel. In the following lemma, in addition to (IA1) and (IA2), we suppose that
(g, T) satisfies (IA3).

Lemma 3.18. Let (g, T) be an invariant affine reflection algebra. If R is in-
decomposable, then�(R) WD {�(�) j � 2 R} is indecomposable.

Proof. We first note that by Remark 2.6,R is an affine reflection system. So by
[12, Theorem 1.13], for� 2 R, Z� � R if and only if � 2 R0. Therefore� (span

F

(R0))�
span

F

(R0). Now one only needs to adjust the proof of [13, Proposition 2.6 (ii)] to
our situation.

4. Toral pairs and automorphisms

In this section, we use the same notation as in previous sections. As in Section 3,
we assume that (g, T) is a toral pair, with root systemR, satisfying axioms (IA1) and
(IA2). We also assume that� is an automorphism ofg which in addition to axioms
(A1)–(A3) satisfies the following axiom:
(A4) Cg0(T0) WD {x 2 g0

j [t, x] D 0I for all t 2 T0} � g0.
Recall that, we have

g D
X

�2R

g
�

D

X

�2R

g
�(�) D

X

h2Zm

gh
D

X

�2R,h2Zm

g
�(�) \ gh,

and T D
P

h2Zm
Th.

For � 2 R, let l
�

(�) be the least positive integer such that�

l
�

(�)(�)D �, thenl
�

(�) j
m and we have the following lemma which gives an equivalent condition to (A4). The
proof of this lemma is essentially similar to the proof of [5,Proposition 3.25], however
for the convenience of the reader, we provide a proof here.
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Lemma 4.1. (A4) is equivalent to(A4)0 below:
(A4)0 For � 2 R n {0}, either �(�) ¤ 0 or {x 2 g

�

j �

l
�

(�)(x) D x} D {0}.
Moreover if m is prime, then (A4) and (A4)0 are equivalent to
(A4)00 �(�) ¤ 0 for every� 2 R n {0}.

Proof. Suppose (A4) holds but (A4)0 fails, then there exist� 2 R n {0} and 0¤
x 2 g

�

such that�(�) D 0 and � l
�

(�)(x) D x. Abbreviate l
�

(�) by l and let y WD
xC � (x)C � � � C � l�1(x), then� (y) D y and soy 2 g0. Also since the elements� i (x)
(0 � i � l � 1) belong to different root spaces,y ¤ 0. In addition y 2 g

�(�) D g
�(0) D

Cg(T0), so y 2 Cg0(T0) � g0 which is a contradiction asy � g0.
Conversely, assume (A4)0 holds and letx D

P

�2R x
�

2 Cg0(T0), where x
�

2 g
�

.
Since� (x)D x, � (x

�

)D x
� (�) for any � 2 R, therefore� l

�

(�)(x
�

)D x
�

. Thus by (A4)0,
for any 0¤ � 2 R with �(�) D 0, x

�

D 0. On the other hand, for everyt 2 T0,
0 D [t, x] D

P

�2R �(�)(t)x
�

. Hencex
�

D 0 for any � 2 R n {0} with �(�) ¤ 0 and
so x D x0 2 g0.

Finally, suppose thatm is a prime number. Clearly it suffices to show that (A4)0

implies (A4)00. Suppose to the contrary that�(�) D 0 for some nonzero� 2 R. By
Lemma 3.7,� (�) ¤ �, so l

�

(�) ¤ 1. Now as l
�

(�) divides m and m is prime, we
have l

�

(�) D m. Hence� l
�

(�)(x
�

) D x
�

for all x
�

2 g
�

which contradicts (A4)0.

Lemma 4.2. Suppose�, � 2 R with � ¤ � and �(�) D �(�). If x 2 g
�

and
y 2 g

��

, then �([x, y]) D 0.

Proof. If � � � 62 R, there is nothing to prove, so suppose� � � 2 R. We have

[x, y] 2 g
���

� g
�(���) D g

�(0) D Cg(T0).

Therefore,� i ([x, y]) 2 Cg(T0), for all i , and so�([x, y]) 2 Cg0(T0). Thus by (A4),
�([x, y]) 2 g0. On the other hand,� i ([x, y]) 2 g

�

i (���), for all i , also as� � � ¤ 0,

we have� i (� � �) ¤ 0. So �([x, y]) is a sum of elements, each belongs to a root
space corresponding to a nonzero root. But since�([x, y]) 2 g0, this can happen only
if �([x, y]) D 0.

Lemma 4.3. (i) For x, y 2 g and j, k 2 Z, we have

[� j (x), �k(y)] D � jCk([x, �k(y)]).

In particular,

[� j (x), �
� j (y)] D �([x, �

� j (y)]) D
1

m

m�1
X

iD0

�([x, � j i
�

i (y)]).
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(ii) If � 2 R, x 2 g
�

, y 2 g
��

and l WD l
�

(�), then for j 2 Z,

[� j (x), �
� j (y)] D

1

m

(m=l )�1
X

iD0

�([x, � j i l
�

i l (y)]).

Proof. (i) It is clear, since� j is the projection ontog Nj with respect toZm-
gradation ofg.

(ii) Assume that�, x, y and l are as in the statement. By part (i),

[� j (x), �
� j (y)] D

1

m

0

�

X

{0�t�m�1W l jt}

�([x, � j t
�

t (y)]) C
X

{0�t�m�1W lt}

�([x, � j t
�

t (y)])

1

A.

So it is enough to show that�([x,� t (y)]) D 0 for all 0� t �m�1 with l  t . Assume
that l  t . Then� � � t (�) ¤ 0, x 2 g

�

, � t (y) 2 g
��

t (�) and �(�) D �(� t (�)), thus by
Lemma 4.2,�([x, � t (y)]) D 0.

Next, consider Aut(g), the automorphism group ofg. One knows that the subgroup
(� ) of Aut(g) generated by� , acts naturally onR. We call any orbit of this action,
a � -orbit. Then two roots�, � belong to the same� -orbit if and only if � i (�) D �,
for some i . Fix a set orb(R) of distinct representatives for all� -orbits, namelyR D
U

�2orb(R)(� ) � �. The following two lemma is of great importance for our goal.

Lemma 4.4. Let 0� j � m� 1.
(i) If �, � 2 R belong to the same� -orbit, then � j (g

�

) D � j (g
�

).
(ii) For � 2 R,

g
Nj
�(�) D

X

{�2orb(R) j �(�)D�(�)}

� j (g
�

).

(iii) Let �, � belong to distinct� -orbits of R with�(�) D �(�). If x 2 g
�

, y 2 g
��

,
then [� j (x), �

� j (y)] D 0.

Proof. (i) Suppose� D � n(�), n 2 Z. By (3.6), � j Æ �
n
D �

nj
� j . Therefore

� j (g
�

) D � j (g
�

n(�)) D � j�
n(g

�

) D � nj
� j (g

�

) D � j (g
�

).

(ii) By Lemma 3.16, for every 1� j � m� 1 and every� 2 R we haveg
Nj
�(�) D

� j (g
�(�)). Now this together with (3.9) implies that

(4.5) g
Nj
�(�) D

X

{�2R j �(�)D�(�)}

� j (g
�

).
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and so the result follows immediately from part (i).
(iii) By part (i) of Lemma 4.3, [� j (x),�

� j (y)] D (1=m)
Pm�1

iD0 �([x,� j i
�

i (y)]). By
the assumption, for anyi , � � � i (�) ¤ 0 and so by Lemma 4.2,�([x, � i j

�

i (y)] D 0,
hence [� j (x), �

� j (y)] D 0.

Let � 2 R, l WD l
�

(�) and j 2 Z. For x 2 g
�

, we set

(4.6) Nx j WD

(m=l )�1
X

iD0

�

� j i l
�

i l (x) 2 g
�

.

Note that the implicationNx j 2 g
�

follows from the fact that� l (g
�

) D g
�

l (�) D g
�

. The
following observation is a key result for the rest of the work.

Lemma 4.7. Suppose� 2 R, l WD l
�

(�), x 2 g
�

and j 2 Z. Then

(i) � j (x) D (1=m)
Pl�1

iD0 �
� j i
�

i ( Nx j ),
(ii) � j (x) ¤ 0 if and only if Nx j ¤ 0.

Proof. Setk WD (m=l ) � 1. Using Lemma 3.7, we have

m� j (x) D
m�1
X

iD0

�

� j i
�

i (x)

D

l�1
X

iD0

�

� j i
�

i (x)C
2l�1
X

iDl

�

� j i
�

i (x)C � � � C
m�1
X

iDkl

�

� j i
�

i (x)

D

k
X

sD0

l�1
X

iD0

�

� j (slCi )
�

slCi (x)

D

l�1
X

iD0

�

� j i
�

i

 

k
X

sD0

�

� jsl
�

sl(x)

!

D

l�1
X

iD0

�

� j i
�

i ( Nx j ).

This proves (i).
(ii) Since for each 0� i � l�1, � i ( Nx j ) 2 g

�

i (�) and�,� (�),:::,� l�1(�) are distinct

roots, we concluded that
Pl�1

iD0 �
� j i
�

i ( Nx j ) D 0 if and only if Nx j D 0. Therefore using
part (i), we are done.

5. Division IARA’s and automorphisms

In this section, we use the same notation as in previous sections. We also assume
that (g,T) is a division IARA with root systemR, that is, (g,T) satisfies axioms (IA1),
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(IA2)0 and (IA3). Further suppose that� is an automorphism ofg satisfying (A1)–
(A4). In Section 4, we saw hat (g, T0) is a toral pair satisfying axiom (IA1), and
established several other properties of (g, T0). Our main aim in this section is to show
that (g, T0) is an IARA with root system�(R). This in particular implies that�(R) is
an affine reflection system.

Lemma 5.1. Let � 2 R, x 2 g
�

and y2 g
��

. If j 2 Z and Nx j is defined as in
(4.6), then
(i) [� j (x), �

� j (y)] D (1=m)�([ Nx j , y]),
(ii) (� j (x), �

� j (y)) D (1=m)( Nx j , y).

Proof. (i) Let k WD (m=l )� 1. By Lemma 4.3, replacingj with � j , � with ��
and x with y, we have

[� j (x), �
� j (y)] D

1

m

k
X

iD0

�([�� j li
�

li (x), y])

D

1

m
�

 "

k
X

iD0

�

� j li
�

li (x), y

#!

D

1

m
�([ Nx j , y]).

(ii) By Lemma 4.7 (i), � j (x) D (1=m)
Pl�1

iD0 �
� j i
�

i ( Nx j ) and �
� j (y) D (1=m)�

Pl�1
iD0 �

j i
�

i ( Ny
� j ). Also, using the definition ofl WD l

�

(�) and (3.1), we see that
(g

�

i (�), g� j (��)) D {0}, if 0 � i ¤ j � l � 1. Hence

(� j (x), �
� j (y)) D

1

m2

l�1
X

iD0

(� i ( Nx j ), �
i ( Ny

� j ))

D

1

m2
l ( Nx j , Ny� j )

D

1

m2
l

k
X

iD0

( Nx j , �
j i l
�

i l (y))

D

1

m2
l

k
X

iD0

�

j i l (��i l ( Nx j ), y)

D

1

m2
l

k
X

iD0

( Nx j , y)

D

1

m
( Nx j , y).
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Lemma 5.2. Let � 2 R with �(�) ¤ 0. Suppose x2 g
�

and � j (x) ¤ 0, for some
j 2 Z. Then there exists y2 g

��

such that0¤ [� j (x), �
� j (y)] 2 T0.

Proof. Contemplating (4.6), Lemma 4.7 implies thatNx j is a nonzero element of
g
�

. Since by our assumption, the axiom (IA2)0 holds for (g, T), there existsy 2 g
��

such that 0¤ [ Nx j , y] 2 T . Therefore, by Lemma 2.7,

(5.3) (Nx j , y) ¤ 0.

Now combining this, Lemmas 5.1, 2.7 and 3.13, we get

[� j (x), �
� j (y)] D

1

m
( Nx j , y)t

�(�) 2 T0.

But as�(�) ¤ 0, we havet
�(�) ¤ 0, and so we are done by (5.3).

Lemma 5.4. Let � 2 R with �(�) ¤ 0, and j 2 Z. Then for every0 ¤ e
Nj
�(�) 2

g
Nj
�(�) there exists f

Nj
�(�) 2 g

�

Nj
��(�) such that0¤ [e

Nj
�(�), f

Nj
�(�)] 2 T0. In particular, axiom

(IA2) holds for the toral pair(g, T0).

Proof. By Lemma 4.4,e
Nj
�(�) D � j (x1) C � � � C � j (xn) where xi 2 g

�i
for some

�i ’s belong to distinct� -orbits of R, satisfying �(�i ) D �(�), for all i . Thus for
some 1� i � n, � j (xi ) ¤ 0, and by Lemma 5.2, there existsy 2 g

��i
such that 0¤

[� j (x), �
� j (y)] 2 T0. So using Lemma 4.3 (iii), we have

[e
Nj
�(�), �� j (y)] D [� j (xi ), �� j (y)] 2 T0

n {0}.

Now setting f
Nj
�(�) WD �� j (y), we get the first assertion as by (3.11),�

� j (y) 2 g� j
��(�). To

see the final assertion in the statement, let� 2 R with �(�) ¤ 0. As 0¤ g
�

� g
�(�) D

P

Nj2Zm
g
Nj
�(�), we haveg

Nj
�(�) ¤ 0 for some Nj . Now by the first part of the statement,

there existe
Nj
�(�) 2 g

Nj
�(�) and f

Nj
�(�) 2 g

�

Nj
��(�) such that 0¤ [e

Nj
�(�), f

Nj
�(�)] 2 T0. This means

that (IA2) holds for (g, T0).

We are now ready to state the main result of this section, which extends [13, The-
orem 3.4] to a rather larger class.

Theorem 5.5. Let (g, T) be a division IARA with corresponding root system R
and bilinear form( � , � ). Suppose� is an automorphism ofg satisfying(A1)–(A4), and
T0 is the set of fixed points of� on T . For � 2 R, let �(�) be the restriction of� to
T0. Then (g, T0) is an IARA with root system�(R) WD {�(�) j � 2 R}. In particular,
�(R) is an affine reflection system. Moreover, if R is indecomposable, then so is�(R).
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Proof. We have shown in Lemma 3.14 that (g, T0) is a toral pair such thatg D
L

�(�)2�(R) g�(�), and that axiom (IA1) of Definition 2.3 holds for (g, T0). Also by
Lemma 5.4, (IA2) holds forg. So it remains to prove (IA3).

Let �, � 2 R with (�(�), �(�)) ¤ 0, x 2 g
�(�) and y 2 g

�(�). We must show that
ad(x)n(y) D 0 for somen. We know that ad(x)n(y) 2 gn�(�)C�(�), so

[t
�(�), (adx)n(y)] D (n�(�)C �(�))(t

�(�))(adx)n(y).

Therefore if (adx)n(y) is nonzero, it is an eigenvector for adt
�(�) with eigenvalue

(n�(�) C �(�))(t
�(�)). But for distinct values ofn, the scalers (n�(�) C �(�))(t

�(�))
are distinct, so it is enough to show that adt

�(�) has a finite number of eigenvalues
as an operator ong. One knows that each eigenvalue of adt

�(�) on g is of the form
�( )(t

�(�)) for some 2 R, and by Lemma 3.13,

�( )(t
�(�)) D (�( ), �(�)) D ( , �(�)) �

1

m
(AC AC � � � C A
� �� �

m-times

)

where A WD {( , �) j  , � 2 R}. Now since R is an affine reflection system, the set
A is finite; see [19, Sections 3.7, 3.8] and [17, Theorem 8.4]. Therefore adt

�(�) has
only a finite number of eigenvalues. These all together show that (g, T0) is an IARA.
Thus its root system�(R) is an affine reflection system, by [19, Theorem 6.8]. The
final assertion of the statement follows from Lemma 3.18.

REMARK 5.6. Suppose�(�) 2 �(R)� and h 2 Zm. By Lemmas 5.4 and 2.7, we
may chooseeh

�(�) 2 g
h
�(�) and f h

�(�) 2 g
h
��(�) such that [eh

�(�), f h
�(�)] D (eh

�(�), f h
�(�))t�(�) ¤

0. So multiplying f h
�(�) by 2=((eh

�(�), f h
�(�))(�(�), �(�))) we have

[eh
�(�), f h

�(�)] D
2t

�(�)

(�(�), �(�))
.

Thus settingh
�(�) WD 2t

�(�)=(�(�),�(�)), the triple{eh
�(�),h�(�), f h

�(�)} forms ansl2-triple.

Lemma 5.7. Let j 2 Z, � 2 R n {0}, �(�) D 0 and � j (g
�

) ¤ {0}.
(i) For each x2 g

�

with � j (x)¤ 0, there exists y2 g
��

such that[� j (x),�
� j (y)] D 0,

but (� j (x), �
� j (y)) ¤ 0.

(ii) There exists e2 g
Nj
�(0) and f 2 g

�

Nj
�(0) such that[e, f ] D 0 but (e, f ) ¤ 0.

Proof. (i) Let x 2 g
�

and� j (x) ¤ 0. By Lemma 4.7 (ii), we have 0¤ Nx j 2 g
�

.
Since (IA2)0 holds for (g, T), there existsy 2 g

��

such that 0¤ [ Nx j , y] 2 T . Therefore,
by Lemma 2.7, (Nx j , y) ¤ 0. Now this, together with Lemma 5.1 (ii), gives

(� j (x), �
� j (y)) D

1

m
( Nx j , y) ¤ 0.
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On the other hand, combining Lemmas 5.1 (i), 2.7 and 3.13, we obtain

m[� j (x), �
� j (y)] D � j ([ Nx j , y]) D ( Nx j , y)�(t

�

) D ( Nx j , y)t
�(�) D ( Nx j , y)t0 D 0.

(ii) By assumption,� j (g
�

) ¤ 0. So � j (x) ¤ 0 for somex 2 g
�

. Now taking

e WD � j (x) 2 g
Nj
�(0) and f WD �

� j (y) 2 g
�

Nj
�(0) as in part (i), we are done.

As it will be revealed from the sequel, ifg0 is abelian, the axioms (A1)–(A4)
imposed on the automorphism� , are enough for our purposes in this work. However,
this is not the case for a general IARA. To be more precise, we note that the main
difference of the class of invariant affine reflection algebras with extended affine Lie
algebras or locally extended affine Lie algebras, is that in the latter ones, the subspaces
T and g0 coincide, while in an IARA,T might be a proper subspace ofg0. This in
particular, forcesg0 not to be necessarily abelian. In this case, to have a controlon
the action of� on the pair (g0, T), we need the following “tameness condition” whose
offshoot is given in Lemma 5.8.

(A5) If {0} ¤ g
Nj
�(0) � g0, then T Nj

¤ {0}, j 2 Z.

Lemma 5.8. Suppose� satisfies(A1)–(A4). Also suppose thatg0 is abelian or

(A5) holds for � . If j 2 Z and g
Nj
�(0) ¤ {0}, then there exist e2 g

Nj
�(0) and f 2 g

�

Nj
�(0)

such that[e, f ] D 0, but (e, f ) ¤ 0.

Proof. Assumej 2 Z and g
Nj
�(0) ¤ {0}. By (3.9), g

Nj
�(0) D

P

{�2R j �(�)D0} � j (g
�

). If
� j (g

�

)¤ 0 for some nonzero root� with �(�)D 0, we are done by Lemma 5.7. Other-

wise, {0} ¤ g
Nj
�(0) D g

j
0 D � j (g0) � g0. Now if g0 is abelian, then since (� , � ) is non-

degenerate andZm-graded ong0, there existse2 g
Nj
0 and f 2 g

�

Nj
0 such that (e, f ) ¤ 0

but asg0 is abelian [e, f ] D 0. If (A5) holds, then,T Nj
D � j (T)¤ 0. Since (�, �) is non-

degenerate andZm-graded onT , there existe2 T Nj and f 2 T�

Nj such that (e, f ) ¤ 0
but asT is abelian [e, f ] D 0.

Assumption (A5) (Lemma 5.8) will be used to prove condition (IA2) holds for a
Lie algebraOg which will be introduced in Section 7.

6. Fixed point subalgebras of IARA’s

An interesting subject of research on algebras is the study of subalgebra of points
which are fixed by certain types of automorphisms. The starting point of such a study,
in our context, is the work of Borel and Mostow [15] on semisimple Lie algebras.
They showed that the subalgebra of fixed points of a finite order automorphism of a
semisimple Lie algebra is a reductive Lie algebra. Motivatedby this work, in [9], the
authors showed that the fixed point subalgebra of an extendedaffine Lie algebra is a
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sum of extended affine Lie algebras (up to existence of some isolated root spaces), a
subspace of the center and a subspace which is contained in the centralizer of the core.
They also showed that the core of the fixed point subalgebra modulo its center is iso-
morphic to the direct sum of the cores modulo centers of the involved summands. In
[10], the authors did a similar study on the fixed points of a Lie torus under certain
automorphism and obtained some similar results. In [22], the author considered the
same study in a rather more general context, namely root graded Lie algebras. She
proved that the core of the subalgebra of fixed points of a rootgraded Lie algebra
under a suitable automorphism is the sum of a root graded Lie algebraL and a sub-
spaceK whose normalizer containsL.

We now consider the same question for an IARA, namely what is the structure
of fixed points of a division IARA (g, T) under an automorphism� satisfying ax-
ioms (A1)–(A4). We will show, using the results of the previous sections, that this
subalgebra is a division IARA with toral subalgebraT0. Since conditions (A1)–(A4)
introduced in [9] and [10] coincide with conditions (A1)–(A4) given here, the follow-
ing theorem generalizes and at the same time gives a new perspective to some of the
results there.

Theorem 6.1. Let (g, T) be a division IARA with corresponding root system R
and bilinear form( � , � ). Suppose� is an automorphism ofg satisfying(A1)–(A4) and
g0 (resp. T0) is the set of fixed points of� on g (resp. T). Then(g0, T0) is a division
IARA with root system

(6.2) R�

WD {�(�) j � 2 R, g0
�(�) ¤ 0}.

In particular, R� is an affine reflection system.

Proof. By Lemma 3.16,

g0
D

M

�(�)2�(R)

g0
�(�) D

M

Q�2R�

g0
Q�

where R� is given by (6.2). So (g0, T0) is a toral pair. In addition, since by (3.5)
the form (� , � ) is Zm-graded ong, it is nondegenerate on bothg0 and T0, therefore
(IA1) holds. Also (IA2)0 holds by Lemma 5.4. Next let� 2 R� with (�(�),�(�)) ¤ 0,
and x 2 g0

�(�). By Theorem 5.5, (g, T0) is an IARA and so (IA3) holds for (g, T0).

Therefore asg0
�(�) � g

�(�), adx is locally nilpotent ong and so ong0. This shows

that (IA3) holds for (g0, T0) and so (g0, T0) is a division IARA. Now R� as the root
system of an IARA is an affine reflection system.

REMARK 6.3. By Theorems 5.5 and 6.1, both�(R) and R� are affine reflection
systems withR�

� �(R). It is shown in [9] thatR� might be a proper subset of�(R),
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and in fact in many examples this is the case. It is worth mentioning thatR� and�(R)
might not be necessarily of the same type, see [9, Example 3.70].

7. Extended Affinization

In this section, we studyextended affinization, a process in which starting from
an IARA g with root systemR and a finite order automorphism ofg, we get a new
IARA whose root system is an extension of�(R) (see (3.12)). The notion ofaffiniza-
tion was initiated by V. Kac [16] in order to realize affine Kac–Moody Lie algebras.
Since then, this method has been used by different authors torealize certain generaliza-
tions of affine Lie algebras, e.g. in [5], the authors use thismethod to realize extended
affine Lie algebras, also in [2] and [3], using this method, the authors realize Lie tori.

Throughout this section, (g,T) is an IARA with root systemR, � an automorphism
of g satisfying (A1)–(A3), andT0 the set of fixed points of� on T . We recall that
for � 2 R, �(�) is the restriction of� to T0 and that we have a (h�(R)i, Zm)-grading
on g as in Lemma 3.16. Suppose3 is a torsion free abelian group and let�W 3! Zm

be a group epimorphism. For� 2 3, we takeN� WD �(�).
SupposeA is a unital commutative associative algebra. In addition, supposeA D

L

�23

A� is predivision3-graded. It is easy to see that in this case supp
3

(A) is a
subgroup of3. Since the3-grading ofg depends only on supp

3

(A), we may assume
without loss of generality that3 D supp

3

(A), that is,

(7.1) A�

¤ {0} for all � 2 3.

Further assume thatA admits a3-graded invariant nondegenerate symmetric bilinear
form �, where “invariant” means�(ab, c) D �(a, bc) for all a, b, c 2 A. In addition, we
assume that

(7.2) �(1, 1)¤ 0.

One gets using this that�(a, a�1) ¤ 0 for all invertible elementsa 2 A as the form is
invariant. We now consider the Lie algebrag
A with multiplication defined by

[x 
 a, y
 b] D [x, y] 
 ab

for every x, y 2 g and a, b 2 A. Now define a form ong
A by linear extension of

(7.3) (x 
 a, y
 b) D (x, y)�(a, b),

for x, y 2 g and a, b 2 A. It is easy to see that this form is a3-graded invariant
symmetric bilinear form ong
A.

The following is a slight generalization of [2, Definition 3.1.1].
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DEFINITION 7.4. The subalgebra

Qg WD L
�

(g, A) WD
M

�23

(gN� 
A�)

of g
A is called theloop algebraof g relative to� andA. In the case that� D 0,
we denoteL

�

(g, A) by L(g, A) and note thatL(g, A) D g
A.

From definition, it is clear thatQg is a 3-graded Lie algebra with homogenous
spacesQg� WD g

N

�


A�, � 2 3.
In the following lemma, we make use of a fact from linear algebra, namely if

V is a vector space equipped with a nondegenerate symmetric bilinear from andW a
finite dimensional subspace ofV , then there is a finite dimensional subspaceU of V
containingW such that the form restricted toU is nondegenerate (for a proof see [18,
Lemma 3.6]).

Lemma 7.5. The form ong 
 A restricted to Qg is a 3-graded invariant non-
degenerate symmetric bilinear form.

Proof. As we have seen above the form ong 
 A is 3-graded symmetric and
invariant. So it remains to prove the nondegeneracy of the form. Since (� , � ) is 3-
graded onQg, it is enough to show that for fixed� 2 3 and 0¤ Qx 2 g

N

�


 A�, there
exists Qy 2 g�N�
A�� such that (Qx, Qy)¤ 0. Now we may writeQx D

Pn
iD1 xi 
ai , where

{a1, : : : ,an} is a linearly independent subset ofA� and xi 2 g
N

� for 1� i � n. Since� is
nondegenerate onA�

�A��, there exists a finite dimensional subspaceX of A�

�A��

such that{a1, : : : , an} � X and that the form restricted toX is nondegenerate. Extend
{a1, : : : , an} to a basis{a1, : : : , an, anC1, : : : , am} of X. Now as� is nondegenerate
on X, there existb1, : : : , bm 2 X such that�(ai , b j ) D Æi j for all i , j . For 1� j � n,
let Nb j be the projection ofb j into A�� with respect to the decompositionA�

� A��.
Since� is 3-graded anda1, : : : , an 2 A�, we have

(ai , Nb j ) D (ai , b j ) D Æi , j for all 1� i , j � n.

Now x j ¤ 0 for some j , as Qx ¤ 0. Since (� , � ) is nondegenerate andZm-graded on

g
N

�

�g�
N

�, there existsy j 2 g
�

N

� such that (x j , y j )¤ 0. So, settingQy WD y j 
 Nb j , we have

( Qx, Qy) D

 

n
X

iD1

xi 
 ai , y j 
 Nb j

!

D

n
X

iD1

(xi , y j )�(ai , Nb j )

D (x j , y j )�(a j , Nb j )

D (x j , y j ) ¤ 0,
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as required. This shows that the form onQg is nondegenerate.

Next suppose� 2 3, then by Proposition 3.14 and (3.15), we have

(7.6) Qg� D g
N

�


A�

D

M

�(�)2�(R)

(gN�
�(�) 
A�).

Now we set
QT WD T0


 1.

Then for � 2 R, �(�) can be considered as an element ofQT? by linear extension of
�(�)(t 
 1) D �(t) for t 2 T0. We consider the adjoint action ofQT on Qg. Suppose

t 2 T0, x 2 g
N

� and a 2 A�, for some� 2 3. We have

[t 
 1, x 
 a] D [t, x] 
 a 2 g
N

�


A�.

So the adjoint action ofQT on Qg stabilizesgN� 
A�. Define, for� 2 R,

Qg
�(�) WD {x 2 Qg j [Qt , x] D �(�)(Qt)x for all Qt 2 QT}.

Then it is easy to check thatgN�
�(�) 
A�

�

Qg
�(�) for � 2 R and � 2 3. So by (7.6),

(7.7)

Qg D
M

�23

Qg� D
M

�23

M

�(�)2�(R)

(gN�
�(�) 
A�)

D

M

�(�)2�(R)

M

�23

(gN�
�(�) 
A�)

�

M

�(�)2�(R)

Qg
�(�) � Qg.

Thus we have

(7.8) Qg D
M

�(�)2�(R)

Qg
�(�)

with

(7.9) Qg
�(�) D

M

�23

(gN�
�(�) 
A�).

Therefore we have the following lemma.

Lemma 7.10. Qg admits a compatible(h�(R)i, 3)-grading

Qg D
M

�23,2h�(R)i

g
N

�




A�
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where for any� 2 3, Qg�


D {0} if  � �(R).

Consider theF-vector space

(7.11) V WD F 

Z

3.

Since3 is torsion free, we may identify3 with the subspace 1
3 of V. Now as3
spansV, it contains a basis{�i j i 2 I } of V. For anyi 2 I , setdi 2 V

? by di (� j ) WD Æi j ,
j 2 I , and letV† be the restricted dual ofV with respect to the basis{�i j i 2 I },
namely

(7.12) V†
WD span

F

{di j i 2 I } � V?.

Define

(7.13) Og WD3L
�

(g, A) WD Qg� V � V† and OT WD QT � V � V†
D (T0


 1)� V � V†.

If � D 0, we denoteOg by2L(g, A). We make Og into a Lie algebra by letting the Lie
bracket be

(7.14)

[d, x] D d(�)x, d 2 V†, x 2 Qg�, � 2 3,

[V, Og] D {0},

[x, y] D [x, y]
Qg C

X

i2I

([di , x], y)�i , x, y 2 Qg,

where by [� , � ]
Qg and (� , � ), we mean the Lie bracket and the bilinear form onQg,

respectively. Note that for eachx, y 2 Qg,
P

i2I ([di , x], y)�i makes sense as [di , x] D 0,
for all but a finite number ofi 2 I . We next extend the form onQg to a bilinear form
on Og by

(7.15)
(V, V) D (V†, V†) D (V, Qg) D (V†, Qg) WD {0},

(v, d) D (d, v) WD d(v), d 2 V†, v 2 V.

The above form is clearly nondegenerate onOg. For any� 2 3, defineÆ
�

2

OT? by

Æ

�

((T 
 1)� V) D {0}, Æ

�

(d) D (�, d), d 2 V†.

Then the assignment� 7! Æ

�

affords an embedding of3 into OT?, by the nondegeneracy
of ( � , � ). So we may identify� with Æ

�

and suppose that3 � OT?.



EXTENDED AFFINIZATION 1061

For � 2 R, one can extend�(�) 2 �(R) to OT? by defining�(�)(V � V†) WD {0}.
Now let x 2 Qg�

�(�), � 2 3, � 2 R, and (t 
 1)C vC Nv 2 OT , t 2 T0, v 2 V, Nv 2 V†, then

[(t 
 1)C v C Nv, x] D [t 
 1, x]
Qg C Nv(�)x

D (�(�)(t 
 1)C Nv(�))x

D (�(�)C �)((t 
 1)C v C Nv)x.

This shows that

(7.16) Og D
M

Q�2

OT?

Og
Q�

,

where

Og
Q�

WD {x 2 Og j [Ot , x] D Q�(Ot)x for all Ot 2 OT}.

That is, (Og, OT) is a toral pair. Moreover, ifOR is the root system of (Og, OT), then

(7.17) OR� �(R)�3,

and for � 2 R and � 2 3,

(7.18) Og
�(�)C� D

(

g
N

�

�(�) 
A� if �(�)C � ¤ 0,
(g0

�(0)
A0)� V � V† if �(�)C � D 0.

Next for � 2 3, we put

(7.19) R
N

�

WD {� 2 R j g
N

�

�(�) ¤ {0}},

then it follows from Lemma 3.16, (7.16), (7.18), (7.8), (7.9) and (7.1) that

(7.20) RD
[

�23

R
N

�

and ORD
[

�23

(�(R
N

�

)C �).

Now we can prove the main theorem of this section which is a rather comprehen-
sive extension of [5, Theorem 3.63].

Theorem 7.21. Let (g, T) be a division IARA with corresponding root system R.
Suppose� is an automorphism ofg satisfying(A1)–(A4). Assume further that either
(A5) holds org0 is abelian. Suppose3 is a torsion free abelian group and�W 3! Zm

a group epimorphism. In addition, let A be a unital commutative associative predivi-

sion3-graded algebra, with supp
3

(A) D 3. Then(Og D3L
�

(g, A), OT) is an IARA with

root systemORD
S

�23

(�(R
N

�

)C�). Moreover, if R is indecomposable then so isOR. Fi-

nally, if T is a splitting Cartan subalgebra ofg andA0
D F , then OT is also a splitting

Cartan subalgebra ofOg.
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Proof. We have already seen that (Og, OT) is a toral pair, so it remains to verify
conditions (IA1)–(IA3) of Section 2. We know that the form introduced by (7.15) on
Og is nondegenerate on bothOg and OT and so (IA1) holds forOg.

We next show that (IA2) holds. Assume that� 2 R, � 2 3, �(�) C � ¤ 0 and
Og
�(�)C� ¤ 0. By (7.18), Og

�(�)C� D g
N

�

�(�) 
 A�, so g
N

�

�(�) ¤ 0 and A�

¤ 0. As A is

predivision3-graded, there existsa 2 A� and b 2 A�� such thatabD 1. To proceed
with the proof, we divide the argument into two cases�(�)¤ 0 and�(�)D 0. Assume

first that �(�) ¤ 0, then by Lemma 5.4, there exist 0¤ x 2 g
N

�

�(�) and 0¤ y 2 g�
N

�

��(�)

such that 0¤ [x, y] 2 T0, and thus

[x 
 a, y
 b] D ([x, y] 
 1)C
X

i2I

([di , x 
 a], y
 b)�i 2 OT n {0},

as required.

Next, assume�(�) D 0, then by Lemma 5.8, there existx 2 g
N

�

�(0) and y 2 g�
N

�

�(0)

such that [x, y] D 0 but (x, y) ¤ 0. So we have

[x 
 a, y
 b] D ([x, y] 
 1)C
X

i2I

([di , x 
 a], y
 b)�i

D 0C
X

i2I

�(a, b) di (�)(x, y)�i .

This is a nonzero element ofOT since (x, y) ¤ 0, �(a, b) D �(1, 1)¤ 0 and as� D
0C � D �(�)C � ¤ 0, di (�) ¤ 0 for somei 2 I . This means that (IA2) holds forOg.

Finally, we consider (IA3). Let� 2 R, � 2 3 and (�(�)C �, �(�)C �) ¤ 0. As
(�, �) D (�, �(�)) D 0, we have (�(�), �(�)) ¤ 0. Since by Theorem 5.5,�(R) is an
affine reflection system, one can use a similar technique as inthe proof of Theorem 5.5
to show that ad(x) is locally nilpotent for anyx 2 Og

�(�)C�. So Og satisfies (IA3) andOg

is an IARA. Moreover, the root systemOR of (Og, OT) satisfies OR D
S

�23

(�(R
N

�

) C �),
by (7.20).

Next, supposeR is indecomposable. Since3 is contained in the radical of the
form, OR is indecomposable if and only if[

�23

�(R
N

�

) is indecomposable. But by (7.20)
this union is�(R) which is indecomposable by Lemma 3.18.

To see the final assertion of the theorem, we note that ifg0 D T , then by (A4),
Cg0(T0) D T0. Therefore asA0

D F , using (7.18), we have

Og0 D ((g
�(0) \ g0)
A0)� V � V†

D (Cg0(T0)
 1)� V � V†

D (T0

 1)� V � V†

D

OT .

Thus OT is a splitting Cartan subalgebra ofOg as required.
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Corollary 7.22. Let (g, T) be an IARA with corresponding root system R and
bilinear from ( � , � ). Let 3 be a torsion free abelian group andA be a unital com-
mutative associative predivision3-graded algebra, with supp

3

(A) D 3. Define Og WD

(g 
 A) � V � V† and OT WD (T 
 1)� V � V†, whereV and V† are defined as in
(7.11) and (7.12), respectively. Then(Og, OT) is an IARA with root systemORD R�3.
Moreover, if R is indecomposable then so isOR.

Proof. Taking� to be the identity automorphism and recalling from Remark 2.4
that T ¤ {0}, it is apparent that� satisfies conditions (A1)–(A5). Therefore, if (g, T)
is division, we are done by Theorem 7.21. Now a close look at the proof of The-
orem 7.21, shows that the division property, that is (IA2)0, guarantees the existence of

nonzero elementsx 2 g
N

�

�(�) and y 2 g�
N

�

��(�) (� 2 R and � 2 3 with �(�) C � ¤ 0)
such that

(7.23)

�

[x, y] 2 T0
n {0} if �(�) ¤ 0,

[x, y] D 0 and (x, y) ¤ 0 if �(�) D 0.

However when� is the identity automorphism, (7.23) clearly holds with theweaker ax-
iom (IA2). Finally, since� is the identity automorphism, it follows immediately from
Theorem 7.21 thatORD R�3

Corollary 7.24. Let (g, T) be a division IARA with corresponding root system
R. Suppose� is an automorphism ofg satisfying(A1)–(A4). Assume further thatg0

is abelian. Suppose3 is a torsion free abelian group and� W 3 ! Zm a group epi-
morphism. In addition, let A be a commutative associative3-torus, with supp

3

(A) D

3. Then(Og D3L
�

(g, A), OT) is a division IARA, with root systemOR.

Proof. By Theorem 7.21, (Og, OT) is an IARA. So the only condition which we

should verify is (IA2)0. Suppose� 2 R, � 2 3, �(�) C � ¤ 0 and Og
�(�)C� D g

N

�

�(�) 


A�

¤ {0}. SinceA is a 3-torus, A� is one dimensional, sayA�

D span
F

{a}, where
a is invertible with inverseb. Then any element ofOg

�(�)C� is of the form x 
 a for

some 0¤ x 2 g
N

�

�(�). Now fix a nonzero elementx 
 a 2 Og
�(�)C�. If �(�) ¤ 0, then

by Lemma 5.4, there existsy 2 g�
N

�

��(�) such that 0¤ [x, y] 2 T0. So as [x, y] ¤ 0,
we have

[x 
 a, y
 b] D ([x, y] 
 1)C
X

i2I

([di , x], y)�i 2 OT n {0}.

Now suppose�(�) D 0. We claim that there existsy 2 g�
N

�

�(0) such that [x, y] D 0

and (x, y) ¤ 0. For this, takej 2 Z such that Nj D N�. By Lemma 4.4 (ii), we have

g
N

�

�(0) D g
Nj
�(0) D

X

{�2orb(R) j �(�)D0}

� j (g
�

).
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Therefore,x D � j (x1)C� � �C� j (xn) wherexi 2 g
�i

for some�1,:::,�n belong to distinct
� -orbits of R and �(�i ) D 0, 1� i � n. As x ¤ 0, � j (xk) ¤ 0 for someF . Now if
�k ¤ 0, then by Lemma 5.7, there existsyk 2 g

��k
such that (� j (xk), �

� j (yk)) ¤ 0 and
[� j (xk), �

� j (yk)] D 0. Set y WD �

� j (yk), then by Lemma 4.3 (iii), we have [x, y] D
[� j (xk), �

� j (yk)] D 0. Also by Lemma 5.1 (ii), we have

(x, y) D
n
X

iD1

(� j (xi ), �� j (yk)) D
1

m

n
X

iD1

((xi ) j , yk) D (� j (xk), �
� j (yk)) ¤ 0,

where considering (4.6), we note that fori ¤ k, ((xi ) j , yk) 2 (g
�i

, g
��k

) D {0}, as�i �

�k ¤ 0. So we are done in the case�k ¤ 0.

Next, suppose that�k D 0. Then 0¤ � j (xk) 2 � j (g0) � g
Nj
�(0). Since (� , � ) is

nondegenerate ong0, there existsy 2 g0 such that (� j (xk), y) ¤ 0. But as (� , � ) is

Zm-graded, we may assume thaty D �

� j (y) 2 g
�

Nj
0 � g

�

Nj
�(0). Then [� j (x), y] D 0, as

by assumptiong0 is abelian. Now repeating the same argument as in the case�k ¤ 0
(using Lemmas 4.3 (iii) and 5.1), we get (x, y) ¤ 0 and [x, y] D 0. This completes the
proof of the claim. Now we note that� ¤ 0 as�(�)C � ¤ 0. So d j (�) ¤ 0 for some
j 2 I . Therefore we have

[x 
 a, y
 b] D 0C
X

i2I

([di , x 
 a], y
 b)�i D
X

i2I

di (�)�(a, b)(x, y)�i 2 OT ,

which is nonzero, as�(a, b) ¤ 0, (x, y) ¤ 0 andd j (�) ¤ 0.

Suppose that (g, T) is an IARA with root systemR and � is an automorphism of
g satisfying (A1)–(A4) such that the order of� is prime. As we have already seen,
the automorphism� induces a linear isomorphism� W T?

! T? with � (R) D R. In
fact � is an automorphism ofR in the sense of [19]. The following lemma shows that
� (Æ) D Æ for eachÆ 2 R0. In particular, one gets that an automorphism of an IARA,
satisfying the above conditions, preserves each isotropicroot space. This is a nontrivial
fact that one should consider in constructing suitable automorphisms of IARA’s.

Lemma 7.25. Suppose(A, (� , �), R) is a tame affine reflection system. In addition,
suppose that A is2-torsion free, and � is an automorphism of A with� (R) D R (a
root system automorphism) of period m such that�(Æ) WD (1=m)

Pm�1
iD1 �

i (Æ) ¤ 0 for
any nonzeroÆ 2 R0. Then� (Æ) D Æ for eachÆ 2 R0.

Proof. SinceR is tame, it follows from [12, Theorem 1.13] that

(7.26) R0
C 2hR0

i � R0.

Now supposeÆ 2 R0. Then by (7.26),nÆ 2 R0 for all n 2 Z and son� (Æ) 2 R for all
n. But this can happen only if� (Æ) 2 R0 [12, Theorem 1.13]. Now again from (7.26),
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we have 2Æ�� (2Æ) 2 R0. But �(2Æ�� (2Æ))D 0 and so by assumption 2(Æ�� (Æ))D 0.
Now since A is 2-torsion free, we get� (Æ) D Æ as required.

REMARK 7.27. In this remark, we discuss the structure of a commutative as-
sociative predivision3-graded algebraA, 3 an abelian group. We refer the reader
to [19, Section 4.5] for a more general discussion. As we havealready mentioned,
supp

3

(A) is a subgroup of3, and so without loss of generality we may suppose that
supp

3

(A) D 3. Suppose{u
�

j � 2 3} is a family of invertible elementsu
�

2 A�. Put
B WD A0, thenA�

D Bu
�

for all � and {u
�

}
�23

is a free basis for theB-moduleA

and the multiplication onA is uniquely determined by

(7.28) u
�

u
�

D � (�, �)u
�C�

and u
�

bD bu
�

(b 2 B),

where� W 3�3! U (B) is a function,U (B) being the group of units ofB. Associa-
tivity and commutativity ofA leads to

(7.29) � (�, �)� (�C �, �) D � (�, �)� (�, �C �), � (�, �) D � (�, �),

for �,�,� 2 3. In other words,� W 3�3! U (B) is asymmetric2-cocycle. Conversely,
given any unital commutative associativeF-algebraB and a symmetric 2-cocycle� W 3�
3 ! U (B), one can define a commutative associative predivision3-gradedF-algebra
by (7.28). To be more precise, letA be the freeB-module with basis{u

�

}
�23

, namely
A WD

L

�23

Bu
�

. Then, identifyingB with Bu0 throughb 7! b� (0, 0)�1u0, b 2 B, and
using (7.28) as the multiplication rule onA, we get the desired algebra. A commutative
associative algebra arising in this way is called atwisted group algebraand is denoted by
Bt [3]. To summarize, any commutative associative predivision graded algebraA with
support3 is graded isomorphic to a twisted group algebraBt [3]. It follows that,A is
division graded if and only ifB is a field, and is an associative3-torus if and only if
B D F .

8. Examples

In this section, we illustrate extended affinization through some examples. In the
first example, using extended affinization process, we construct a generalization of the
class of toroidal Lie algebras. In the second example, starting from a certainIARA,
we show that we can iterate extended affinization process to get a series of IARA’s.
Finally, in the last example, we apply extended affinizationstarting from an IARA of
type A and ending up with an IARA of typeBC. Before going to the main body of
this section, we make a convention that in each example,

B is a unital associative algebra overF admitting an invariant
nondegenerate symmetric bilinear form� such that�(1, 1)¤ 0.(?)
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EXAMPLE 8.1. Suppose (g, T) is an IARA with corresponding root systemR
and bilinear form (� , � ). AssumeB is commutative and let3 be a torsion free abelian
group. Consider the twisted group algebraBt [3] WD

L

�23

Bz� and recall that we have
bz�cz� D bc� (�, �)z�C�, z�b D bz� for b, c 2 B, �, � 2 3 where � W 3 � 3! U (B)
is a symmetric 2-cocycle. We extend� to Bt [3] by linear extension of

(8.2) �(bz�, cz�) WD

�

�(b, c) �C � D 0,
0 �C � ¤ 0.

Set Bt [3]� WD Bz�, � 2 3. Then by Remark 7.27,Bt [3] is a commutative associative
predivision3-graded algebra overF and one can easily verify that� is a 3-graded
invariant nondegenerate symmetric bilinear form onBt [3].

Define Og and OT as in (7.13) with� D 0. Namely

Og D5L(g, Bt [3]) D (g
 Bt [3]) � V � V† and OT D (T 
 1)� V � V†,

with corresponding Lie bracket and bilinear form defined by (7.14) and (7.15), respect-
ively. Then by Corollary 7.22, (Og, OT) is an IARA with root systemORD R�3. We note
that this structure in fact generalizes the well known structure of toroidal Lie algebras.

EXAMPLE 8.3. We continue with the same notations as in Example 8.1, inpar-

ticular Og D5L(g, Bt [3]). Set A WD Bt [3] and suppose� 2 Aut(g) satisfies axioms
(A1)–(A4). Let � W 3! Z be a group homomorphism. The map� induces an auto-
morphism ofA, denoted again by�, defined by�(x) WD ��(�)x for any x 2 A�, where
� is a primitivem-th root of unity. Both� and� can be considered as automorphisms
of Og by

� D � 
 id on g
A and � D id on V � V†,

� D id
 � on g
A and� D id on V � V†.

Set O� WD �� 2 Aut(Og). We claim that O� satisfies (A1)–(A4). Since� and� commute
and both are of periodm over Og, (A1) holds. Also (A2) holds since� and� stabilize
T 
 1, V as well asV†, and (A3) holds since� preserves the form (� , � ) on g and�
preserves the form� on A. For (A4), first note that

Og0
D

 

X

�23

g��(�)

A�

!

� V � V† and OT0
D (T0


 1)� V � V†.

Also

C
Og( OT

0
) D (Cg(T0)
A0)� V � V†,

so

C
Og

0( OT0) D (Cg0(T0)
A0)� V � V†.
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Since� satisfies (A4),Cg0(T0) � g0. Thus

C
Og

0( OT0) � (g0
A0)� V � V†
D

Og0

and (A4) holds for O� .
We now further assume thatg is division, g0 is abelian andB D F . Then by

Remark 7.27 and Corollary 7.24, (Og, OT) is a division IARA. In addition, Og0 D (g0 


B)�V�V† is abelian. Therefore (Og, OT) and O� satisfy conditions of Theorem 7.21, with
Og, OT and O� in place ofg, T and � , respectively. Now let30 be a torsion-free abelian
group, � 0 W 30

! Zm a group epimorphism andA0 a suitable30-graded commutative
associative algebra. Then starting from (Og, OT) and O� , one can use Theorem 7.21 to

construct a new IARA4L
�

0(Og, A0). This process can be iterated using suitable inputs.

EXAMPLE 8.4. SupposeJ is a nonempty index set, with a fixed total ordering,
and q D (qi j ) is a J � J matrix overF such thatqi j D �1, q j i D qi j and qi i D 1, for
all i , j 2 J. We recall thatB and � are as in (?). Let A WD Bq[z�1

j ] j2J be the unital

associative algebra generated by{zj , z�1
j , b j j 2 J, b 2 B} subject to the relations

(8.5) zj z
�1
j D z�1

j zj D 1, zi zj D qi j zj zi and zi bD bzi , (i , j 2 J, b 2 B).

Take3 WD ZjJj and for�D (� j ) j2J 2 3. Setz� WD5 j2Jz
� j

j 2 A, where product makes
sense with respect to the total ordering onJ. ThenA is a predivision3-graded as-
sociative algebra withA�

D Bz� for each� 2 3. Moreover, a similar argument as in
[14, Proposition 2.44] shows that

(8.6) A D [A, A] � Z(A).

Let K be a nonempty index set and denote byK�, the setK ℄ {0}℄ (�K ) where
�K is a copy ofK whose elements are denoted by�k, k 2 K . Let K be the Lie sub-
algebraslK�(A) of all finitary K�

� K� matrices overA generated by the elementary
matricesaei j , i ¤ j 2 K�, a 2 A (for details the reader is referred to [19, Section 7]).
One knows that there is a unique3-grading onK such that for eachi ¤ j 2 K� and
a 2 A�, aei j 2 K�.

One can extend� from B to A as in (8.2), then we can define a3-graded invariant
nondegenerate symmetric bilinear form on the set of finitaryK�

� K�-matrices by
linear extension of

(aei j , beks)K WD Æi ,sÆ j ,k�(a, b) for a, b 2 A, i , j , k, s 2 K�.

By [19, Section 7.10] the restriction of this form toK is nondegenerate if and only if
Z(K) D {0}. Also by [19, Section 7.4],Z(K) D {0} if jK j D 1, and

(8.7) Z(K) D {z I2nC1 j z 2 Z(A), (2nC 1)z 2 [A, A]},
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if jK j D n < 1, where by I2nC1 we mean the identity (2n C 1) � (2n C 1) matrix.
Therefor by (8.6),Z(K) D {0} in this case too. So the restriction of the form toK is
3-graded and nondegenerate.

SupposePT WD span
F

{ei i �ej j j i ¤ j 2 K�}. For i 2 K�, define"i 2 PT? by "i (ej j �

ekk) WD Æi j �Æik , for j ¤ k 2 K�. For i , j 2 K�, put P�i j WD "i �" j and PR WD {P�i j j i , j 2

K�}. For P� 2 PR, setK
P�

WD {x 2 K j [t,x] D P�(t)x for all t 2 PT}. ThenK D
L

P�2

PRK P�

.
We note thatK0 consists of diagonal elements ofK. In addition, if we assume that
�(1, 1)D 1, then for anyi , j , s, k 2 K with i ¤ j and s¤ k, we have

(ei i � ej j , ekk � ess)K D Æik � Æis � (Æ jk � Æ js)

D �i (ekk � ess) � � j (ekk � ess)

D P�i j (ekk � ess).

Thus t
P�i j WD ei i � ej j is the unique element inPT representingP�i j via ( � , � )K.

Next, consider theF-vector spaceV WD F 

Z

3, identify 3 as a subset ofV and
fix a basis{� j j j 2 J} for V. Define the vector spaceV†

WD

P

j2J Fd j � V? as in
(7.12). Set

g WD K� V � V† and T WD PT � V � V†.

Define the Lie bracket ong as in (7.14), and extend the form (� , � )K on K to a
form ( � , � ) on g as in (7.15). Then it is clear that (� , � ) is nondegenerate both ong
and T .

We note that eachP� 2 PR can be considered as an element ofT? by requiring
P�(V) D P�(V†) WD {0}. One can easily see thatt

P�

representsP� via ( � , � ) for each
P� 2

PR. Also we can consider any� 2 3 as an element ofT? by �( PT) D �(V) WD {0}

and �(d) WD d(�) for any d 2 V†. Then clearlyt
�

D �. If for � 2 T? we defineg
�

in
the usual manner, then it is easy to verify that for any� 2 3,

(8.8)

g
P�i j C�
D A�ei j , ( P�i j ¤ 0),

g
�

D the set of diagonal matrices inK with enteries fromA�, (� ¤ 0),

g0 D (the set of diagonal matrices inK with enteries fromA0
� V � V†.

So g D
L

P�2

PR,�23 g
P�C�

. Therefore (g, T) is a toral pair with root system

RD PRC3,

and (IA1) holds forg. We next show that (IA2) holds. Fix� 2 3 and choose an
invertible elementa 2 A�, then for i ¤ j we have

(8.9)

[aei j , a�1ej i ] D ei i � ej j C
X

s2J

([ds, aei j ], a�1ej i )�s 2 T,

[a(ei i � ej j ), a�1(ei i � ej j )] D 2
X

s2J

ds(�)�(a, a�1)�s 2 T,
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where the first equality is always nonzero and the second equality is nonzero if� ¤ 0.
Note that if i ¤ j , then a�1ei j 2 g

P�i j ��
, and a�1(ei i � ej j ) 2 g

��

. So (IA2) holds.

Finally, since PR is a locally finite root system of typePAK� , (IA3) holds by a similar
argument as in the proof of Theorem 5.5. Consequently, (g, T) is an IARA.

We further show thatg is division if and only ifA is division graded. Using the
fact that the elements ofPT are diagonal matrices with trace zero, it is not difficult
to see that ifg is division, thenA is division graded. Assume now thatA is division
graded. We must show that (IA2)0 holds forg. Let � 23, 0¤ a 2A� and i ¤ j 2 K�,
then

[aei j , a�1ej i ] D ei i � ej j C
X

s2I

([ds, aei j ], a�1ej i )�s 2 T n {0}

as required. Also if
P

i2K�

0
ai ei i 2 g

�

, for a finite subsetK�

0 of K�, where 0¤ ai 2A
�

and � ¤ 0, then
2

4

X

i2K�

0

ai ei i ,
X

i2K�

0

a�1
i ei i

3

5

D

X

s2J

ds(�)

 

X

i2K�

0

�(ai , a�1
i )

!

�s

D

X

s2J

ds(�)jK�

0 j�s 2 T n {0}

as required. Thereforeg is division if and only ifA is division graded. Indeed by [19,
Section 4.5],g is division if and only if B is division. So from now on,we assume
that B is division.

There exists an involutionN (a self-inverting anti-automorphism) onA (see [7,
Section 2]) such thatNzj D zj , for any j 2 J and NbD b for all b 2 B. By definition, it
is clear that�( Na, Nb) D �(a, b) for any a, b 2 A. Using the involutionN , we can define
an involution � on K by (aei j )� D ae

� j ,�i . I t is straightforward to see that the linear
map � W g! g defined by

� (x) D �x� for x 2 K and � (x) D x for x 2 V � V†,

is a Lie algebra automorphism.
We will show that� satisfies (A1)–(A5). Clearly� 2(x) D x for any x 2 g, thus

� satisfies (A1) withmD 2. Also it is clear from definition that� satisfies (A2). In
addition, observe that

(� (aei j ), � (beks)) D ((aei j )
�, (beks)

�)

D ( Nae
� j ,�i , Nbe

�s,�k)

D Æ jkÆis�( Na, Nb)

D Æ jkÆis�(a, b)

D (aei j , beks).
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So (A3) holds for� . Since m D 2 is prime, instead of (A4) we will show that�
satisfies the equivalent condition (A4)00 (see Lemma 4.1) namely, we show that for 0¤
� 2 R, �(�) ¤ 0. Recall from Section 3 that since� satisfies (A2), it induces an
automorphism onT?, denoted again by� . We now note that� maps diagonal matrices
to diagonal matrices andN preserves homogeneous subspaces ofA. Thus by (8.8) for
any � 2 3, � (g

�

) D g
�

, implying � (�) D �. Consequently,�(�) D � and so if� ¤ 0,
then so is�(�). On the other hand, we have��1

D � so for anyt 2 T and i ¤ j 2 K�,

�( P�i j )(t) D
1

2
( P�i j C � ( P�i j )(t))

D

1

2
( P�i j (t)C P�i j (� (t)))

D

1

2
( P�i j (t C � (t))).

Using this, we see that fori ¤ j 2 K� and t WD ei i � ej j ,

�( P�i j )(t) D

8

�

�

<

�

�

:

1 � j ¤ i and i , j ¤ 0,
1

2
� j ¤ i , i D 0 or j D 0,

2 � j D i .

Consequently,�(�) ¤ 0 for any 0¤ � 2 R. In particular (A4)00 holds.
We next show that (A5) holds. Leti ¤ j 2 K [ {0}, then we have

0¤ ei i � e
�i�i 2 T0 and 0¤ ei i � ej j C e

�i�i � e
� j� j 2 T

N1.

In particular (A5) holds. Therefore (g,T) and� satisfy all requirements of Theorem 7.21
and so we can construct a new IARA (Og, OT).

Note that by (8.8),

g0 D (the set of diagonal matrices inK with entries fromA0)� V � V0.

So, g0 is abelian if and only ifA0
D B is abelian, indeed, if and only ifB is a field.

Now that we have a suitable automorphism ong, choosing a torsion-free abelian
group30, a group epimorphism� W 30

! Z2 and a predivision30-graded commutative
associative algebraA0, we can use Theorem 7.21 to construct another IARA,Og with a
root system OR.

It is now interesting to have a discussion on the type ofOg. Note that we have

RD {�i � � j C � j i ¤ j 2 K�, � 2 3}.
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By definition of � one can easily check that for anyi 2 K , � (�i ) D ���i , and as we
have already seen� (�) D � for any � 2 3. Therefore

�(R) D

�

1

2
(�i � � j C �� j � ��i )C � i ¤ j 2 K�, � 2 3

�

D

�

�

1

2
(�i � ��i )C � i 2 K , � 2 3

�

[

�

�

1

2
((�i � ��i )� (� j � �� j ))C � i ¤ j 2 K , � 2 3

�

[ {�(�i � ��i )C � j i 2 K , � 2 3}.

This makes it clear that�(R) is an affine reflection system of typeBC. But by (7.20),
OR and �(R) have the same type. ThusOg is an IARA of type BC.
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