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Abstract

The application of computer to geologic mapping offers several merits in practical use such as rapid
generation and reduction of laborious manual procedures, as well as quantitative evaluation of geological
data. This paper presents mathematical formulations for the fundamental process of geologic mapping, and
the algorithms for the construction of computerized system. The principles of geology are formulated in
terms of relations between strata and of relations between the relations. For primary definition, five axioms
A I .... AS are postulated.

The inference rules for ordering the stratigraphic sequence from field-observation data are derived from
first three aXIOms :

[AI] WuW-'uE=!
[A2] LeW
[A3] CeK.

These axioms are based on the principle of original horizontality, the principle of original lateral extension
and the law of superposition.

Contact surfaces between strata are represented by the boundary surfaces that divide the 3-D space X
into two subspaces. Axioms A4 and AS are postulated as the formulation for CI and C2 types of boundary
surfaces simplified from conformity and unconformity; the successive sedimentation without erosion and the
sedimentation after erosion, respectively. These two axioms provide several inference rules to determine
uniquely the locational relation between strata and boundary surfaces based on field observations. The
locational relation is represented by a function t called "a logical model for locational relation".

The five axioms AI, ... , AS provide practical algorithms to construct a function g:X-+B that assigns a
unique stratum bEB to every point in the 3-D space X on the basis of field observations. Thus the logical
structure of geologic mapping is formulated systematically based on the axiom system A I, ... , AS modeling
a geologic structure consisting of sedimentary layers without faulting nor overfolding. According to the
formulation, computerized geologic mapping system "CIGMA" is constructed to create a geologic map based
on the observations through automatic data processing. More complex geologic structures will be introduced
into the geologic mapping system through further formulations of geologic principles and knowledge.

Key Words: Computerized geologic mapping system, Axiom system, Set theory, Binary relation,
Logical models of geologic structures, Function g, CIGMA

1. Introduction

The computer is useful for processing of voluminous data and laborious repetltlOn

of operation in analyzing experimental and observational data (ACTERBERC, 1974; DAVIS,

Department of Geosciences, Faculty of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku,
Osaka 558, Japan.
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1986; FISHER et al., 1987; SHIONO et al., 1988a; 1988b; 1990a; 1990b; 1992 etc.)

However, many problems have remained unresolved in computer processing of

geologic data, compared with data processing in other sciences. Many difficulties of

computer processing arise from the fact that geologic principles are described in the

natural language which we use for ordinary communication.

This paper attempts a mathematical formulation of geologic methods which can be

used as a theoretical basis to construct a computerized geologic mapping system. Computer

drawing of a geologic map provides several merits as follows:

Automatic mapping

Consistency of geologic map

Reproducibility of the same map from same data

Easy revision of maps

Multiplicity of graphic presentation.

As basic studies for computer processing of a geologic map, SHIONO et

al.(1987) presented the computer algorithm to determine geologic surfaces, and MAsuMoTo

et al.(1986; 1987) and SAKAMOTO et al.(1988; 1991) developed Basic programs for graphical

outputs of geologic maps. However, these studies do not treat of fundamental works

of geologic mapping such as determination of the stratigraphic sequence and inference

of geologic structu res.

For computer processing of geologic data, it is necessary to formulate mathematically

geologic principles that are usually described in the natural language, and to establish

the geologic inference system. The formulations lead to express inference rules explicitly

in terms of mathematical formulae, which can be translated into the computer

algorithm. Therefore, WADATSUMI et al.(1987) and SHIONO and WADATSUMI (1988)

proposed an idea of GEO-LOGICS (Geology-Oriented Logical §ystem) which directs

the reconstruction of a logical system of geology in mathematical form. It is expected

that studies on GEO-LOGICS provide theoretical bases for developments of effective

and consistent inference algorithms.

The computer mapping system based on GEO-LOGICS provides additional merits

as follows:

Effective usage of geologic principles

Automatic judgement by computer instead of expert geologist

Automatic inference of geologic structure appropriate to a given set of data .

This paper analyzes the working process for constructing a geologic map from a

viewpoint of GEO-LOGICS. Geologic concepts and basic assumptions are defined

strictly in terms of set theory, and the computer algorithms for data processing are

derived from these assumptions.

The readers are requested to refer to textbooks of set theory and/or discrete

mathematics (e.g., GILL, 1976; Lru, 1986) for details regarding the mathematical notations
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used In this paper.

2. Basic Framework of Geologic Mapping by Computer

245

Prior to the mathematical description of geologic concepts, several sets and a 3-D

space are introduced and the outline of discussions is reviewed in this section.

2.1 Three-dimensional Space and Strata

Partitioning of a 3-D space into strata is one of main concerns In this paper.

Two basic sets X and B are defined as follows:

X is a 3-D Euclidean space in which the orientation and the distance are defined

in ordinary sense.

B = {b l , b2 , ... , b,.} is a set of all names of strata distributed in X, where 11 is the number

of strata.

If there is a rule to

in X, then the rule

denoted by g:X -+ B.

assign a unique name of stratum name in the set B to each point

can be said to be a function from a set X into_a set B, which is

The function g defines the distribution of strata in the 3-D space, and:

IS interpreted to show that a point p is included 10 a stratum bi'

The space where a stratum is distributed is represented by an 10verse image of the

function g.

shows the space where a stratum bi is distributed. Let A be the range of the function (f:

Then, A is a partitIOn of the set X, and the function (f:B-+A is a bijective mapp10g

from B to A. (f(bJ is called here a stratum named bi'

Each stratum is bounded by some contact surfaces. Let S={SI' S2' ... , sm} be a

set of boundary surfaces defined as surfaces which include at least one contact surface

between strata, and also divide a 3-D space into two subspaces. Then, it is possible

to represent each stratum using the boundary surfaces. This indicates that a function

g:X-+ B can be defined by some combinations of boundary surfaces.

2.2 Outline of Logical System for Deriving the Function g

Five axioms Al, "', AS, as described later, provide basic algorithms to construct

a function g:X-+B. Axioms Al, A2, A3 are basic principles of geology concerning with

relations between strata. These axioms introduce a principle to infer the stratigraphic

sequence from observed relations. Axioms A4 and AS are postulates concerning with

Cl and C2 types of boundary surfaces, respectively. These types correspond to a
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conformity and an unconformity, respectively. Axioms A4 and A5 introduce the

locational relation between strata and boundary surfaces. The locational relation is

represented by a function t:B x S--+{ -1, 0, + I} called a logical model for locational

relation.

For the use of inclinational data, inclinational relation along vertical axes is

inferred. Inclinational relation between strata and boundary surfaces is represented by

a function p:B x S--+{O, I} called a logical model for inclinational relation. Data required

to determine a boundary surface are selected using logical models both for locational

relation and for inclinational relation. Each 3-D boundary surface is determined by the

method of constrained optimization. Combining logical models and 3-D boundary

surfaces, we can define the function g:X--+B that assigns a unique name of stratum to

every point in the 3-D space X. Finally we can draw a geologic map which illustrate

the distributions of strata defined by the function g.

2.3 Main Flow of Data Processing

Figure I shows a flow diagram of data processing based on above theories.

(0) Preparation of input data :

Before starting to process, we prepare data obtained from the field survey. Observational

data are translated for computer processing as follows

XI' YI' ZI, ~I' 17 I' IX 1, /31 , 'I, n l

.. ,
X r , Y" Z" ~" /1" IX" /31> '" n r

XN, YN, zN, ~N' 'IN, IXN, /3N, 'N' n N

where X, Y and Z are coord inates of observation points in an orthogonal coordinate

system in which x, y and Z axes are oriented eastward, northward and upward, respectively,

~ and 17 are strike and dip, respectively, IX and /3 are the names of strata, and, and n

are parameters to represent structural relations. ,is a parameter for contact type

explained in Section 4, and n is a parameter for inclinational relation explained in Section 5.

(1) Inference of the stratigraphic sequence:

Observed stratigraphic relations of strata are represented in the form of a relation matrix

to determine the stratigraphic sequence by matrix operations.

(2) Construction of the logical models of geologic structures

According to given types of boundary surfaces, locational relations between strata and

boundary surfaces are inferred to construct a logical model for locational relation and

a logical model for inclinational relation.

(3) Determination of the boundary surfaces:

The boundary surfaces are determined as the smoothest surfaces that satisfy both

locational and inclinational data selected from the observations referring to two kinds
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( 0) Input Data

X n Yr , Zr' ~ r' T}r a r' 8 r' 'r r' 1t r

( 1 ) +Stratigraphic Sequence

( 3 )
3-D Figure of Boundary Surface

Constrained Optimization

Locational Data

Inclinational Data ... Data Selection
(2) t

Logical Models of Geologic Structures

Locational Relation Inclinational Relation

53 52 51

b 4 +1 0 0
b 3 -1 +1 0
b 2 0 -1 +1
b 1 0 -1 -1

53 52 51

b 4 1 1 0
b 3 1 1 0
b 2 0 0 1
b 1 0 0 1

Funchong
Binary Numbers Strata

1 1 1 b 4

1 1 0 b 4

1 0 1 b 4

1 0 0 b.
0 1 1 b)
0 1 0 b)

I
0 0 1 b 2

0 0 0 b 1 I

( 5 ) ~

/' A ( 4 )
Function g

')I

V V

/' /'

,

/' /'

Function g'

Geologic Map
Fig. 1. Flow diagram of computerized geologic mapping process.
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of logical models.

(4) Creation of a function g:X-> B :

The function g:X-+B is constructed by combining 3-D figures of boundary surfaces and

the logical model for locational relation.

(5) Graphical presentation :

Finally, a 3-D geologic map is drawn on a display by coloring the strata respective to

all grid cells of the topographic surface and four side sections.

3. Inference of Stratigraphic Sequence

As a first step of geologic mapping, we consider the inference of the stratigraphic

sequence.

3.1 Ordering of Strata

3.1.1 Formulation of Geologic Principles

In this section, let us discuss logical meanings of the following geologic principles:

the law of superposition : The rocks in a given succession of strata decrease In

age from the bottom to the top ;

the principle of original horizontality : The upper surfaces of sedimentary deposits

initially come to rest essentially parallel to the surface of deposition, which is usually

parallel to the horizon or inclined to it at relatively low angles;

the principle of original lateral extension : A given stratum of rock resulting from

the dumping of sediment into a basin must eventually thin out in all direction,

unless it abuts a steep margin of preexisting matter.

These three principles were enunciated first in 1669 by N.STENO. His original

statements are translated in English by ].G.WINTER and reprinted in CLOUD (1970).

According to SHIONO and WADATSUMI (1992), three principles are formulated as

follows:

Axiom Al

Axiom A2

Axiom A3

Definitions of binary relations W, L, C, K on the set B are given 10 Table 1 and

Fig. 2. Trivial relations I, E, 0 and properties of relations are listed in Table 2.

Axiom A1 shows that b;Wbj, bjWb j or bj=bj holds true for all bj and bj. Axiom

A2 shows that if bj is stratigraphically lower than bj, then u(bJ is below u(b) along all

vertical lines through both u(b j) and u(b). Axiom A3 shows that if u(bJ is under u(b),

then b j is older than bj . Axioms A1 and A2 are formulations of both principles of

original horizontality and original lateral extension, and Axiom A3 is a formulation of



Symbol Defmition

Table 1. Relations between strata.

Geologic interpretation

T

v

w

C

L

K

blbj ~ a (bi )- n a (bj )- =1= <p

bybj ~ 31 «(I n a (bi)=I= <p )1\(1 n a (bj)=I= <p)

biWbj ~ V1 (sup {l n a (bi )} ~ inf{l n a (bj )}

C=TnVnw

L=C*=C UC2U ...

LE=LUE

biKbj~ sup {'t (a (bi))}~inf{ 't (a (bj ))}

KE=KUE

blobj ~ 31 (l n a (b i )- n a (bj )- =1= <p)

biWObj ~ (bi =l=bj )1\(31 «(I n a (bi)=I= <p)

1\(1 n a (bj)=I= <p)

1\ (sup {l n a (bi)}~inf{l n a (bj )})))

Co =To nwo

a (bi ) touches a (bj ).

a (bi ) and a (bj ) are piled up along a vertical line 1 .

a (bi ) is below a (bj ) along all vertical number lines 1 through both strata.

a (b i ) is under a (bj ).

a (bi ) is stratigraphically lower than a (bj ).

(LE is a reflexive and transitive closure of C . )

Any points of a (b i ) are older than any points of a (bj ).

(KE is reflexive. )

a (bi ) touches a (bj ) at an outcrop along a vertical line through both strata.

a (bi ) is below a (bj ) along a vertical number line 1 through both strata.

A part of a (bi ) is under a (bj ) at an outcrop.

(Lo is a transitive closure of Co' )

(LOE is a reflexive and transitive closure of Co . )

a (x)- is a closure of a (x), i.e., closed space including boundary points.

sup and in! are upper and lower limits, respectively.

't is a function which assign an age 't (p) to a point in X.
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---------------

(f-l) b[Kb2

a (b l )

r::=J

(f-3) ~b[Kb2

a(b
l
) a(b 2)

.---h L. 't"

t
sup { 't" ( a ( b I» I(b) b l Vb 2

a(b 2)C$J:--
o •

• a (b I)

l

Fig. 2. Relations between strata.

(a) Relation T. (b) Relation V. (c) Relation W. (d) Relation C. (e) Relation L. (I)

Relation K and the characters. (f-1) Definition of K. (f-2) Transitive property of
K. (f-3) If the ages of b, and b2 are overlapped, then neither bt Kb1 nor b

2
Kb t

is satisfied. (g) Relation La.

the law of superposition.

3.1.2 Stratigraphic Sequence

Axioms AI, A2 and A3 introduce the following theorems. Detailed proofs are

reported by SHIONO and W ADATSUMI (1992).

[Property introduced from Axiom At]
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Table 2.

Mathematical term

universal relation
identity relation
null relation

Trivial relations and properties.

Symbolic expression

I : B XB
E {( bj , bj ) I bj EB }

o : ~ (empty set)

reflexive property
symmetric property

antisymmetric property
transitive property

transitive closure

We can translate Axiom Al into:

R=R UE
R=R-l

R nR-lcE
R . RCR

R'=R UR 2 U'"

bjRbj [or all bj EB

bjRbj ~ bjRbj

bjRbj and bjRbj ~bj=bj

bjRbk and bkRbj ~bjRbj

and the definition of W a into:

where ~P represents the negation of a proposition P. From these two formulae, we obtain:

Theorem 3.1

WacW.

Since To has a property such that:

bjTabj=bjTbjl\b;Vbj'

we obtain

b;Cobj ¢;> bjWabjl\bjTabj

=b jWab j I\b j Tb j l\b j Vbj

=b j Wb j 1\ bjTbj I\b jVb j

=bjCbj.

Thus, we have:

Theorem 3.2

(i)

(i i)

Theorems 3.1 and 3.2 provide an inference rule that we can know relations W, C and

L on the set B from observations of strata partially exposed at outcrops.

[Property introduced from Axiom A2]

From the definition of W, we have :

WnW-l=~V,
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and from Axiom A2, we have:

b;(LnC- ()bj=b iWbpbp-l bj
=b;Wbp(bjT- 1bpb;V- 1bjnbiW- 1b)

=b;Obj.

Hence, we have

LnC- 1 =0.

Since for all b;, bjEB, b;Lbj and bjC- t bi are not simultaneously satisfied, we have

Theorem 3.3

(i)

(ii)

Thus, we have

LnL -I =0,

LEnLe-I =E.

Theorem 3.4
The relation Le on the set B IS reflexive, anti symmetric and transitive, that IS, L e

lS a partial ordering.

Theorem 3.4 shows that strata can be arranged in a linear sequence

Axiom A2 is important for arranging strata in an order of piling from the bottom to the top.

[Property introduced from Axioms Al and A2]

Theorems 3.2 and 3.3 derive:

LonLo - 1 C LnL - I = °
.·.LoenLoe -l=E.

Thus, we have

Theorem 3.5

The relation LOE=LouE on the set B is a partial ordering.

Theorem 3.5 shows that the elements of B can be arranged In a linear sequence

In the same manner as the case of L E . From Theorems 3.2 and 3.5, it is clear that:

Theorem 3.6

Theorem 3.6 provides a theoretical basis to infer the piling order of strata from

the observations at outcrops.

When we have either b;Lebj or bjLeb; for all bi' bjEB, that is, we have

LeuLe-( =1,

L e IS a total ordering. Then, the set B can be rearranged linearly such that
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This shows the order In which strata are piled up from lowest stratum to the upper

most stratum.

[Property introduced from Axiom A3]

From the definition of K, it is clear that the relation K E is a partial ordering. Directly

from Axiom A3, we have:

Theorem 3.7

[Property introduced from Axioms Al, A2 and A3]

Theorems 3.6 and 3.7 introduce a rule to infer the stratigraphic sequence from

observations at outcrops, as follows:

Theorem 3.8

Theorem 3.8 provides a rule to infer the age relationKE from the relation L OE

obtained at outcrops. Thus, we have a very important geological inference rule which

states that the piling order of strata from the lowest one to the uppermost one determined

from field observations represents the order of formation of strata from the oldest one

to the youngest one.

Figure 3 illustrates the derivational process from Axioms Al, A2 and A3 to the

rule of inference.

3.2 Algorithm for Inference of Stratigraphic Sequence

The logical operation of binary relations can be performed by the two methods ;

one is the method based on relation matrices ( BURN, 1975; SHIONO and WADATSUMI,

1988, 1991; SAKAMOTO and SHIONO, 1992) and the other is one based on a symbolic

operation language ( SAKAMOTO and SHIONO, 1990). The former method is more useful

to construct a geologic mapping system because it is easy to combine other numerical

calculations such as determinations of surfaces, and also it is convenient to inspect the

results of operations. The following describes an algorithm for inference of the

stratigraphic sequence using relation matrices based on SAKAMOTO and SHIONO

(1992). Since the entry of relation matrix has either 0 or 1, addition and multiplication

are calculated as follows :

0+0=0,0+1=1+0=1+1=1,

0'0=0'1=1'0=0,1'1=1.

Suppose that the relation Co obtained at outcrops is represented in the form as follows:

-, -, -, -, -, Clr , PrJ
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r - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -.

Al:WUW-1UE=I A2:LCW A3:CCK'- ---------1- ---------~ ---- --------------- ------.

I a Cob~ aCb I

I
I

I

I

Fig. 3. Relations between theorems introduced from Axioms A1, A2 and A3 (after SHIONO

and WADATSUMJ, 1992).

where cx, and fJ, are names of strata and gives the relation cx,CofJ" i.e., a part of cx, is

under a part of fJ, at the r-th outcrop. The stratigraphic sequence is inferred through

the following steps :

(i) Let B be a set of all strata listed In input data.

(ii) Construct a relation matrix C by assigning 1 to (i,j) entry of the matric C if

bjCobj , based on a inference rule Co c C.

(iii) Construct a relation matrix LE=E+C+Cz + ... +C"-l.

(iv) Let l'ij be (i,J) entry of the matrix L E . If l'ij=O or I'jj=O for i#j, that

is, L E is antisymmetric, then go to step (v). If not, halt the processing after

showing the pair (b j, bj ) of l' jj = l'jj = 1.

(v) Arrange the element of the set B in such an order that 1 entries concentrate in

lower triangle of matrix L E.

(vi) If l'ij=l'jj=O for some i, j (i#j), then L E is not a total ordering. If L E is a

total ordering, then the order in (v) is the stratigraphic sequence.

For example, observations at outcrops shown by circles in Fig. 4(a) are described

as follows :

- --, ,

-,-,-

b j , b3 , -,

bz, b4 , -,

b3 , bs, -,

b4 , bl, -,

b4 , b3 ,

Then, the relation matrix C in step (ii) is :
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z

( a ) Observations ( b ) Relation C ( c ) Relation L E

( d ) Stratigraphic

Sequence

bs

t
b3

t
b,-.t
b4

t
b2

Fig. 4. Inference process of stratigraphic sequence.

Relation Co observed at the circle point in (a) IS represented by the graph as
shown in (b). b4 -->b s means b4 Cb s. (c) shows relation L E inferred from C. If LE

is a total ordering, then we obtained stratigraphic sequence as shown in (d).

b2 b3 b4 b5

o 1 0 0

001 0

000 1

o 1 0 0

o 0 0 0

Fig. 4(b) shows the graph of C. L E In step (iii) becomes

Fig. 4(c) shows the graph of L E . Finally, LE in step (v) becomes

b5 b3 b1

1 0 0

1 1 0

1 1 1

1 1 1

1 1 1

b4 b2

o 0
o 0
o 0
1 0

1 1

Then, the order b2 ---+b4 ---+b 1 ---+b 3 ---+b 5 shows the stratigraphic sequence from the bottom

to the top.



256 Masanori SAKAMOTO

4. Construction of Logical Models of Geologic Structures

Logical models of geologic structures represent logical relations between strata and

boundary surfaces. In this paper, we consider two models; a logical model for locational

relation explained in this section and a logical model for inclinational relation explained

in next section.

4.1 Locational Relation between Strata and Boundary Surfaces

4.1.1 Types of Boundary Surfaces

Let B be a set of all names of strata distributed in the 3-D space X, and suppose

that all elements of B are enumerated linearly as follows

Let A be a set of all subspaces (J(b l ), ... , (J(b
ll

) , where each stratum is distributed. Since

(J(b;) do not include its boundary, (J(bJ- including boundary points is used in this

section. W'hen the 3-D space X consists of (J(b l ), "', (J(b ll ) , we have:

Let S be a set of all boundary su rfaces S1, .. ', SIl- 1, where sk(1 ~ k ~ n -1 ) is the surface

which includes the contact surface between two successive strata bk and bk+ I and divides

X into two subspaces Sk + I and Sk -I. In order to simplify the computer algorithms, we

assume here that every boundary surface Sk (k= 1, ... , n-1) is represented by a single-valued

function Z=Sk(X,y). Then, subspaces Sk +1 and Sk -I give half spaces above and below

the surface Z=Sk(X,y), respectively:

Sk + 1= {(x, y, z)lz~Sk(X, y)},

Sk -I = {(x,y, Z)IZ~Sk(X,y)},

Then, the intersection of two subspaces Sk + 1 and Sk -1 gIves a surface Sk

and the ulllon of these IS the universal space X :

From the definition of Sk' it is clear that:

Similarly, a fact that a boundary surface s, divides a subspace (J(b,.)-u ... u (J(b k )

into two subspaces (J(br)-u ... u(J(b,)- in the lower side and (J(b'+I)-u ... U CJ(bk )- in
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( b )
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fJ (b 2) U fJ (b 3) = (fJ (b t ) U fJ (b 2) U fJ (b 3) n Sj+l

fJ (b j ) =(fJ (b j ) U fJ (b 2) U fJ (b 3» nS 1-
1

fJ (b 2) U fJ (b 3) U fJ (b 4)

= (fJ (b j ) U fJ (b 2) U fJ (b 3) U fJ (b 4» nst j

fJ (bl)=(fJ (b j ) U fJ (b 2) U fJ (b3) U fJ (b 4» nsj - j

Fig. S. Examples of Cl type boundary surfaces.

(a) St is a surface dividing a series of successive strata into (b,) and (b 2 • b3 ).

(b) s, divides a series of successive strata into (b l ) and (b 2 • b3 • b4 ).

(a) (b)

a (bs)=(fJ (b l ) U a (b2) U fJ (b 3 ) U fJ (b 4 ) U fJ (bs» ns/ j

a (b j ) U a (b 2 ) U a (b 3 ) U fJ (b 4 )

=(a (b t ) U a (b 2 ) U a (b 3 ) U fJ (b 4 ) U a (b s»ns 4- t

fJ (b 3 ) =(a (b t ) U a (b 2 ) U a (b 3 » ns2+j

a (b t ) U a (b 2 ) =(a (b l ) U a (b2) U a (b 3» ns2- 1

Fig. 6. Examples of C2 type boundary surfaces.
(a) S4 is a surface dividing a series of successive strata (b l , ...• bs) into (b t , b2 • b3 ,

b4 ) and (b s).
(b) S2 divides a series of successive strata (b l • b2 , b3 ) into (b l , b2 ) and (b 3 ).

the upper side can be expressed by :

a(b, + I) - u ... ua(bk) - = (a(br) - u '" ua(b,) - ua(b, + 1) - u··· ua(bk) -)ns, + I }

a(br)-u ... ua(b,)- =(a(br)-u ... ua(b,)-ua(b'+I)-U···ua(bk)-)ns,-I.
(4.1 )

Then we say that a series of successive strata (b" br + 1 , "', bk )(1 ~r<k~n) is divided

into two series of successive strata (b" ''', b,) and (b, + I' "', bk) by a boundary surface

s, (r~t<k). Using this notation, we postulate Axioms A4 and AS for C1 and C2 types

of boundary surfaces, respectively. The C1 and C2 types of boundary surfaces provide

simplified models for the conformity (Fig. 5) and the unconformity (Fig. 6), respectively.

Axiom A4 : Cl type of boundary surface
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A surface Sk called a C1 type of boundary surface or simply "C1" implies that

there exists s, (r ~ t < k) such that divides a series of successive strata (b" br+ I' ... , bk>

bk+l) into two series of successive strata (br, "', b,) and (b,+t, ... , bk+ I ), when s, is a

boundary surface dividing a series of successive strata (br.br+t, "', bk)(1 ~r<k+1 ~n)

into two series of successive strata (b" ... , b,) and (b, + I' ... , bk).

Therefore, if we have equations (4.1) for some series of successive strata (b" br + 1,

... , bk), and find that Sk is a C1 type of boundary surface, then for some s, we can infer

that the following equations hold true:

O'(b,+ I)-U ... uO'(bk)-uO'(bk+ 1)-

= ({O'(br)-u ... uO'(b,)-}u{O'(b,+ I)-U'" uO'(bk)-uO'(bk+l)-})ns,+ I

O'(br) - U ... uO'(b,)-

=({O'(br)-u ... uO'(b,)-}u{O'(b,+ I)-U ... uO'(bk)-uO'(bk+ I)-})ns,-I

(4.2)

It is noted that we have equations (4.2) by substituting (bk)-uO'(bk+ 1)- for O'(bk)- In

equations (4.1).

Axiom AS : C2 type of boundary surface

The surface Sk called a C2 type of boundary surface or simply "C2" implies that

a boundary surface Sk divides a series of successive strata (b l , bz, ... , bk, bk+ I )(1 <k+1 ~n)

into two series of successive strata (b l , ... , bk) and (bk+ I)'

Therefore, if Sk is a C2 type of boundary surface, we have:

O'(bk+l)- =(0'(b1)-u .. · uO'(bk)-u .. · uO'(bk+ I)-)nsk+1

0'(b 1)-u .. · uO'(bk)- =(0'(b1)-u .. · uO'(bk)-u ... UO'(bk+I)-)nsk-I.

Based on above two axioms, we consider the geologic structure bounded by "C1"

and "C2".

4.1.2 Relation between Strata and Boundary Surface

Formulating two types of boundary surfaces, we can define the distribution of every

stratum uniquely by boundary surfaces. For example, we consider the case that the

3-D space X consists of four strata named bl , b2, b3 and b4 . Let SI, S2 and S3 be

boundary surfaces. Regardless of the type of boundary sUl'face, we have :

0'(b4 ) ~ = (0'(b 3)~ uO'(b4 ) ~)ns3 ::}
0'(b3) = (0'(b 3) uO'(b4 ) )ns3

(4.3)

(4.4)
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( a) (b)

..............

::: :b1 : : b}:
. . . . . . . .

. . . . . . .
. . . . . . .

~ ~~

( c) (d)
83 8 2 8 1 8 3 8 2 8 1

b 4 +1 +1 +1 b 4 +1 0 0
b 3 -1 +1 +1 b 3 -1 +1 0
b 2 0 -1 +1 b 2 -1 -1 +l
b l 0 0 -1 b l -1 -1 -1

Fig. 7. Cl and C2 types of boundary surfaces.
(a) Geologic structure bounded only by Cl type of boundary surfaces. (b) Geologic
structure bounded only by C2 type of boundary surfaces. Boundary surface is
considered as a surface dividing X into two subspaces. (c) Logical model for
locational relation representing a structure (a). (d) Logical model for locational
relation representing a structure (b).

<J(b3)~ =(<J(b2)~U<J(b3)~)nS2::} (4.5)
<J(b2) = (<J(b 2) u<J(b 3 ) )ns2

<J(b2)~ =(<J(b})~u<J(b2)~)nS} ::} (4.6)
<J(b l ) =(<J(b l ) u<J(b2) )ns l

At first, let us consider the case that all boundary surfaces are "Cl" (Fig. 7(a)). Since

S2 is "Cl", substituting <J(b2)-u<J(b3)- for <J(b2)- in equations (4.6), we have:

<J(b2) ~ u<J(b3) - = (<J(b}) ~ u<J(b2) ~ u<J(b3) ~)ns 1::} (4.7)

<J(b!) =(<J(b!) u<J(b2) u<J(b3) )ns! .

I n the same way, substituting <J(b 3) - u<J(b4 ) - for <J(b3) - in equations (4.7), we have:
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(J(b 2)-u(J(b3)-u(J(b4)- = «(J(b l )-u(J(b2)-u(J(b3)-u(J(b4)-)"sl + I

(J(b l )- =«(J(bl)-U(J(b2)-U(J(b3)-U(J(b4)-)"SI-1

Thus, we obtain

(J(b 2)-u(J(b3)-u(J(b4)- =X"SI +1 =SI +1 }

(J(b l )- =X"SI -I =SI -1 ..

(J(b 3)-u(J(b4)- =«(J(b2)-u(J(b3)-u(J(b4)-)"S2 +1 }

(J(b 2) - = «(J(b2) - u(J(b3) - u(J(b4) -)"S2 -1.

From equations (4.9) and (4.8), we obtain:

(J(b 3)-u(J(b4)- =S2 + I"SI +1}

(J(b 2)- =S2- 1"SI+ 1

From equations (4.10) and (4.4), we obtain

(J(b4)- =S3 +1"S2 +1"SI +1

(J(b 3)- =S3 -1"S2 +1"SI +1

Thus, distributions of strata are defined by SI' S2' s3 as follows

(J(b4)- =S3 +1"S2 +1"SI +1 )

(J(b 3)- =S3 -1"S2 +1"SI +1

(J(b 2)- = S2 -1"SI +1

(J(b
1
)-= SI-I.

Generalizing the result, we have the following theorem.

Theorem 4.1

(4.8)

(4.9)

(4.10)

(4.11)

Suppose that the 3-D space X consists of strata named b l , "', b,,, and that all

boundary surfaces SI, "', S"-1 are "C1". Then, each stratum is represented as follows:

(J(b,J- =S,,-1 +1"S"_2 +1" "SI +1

(J(b;)- = S;-I"Si-1 +1" "SI +1

(J(b l )-= SI-I

(i=n-1, 2)

Next, let us consider the case that all boundary surfaces are "C2" (Fig. 7(b». Since

S2 is "C2", we have:

Similarly
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a-(b4)- =(a-(bl)-Ua-(b2)-Ua-(b3)-Ua-(b4)-)nS3 +1 }

a-(b I) - ua-(b2)- ua-(b3) - = (a-(b I) - ua-(b2)- ua-(b3) - ua-(b4)-)ns3-1 .

The substitution of equations (4.3) into (4.13) gives:

a-(b4)- =Xns3+ I =s3+ 1

a-(b 1) - ua-(b2)- ua-(b3) - = X nS3- 1 = S3 - 1

and the substitution into (4.12) gives:

a-(b 3)- =S3- lns2+ 1

a-(b
1

) - ua-(b2)- = S3 -I nS2-1.

Further, the substitution into (4.6) gives:

a-(b 2)- =S3 -l ns2 -I nS I + I

a-(b
1
)- =s3 -l ns2 -l ns1 -1

Thus, we obtain

a-(b4)-=S3+ 1

a-(b3)- =S3 - lns2 +1

a-(b 2)- =S3 -1 nS2-I nsl + 1

a-(b
1
)- =S3 -l nS2 -Insl-I

Generalizing the result, we get the following theorem.
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(4.13)

Theorem 4.2

Suppose that the 3-D pace X consists of strata named b l , "', b,p and that all

bounda ry surfaces s I' "', s" _ 1 are "C2". Then, each stratum is represented as follows:

a-(b,,)- =S,,_I + 1

a-(b j )- =S,,_1- 1n nsj-1nSj_1 +1

a-(bl)-=S"-I-ln nS2-l ns !1

(i=n-l, 2)

If the boundary surface is either "Cl" or "C2", then we can formulate the relation

between strata and boundary surfaces.

Theorem 4.3

Suppose that the 3-D space X consists of strata named bI' "', b,p and that each

boundary surface Sj (i=1, "', 11.-1) is either "Cl" or "C2". Then each stratum is

defined uniquely by SI, "', S,,-1

Proof

The theorem holds true 111 the cases that all surfaces are either "Cl" or "C2" as

shown in Theorems 4.1 and 4.2. Let us consider the case that there exist both "Cl"
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Cl Type I
C2 Type

~

Fig. 8. Geologic structure including both Cl and C2 types of boundary surfaces.

S,_\ and s'+k are "C2", and others are "Cl".

and "C2".

Let Sj, ... , Si+k-l (k>O) be "Cl", and let Si-l and Si+k be "C2" (Fig.8). Since

Si-I is "C2", we have:

CJ(b;) - = (CJ(b 1) - u", UtJ"(b,_ 1) - uCJ(bir )n5i_ 1+ 1

CJ(b l ) - u .. ,uCJ(bi _1) - = (CJ(b 1 ) - u .. ,uCJ(bi - 1) - uCJ(b i) - )ns i _ I -1

Since Si IS "Cl", substituting CJ(b,)-uCJ(bi+ I )- for CJ(b;)- of above equations gives

CJ(br uCJ(b i + 1)-

= (CJ(b I) - U··· UCJ(b i_ I) - UCJ(b j) - UCJ(b,+ t> -)nS i - 1+ 1

CJ(b I) - u··· utJ"(bi_ I )-

= (CJ(b 1 ) - u··· UtJ"(b'_I) - uCJ(b i) - UCJ(b i+1) -)ns i _ 1 -I

And, since 5i+l is also "Cl", substituting CJ(b'+I)-UCJ(b'+2)- for CJ(b'+I)- gives similar

equations. Repeating such operations, we finally obtain

CJ(b;) - u··· utJ"(b'+k)-

=CJ(b I) - u··· uCJ(bi_ 1 ) - uCJ(b;) - U .. · uCJ(bi+k) - )ns i _ 1 + I

CJ(b l ) - u·· ,uCJ(bi _ 1 )-

=CJ(b 1 ) - u· .. utJ"(bi- 1 ) - uCJ(b i) - u··· utJ"(bi+k) -)ns,_ 1 - I

On the other hand, since Sj+k is "C2", we obtain:
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(J(bj+k+ 1)- =«(J(bl)-u'"u(J(b j+k+ I)-)nsj+k + 1

(J(b l ) - U··· u(J(b j) - U·" u(J(bj+k) - = «(J(b l ) - U··· u(J(bj+k+ I) -)nsi+k - 1

Thus, we have:
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Set

(J(bi+k+ 1)-

= (J(b I) - u··· u«(J(bJ - u··· u(J(bi+k) -)u(J(bi+k+ I) - )nsi+k + 1

(J(b l ) - u··· u(J(bi _ I) - u«(J(bJ - u··· u(J(bj+k)-)

= «(J(b I) - u··· u«(J(b j) - u··· u(J(b j+k) - )u(J(bi+k + I) - )nsj+k - 1

«(J(b i) - u··· u(J(bj+k) -)

=(J(bl)-U",u(J(bi_I)-U«(J(bJ-u",u(J(bi+k)-))nsi_1 +1

(J(b l ) - u··· u(J(b j_ 1)-

= (J(b l ) - u··· u(J(bi _ 1 ) - u«(J(b i ) - u··· u(J(bi+k) -))nsj_ 1 - I.

(4.14)

Then, equations (4.14) become:

(J(bj+k+ 1)- =«(J(bl)-u",u(J'-U(J(b j+k+ I)-)nsj+k + I )

(J(b I) - u··· u(J(b j_ I) - u(J'- = «(J(b I) - u··· u(J'- u(J(bi +k + I) -)nsj+k - 1 J

(J'- =«(J(bl)-u",u(J(bj_I)-u(J'-)nsi_l + I

(J(bl)-u",u(J(b i _ I )- =«(J(bl)-u",u(J(bj_I)-u(J'-)nsi_1 -I.

(4.15)

Equations (4.15) indicate that a series of successive strata (b j , "', bj + k ) bounded by "C1"

can be managed as one group of strata which is bounded by "C2" types of boundary

surfaces Sj_1 and Sj+k' From Theorem 4.1, it is clear that every stratum in the group

of strata (J'- is represented by :

(J(bj+k)- = «(J(bj)-u",u(J(bj+k)-)ns/ In ... nSj+k_Z + I nSj+k_1 + 1

(J(b)- =«(J(b;)-u",u(J(bi+k)-)ns/ In"'nsj_1 +Insj-I

(j=i+k-1, i+1)

Let b'l' ... b'm be names of such groups of strata, and let s') be a boundary surface

between b'j and b'j+I' Since S'I' S'2' "', S'm-I are the C2 type of boundary surfaces,

from Theorem 4.2, (J(b' 1)-' "', (J(b'm)- shows:

(J(b'm)-=S'm_1 +1

(J(b')- =S'm_l+ln ns'j-lns'j_I+1

(J(b'I)- =S'm-I +I n nS'2 -lns'I-1

(j=m-l, 2)



264 Masanori SAKAMOTO

Thus, distributions of all strata bl , ''', b" are defined uniquely by bounded

surfaces. 0

4.1.3 Logical Model for Locational Relation

Theorem 4.3 indicates that strata named b l , b" are defined uniquely by the

boundary surfaces SI' "', S,,_I' The relation between strata and boundary surfaces can

be represented by a function t: B X S--+{ -1, 0, + I} called "a logical model for locational

relation", where t(b j , s) = +1 and -1 indicate that i-th stratum (f(bJ is above and below

the j-th boundary surface Sj' respectively. t(b j , s) =°shows that a stratum (f(bJ has no

specific relation with the surface Sj' An example of the logical model for locational

relation is shown in Fig. 7.

The logical model for locational relation will be used when we prepare Iocational

data required to determine the boundary surface (Section 6) and also when we define

a function which assigns a stratum to each subspace divided by boundary surfaces

(Section 7).

4.2 Algorithm for Determination of Logical Model for Locational Relation

Data required to determine the logical model for locational relation are the

stratigraphic sequence and the type of boundary surface. The stratigraphic sequence

is determined by the method described in the previous section. The type of boundary

surface is given by a parameter 'r in input data:

-) -) -, -, -, ex" PrJ t,) -

where 'r = 1 and 2 if the contact surface between strata named ar and fJr IS "Cl" and

"C2", respectively

, = { 1,
r 2,

Cl type of boundary surface

C2 type of boundary surface.

The type of every boundary surface Sj (i = 1, "', n -1) can be found by searching input

data which describe natures of pairs of successive strata. For example, if we find that

ar=b j and fJr=b j + l , 'r gives the type of Sj'

The following steps show an algorithm to determine a function t representing the

logical model for locational relation, after all elements of B are enumerated linearly

using pairs (ar> fJr) based on the algorithm shown in the previous section.

(i) Let all the values of a function t be °as the initial value.

(ii) Repeat step (iii) or (iv) for every surface Sj (i=l, ''', n-l). If the surface Sj

is "C2", then go to step (iii). If not, that is, the surface Sj is "Cl", then go

to step (iv).

(iii) Set t(b j , sJ= -1 (j=1, "', i). If there exists the other C2 type of surface Sk

among Sj+l, ''', S,,-1 (i<k~n-l), then set t(b j , sJ= +1 (j=i+l, "', k). If

not, then t(b j , Si)= +1 (j=i+l, "', n).
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( b) ( c )

83 82 81 b 4 b 3 b 2 b 1

S3 ( Cl )
b 4 +1 +1 0 b 4 83 8 2 8 2

b 3 -1 +1 0 b 3 8 3 * 82 8 2S2 (C2)
b 2 0 -1 +l b 2 8 2 8 2 * 8 1

b 1 0 -1 -1 b 1 8 2 82 8 1

SJ ( Cl )

Fig. 9. Contact surfaces between strata.
(a) A section of geologic structure consists of four strata. (b) Logical model for
loeational relation t;B x S---t{ -1,0, + 1}. (c) Table representing a function u;B x S~S.

(iv) Set t(b j, sJ = -1. If there exists the C2 type of surface Sk among Sj + 1> ... ,

Sn-l (i<k~n-l), then set t(b j , s;)= +1 (j=i+l, "', k). If not, then t(b j ,

sj)=+l (j=i+l, ... , n).

For example, if we have input data as shown in Fig. 9(a)

b3 , b4 , 1,

b2 , b3 , 2,

bl , b2 , 1,

then we obtain the logical model for locational relation as shown In Fig. 9(b).

4.3 Contact Relation between Strata

As mentioned above, each boundary surface Sj (i=l, "', n-l) is defined as a surface

between successive strata bi and bj + l' dividing the 3-D space. This definition does not

directly mention about the contact surface between arbitrary two strata. However, the

logical model for locational relation gives us information about the contact surface. For

example, when we have equations (4.11), we get:

a(b3) - na(b4)- = (S3 - 1 nS2+ 1 ns 1 + 1)n(s3 + 1 nS2+ 1 ns 1 + 1)

=S3ns2 +l nS1 +1 C.' Sk=Sk +l nSk -1)

a(b 3)- na(b4 )- CS 3

This indicates that the contact surface between a(b3) and a(b4 ) IS S3' Generally, we get

the following theorem.

Theorem 4.4

Suppose that a 3-D space X consists of strata b1, ''', bn , and let each boundary

surface Sj (i = 1, "', n -1) be either "Cl" or "C2". Then, a contact surface between

two strata is one of these boundary surfaces.
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(i) Case that all boundaries are "Cl".

From Theorem 4.1 the distributions of two strata bj and bj (i <j) are represented as follows:

Then, we obtain

(b ) - - I + I + I + IeJ j =Sj nSj _ 1 n···ns j n···ns l

eJ(b j )- =Sj-Ins;_1 +I n ", nsl +1

(2~i<j~n-l)

(b ) - (b ) - (- I + 1 + I +1 ) ( - I + I + I)eJ j neJ j = Sj nSj_ 1 n···ns j n···ns l n Sj nS j_ 1 n· ··ns l
-I +1 +1 +1 +1=Sj nSj_ 1 n···ns j+ 1 nsjns j _ 1 n···ns l

.'. eJ(b) - neJ(b;) - C Sj

Therefore, if b; is in contact with bj, i.e., eJ(b)- neJ(b j )- #<jJ, then Sj IS the only one

contact surface between them. In the same way, we can determine the contact surface

between b" and bj and one between bj and bl .

(ii) Case that there exists "C2" among a series of surfaces Sj, Sj+ I' "', Sj_I'

As shown in the proof of Theorem 4.3, composite strata b'I' "', b'", bounded by "Cl"

can be grouped into one set of strata bounded by "C2" S'j ( i= 1, "', m-l). Let

eJ(b) and eJ(b;) be included in eJ(b'J) and eJ(b'J)' respectively. Then, since eJ(b'J)- and

eJ(b' J) - are represented as :

(2~I<J~m-l)

we obtain:

= (S'",-I n ... ns']-l ns'J_l + l)n(S''''_1 -In· ··ns'J -l ns'J_l -In·· .ns'J -lns'J_1 + 1)
1-1 '-1 I I -1 ,-1 I +1=S",_ln···nsJ ns J- 1ns j+ 1 n···ns J nS T_ I

... eJ(b'J) - n eJ(b' ,) - c S'J - I .

Therefore, S'J-I includes the contact surface between eJ(b'J) and eJ(b',). It is clear that

the contact surface between eJ(b) and eJ(b j ) is identical with the contact surface between

o
We can consider this rule which assIgns a boundary surface to a paIr of strata as a

function, denoted by u:B x B-tS.

4.4 Contact Relation Derived from Logical Model for Locational Relation

The fact that a pair (b j , b) satisfies:
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n

Fig. 10. Definition of inclinational relation.
(a) Relation Po' (b) Relation P. (c) Relation Q.

for some Sk' implies that Sk is a contact surface between strata h j and hj . Thus, we can

construct the function u:B x B-+-3 from the logical model for locational relation as follows.

If:

then

Figure 9(b) shows the logical model for locational relation for geologic structure

given in Fig. 9(a), and Fig. 9(c) shows the function u in tabular form.

5. Logical Model for Inclinational Relation

Inclinational data (e.g., strike and dip) are useful for the determination of the

boundary surface. If strata al'e parallel layered, we can effectively use strikes and dips

obtained from a contact surface or the bedding plane of a stratum for the determination

of other surfaces. In practical situations, strata distributed finitely are rarely

parallel. However, boundary surfaces often show similar tendencies to each other, even

if they are not parallel. Therefore, an inclinational relation is introduced.

5.1 Inclinational Relation between Strata and Boundary Surface

We consider the inclinational relation between strata and boundary surfaces as a

theoretical basis for the effective use of inclinational data. We introduce two unit vectors

n(l, b;) and e(l, s) ; n(l, b;) is a norma) vector of the bedding plane of b j if the bedding

planes have same inclinations to each other along a vertical line I, and (0, 0, -1) in

other cases, and e(l, s) is a normal vector of a boundary surface Sj at a point of the

intersection of a vertical line l and the surface Sj (Fig. 10).

Definition : P

Let P be an inclinational relation between a stratum bi and a boundary surface Sj such that:
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b;Psj ¢> Vl(n(l, bj)=e(l, s))

Definition : Q

Let Q be an inclinational relation between boundary surfaces Sj and Sk such that:

SjQsk¢>Vl(e(l, s) = eel, Sk)) .

Theorem 5.1

An inclinational relation Q is an equivalence relation on a set S of boundary surfaces.

Proof

(i) Reflexive property

It is clear that for all boundary surfaces Sj (1 ~j~n-1), we have

(ii) Symmetric property

For any pair of boundary surfaces Sj and Sk' we have:

spsk¢>Vl(e(l, s)=e(l, Sk))

¢>Vl(e(l, sk)=e(l, s))

¢>SkQSj .

(iii) Transitive property

For any boundary surfaces S;, Sj and Sk' we have

S;QS/\SjQsk¢>Vl(e(l, s;)=e(l, s))f\Vl(e(l, s)=e(l, Sk)

¢>Vl«e(l, s;)=e(l, s))f\(e(l, s)=e(l, Sk)))

¢>Vl(e(l, sj)=(e(l, s;)=e(l, Sk)))

¢>Vl(e(l, sj)=e(l, Sk))

¢>SjQSk .

From (i), (ii) and (iii), the relation Q is reflexive, symmetric and transitive. Therefore,

Q is an equivalence relation on S. 0

Theorem 5.2

(i)

(i i)

p-I'PcQ

p·QcP.

Proof

(i) Sj(P-1.P)Sj implies that there exists bk such that satisfies both bkPs j and bkPsj. Further:

bkPs; f\ bkPsj ¢>Vl(n(l, bk) = e(l, s;») f\ Vl(n(l, bk) = e(l, Sj»

¢>V«n(l, bk) = e(l, s;) f\ (n(l, bk) = eel, s))

¢>Vl(e(l, s;)=e(l, s)

¢>SjQSj .
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P-1pcQ.
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(ii) bj(P'Q)Sj implies that there exists Sk such that satisfies both bjPsk and SkQSj' Further:

bjPsk I\SkQSj ¢'>Vl(n(l, bi) = eel, Sk» 1\ Vl(e(l, Sk) = e(l, s)

¢'>Vl«n(l, b;) = e(l, Sk» 1\ (e(l, Sk) = e(l, Sj)))

¢'>Vl(n(l, bj)=e(l, s)

Thus, we get

p·QcP. o
It is noted that we cannot directly observe relations P and Q, but only a relation between

exposed parts of strata which are defined as follows.

Definition : Po

Directly from the above definition, we obtain the following relations between P and Po'

Theorem 5.3

Proof

For bjEB and SjES, we have

~biPoSj¢'>~(3l(n(l, bj)=e(l, Sj)))

¢'>Vl(~(n(l, bj)=e(l, s))

=>3l(~(n(l, b;)=e(l, Sj»)

¢'>~(Vl(n(l, bj)=e(l, s))

¢'>~bjPsj 0

Here, we introduce the following assumption.

Assumption 5.1

as far as this assumption does not cause any contradictions.

Assumption 5.1 derives a rule to infer inclinational relations P and Q from the observable

relation Po.
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Theorem 5.4

(i)

(ii)

where:

Proof

Masanori SAKAMOTO

(i) From Assumption 5.1, we have

which imply :

Theorem 5.2(i) and (5.1) gIve:

and therefore, we have

Since Q is reflexive and transitive, we have:

EuQ*cQ

Hence, we have

Let

then:

(ii) Assumption 5.1 and Theorem 5.4(i) give

From Theorem 5.2(ii), finally we have:

5.2 Algorithm for Logical Model for Inclinational Relation

(5.1 )
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5.2.1 Input Data

The relation Po observed at the r-th outcrop is given by a parameter nr in input data:

271

0,

1,

n=r 2,

3,

nr represents the inclinational relation of the contact surface between Ct.r and f3r relative

to the bedding planes within Ct.r and f3r as follows:

if the inclination of the contact surface IS different with both the lower

stratum Ct.r and the upper one f3r

if the contact surface has the same inclination as only the lower stratum

Ct. r along a vertical line

if the contact surface has the same inclination as only the upper stratum

f3r along a vertical line

if the contact surface has the same inclination as both the lower stratum

Ct.r and the upper one f3r along a vertical line

For example, if Ct.r=b j , f3r=b j and Sk is the boundary surface between bi and bj (i<j),

then nr = 1 implies :

As this example shows, it is noted that in order to infer the relation P from input data

we must know previously which boundary surface becomes the contact surface between

any pairs of strata by a function u:B x B---+S as mentioned in Section 4.3.

We should note that the inference rule of PocP is applicable as far as there are

no contradictions. For example, in the case that we observe bkPos j at one outcrop and

~bkPoSj at another place, it is clear from Theorem 5.3 that bkPs j does not hold true

because we have ~bkPoSj. Nevertheless, if we apply the rule PocP, then we have both

bkPs j and ~ bkPs j • This is a contradiction. In order to avoid this type of contradiction,

the inference rule PocP should be applied carefully.

Suppose that for the contact surface between same pair of strata, we have different

sets of data :

where Ct.r= Ct.,! and f3r = f3r" Then, one method to avoid contradictions IS to apply the

rule Po c P after adjusting the input parameter nr as follows :

(i) Setnr=Oif nr,=O

if nr = 1 and nr• = 2

if nr=2 and nr,=1

(ii) Setnr =1 if nr,=1 and nr,=3
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if 7L r = 3 and 7L r ,= 1

(iii) Set7Lr =2if 7L r =2 and 7Lr ,=3

if 7L r =3 and 7Lr ,=2

5.2.2 Construction of Relation Matrix

The relation Po can be represented by an nx(n-l) matrix Po with the row b'll "',

b l and the column S,,-I' "', St. Let Poij be the U, j) entry of the matrix Po. Then

POij=1 if bjPosj, and Poij=O if not. Based on Theorem 5.4, the relation matrix Qo of

the relation 00 is inferred from the matrix Po through matrix operations as follows :

Let qoij be the (i, j) entry of the matrix Qo' Then the inclinations of boundary surfaces

Sj and Sj along a vertical line are the same if qoij = 1, and those of Si and Sj are different

if qoij=O. The relation matrix Qo can be represented by a function q:S x S-.{I, O}.
Further, the relation matrix P of the relation P can be derived from Po and Qo :

We call this relation matrix P "the logical model for inclinational relation". The (7:, j)

entry Pij means that bi and Sj satisfy the inclinational relation if Pij = 1, and bi and Sj do

not satisfy the inclinational relation if Pij= O. The logical model for inclinational relation

may be represented by a function P from BxS to {I, O}. Then p(bi, s)=1 and 0
represent that bi and Sj satisfy and do not satisfy the inclinational relation, respectively.

5.2.3 Algorithm to Construct Logical Model for Inclinational Relation

Using ordered pairs (all Pr) in input data

we can define a set of strata B={b 1 , "', b,,} whose elements are enumerated linearly

from the lowest stratum b1 to the uppermost one b", and a set of boundary surface

S={St, "', s,,-d. Further, as mentioned in Section 4, we can construct the logical

model for locational relation from the given parameter 'II and determine the function

u:B x B-.S.

The following is an algorithm to construct the logical model for inclinational relation

including the adjustment of data.

(i) Set Poij = 2 as the initial values of a relation matrix Po (i = 1, ... , n; j = 1, ... , n -1 ).

(ii) Repeat the following operations for r = 1, "', N(N : the number of data ).

(ii-I) Find numbers i and j which satisfy :

bj=ar
bj=Pr .

(ii-2) Determine the boundary surface sk=u(b j , bJ
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z

Locational Data
(Ik=O)

-0-

i
Inclinational Data
( bedding plane)

Inclinational Data
(boundary )

Locational Data above
the boundary surface (I k =+1)

I• boundary
surface

•
Locational Data below
the boundary surface (Ik =-1 )

Fig. 11. Data for determination of boundary surface.

(ii-3) Determine the values PQik and PQjk depending on n r

If nr=O, then set PQik=O and PQjk=O.

If n r=l, then set PQjk=O.

If n r = 1, and PQik = 2 then set PQik = 1.

If n r = 2, then set PQik = O.

If n r = 2, and PQjk = 2 then set PQjk = 1.

If n r =3, and PQik=2 then set PQik=1.

If n r = 3, and PQjk = 2 then set PQjk = 1.

(iii) If the value 2 is still remained in the matrix, replace 2 with O.

(iv) Construct the relation matrix Qo by :

Qo = E + (po'·po) + (po"p0)2 + ... + (po'·po)"- 2.

(v) Construct the relation matrix P by :

P=Po'Qo .

6. Determination of Boundary Surface

6.1 Method for Determination of Boundary Surfaces

SHIO 0 et al.(l987) presents a method to determine 3-D shapes of boundary surface

z=s(x, y) as the geologic application of constrained optimization problem. In this

method, two kinds of field data are used (Fig. 11) :

locational data

inclinational data
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y

Slj S2j Sij

SI2 S22 Si2

SII S21 Si!

yNy ----

dy

SINy

dx

SWy SiNy SNxNy

SNxj

SNx2

SNxl

--+-....L---->.-------~----~-·X

o XI X2 Xi

Fig. 12. Grid Data.

XNx

where (Xk' Yk, Zk) is the coordinate of the outcrop, and ~k and '1k are strike and dip,

respectively. I k in locational data is an index assigning the spatial relationship between

the outcrop (Xk' Yb Zk) and the surface s(x, y). The variable I k= -1, 0, and + 1 shows

that the outcrop is below, just on, and above the surface, respectively. These data

provide constraints that the surface s(x, y) should satisfy as follows

S(Xk'Yk)~Zk (h= -1)

S(Xk' Yk) =Zk (Ik=0)

s(xk'Yk)~Zk (Ik= +1)

sAxb Yk)= -cos ~k tan 11k

SY(Xb Yk) = sin ~k tan '1k

where SAXb Yk) and Sy(Xb Yk) are the partial derivatives of S(Xk' Yk) with respect to x

and y, respectively.

Then, the residual sums of squares are evaluated by ¢T/(s) and ¢D(S) as follows

¢T/(s)=1:-[min{O, S(Xk' Yk)-ZkW+1:°(S(Xb Yd-Zk)2+1:+[max{0, S(Xb Yk)-Zk}]2

¢D(S)=1:{[Sx(Xk' Yk)+COS~k tan 11k] 2 + [Sy(Xk, Yk)-sin ~k tan '1d 2
}.

where 1: -, 1:0 and 1: + are summation signs for data of I k = -1, ° and + 1,

respectively. When the smoothness of s(x, y) is evaluated by:
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Input Data

Xl' Y l' z 1 ' ~ l' 7) l' a l' f3 l' r l' 1t 1

X r , Y r , Z r' ~ r' 7) r' a r' f3 r' r r' 1t r

XN, Y N, Z N, ~ N, 7) N, aN, f3 N, r N, 1t N
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Data Selection

logical model for locational relation
logical model for inclinational relation

I Data for 5 n -1

I
I Data for 52

Data for 51

Locational Data

xJc' y*, zJc, IJc (k =1, 2, ... )

Inclinational Data

x Jc' YJc' zJc. ~ Jc' 11 Jc (k = 1, 2, ... ) -

-

-

Fig. 13. Selection of input data for determination of boundary surface.

the smoothest surface sex, y) consistent with given constraints should minimize:

Q(S;O:) = 1(s) + 0:[ePR(S) + yeP D(S)]

where 0: and yare parameters to control the relative weights of ePR(S) and ePD(S) ,

respectively.

In this paper, we represent the topographic surface and the geologic boundary

surface in the form of the grid data ( Fig. 12 ), which are arranged in a regular

pattern. Similarly we approximate s(x,y) by the discrete values S=(Sll' "', SNxN) on

an N x x Ny grid. Then 1(s), eP R(S) and eP D(S) are evaluated in a quadratic form of
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(b)

---Cl Type

---C2Type

z

I

s ~
5

[ 6 ]

[ 5 ]

[4(
8 5 8 4 8 3 8 2 8 1

b 6 +1 +1 0 0 0
b 5 -1 +1 0 0 0
b 4 0 -1 +1 +1 0
b 3 0 -1 -1 +1 0
b 2 0 -1 0 -1 +1
b 1 0 -1 0 -1 -1

Fig. 14. Example for selection of locational data.

(a) Geologic section. [I] to [6J are outcrops. (b) Logical model for locational
relation representing a structure (a).

s. We can obtain the optimal solution s* through successive approximation of S(k), which

minimizes Q(s;ak) for the increasing sequence {aklal <a2 < ... <ad (refer to SHIONO et

al.,1987 for details ).

6.2 AlgorithIll for Selection of Data

The set of data required to determine each 3-D boundary surface Si (i = 1, "', n -1)

IS prepared from data given in the form :

through mechanical procedures using the logical model for locational relation and the

logical model for inclinational relation (Fig. 13).

6.2.1 Selection of Locational Data

Referring to a function t:B x S -> { -1, 0, + I} representing logical model for locational

relation, we have a complete set of locational data required to determine the boundary

surface Si (i = 1, "', n -1), after we repeat the following judgements for all input data:

(r= 1, "', N).

Case (i) : t(ex" s;) = + 1 and t(fir> Si) = + 1

Both strata exr and fir are upper than a boundary surface Si' Therefore, (x" y" zr)

constrains the upper limit of the surface Si, providing an inequality datum for Si :

For example, Fig. 14(a) shows that a contact surface between two strata (ex l =b 3 ,
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[J 1 = b4 ) are observed at the outcrop [1]. Figure 14(b) shows that the logical model for

locational relation gives t(b 3 , S2) = + 1 and t(b4 , sz) = + 1. Therefore, we have a datum:

to determine the surface S2'

Case (ii) : t(a" Sj) = +1 and t([J" Sj) = 0

A stratum ar is upper than a boundary surface Sj, and a stratum [Jr is independent of

Sj' Since (x" y" zr) constrains the upper limit of Si' we have an inequality datum for Sj :

For example, the outcrop [2] in Fig. 14(a) provides a datum for S2 as follows

Simi larly In the case of t(a" s) = 0 and t([J" sJ = + 1, we have a datum

Case (iii) : t(a" sJ = -1 and t([J" s) = + 1

A stratum ar is lower than a boundary surface Sj, and a stratum [Jr is upper than Si' This

indicates that (x" y" zr) is on the boundary surface Sj' Therefore we have an equality

data for Sj :

For example, the outcrop [3] in Fig. 14(a) gives a datum for S2

It should be noted that there are no pairs (a" [Jr) which satisfy t(a" s) = + 1 and

t([J" sJ = -1 because ar is always lower than [Jr'

Case (iv) : t(a" Si) = -1 and t(f3" Si) =0

A stratum ar is lower than a boundary surface Si' and a stratum f3r is independent of

Sj' Since (x" y" zr) constrains the lower limit of Sj, we have a datum for Si :

For example, the outcrop [4] in Fig. 14(a) gives a datum for S2

Similarly In the case of t(a" sJ = 0 and t([J" Sj) = -1, we have a datum

Case (v) t(a" Sj) = -1 and t(f3" sJ = -1
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Both strata a, and /3, are lower than a boundary surface 5 j • Since (x" )I" z,) constrains

the lower limit of 5j, we have a datum for 5j :

For example, the outcrop [5] in Fig. 14(a) gives a datum for 5Z

Case (vi) : t(a" 5 j)=0 and t(/3" 5j)=0

Both strata a, and /3, are independent of a boundary surface 5j. Therefore, location (x"

)I" z,) cannot be used for the determination of the surface 5j'

For example, Fig. 14(a) shows that two strata (cx6=bs, /36=b6) at the outcrop

[6]. Since t(b j , 5z)=0 and t(b z , 5Z)=0, the location of [6] is independent of 5z,

Finally, observations at outcrops [1], "', [6] in Fig. 14(a) provide a set of data for 5 Z

as follows:

XI' )lj, Zj, +1

Xz, )lz, Zz, +1

x3' )13' Z3' °
X4' )14, Z4' -1

X S , )Is, zs, -1

6.2.2 Selection of inclinational data

Referring to logical model for inclinational relation, we can select a proper set of

inclinational data from input data :

where

(i) if a, = /3" then ~, and 1'/, give strike and dip of the bedding plane in a stratum

an respectively.

(ii) if a, =I' /3" then ~, and 1'/, give strike and dip of a contact surface between cx, and /3"

respectively.

(i) Case of a,=/3,

is used to determine a surface 5 j which satisfies p(a" 5;) = 1.

(ii) Caseofa,=I'/3,

IS used to detel'mine a surface 5j if u(a" /3,) =5j , that IS, if 5j is a boundary surface

between a, and /3,. Further the inclinational data is also used to determine every surface
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5j which satisfies q(5 j , 5) = 1.

7. Construction of Function g:X -> B

279

Combining the logical models for locational relation t: B x S -> { -1, 0, + 1} and the

3-D figures of the boundary surfaces Z=5 j(X, y) (i= 1, ... , n-1), we can define a function

g: X -> B which assigns a unique stratum bEB to every point pEX.

7.1 Function g' - from 3-D space to set of binary numbers-

Let (xp, Yp, zp) be a coordinate of a point pEX. Then comparing the elevation zp

of the point p with the height 5;(Xp, yp) of the i-th boundary surface defines a number

bj such that :

b= {1,
, 0,

if Zp;;;5j(Xp, yp)

if zp <5j(Xp, yp). (£=1, ···,n-1)

Thus, an (n-1)-digit binary number (bn-lb,,-2···b2blh is assigned to each point p. This

rule represents a function g':X-> Y, where Y is the set of all (n-1)-digit binary numbers

{(b"-lb"-2···b2bl)2Ibk=0, 1; k=1, ... , n-1}. For example, when there are three surfaces

51' 52' 53 in the 3-D space X, (011)2 is assigned to the point which is below 53' above

52 and above 51 (Fig. 15(a».

The set of points to which binary number (b"-lb"-2···b2blh is assigned can be

represented by the Inverse Image of g' as follows :

,,-1

g'-I«b"_l bn_2··· b2blh) = n Sk=S,,_l n ··· nSl
k=1

where

if bk = 1

if bk =0.

For

b3 is

Thus, we can consider the binary number (b"-lb"-2···b2blh as the code number of the

subspace divided by boundary surfaces.

7.2 Function gil -from set of binary numbers to set of strata-

From the logical model for locational relation, we can determine a function gil: Y->B

which assign a stratum to a binary number.

The logical model for locational relation represents the distribution of stratum.

example, the logical model given in Fig. 1S(b) shows that the distribution of

represented by :

This indicates that the surface 51 is independent of the distribution of b3 . However,

considering that a(b 3 ) is included in both the upper subspace s1+ 1 and the lower subspace
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( a)
set of binary numbers Y

3-D spaceK 1 1 1 set of strata B

1 1 0

1 0 1
s3

1 0 0(Cl)

0 1 1
s2

(C2 ) 0 1 0

0 0 1
SI

0 0 0(Cl)

~

Function g
,

Function g

(b) ( c)
1)3 ~ 1)1 Strata

8 3 8 2 8) 1 1 1 b 4

b 4 +1 +1 0 1 1 0 b 4
1 0 1 b 2b 3 -1 +1 0
1 0 0 b)

h 2 0 -1 +1 0 1 1 b 3

b) 0 -1 -1 0 1 0 b 3
0 0 1 b 2
0 0 0 b)

Fig. 15. Function g:X-+B.

(a) Function g:X-+B IS constructed by functions g':X-+Y and g":Y-+B. (b)
Logical relation for locational relation representing a structure (a). (c) Function g".

S I -I, we introduce an expresslOn

Then, we have a formal expression for (J(b 3 ) as follows

I t is noted that the superscripts -1, + 1 and 0 correspond formally to the components

of the logical model for locational relation shown in Fig. 15(b).

Substituting (SI+1US I - I ) for SIO in equation (7.1), we have

(J(b 3) =S3 -I nS2+ 'n(s( + 'us) -I)

=(S3 -lns2 + Ins! + !)U(S3 -I nS2+ Ins! -I)
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First and second terms of right-hand side represent subspaces to which binary numbers

(011)z and (010)z are assigned, respectively. This suggests that the points to which the

function g' assigns (011)z or (010)z are included in db 3 ).

Generalizing the above discussion, let us give the formal expression for every (J(bi)

as follows:

n-1

(J(bJ= nS'ik=S'il"'''''''S'in-1
k=l

where

(7.2)

1

S + 1k ,

S'ik= SkO=Sk +IUSk-1

-ISk ,

if t(b i , Sk) = + 1

if t(b i , Sk) = 0

if t(b i , Sk) = -1.

For Sk 0
, let the set J(i) be

and the set J be :

J={JIf:NxN---+{ -1, +1}, j(i,k)=t(b" Sk) if kriJ(i)}

where Nand N' are the sets of integer as follows:

N={l, , n}

N={l, , n-1}

Then, we have an equation representing (J(bJ as the union of some subspaces divided

by boundary surfaces SI' Sn-I as follows:

n-l
(J(bJ = U(n S/(i.k))

IEJ k = I

Using one-digit number (jik:

{
1,

(jik =
0,

we have another expression of (J(b;) :

ifj(i, k) = +1

ifj(i, k) = -1

(J(bJ= Ug- 1«(jin-l(jin-2 .. ·(ji2(j,I)z)'
IEJ

(7.3)

Thus, we define a function g": Y---+B which assigns the stratum bi to every binary numbers

which appear in left-hand side of equation (7.3). Then, g"«(jn-l· .. (jZ(jt)2) =bi represents
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that a subspace to which a binary number (15,,-1 ... 152151)2 is assigned is included in (J(bJ

7.3 Algorithm for Construction of Function g"

The following is an algorithm for the construction of the function g": Y -+B.

(i) Repeat steps (ii) to (iv) for i=O, ",,20
-

1 _1.

(ii) Translate the value i into a binary number (15,,- 115,,- 2'" e5 2e5 l h.
(iii) Repeat step (iv) for j=1, "', n.

(iv) Set g"«6"-1· .. e52e5lh)=b; if for all k=1, "', n-1, we have either

or

The function g" is represented in a tabular form as shown in Fig. 15(c).

7.4 Function g

The function g':X-+ Y assigns a binary number (15,,-1 ... 152151)2 to a point p in the 3-D

space X, and the function g": Y-+B assigns a stratum name to the binary

number. Therefore, the function g:X-+B defined by

g(P) =g"(g'(P))

= (g" 'g')(P)

or

g=g"'g',

assigns a stratum name to a point In X ( Fig. 15(a)).

The algorithm to define g(P) for any point p in X is simply described as follows:

Let (xp, yp, zp) be coordinates of a point p in X, then

where

e5={1,
I 0,

ifzp~s;(xp,yp)

if z p< Sj(xp, yp).
(i = 1, n-1)

8. Computer System "CIGMA"

8.1 Outline of Computerized Mapping System

The computerized mapping system is developed, based on theory and algorithm
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described in the previous sections. Figure 1 summarizes the logical framework of the

system. We call this system "CIGMA", abbreviated from ~omputer-!nferredGeologic

Map.

(1) Inference of stratigraphic sequence

From given data, the set B of strata distributed in the studied area are determined, and

observed stratigraphic relations of strata are represented in the form of a relation

matrix. The stratigraphic sequence is determined by matrix operations.

(2) Construction of logical models of geologic structures

Two kinds of logical models of geologic structures are constructed according to the

character of boundary surface described in given data : a logical model for locational

relation and a logical model for inclinational relation.

(3) Determination of boundary surface

In order to determine each boundary surface, locational and inclinational data are selected

from given data set using logical models of geologic structures. Boundary surface IS

determined as the smoothest surface by the method of constrained optimization.

(4) Assignment of strata by a function g:X-tB

Every point to be drawn in a geologic map is transformed to a binary number representing

locational relation through a function g':X-t Y, and is assigned a unique stratum through

a function g": Y-tB.

(5) Graphical presentation

Finally, CIGMA projects a 3-D geologic map on a display by coloring the strata

respective to all grid cells on the topographic surface and four side sections.

8.2 Progranls and Data

CIGMA is written in Fortran77 and the graphics functions of GKS (ISO, 1985), and

IS implemented under UNIX and X-Window environment. The source code of the

program and sample data sets are available from the author.

CIGMA consists of the six routines. Figure 16 shows the flowchart. These

procedures are performed automatically by the following routines.

Routine (i) : ORDER

Using the relation between strata In the input data, the routine ORDER infers the

stratigraphic sequence and logical models of geologic structures, and selects sets of data

to determine boundary surfaces. The subroutine to infer the stratigraphic sequence IS

based on the algorithm given by SAKAMOTO and SHIONO (1992).

Routine (ii) : BOUNDARY
Using sets of data selected by ORDER, the routine BOUNDARY determines all boundary

surfaces in forms of the grid data based on the algorithm given by SHIONO et al.(1987).

Routine (iii) : SOLID
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"CIGMA"

Start
(Routines)

Input data area

ORDER

Data selection for detennination
of boundary surface

Detennination of boundary surface

Construction of function g"

Subdivision of grid data

Assignment of stratum to topographic
surface and side section

Graphic output of 3-D geologic map

End

--- BOUNDARY

--- SOLID

--- G2G

--- MAPPING

--- MAP

Fig. 16. Flow chart of CIGMA.

Using the logical model for locational relation inferred by ORDER, the routine SOLID

constructs a function g": Y -> B.

Routine (iv) : G2G

In order to obtain a fine graphics output, the topographic surface IS interpolated usmg

the bi-cubic spline functions (deBooR, 1962).

Routine (v) : MAPPING
Using grid data of boundary surfaces created by BOUNDARY and the function g': Y->B

constructed by SOLID, the routine MAPPING assigns a stratum to every grid node

of the topographic surface, and to every grid node of four gridded side sections.
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Routine (vi) : MAP
The routine MAP projects the strata assigned to all grid nodes by MAPPI G on the

computer screen. Thus a 3-D geologic map is completed. This routine is based on

MASUMOTO et al.(1986).

The CI GMA uses observation data described in the format

as mentioned in Section 2.3. This format can describe various types of data as follows.

(i) Case that relations between different strata are observed at r-th outcrop

Null values are given to ~r and '1r in the case that strike and dip of the boundary surface

are not observed.

(ii) Case that only one stratum is observed at r-th outcrop

where - shows a null value. ~r and YJr are given in the case that strike and dip of the

layered structure are observed.

(iii) Case that the expert knowledge IS introduced

-, -, -, -, -, IX" f3" ('l."r), (n r )

'l."r and nr may be gIven from some assumptions on the geologic structure.

In addition to observation data mentioned above, the topographic surface must be given

in the form of grid data.

8.3 Example of Application

Figures 17 and 18 show examples of geologic maps drawn by CIGMA. Input data for

the geologic map shown in Fig. 17 are:

100, 80, 180, 270, 10, b3, b4, 2, 2

100, 50,157,210,15, bl, b2, 1, 3

60, SO, 169, 210, 30, b2, b3, 1, 2

and data for Fig. 18 are :

48, 24, 172, 190,30, b2, b3, 1,3

72, 24, 157, 190,30, bl, b2, 1, 3

128, 24, 138, 10,30, bl, b2, 1,3

160, 24, 142, 10, 30, b2, b3, 1, 3

24, 144, 159, 190,30, b2, b3, 1, 3
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( a)

(b)

Fig. 17. Examples fStrata 0 output (1).
are b I b2

surfaces. (a) 2-'D ,b3, and b4 m asce .geologic map. (b) 3-D ndmg order.geologIc map. All boundaries
are plane
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(a)

( b )

Fig. 18. Examples of output (2).
Strata are b 1, b2, and b3 in ascending order. All boundaries are folded surfaces.

(a) 2-D geologic map. (b) 3-D geologic map.
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80, 144, 172,

112,144,193,

128, 144, 205,

Masanori SAKAMOTO

190,30, bl, b2, 1,3

10, 30, bl, b2, 1, 3

10, 30, b2, b3, 1, 3

where coordinates are given in arbitrary units, and strikes and dips are in degree. The

same topographic data (192 x 160 area) are used for both examples. Figures 17(a) and

18(a) are the 2-D geologic maps. Figures 17(b) and 18(b) are the 3-D geologic maps,

and the azimuth and inclination of a view point are 20° and 30°, respectively. Contour

lines are drawn from 135 to 230 at 5 intervals. Most computational processes He

automatically carried out after the manual arrangement of the original data and selection

of parameters for graphical display.

9. Geologic Structure Assumed in CIGMA

CIGMA is a computer software system to draw geologic maps automatically according

to data obtained directly from field observations. The system is constructed based on

several inference rules derived from five Axioms At to AS. The axioms are introduced

as tentative formulations for natures of an idealized geologic structures, i.e., accumulations

of eroded and/or non-eroded sedimentary layers without faulting nor overfolding.

Therefore, it should be noted that there are limitations in applicability of CIGMA (Fig. 19).

Axioms At, A2 and A3 provide a theoretical basis for computer algorithms to infer

the stratigraphic sequence from observations on spatial relations between exposed

rocks. Most of sedimentary layers satisfy Axioms AI, A2 and A3. However, strata

displaced by fault movements and strongly folded strata may not satisfy the axioms, but

some stratified lava flows may satisfy the axioms. As seen from this example, it IS

noted that geologic bodies satisfying the axioms are not necessarily sedimentary layers.

Fact that geologic bodies in the surveyed area satisfy the three axioms do not

guarantee that L OE is a total ordering, that is, we can determine the stratigraphic sequence,

but only that L OE is a partial ordering, that is, we can enumerate geologic bodies linearly

in such an order that is consistent with relations obtained from the observations:

There are two cases that we can not determine the stratigraphic sequence. One is

the case that we have not observed sufficiently enough to make L OE a total ordering, as

shown in Fig. 20(a). In this case, we must continue to search outcrops which expose

relations between incomparable pairs of geologic bodies. The other is the case that the

geologic structure itself includes at least one pair of geologic bodies which are not

comparable. In both cases, since the stratigraphic sequence is not fixed from given

data, we cannot proceed to the next step to create the logical models of geologic

structures. Therefol'e, C [GMA is designed to stop after showing the incomparable
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Algorithm for construction of function g:X-->B

~;

'i3
;g
">o
~

o
c
OIl

.,3
]

'0g ~

-5 <'J
'i 'i3

B
Topographic and boundary surface ~ .~
in the fonn of grid data CIl 0

................................... : : : : : : : ..... ~ ]
OJ)

All principles of geology are satisfied

Fig. 19. Limitation in geologic structure for construction of function g.
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( a) (b)

Fig. 20. Examples that &2 and &3 are incomparable.
(a) A relation L o£ among &2 and &3 is not observed. Open circles are outcrops.

(b) &2 and &3 are not comparable.

pairs of geologic bodies when L OE IS not a total ordering.

Axioms A4 and AS provide a theoretical basis to create logical models of geologic

structures based on field observations. However, the axioms introduce additional

limitations. "Cl" idealizes a contact surface between layers created by a successIve

sedimentation without any erosion. On the other hand, "C2" represents a contact

surface between a new layer and eroded one. Strictly speaking, "C2"assumes a history

such that a new layer overlies the preexisting ones after the preexisting ones are removed

partially by erosion to the extent that the upper surface of the youngest layer among
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( a)
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(b) ( c )

Fig. 21. An image of structuring process of "C2"
(a) Preexisting strata. (b) The upper surface of the youngest layer is completely
removed. (c) A new layer overlies preexisting strata.

the preexisting ones IS completely removed (Fig. 21). In the real situation, there are

some cases that only a part of the upper surface is removed by erosIon. Further,

Axioms A4 and AS assume that sedimentation and erosIOn occur at distinct

intervals. Sedimentation and erosion may occur simultaneously in some cases. For

example, considering the area around seashore, geologic bodies are eroded on land and

eroded particles form a sedimentary layer under the water. Therefore, we need to

generalize Axioms A4 and AS in order to approach more realistic situations.

Assumption 5.1 is a tentative assumption which is introduced to make effective use

of inclinational data for determination of boundary surfaces. The assumption is

unnecessary when we have no inclinational data. The assumption is introduced from

an idea that if surfaces are parallel to each other then inclinational data observed on

one surface may be used as the inclination of other surfaces. As the assumption is

used only for arrangement of data required to determine boundary surfaces by the

routine BOUNDARY in CIGMA, surfaces determined by BOUNDARY may not

necessarily be parallel to each other. vVe also need to develop new theories to reconstruct

a various types of folding structures according to their behaviours.

10. Conclusion

In this paper, a basic theory for computerized geologic mapping is formulated

systematica~lybased on five Axioms Al to AS. The results are summarized as follows:

1) Axioms A1, A2 and A3 introduce inference rules to determine the stratigraphic

sequence from the field observations.

2) Axioms A4 and AS provide a theoretical basis to construct logical models of

geologic structures based on field observations.

3) Assumption 5.1 is a tentative assumption to create the logical model fOl'

inclinational relation so that inclinational data are used for determining boundary surfaces.
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4) As the result, the computer algorithms for construction of function g:X--+B

which assigns a stratum to every point in the 3-D space are constructed.

5) A Fortran 77 computer program CIGMA is coded according to presented

algorithms to draw a 3-D geologic map automatically.

As CIGMA draws a geologic map quickly based on the field observations, it will

be useful for all steps of field survey from rough drafting to final mapping. Further

it is expected that CIGMA will receive wide application including geologic educations.
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