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Abstract

During Ordovician times the central Ningxia area was situated in the middle-western passive margin of
the Sino-Korean Platform. Deposition here was controlled by both eustasy and tectonic activity.

Until the late Arenigian of Early Ordovician, carbonate platforms were well developed in this area. At
least four long-term transgressive-regressive cycles, which are interpreted as third-order sequences, have been
recognized on the basis of the stacking patterns of carbonate platform lithofacies associations. Sequence
boundaries there were generated by either exposure or by the drowning of the carbonate platforms in central

mgxla.
From the end of the Arenigian, this area underwent transition from stable carbonate platforms to an

active foreland basin in response to the increasing activity of the North-Qilian Fold Belt. In the western
study area, the transitions are marked by the basin-marginal lithofacies associations, firstly deposited in
Miboshan, then extending to Qingshan and Yantongshan in turn. Meanwhile, deposition in Qinglongshan
was still dominated by carbonates but became deepening upwards in the long term (although interrupted by
shallowing events). From the Middle Ordovician, terrigenous supplies increased, and basinal graptolitic shale
and basin-marginal clastics prevailed in the middle and eastern parts of central Ningxia before being uplifted.
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Introduction

The Ordovician successIOn IS well exposed in central Ningxia (Fig. 1), and is

represented by a wide variety of lithofacies and lithofacies associations, from peritidal

carbonates to basinal shales. It thus provides a good opportunity to study the development

of sequences in the Ordovician.

In the Ordovician, central Ningxia was situated on the middle western Sino-Korean

passive margin in central Ningxia (Fig. 1). Further understanding of the tectonic history

between the Sino-Korean Platform and the North-Qilian Fold Belt depends largely on

a more detailed sedimentological study of the Ordovician successIOn and the

paleogeography of central Ningxia. Until now, however, sedimentary evolution of the

Ordovician in central ingxia, especially in the western study area, has been poorly

documented.

On the basis of an extensive outcrop analysis, consisting of the measurement of
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Fig. 1. Generalized geological map of central Ningxia showing Ordovician outcrops,

modified from Huo et al. (1989). The major northwestward-trending deep faults
are named as: I-Longshoushan-Liupanshan major fault, and IJ-Sapotou-Tongxin
major fault. The former separates central Ningxia into two tectonic provenances.
The inset maps show the location of the Ordos Basin in China and the location
of the study area in Ordos Basin, respectively.

seven sections, this work proposes (i) to present a revised stratigraphic description of

the Ordovician sequences in this area; (ii) to provide detailed relative sea-level curves

deduced from the stacking patterns of the lithofacies and lithofacies associations; and

(iii) to illustrate the episodes of sedimentary evolution, which consist of succeSSIve,

genetically related units.

Structural and Stratigraphic Settings

The Ordovician of the study area is preserved in two major tectonic provenances

(Fig. 1). The Qinglongshan section and surrounding areas in the east was the marginal

part of the Sino-Korean craton; the western part, with deformed strata, lies within the

Zoulang Transitional Belt of the North-Qilian Fold Belt, where the autochthonous

shallow-water carbonates were overlain by the allochthonous deep-water deposits after

the Llanvirnian or later. These two major tectonic provenances are separated by the

Longshoushan-Liupanshan major deep fault, which has been recognized by geophysical
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data (Hua et aZ., 1989).

The Middle to Late Cambrian rifting of central Ningxia is indicated by thick,

syn-rift deposits in the Zoulang Transitional Belt of the North-Qilian Fold Belt (Xiangshan

Group, see in CUI et aZ., 1985). The transition from rift to passive margin may have

occurred at the end of the Late Cambrian as shown by the overlying Lower Ordovician

shallow-water carbonates (Xialingnangou FOI-mation and overlying strata, see in AN and

ZHENG, 1989; LIU, 1991). The period following was characterized by the thermal

subsidence. From the L1anvirnian of the Early Ordovician, the passive margin became

more active due to the early collision of the North-Qilian Fold Belt with Sino-Korean

Platform. This area may have been totally elevated above sea-level after the early

Caradocian of the Middle Ordovician.

Age determinations and correlations for shallow-water carbonate strata of the Early

Ordovician in central Ningxia were made predominantly on the basis of conodont

biozones or assemblage-zones (AN and ZHENG, 1989; AN and ZHENG, unpub. data; Lru,

1991). Based on the conodont data, Lru (1991) redefined the Tianjingshan Formation

(formally definited as Arenigian shallow-water carbonates) as consisting of three successions

separated by faults. He named them the Xialingnangou Formation (early Tremadocian

shallow-water carbonates), the Tianjingshan Formation (Arenigian shallow-water

carbonates), and the Wangjiayuanzi Formation (L1anvirnian shallow-water carbonates)

(See Lru, 1991 for additional detailed descriptions of conodont fauna and biostratigraphic

correlation). Table 1 provides a biostratigraphic correlation scheme on local and global

scales.

The significant work on Ordovician graptolites of this area (GE et aZ., 1991) has

provided another biostratigraphic control, and it is especially useful in siliciclastic strata

developed from the L1anvirnian. The synthetic stratigraphic framework of central

Ningxia is presented in Fig. 2.

Lithofacies and Lithofacies Associations

A broad spectrum of lithologies is present in the Ordovician of central Ningxia,

which may have been deposited in peritidal to basinal settings. We describe

below the lithofacies in terms of bedding characteristics, textures and sedimentary

structures (Table 2), and group them into lithofacies associations, based on inferred

genetic relationships.

Peritidal Lithofacies Association

Rocks of the peritidal lithofacies association are predominantly cryptalgal laminites,

collapse breccia, dolomitic siltstone (e.g., Fig. 4-A), argillaceous fine-crystal dolostone

and thin-bedded dolomitized intervals with no remnant primary depositional features.



Table 1. Conodont assemblages established from the Ordovician of central Ningxia, and its correlational scheme, with chronological
and biostratigraphic divisions on local and global cales. Absolute age, in million years, after HARLA D et al. (1989).
The graptolite biozones in Britain after WILLIA IS et al. (1972) and FORTEY et af. (1995); conodont biozones from
Baltoscandia after LINDSTROM (1971) and BERGSTROM (1977); conodont assemblage-zones in North China after AN and

ZHE G (1989); and conodont assemblage-zones from central Ningxia after Lw (1991).
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Fig. 2. Chronostratigraphic chart of th Ordovician in central ingxia. Geographical location of the sections

shown in Fig. 1. '*' Xln Fr. is abbr viated from Xialingnangou Formation.
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Table 2. Descriptions of characteristic lithofacies within lithofacies associations.

Peritidal Lithofacies Association

Cryptalgal Laminite (Fig. 3-A): tan to dark grey, 0.5-3 m thick; micrite, with rare small peloids; fine,

planar to wavy to discontinuous lamination; rare mudcracks; irregular and laminar fenestrae;

commonly completely dolomitized.

Collapse Breccia (Fig. 3-B): tan to grey, 0.2-2 m thick; laterally discontinuous beds of angular intraclasts

in a calcrete matrix; intraclasts often poorly sorted and rounded, no preferred orientation or grading.

Dolomitic Siltstone (Fig. 4-A): tan to yellow-orange, brown-weathering, less than 0.3 m thick; quartzose

silt; planar to wavy lamination, occasionally interbedded with dolomitic mudstone.

Argillaceous Fine Crystal Dolostone: light tan, thin- to medium-bedded, occasionally laminated;

commonly overlying the subtidal or intertidal sediments, the cap of peritidal cycles.

Shallow Subtidal Lithofacies Association

Peloidal Grainstone (Fig. s-A): light grey to grey, thick-bedded, up to 10 m in thickness; peloids

commonly well-rounded and micritic, cemented by granular sparry cement; occasionally with small

intraclasts and robust broken trilobites, echinoderms; cross-laminated; transitional with cyclic

peritidal carbonates.

Peloidal Packstone: light grey to grey, thick-bedded, in thickness up to 12 m; peloids usually well-rounded

and micritic; occasionally with small intraclasts and robust fossils; commonly bioturbated.

Deeper Subtidal Association

Bioturbated Lime Mud-Wackestone (Fig. 3-D, SoB): grey to dark grey, medium- to thick-bedded, up to 14

m in bed thickness; grains consisting of peloids and fossils, e.g., trilobites, echinoderms, gastropods,

ostracods; extensively bioturbated; commonly cherty.

Peloidal Wackestone-Packstone: grey to dark grey, thin- to medium-bedded, less than 0.5 m thick;

commonly with sharp erosional base; Grains include peloids and skeletons of trilobites, echinoderms,

gastropods; intraclasts commonly near base of units.

Lime Mudstone (Fig. SoC): grey to dark grey, thin- to medium-bedded; micrite, commonly with

terrigenous clays; less than 10 percent gains and open-sea fossils, e.g., trilobites, echinoderms,

gastropod, ostracod; occasionally bioturbated.

Nodular Argillaceous Mud-Wackestone (Fig. 3-C): medium to dark grey, 0.5 to 6 m in thickness;

discontinuous, nodular, wavy and thin-bedded, recessive weathering; variable intermixed textures

from lime mudstone to skeletal peloidal wackestone, micrite with thin shell fossils e.g., trilobites,

occasionally bioturbated.

Basin-Marginal Lithofacies Association

Carbonate Megabreccia/Conglomerate (Fig. 4-C, D): beds up to tens of meters in thickness; typically

clast-supported, poorly sorted and lack grading, but commonly oriented; the megabreccia or

conglomerates are angular to rounded, compositionally containing a mixture of peloidal

grainstone/packstone, thin-bedded lime mudstone, siltstone clasts, etc.; lower contacts planar to

gently undulatory; beds laterally persistent.

Terrigenous Clastic Turbidite (Fig. 4-B, 5-0): composed of feldspar sandstone, siltstone and/or

mudstone. Sandstone: olive green to dark grey (brown-weathering), up to 2 m in thickness, graded

bedding/parallel bedding commonly Bouma division Ta, Tb. Siltstone: olive green to grey,

convolute bedding/cross-bedding, Bouma division Tc, Td. Shales: color varied, planar laminated,

common Bouma division Td or Te.
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Lime Mudstone (Fig. 5 E): medium grey to dark grey, thin-bedded, insoluble residues (quartz silt

and clay) commonly less than 15 percent; burrows rare to absent, with grading generated by

low-concentration turbidites; occasionally yielding fine-grained intraclasts and soft-deformed

conglomerates.

Basinal Lithofacies Association

Lime Mudstone (Fig. 5 F): medium grey to dark grey; primary parallel lamination well preserved; rare

burrows and no evidence for wave activity; bioclastic components dominated by radiolaria with

rare fine trilobites; occasionally cherty.

Graptolitic Shale: dark grey to olive green, with continuous planar laminations; occasionally fine

trilobites, phosphatic brachiopod fragments, and graptolites; burrows absent; commonly interbedded

with siltstone.

Beds are about 0.2-1.5 m thick. Mudcracks occasionally occur. Peritidal lithofacies

associations are recognized from the lower Shuiquanling Formation of Qinglongshan,

and from the Tianjingshan Formation of the Zoulang Transitional Belt. This association

is commonly dolomitized and interbedded with thick-bedded peloidal grainstone/packstone

and/or bioturbated lime mudstone/wackestone.

The irregular and laminar fenestae in cryptalgal laminites are generally referred to

as being the remains of algal mats (JAMES, 1984). Together with occasionally observed

mudcracks, cryptalgal laminites may be deposited in intertidal settings (PHATT and JAMES,

1982). The textures of collapse breccias (Table 2) suggest that the formation of breccias

may be caused by collapse after dissolution of overlying strata, especially evaporates. Such

textures can be used to indicate deposition In upper intertidal to supertidal

environments. Thus, the sediments grouped here into the peritidal lithofacies association

indicate deposition on an arid tidal flat in environments similar to those in the modern

Persian Gulf and Shark Bay (HARDlES and SHINN, 1986).

Shallow Subtidal Lithofacies Association

The shallow subtidal lithofacies association IS typically composed of thick-bedded,

peloidal grainstone and peloidal packstone as well as minor skeletal wackestone to

grainstone interbeds. Lime mudstone is rare to absent, and when present is deposited

mainly at the base of meter-scale, upward-shallowing cycles. Rocks of this association

are in beds 0.3-3.5 m thide They commonly bear more than 65 percent peloids and/or

intraclasts, more or less bioclastics and are cemented by granular sparry calcite. Cross

bedding is relatively rare, but beds are commonly bioturbated. Similarly to the peritidal

lithofacies associations, the shallow subtidal lithofacies association is concentrated in the

Xialingnangou and Tianjingshan Formations of the Zoulong Transitional Belt, and in the

Shuiquanling Formation of Qinglongshan. However, compositions of this association

vary merely from section to section. In Qinglongshan, for example, peloidal packstone

is well developed instead of peloidal grainstone, and in the Zoulong Transitional belt,

grainstone dominates this lithofacies association.
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Fig. 3. Field photographs for vanous lithofacies. A-Planar-wavy, dolomitic cryptalgal laminite overlying the
thick-bedded dolomitic peloidal packston . B-Solution-collapse breccia with coarse quartz sands.
"-Argillaceous nodular lime mudston . 0- Iassive to thick-bedded bioturbat d mud-wackestone.

Individual burrows are mud-filled, and doJomitized.
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Fig. 4. Field photographs of various lithofacies. A-Dolomitized siltstone overlying peloidal
grain-packstone. B- Jntercalated medium- to fine-grained sandstone/siltstone and
shale with Bouma divisions. C-Black shales and siltstone with calcium turbidite
interbeds. D-Polymict conglomerate with limestone, dolostone and siltstone clastics.
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Thick grainstone/packstone is interpreted as shoal deposits, though only some

cross-bedding was observed. Rounded and well-sorted peloids and sparry cements

indicate depositions by wave reworking in water. depths from sea-level to fair-weather

wave-base (de RAAF et aZ., 1977; BovA and READ, 1987). Plausible Holocene analogs

for the depositional setting of this lithofacies association are the vast, interior, shallow

subtidal shelves of the Florida and Bahamian platforms (ENOS and PERKINS, 1977; HINE

et aZ., 1981). Such grainstones correspond to the "keep-up" phase in the sense of

KENDALL and SCHLAGER (1981), and may be well developed in highstand systems tracts

(BURCHETTE et aZ., 1990; TUCKER et aZ., 1993) of a sequence.

Deeper Subtidal Lithofacies Association

The deeper subtidal lithofacies association typically consists of bioturbated

mud-wackestone, thin-bedded lime mudstone, and nodular argi Ilaceous mud-wackestone.

It is commonly shaly or argillite enriched. The strata of this association are in beds

0.1-14 m thick, commonly bioturbated, and contain more or less bioclastics, e.g.,

trilobite, echinoderm, gastropod, cephalopod. Fine-grained peloidal pack-wackestones

occasionally occur in this lithofacies association, but are distinguished from those of the

shallow subtidal association by thinner beds and containing more matrix. Tidal-flat

caps or subaerial exposures are rarely intercalated with rocks in this association.

Bioturbated mudstone-wackestone (Fig. 3-D) and fine-grained peloidal wackestone

represent depositional environments similar to those documented in the modern Bahamas

by PURDY (1963). The nodular, argillaceous mud-wackestone (Fig. 3-C) may be deposited

on the middle ramp, between bioturbated lime mud-wackestone and deeper water

siliciclastic muds (AIGNER, 1985). Nodules may have been formed early by submarine

lithofication under weak bottom currents (MULLINS et aZ., 1980) or may be the result

of late pressure solution and physical compaction (VVANLASS, 1979).

The presence of abundant burrows and open-sea fossils (Fig. 5-C) suggests that the

sediments of this association were deposited in open-marine subtidal settings, and lime

mud-rich texture in the rocks suggests they were formed within low-energy settings,

especially below the zone of storm wave reworking.

Basin-Marginal Lithofacies Association

The basin-marginal lithofacies association consists of vanous lithofacies, e.g.,

terrigenous turbidites, carbonate mega breccia/conglomerates, carbonate slumps, and

thin-bedded lime mudstone.

The basin-marginal clastics are characterized by grey-green (brown-weathering) to

dark grey, interbedded greywackes, feldspathic sandstone (Fig. 5-D), siltstone, and

shale. These deposits commonly contain partial to complete Bouma divisions

(Ta-Te). The contacts between individual Bouma sequences are sharp and planar, and

individual beds are laterally persistent as far as the exposed outcrop. Sandstone contains

mainly Ta and Tb, and siltstone commonly yields Tc and Te (Fig. 4-B). Flute casts
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Fig. 5. Microscope photographs of various lithofacies. A-Peloidal grainstone with calcitic
sparry cements. B-Burrow with back-packing structure in lime mudstone. C-Skeletal
wackestone containing diversified bioclastics, e.g., echinoderms, trilobites, sponge
spines. D-Coarse quartz sandstone with siltstone, peloidal grainstone conglomerates.
E-Lime mudstone and overlying fine-grained turbidite. F-Lime mudstone with
calcitized radiolarians. Solid bars in photographs represent the length of 0.5 mm.

are also abundant at the bottom of a Bouma sequence. The basin-mm-ginal siliciclastics

were predominately developed in the lower and middle Miboshan Formation and the

Sanzigou Formation of Niushoushan during the Llanvirnian, and in the Niushoushan

Luoshan Trough after the Middle Ordovician_

The carbonate megabreccia/conglomerates in this lithofacies association have vanous

textures (Table 2), and can be grouped into two types, based on clast lithologies. Polymict
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breccias/conglomerates consist mainly of clasts (Fig. 4-D) transported from different

depositional settings or even from different stratigraphic horizons. For example, the

carbonate conglomerates in the Miboshan Formation of Yantongshan are composed of

peloidal grainstone-packstone, bioturbated lime mudstone and thin-bedded lime mudstone,

and minor siliciclastics, and they contain "chaotic" conodont fauna ranging from Late

Cambrian to L1anvirnian of the Early Ordovician. In contrast, oligomict breccia!

conglomerates consist predominantly of rounded to tabular lime mudstone clasts in a

lime mud matrix.

Many features of carbonate megabreccia!conglomerates are recognized in Holocene

and ancient submarine mass flows formed by major collapses and debris flows (CREVELLO

and SCHLAGER, 1980; COOK and MULLINS, 1983; GAWTHORPE, 1986; YOSE and HELLER,

1989; DROMART et ai., 1993). Although the primary mechanisms responsible for such

collapses and debris flows are still a topic of debate, correlative features of occurrences

of megabreccia!conglomerates with sea-level fluctuations in other sections suggest that

they may have been controlled by basin-wide events, e.g., sea-level falls orland tectonic

uplift.

Massive slides and slumps, which are other forms of allochthonous debris, are

observed in the upper Sandaogou Formation of Qinglongshan and other stratigraphic

intervals. Such sediments tend to be generated on low-angle mud-dominated slopes

(HUNT and TUCKER, 1993) during sea-level fall (HILBRECHT, 1989; DROMART et ai.,

1993). Highstand shedding, observed in modern sediments in the Bahamas (DROXLER

and SCHLAGER, 1985; SCHLAGER et ai., 1994), may not be common in ancient rocks (VAIL

et ai., 1991).

Thin-bedded lime mudstone of this association (Fig. 5-E) is distinguished from its

basinal counterpart (Fig. 5-F) mainly by containing more terrigenous elements with a

high proportion of silt-sized grain; it may have been deposited particularly on slopes

and in basins close to land (STOW, 1994).

Basinal Lithofacies Association

The basinal lithofacies association consists of olive-green, dark-grey graptolitic shales,

thin-bedded lime mudstones and distal fine-grained turbidites. This lithofacies association

is well developed in the Pingliang Formation of Qinglongshan, the upper Qingshan

Formation of Qingshan, and the middle Wangjiayuanzi Formation of Tianjingshan. In

these horizons, the stratigraphic thicknesses are much thinner and turbidites are

comparatively fewer, thinner and finer grained than those in the more proximal

sections. Lime mudstone and shale form a relatively high proportion of the section. The

thick megabreccias and other coarse, debris-flow deposits are usually rare to absent in

this association.

Thin-bedded lime mudstone in this lithofacies association is characterized by

well-developed planar bedding or laminar, and fine, thinner shelled fossils. Bioturbation

is comparatively rare. Radiolaria usually are concentrated in some intervals of basinal
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lime mudstones (Fig. 5-F). The thick shales are characterized by their olive-green to

grey color, laminated character and well-preserved graptolites, which reflect condensed

deposition (VAIL et al., 1991), and were deposited below the zone of storm wave reworking,

in a dyaerobic setting (GAwTHORPE, 1986). The clays may be transported by

bottom-hugging nepheloid layers (BOARDMAN and NEUMANN, 1984) or dilute clouds.

Descriptions of the Sequences

Although synchroneity and generic controls of the development of sequences are

still controversial (MIAL, 1992), sequence stratigraphy does provide a useful approach to

construct the age-model, and to recognize the predictable lithofacies succession

for examining depositional basins (SARG, 1988; VAIL, et al., 1991; POSAMENTIER and

JAMES, 1993; CHRISTIE-BLICK and DRISCOLL, 1995).

We recognized the sequences and systems tracts by: (1) regional subaerial or marine

erosion surfaces, including stratigraphic hiatuses indicated by fossils; (2) abrupt shifts

of lithofacies associations (e.g., drowning unconformity); and (3) the stacking styles of

lithofacies associations between two unconformities. In addition, biostratigraphic data

were also useful in distinguishing the coeval sequences and systems tracts between

different sections, as no spatially continuous outcrops and seismic data could be utilized

in our study.

By all these means, at least six sequences have been identified in the Ordovician

of central Ningxia, together with two poorly-developed sequences at the bottom and top

of the succession (Fig. 6-A, B, C). We summarize the characteristics of the sequences

in the study area below.

Sequence 1

This sequence comprises the Xialingnangou Formation in the Qinglongshan section,

with a thickness of about 36 m and in the Tianjingshan section, with a thickness of

more than 60 m. The boundaries of the sequence are only distinguishable at

Qinglongshan, where the lower sequence boundary is a flooding surface, indicated by

an abrupt shift from overlying shallow subtidal-intertidal stromatolite boundstone to

deeper, subtidal, thin-bedded dolostone. This sequence boundary may coincide with

the Cambrian-Ordovician boundary (Fig. 2) according to the conodont data (LIU,

1991). The upper'sequence boundary there, corresponding to an erosional surface, is

represented by overlying solution collapse breccia, quartz sands, and a stratigraphic

hiatus (see below for further discussion). At Tianjingshan, however, this sequence is

a thrust block between the Tianjingshan Formation and the Wangjiayuanzi Formation

(LIU, 1991), and thus no sequence boundaries have been recognized there.

The sequence at Qinglongshan includes two subsequences, both of which consist

of lower, thin-bedded dolostone grading upward into cryptalgal laminites with

shallowing-upward trend. The sequence at Tianjingshan consist chiefly of peloidal

grainstone, though the relative sea-level curve of the Xialingnangou Formation there
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suggests a depositional pattern similar to that at Qinglongshan (Fig. 6-A).

The subsequences of the sequence are fourth-order sequences with durations less

than 1 Ma, which normally corresponds to parasequences. However, poor preservation

of this sequence prevents further distinction into individual sequences at present.

Sequence 2

Sequence 2 includes the lower Shuiquanling Formation at Qinglongshan and the

lower Tianjingshan Formation at Miboshan and Tianjingshan. Although the sequence

varies in thickness from 31.8 m at Qinglongshan to about 214 m at Miboshan, the strata

comprising this sequence can be correlated with other localities by the presence of the

Aurilobodus leptosomatus-Loxodus dissectus conodont assemblage-zone, and with a

probably similar duration of about 3.5 Ma. The basal sequence boundary at Qinglongshan

is a erosional unconformity marked by solution collapse breccia with abundant quartz

sands, whereas this boundary in the Zoulang Transitional Belt has been faulted (Fig.

6-A). The upper boundary of the sequence is distinguishable at all three sections as

an exposure surface.

This sequence consists of two subsequences, as in sequence 1. The lower

subsequence consists of th in-bedded dolostone capped by solution collapse breccia at

Tianjingshan and Qinglongshan. At Miboshan, the lateral equivalent is composed of

lower, deeper subtidal lime mudstone and bioturbated lime mudstone, overlain by

shallow subtidal peloidal packstone/wackestone. The upper subsequence, however,

comprises deeper subtidal bioturbated lime mudstone/wackestone, skeletal wackestone

and thin-bedded lime mudstone with shallowing-upward trend at Qinglongshan and

Miboshan. '. At Tianjingshan peloidal grainstone was deposited after the development

of thinner peritidal sediments (Fig. 6-A).

The depocenter of the sedimentary basin during this episode may have been situated

at Miboshan, which is suggested by variations of sequence thicknesses as well as of

lithofacies styles.

Sequence 3

Sequence 3 comprises the middle Shuiquanling Formation of Qinglongshan and the

middle Tianjingshan Formation at Tianjingshan and Miboshan. Its thickness varies

from about 120 m up to 170 m, increasing from Qinglongshan to Miboshan. The

sequence had a duration of about 3 Ma. The basal boundary of the sequence is an

emergent surface, indicated by the well-developed vuggy voids at the top of the underlying

bioturbated lime mudstone/wackestone at Qinglongshan, and by abundant quartz clastics

in peritidal sediments above the basal sequence boundary at Miboshan. At Tianjingshan,

the development of solution-collapse breccia at the base of the sequence may represent

the coeval exposure event. The upper sequence boundary was recognized at Miboshan

and Qinglongshan.

This sequence can be subdivided into three lithofacies subunits. At Tianjingshan
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and Miboshan, the lowermost strata of the sequence are dominated by peritidal lithofacies

association (cryptalgal laminites, dolomite and dolomitic siltstone) (Fig. 4-A). The

middle subunit there is composed of lime mudstone and peloidal wackestone, and the

upper unit there consists of bioturbated lime mudstone, peloidal wackestone and

thin-bedded lime mudstone. At Qinglongshan, the lower subunit is represented by

peloidal packstone grading upward into bioturbated lime mudstone. The middle and

upper subunits consist of the subtidal lithofacies association (e.g., thin-bedded lime

mudstone, peloidal wackestone, skeletal wackestone). However, the differentiation of

the middle and upper unit there is quite difficult, if not impossible (Fig. 6-A).

The peritidal sediments (first subunit) on the Tianjingshan-Miboshan platform and,

possibly, the coeval subtidal deposits with deepening-upward trend at Qinglongshan, are

interpreted as the transgressive systems tract (TST) of the sequence. The highstand

systems tract (HST) is much thicker and better developed than the transgressive systems

tract within the study area. It is represented by deeper subtidal deposits in the most

study sections, showing the shallowing-upward trend.

Sequence 4

This sequence is well represented in most of the carbonate platform sections within

the study area, and probably had a duration of 3 Ma. It includes the upper Shuiquanling

Formation at Qinglongshan, the upper Tianjingshan Formation at Miboshan, and the

Tianjingshan Formation at Yantongshan and Qingshan. The thickness of the sequence

varies from 91 m (at Miboshan) to 195 m (at Qingshan), suggesting that the depocenter

of central Ningxia moved from Miboshan and Tianjingshan eastwards to Qingshan. The

basal boundary of the sequence was recognized from the Miboshan and Qinglongshan

sections. At Miboshan, that boundary, an exposure surface is marked by the overlying

peritidal sediments with abundant quartz clastics, whereas at Qinglongshan it is marked

by the deepening event, a drowning unconformity in the sense of SCHLAGER and CAMBER

(1986).

Sequence 4 at Miboshan and Qingshan is represented by similar stacking patterns

(Fig. 6-A) with the lower peritidal lithofacies association grading upward into shoal

complexes. In contrast, the sequence exposed at Yantongshan and Qinglongshan consists

mainly of deeper subtidal lithofacies associations with shallow subtidal peloidal packstone

interbeds.

As in sequence 3, the lowermost peritidal sediments of the sequence at Miboshan

and Qingshan are attributed to the transgressive systems tract of the sequence. The

same systems tract at Qinglongshan may be represented by the lowermost argillaceous

nodular lime mudstone and overlying thin-bedded lime mudstone, which may have been

deposited during a period of rapid sea-level rise. The highstand systems tracts of the

sequence are represented by shoal complexes at Miboshan and Qingshan, which can

possibly be correlated with intensively bioturbated lime mudstone/wackestone at

Yantongshan and Qinglongshan.
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Sequence 5

This sequence comprises the lower Sandaogou Formation at Qinglongshan, the

Miboshan Formation at Miboshan and the lower Wangjiayuanzi Formation at Tianjingshan

and Yantongshan. Its thickness varies from less than 75 m at Yantongshan to more

than 280 m at Qinglongshan, which indicates the further eastward movement of the

depocenter of the sedimentary basin. The duration of this sequence may have been 4

Ma. The basal sequence boundary is manifested by an exposure surface which at

Miboshan IS associated with the interbeds of cryptalgal laminites and peloidal

packstone. At Yantongshan, the corresponding boundary is more dramatically indicated

by a lag-conglomerate interval. At Qinglongshan, the lower boundary of the sequence

can be l'ecognized by a drowning event and synchronic invasion of cold-water fauna

(AN and ZHENG, 1989). This boundary has been either covered or faulted at other

sections in the study area. The deposition of the sequence was ended by an exposure

event.

At Miboshan, the sequence consists of two lithofacies subunits (Fig. 6-B): lower,

peritidal-shallow subtidal sediments and overlying basinal-marginal lithofacies association.

The latter is composed of varied lithofacies but characterized by polygenic carbonate

conglomerate/breccia induced by debris flows. At Yantongshan, the sequence can be

differentiated into three subunits: the lowermost lag conglomerates with siltstone and

less carbonate grainstone clastics, peritidal laminites and yellowish green siltstone; the

overlying, deeper subtidal bioturbated lime mudstone/skeletal wackestone; and the upper,

peloidal packstone intercalated with bioturbated lime mudstone. At Qinglongshan, the

sequence is dominated by the deeper subtidal lithofacies association, and we cannot

distinguish it into any subunits, except for the lowermost part which may be separated from

the rest by the well-developed argillaceous nodular lime mudstone deposited during the

period of the rapid sea-level rise. Finally, at Tianjingshan, although the basal part of

the sequence has been faulted off, the lowermost dolostone suggests that the coeval

sea-level fall event may also have controlled the deposition there.

The basin-marginal deposits of the Miboshan Formation at Miboshan are attributed

to the lowstand systems tract of the sequence; at Yantongshan the coeval succession is

represented only by about 5.0 m thick lag deposits. Sediments overlying the lag

conglomerates at Yantongshan and the nodular, limestone enriched succession at

Qinglongshan are interpreted as the transgressive systems tract of the sequence,

representing a further rise of sea level. After the development of transgressive systems

tract, sedimentation continued with a retrograding package of shallow, subtidal lithofacies

association at Yantongshan, and deeper subtidal lithofacies association at Tianjingshan

and QingJongshan, 'vvhich are attributed to a highstand systems tract of this sequence.

Sequence 6

Sequence 6 is composed of the upper Sandaogou Formation at Qinglongshan, the

lower Miboshan Formation at Niushoushan, the Qingshan Formation at Qingshan and
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the upper \iVangjiayuanzi Formation at Tianjingshan and Yantongshan. This sequence

varies in thickness from about 120 m at Qingshan to more than 360 m at

iushoushan. The basal bounding of this sequence is subtly marked by abrupt lithofacies

changes, from thick-bedded peloidal packstones to black shale at Tianjingshan and to

thin-bedded lime mudstone at Yantongshan. At Qinglongshan, however, the sea-level

fall event is represented by overlying shallow subtidal sediments with abundant

shallow-water bores as well as by the deposition of overlying peritidal laminates after

the exposure event.

The succession of this sequence at Tianjingshan and Miboshan consists of two

subunits (Fig. 6-B): the lowermost basinal lithofacies association (black shale and thin

bedded lime mudstone) and the overlying, deeper subtidal lithofacies association. The

sequence at Qingshan and Niushoushan, though lithofacies are different, is composed

of lower basin-marginal lithofacies and upper basinal lithofacies. At Qinglongshan, the

well-developed laminites are interpreted as having been formed in relatively restricted

environments, and the overlying, deeper, subtidal lithofacies association developed during

the corresponding sea-level rise.

Spatially, the lowstand systems tract of the sequence consists of the basin-marginal

lithofacies associations exposed at Qingshan and Niushoushan. The transgressive systems

tract of the sequence is thin and poorly developed, and is represented by the basinal

sediments at Tianjingshan and Yantongshan as well as by the peritidal laminites deposited

at Qingshan. In contrast, the highstand systems tract is well developed and is represented

by upper subunits (deeper subtidal lithofacies association) at Tianjingshan, Yantongshan

and Qingshan. At Qingshan and iushoushan, however, transgressive and highstand

systems tracts of the sequence are hardly distinguished, where basinal shale and

thin-bedded lime mudstone are interpreted as condensed TST/HST, which may have

been common in deep-water environments (JAMES et ai., 1989; VAIL et ai., 1991).

Sequence 7

This sequence includes the uppermost Sandaogou Formation and the overlying

Pingliang Formation at Qinglongshan, the upper Miboshan Formation at Niushoushan

and the Miboshan Formation at Yantongshan. Its thickness varies from 57 m at

Qinglongshan to more than 470 mat Yantongshan. The lower boundary of the sequence

cannot be distinguished from most sections, but at Qinglongshan the basal boundary of

the slump deposits is interpreted as the lower sequence boundary. This sequence at

Yantongshan is dominated by more than 300 m thick carbonate conglomerates with

polygenic clastics (Fig. 4-D). Rocks of the sequence at Qinglongshan, however, can be

divided into two subunits (Fig. 6-B): 11 m-thick carbonate slump deposits and overlying

basinal shales. At Niushoushan this sequence is represented by the lower, coarse, sandy

turbidites and the upper basinal black shale and thin-bedded lime mudstone with carbonate

cong]omeI"ate lenses.

The massive carbonate conglomerates of the Yantongshan section may be deposited
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along the slope of a carbonate platform during sea-level fall, and are then labeled as a

lowstand systems tract; similar systems tract is indicated by the coarse, sandy turbidites

of Niushoushan and carbonate slump deposits of Qinglongshan. The transgressive

systems tract and the highstand systems tract of the sequence were developed at

Qinglongshan and Niushoushan as basinal sediments, but it is difficult to distinguish

them from each other because of their condensed features.

Sequence 8

Sediments of this period, defined by the Nemagraptus gracilis graptolite biozone,

have been known only from the Niushoushan, Meishan and Luoshan sections. No

sequence boundary has been distinguished in the field. We here tentatively attribute

these sediments as forming one sequence. Both successions are characterized by

upward-fining sands or silts or mudstones/shales (Fig. 6-C). Bouma divisions were well

developed there (Fig. 4 B). Compared with Luoshan and Meishan, the strata at

Niushoushan generally contain thicker, coarser and more abundant beds of sandy

turbidite.

Evolution of the Sequences and Paleogeography

As documented above, the Ordovician of central Ningxia have been subdivided into

eight successive depositional sequences. We summarize the evolutionary patterns for

each of these episodes below. The horizontal distributions of lithofacies and their

associations at the end of each stage are illustrated in Figure 7 (Stage I-Stage 8). However,

as no palinspastic restoration has been attempted in this study, the actual basin should

have been wider than that shown in this figure.

By the end of the Cambrian, early Caledonic Movement ended the slope-and-basinal

depositions (Xiangshan Group) in the Zoulang Transitional Belt, and the marginal area

of the Sino-Korean Platform (represented by the QingJongshan section in the study area)

kept the peritidal settings.

Stage 1 (early Tremadocian)

Early Tremadocian depositions have been known from only two separate localities

In the study area, the other areas being interpreted as tectonic highlands. The

paleogeography in this episode may still follow from the Late Cambrian but it differed

from the Middle Cambrian in that a carbonate platform had developed in the Zoulang

Transitional Belt at least from early Tremadocian. Deposition at the beginning of this

stage was marked by a deepening event recorded in the lowest part of the XiaJingnangou

Formation of Qinglongshan, and then graded into peritidal deposition. At least two

such shallowing-upward cycles with a duration of about 1 Ma of each, were distinguished

from the succession of this stage at Qinglongshan. At the same time, shallow-water

and wave-agitated sediments occurred in the Tianjingshan Formation, the southwestern

study area, which may be related to the development of the adjacent highlands
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(Fig. 7, Stage 1).
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Stage 2 (middle Arenigian)

The development of the unconformity at the beginning of this episode represents

a much more significant hiatal break (about 10 Ma) in the Ordovician succession, when

much of the Tremadocian and lower Arenigian strata were removed in the study area

(Fig. 2). A coeval unconformity has also been documented within the Ordovician

succession on the Sino-Korean Platform, where the hiatus increases in magnitude from

north to south (AN, 1986). The unconformity has usually been attributed to tectonic

activation within the southern Qinling Fold Belt and the northern Inner Mongolian

Fold Belt surrounding the Sino-Korean craton. We, however, argue that this stl'atigraphic

lacuna may at least be partly attributed to the eustatic falling event, because the succeeding

transgressive phase has already been well documented in the North American craton

(BOVA and READ, 1987; KNIGHT and JAMES, 1987) and other cratons (NICOLL et at.,

1992), and interpreted as a global eustatic event (FORTEY, 1984; NIELSEN, 1992).

The paleogeographic framework of this stage shows a comparable pattern to that

of stage 1. From middle Arenigian time, the eastern Qinglongshan and western

Tianjingshan-Miboshan carbonate platforms were initially inundated again. One relative

sea-level fall event has been recognized in the middle of the episode after retrograding

sedimentation on the Tianjingshan-Miboshan and Qinglongshan carbonate platforms.

The sedimentary environment became deeper and more extensive later, and shoal settings

then dominated the flooding areas in response to the decelerated rise of accommodation

space. Other areas may have still remained emergent throughout this stage (Fig. 7,

Stage 2). The depocenter of the sedimentary basin during this stage was situated in

the western study area (Miboshan locality) as represented by thicker and well-developed

subtidal sediments lacking peritidal characteristics.

Stage 3 (from middle to late Arenigian)

The paleogeographic geometry at this stage succeeded from its former stage. The

sea-level fall event at the beginning of this stage induced the exposure surface bounding

the base of the sequence, and then peritidal deposition reoccurred at the Tianjingshan

Miboshan carbonate platform, corresponding to the flooding of the central Ningxia

area. At Tianjingshan, quartz clastics in peritidal sediments above the sequence boundary

mark intense erosion in the surrounding emerged highlands. The eastern area, on the

other hand, is dominated by a shallow-water depositional setting, which can be ascribed

to the higher subsidence rate there. At a later stage, shoal sediments prograded onto

the flooding area, reflecting the later phase of the sea-level rise (Fig. 7, Stage 3). The

deposition of this stage was ended by a sea-level fall event, which triggered the formation

of the upper boundary of this sequence.
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Stage 4 (late Arenigian)

The paleogeographic geometry of this stage succeeded from stage 3, but the western

carbonate platform extended to Yantongshan as well as to Qingshan. The depocenter

of the basin likely moved eastwards from Miboshan, which may be an indication

of tectonic activity within the North-Qilian Fold Belt. This sequence represents the

development of the largest carbonate platforms in central Ningxia during the Ordovician.

The beginning of this stage is marked by an abrupt deepening, drowning unconformity

at Qinglongshan. Such drowning unconformities have been documented from various

stratigraphic horizons and tectonic provenances, but the controlling factor attributed to

this kind of stratigraphic surface is still a subject of debate (READ et at., 1991; SCHLAGER,

1992; RANKEY et at., 1994). As the deposition of carbonate was not hindered at other

sections (Fig. 6-A), the short-term, rapid, sea-level rise may have controlled the

development of the drowning type of the lower sequence boundary at Qinglongshan

instead of the environmental crisis of carbonate production.

After deposition of the poorly-developed transgressive systems tracts, a regressive

stratigraphic pattern, represented by shoal sediments, was deposited in the study area,

corresponding to a decelerated sea-level rise (Fig. 7, Stage 4).

Stage 5 (from the end of Arenigian to early Llanvirnian)

The onset of this sequence is characterized by the occurrence of slope deposits at

Miboshan (Fig. 7, Stage 5), while other areas remained as developments of the carbonate

platform. Such profound paleogeographic inversion was initiated by the re-active

tectonics in this area, which is also verified by the deposition of bentonites at this

stage. However, the peritidal settings at Miboshan occurred again before the deposition

of the basin-marginal lithofacies associations. In addition, the lower sequence boundary

of the sequence at Qinglongshan coincides with the turnover from warm-water conodont

fauna to cold-water conodont fauna (AN and ZHENG, 1989) and with an abrupt sedimentary

shift from shoal deposits to nodular argillaceous mudstone. All these evidence also

suggests that tectonic activity only is not enough to interpret the origin of the boundary

of this sequence, though it may indeed induce the formation of Miboshan slope. Thus

we argue that the eustatic rise, combined with a little late tectonic activity could have

induced the abrupt changes of sedimentary settings and the turnover of the conodont fauna.

At this stage the depocenter of the basin may have moved fUI"ther east to Qinglongshan,

with a rapid subsidence rate in response of the thrusting load of the collision of the

orth-Qilian Fold Belt with North China. In the western study area, long-term

upward-shoaling successions were developed (Fig. 6-B) until interrupted by a carbonate

drowning event.

Stage 6 (late Llanvirnian)

From the beginning of this stage, the basin-marginal deposition on slopes surrounding

the carbonate platform or ramp extended from Miboshan to Qingshan and Niushoushan,
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which suggests further tectonic activity (Fig. 7, Stage 6). The basin-marginal clastics

in the Miboshan Formation of Tiushoushan may have been derived from north-west

Alxa Old land (LIANG, 1992), whereas the carbonate clastics, eroded from various

stratigraphic intervals, were probably transported from adjacent carbonate platforms by

debris flows. The abrupt basinward shift of lithofacies associations at the beginning of

this stage at Tianjingshan and Yantongshan reflects the demise of the carbonate platform

as a result of rapid sea-level rise after exposure or sea-level fall (RANKEY et ai., 1994). The

coeval sea-level fall event is also indicated by the surface between the subtidal sediments

with abundant shallow-water bores and the overlying laminites at QingJongshan.

In response to the deceleration of sea-level rise, shallow-water carbonates began to

dominate the Tianjingshan-Yantongshan platform again, while at Qinglongshan the

relative sea level became deeper in the long term. We attribute such a deepening-upward

sedimentary trend as an result of an increasing subsidence rate. In the deep-water

setting of Qingshan and Niushoushan then, only fine-grained sediments were deposited,

in contrast to the deposition of coarse debris flows and turbidites during lower sea level

(Fig. 7, Stage 6).

Stage 7 (Early Llandeilo)

At the beginning of this stage, a new phase of tectonic activity ended the development

of the Tianjingshan-Yantongshan carbonate platform and hindered the carbonate

deposition at Qinglongshan (Fig. 6-B). The basal boundary of this sequence may also

be attributed to a sea-level fall event, which is probably contemporary sea-level fall

event, recognized from the southeastern margin of the Ordos Basin as well as from the

North America craton shelf margin as documented by Ross and Ross (1992).

The carbonate megabreccia/conglomerates (more than 400 m thick) indicate the

development of depositional slopes and associated sediment instability on the seafloor

during this time. The abundant terrigenous clastics at Niushoushan were induced by

medium- to low-concentration turbidite flows, whereas the overlying thin-bedded lime

mudstone and black shales mark the condensed deposits during the higher sea-level

interval. At Qinglongshan, the lowermost carbonate slump sediments were deposited

during lower sea-level stand. The overlying graptolitic shales are responses of increasing

influx of fine-grained terrigenous material in this area (Fig. 7, Stage 7).

Stage 8 (from late Llandeilo to early Carodocian)

The paleogeography of this stage is reconstructed as a deep, elongate trough with

a south-north trend, extending at least from Niushoushan to Luoshan (including

Meishan). The other areas of central Ningxia may have been exposed (Fig. 7, Stage 8).

Strata younger than this stage have not discovered in the central mgxla area.

Conclusions

This study has resulted In the documentation of sequences and paleogeographic
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evolution of the Ordovician basin in central Ningxia. In synthesis, we propose the

following evolutionary history of the basin:

The early deposits of the Ordovician may have continued from the end of the

Cambrian in peritidal to shallow subtidal environments. After extensive erosion and

exposure, the Qinglongshan and Tianjingshan-Miboshan carbonate platforms were

inundated again due probably to global eustatic rise from the middle Arenigian. In
the following Arenigian, sedimentation of central Ningxia was dominated by cyclic,

shallow-water carbonates, but was interrupted by long-term sea-level fall events. From

the beginning of the L1anvirnian, tectonic re-activity led to abrupt changes in the

paleogeographic framework and may also have generated sequence boundaries, together

with eustatic fluctuations. Basin-marginal deposits were first deposited at Miboshan,

then at Qingshan and Yantongshan, and at Tianjingshan-Niushoushan, in turn, indicating

that the Tianjingshan-Miboshan carbonate platform was destroyed gradually from

southwest to northeast. The contemporary deposition at Qinglongshan, on the other

hand, became deeper due both to the thrusting load of North-Qilian Fold Belt and to

the eustatic rise. From the beginning of the Middle Ordovician, carbonate sedimentation

in central Ningxia was hindered, possibly by the increasing influx of terrigenous materials

at a lower sea level.

The enhanced tectonic actIvIty of the North-Qilian Fold Belt may have uplifted all

this area above sea-level from early Caradocian, after the last development of the

Niushoushan-Luoshan Trough.
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