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Abstract
Principal component analysis is applied to explain variation in net subsidence (i.e. total thjckness)

in the Karharbari and Barakar coal measures, respectively of Giridih and Korba coalfields of eastern
India Gondwana basins. Results suggest that total thickness of sandstone and number of sandstone

beds are largely responsible for variation in net subsidence in the Karharbari coal measures of Giridih,
whereas total thickness of sandstone, number of sandstone and number of coal beds mainly control
variation in net subsidence in the Barakar Formation of Korba coalfield.

The greater degree of relationship between the total thjckness of coal with total thickness of shale

and total thickness of sandstone in the Karharbari implies the development of peat swamps in distal
flood plains and also in abandoned channels. In the Barakar, the close association of total thjckness of

coal with total thickness and number of sandstone beds indicates formation of peat swamps largely in
abandoned channels.
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Introduction

The early Permian fluvial Gondwana coal measures of
peninsular India exhibit variation in total thickness and
number and thicknesses of constituent lithologies of
sandstone, shale and coal in different Gondwana basins
(Casshyap and Tewari, 1984). These variations are the

result of complex geological processes including
depositional environment, tectonic setting and differential
subsidence and therefore require special attention. Besides
field studies as summarized elsewhere (Veevers and
Tewari, 1995), the litho sequences from these coal
measures have been statistically analysed for cyclicity
using Markov chain and Entropy Function (Tewari and
Casshyap, 1983; Casshyap and Tewari, 1984; Hota et aI.,
2003; Hota and Maejima, 2004) and Cluster Analysis
(Tewari, 1997). Casshyap et a1. (1988) using linear

regressions and product moment correlations established
statistical relationship between various lithologic variables

of sandstone, shale and coal from different Gondwana
coalfields of peninsular India. Khan and Tewari (1991)

analysed quantitative relationships between the number of
coal bearing cycles and total thickness of strata (net
subsidence) in a number of Gondwana coalfields of eastern
India. However, the phenomenon of variation in net

subsidence (total thickness) of early Perrruan Gondwana

coal measures with respect to constituent lithologies has
not yet been quantitatively documented and interpreted.
Thus it would be meaningful to evaluate such relationships
and their contribution in the variation of total thickness i.e.
net subsidence of early Perrruan Gondwana coal measures
of peninsular India. The study may also have significant
bearing on the evolution of peat swamps in fluvial system.

The present study therefore aims at (1) analysing
variations in total thickness (net subsidence) of Karharbari
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coal measures of Giridih and Barakar coal measures of

Korba coalfields; and (2) analysing and interpreting the
development of coal swamps.

Geology, Sedimentary Characters and Nature of Data

The Permian Gondwana sediments of peninsular India

enclose coal beds at three stratigraphic horizons: the

Karharbari, Barakar and Raniganj Formations. These

sequences are characterised by fining upward fluvial cycles

deposited by northwesterly flowing braided and

meandering streams (Tewari, 1997; Tewari and Casshyap,

1983; Casshyap and Tewari, 1984). The present study

includes Karharbari Formation of Giridih and Barakar

Formation of Korba coalfields, respectively (Fig. 1).

Talchir, Karharbari and Barakar Formations represent the

Gondwana stratigraphy of these coalfields in ascending

order (Table 1). The Giridih coalfield is a small graben­

like isolated basin of the Koel-Damodar-basin of eastern

India, whereas the Korba coalfield represents a half graben

within the fairly continuous Son-Mahanadi Gondwana

basin of the eastern part of Central India (Fig. 1).

Although, the given coalfields exhibit different tectonic

settings, the Karharbari Formation of Giridih and Barakar

Formation of Korba are quite similar in sedimentary

characters and depositional environment (Casshyap and
Tewari, 1984).

The study is based on 33 and 32 borehole logs,

respectively for Karharbari Formation of Giridih and

Barakar Formation of Korba coalfield. The borehole logs

used in the present study were used earlier for Markov

chain analysis (Tewari and Casshyap, 1983; Casshyap and

Tewari, 1984), linear regression and correlation coefficients

(Casshyap et al., 1988), cycles and subsidence (Khan and

Tewari, 1991) and cluster analysis (Tewari, 1997). In view

of the gentle dip of 3°_8°, the strata intersected in the

borehole represents near-true thickeness of the sequence.

Fig. 2 illustrates part of Karharbari and Barakar

stratigraphy reproduced from borehole logs. The total

thickness of Karharbari Formation of Giridih varies from

16-305 m, and that of Barakar of Korba coalfield from

750-900 m. The number and thicknesses of three

constituent lithologies of sandstone, shale and coal also

vary throughout the two coalfield areas. The following

stratigraphic and lithologic variables are computed from 33

and 32 borehole logs, from the Karharbari and Barakar

Formations from Giridih and Korba coalfields,

respectively.
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Fig. 1 Location and geological maps of (A) Giridih and (B) Korba coalfields.
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Table 1 Stratigraphy and lithologic characters of

Gondwana rocks of Giridih and Korba

coalfields of eastern India (Based on Raja

Rao, 1983, 1987).

BottomBottom

Top

o

M
e
t
e
r

15

Giridih Coalfield Korba Coalfield Lithologic Characters

Fining upward cycles of
coarse to medium grained
sandstone interbedded with

Barakar
fine-grained sandstone or

- Formation
siltstone, carbonaceous shale

(750-900 m)
and coal. In Korba area thick
beds of conglomerate occur
in association of very coarse
grained sandstone in the
middle part.

Top: Fining upward cycles
surmounted by coal;

Karharbari middle: multistory and
Formation - multilateral coalescing
(165-305 m) channel shaped sandstone

bodies; base: clast supported
conglomerate.

Stratified tillite,

Talchir Talchir
congomerate, cross-bedded

Formation Formation
sandstone, interbedded with

(15-90 m) (200 m)
rhythmite with or without
dropstones and greenish
shale.

Fig. 2 Parts of stratigraphic sections of Karharbari and

Barakar Formations.

of variables from a fairly large number of localities cannot

be analysed by the above approach. The Principal

component analysis is a multivariate statistical technique,

which has been recommended to analyse interrelationships

of several variables simultaneously (Davis, 1986). It has

been used to demonstrate quantitative variation in litho-fill

thickness of a given basin through space (Read and Dean,

1972). In addition to statistical interrelationships, the

Principal component analysis precisely leads to pick out

those variables, which are statistically significant and

account for variation in litho-fill thickness such as net

subsidence.
Detailed computational procedure of Principal

component analysis is given in Davis (1986) and

summarized as follows. The first step in this analysis is to
arrange the data in the form of matrix where rows

correspond to localities and columns represent variables
(Tables 2 and 3). The basic data is then log normalised (log
Xi, i = I to 9) so as to give equal weights to all variables

Sandstone
Stratigraphic Variable

1. Total thickness

Lithologic Variables
2. Total thickness of sandstone beds

3. Total thickness of shale beds

4. Total thickness of coal beds

5. Total Number of sandstone beds

6. Total Number of shale beds

7. Total Number of coal beds

8. Sandstone / shale ratio

9. (Sandstone + shale) / coal ratio

These variables are formally designated as K j -K9 for

Karharbari Formation and B j -B9 for Barakar FOlTIlation.

Principal Component Analysis

The simple approach of analysing and interpreting

stratigraphic and lithologic variations of a given basin is to
document contour facies maps (Krumbein and Sloss, 1963).

The quantitative approach to analyse such variations is to

compute linear regressions and corresponding correlation

coefficients (Casshyap et aI., 1988). It would result in a
large number of correlation coefficients but may provide
simple statistical relationship between the two variables.
However, the simultaneous interrelationships of a number

KARHARBARI
(Giridih)

1----1 Shale

BARAKAR
(Korba)

_ Coal
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(Tables 4 and 5). Using the normalized data matrix, the
correlation coefficients are computed for each pair of
variables. Finally eigenvalues and eigenvectors are
computed from the con-elation matrix. The eigenvalues are

Table 2 Stratigraphic and lithologic variables of
Karharbari Formation, Giridih coalfield.

KI K2 K3 K4 K5 K6 K7 K8 K9
I 550.00 527.17 9.80 12.50 10.00 6.00 4.00 53.78 43.01
2 500.00 475.40 11.00 13.80 7.00 4.00 3.00 43.21 35.24
3 425.41 359.20 23.60 42.80 14.00 8.00 7.00 15.22 8.94
4 293.00 245.40 26.60 21.20 5.00 5.00 5.00 9.22 12.83
5 499.00 434.70 27.90 36.80 7.00 9.00 5.00 15.58 12.56
6 521.00 446.20 46.90 28.10 7.00 7.00 8.00 9.51 17.51
7 451.80 386.10 15.20 50.50 6.00 4.00 7.00 25.40 7.94
8 339.00 260.40 32.80 46.00 8.00 8.00 3.00 7.93 6.36
9 501.00 458.40 16.30 26.50 10.00 9.00 10.00 28.12 17.91
10 317.00 29400 13.90 9.30 5.00 3.00 5.00 21.15 33.10
11 500.00 44390 17.80 38.70 9.00 7.00 6.00 24.93 11.92
12 470.00 412.70 13.90 43.80 8.00 7.00 9.00 29.69 9.73
13 465.60 426.11 21.30 17.40 5.00 5.00 4.00 20.00 25.75
14 472.60 393.80 24.70 54.30 8.00 6.00 7.00 15.94 7.70
15 493.00 421.50 25.60 46.00 9.00 9.00 6.00 16.46 9.71
16 373.00 281.00 50.00 42.00 11.00 10.00 9.00 5.62 7.88
17 125.00 72.60 24.60 28.00 4.00 8.00 3.00 2.95 3.46
18 181.00 152.10 12.20 16.00 7.00 3.00 4.00 12.46 10.31
19 388.90 315.20 32.20 41.50 8.00 12.00 6.00 9.78 8.37
20 508.00 417.00 50.00 41.00 8.00 15.00 11.00 8.34 11.39
21 328.30 269.10 17.60 40.80 8.00 4.00 7.00 15.28 4.02
22 430.00 361.90 28.60 39.90 9.00 7.00 7.00 12.65 9.78
23 537.00 477.60 17.10 41.80 9.00 12.00 13.00 27.92 11.85
24 354.00 305.00 14.90 34.30 8.00 4.00 7.00 20.46 9.32
25 257.00 212.40 12.60 32.20 9.00 6.00 4.00 16.85 6.98
26 529.00 448.10 44.10 35.40 10.00 10.00 7.00 10.16 13.94
27 312.00 255.10 36.50 20.50 3.00 9.00 6.00 6.98 14.15
28 515.00 438.80 59.50 16.80 5.00 8.00 4.00 7.20 29.64
29 409.00 349.90 60.30 30.00 4.00 6.00 2.00 5.80 13.36
30 507.50 391.50 79.30 86.90 10.00 8.00 10.00 4.93 5.41
31 137.90 70.90 35.50 21.70 4.00 5.00 2.00 1.99 4.89
32 50200 480.20 15.30 6.70 8.00 9.00 5.00 31.39 73.95
33 451.00 406.40 28.10 16.70 7.00 10.00 4.00 14.46 2401

Table 3 Stratigraphic and lithologic variables of
Barakar Formation, Korba coalfield.

81 82 83 84 85 86 87 88 89
1 62.79 27.28 1.06 34.45 3.00 1.00 2.00 25.74 0.82
2 83.45 44.19 6.00 33.26 5.00 4.00 27.00 7.37 1.34
3 53.99 21.03 6.77 26.10 3.00 4.00 9.00 3.11 1.06
4 54.33 22.17 4.35 27.81 2.00 4.00 3.00 5.10 0.95
5 45.52 16.60 3.60 25.32 2.00 4.00 4.00 4.61 0.80
6 167.94 115.10 8.81 44.03 11.00 10.00 6.00 13.06 2.81
7 210.89 158.18 12.01 40.70 7.00 11.00 9.00 13. I7 4.18
8 188.01 138.61 14.41 34.99 6.00 11.00 5.00 9.62 4.37
9 89.34 53.50 13.90 21.94 7.00 11.00 2.00 3.85 3.07
10 229.18 214.52 10.11 4.55 400 10.00 2.00 21.22 49.37
11 124.74 85.99 8.99 30.64 9.00 7.00 4.00 9.57 3.10
12 191.21 129.88 9.58 51.25 5.00 5.00 6.00 13.56 2.69
13 250.77 195.16 10.65 44.96 7.00 1300 8.00 18.32 4.58
14 101.79 62.85 5.67 33.27 6.00 6.00 3.00 11.08 2.06
15 145.72 106.74 9.50 29.48 6.00 10.00 4.00 11.24 3.94
16 90.74 56.57 1.97 32.20 4.00 1.00 2.00 29.72 1.82
17 126.00 122.45 1.77 1.78 9.00 2.00 1.00 69.18 69.79
18 39.93 16.86 5.15 17.92 4.00 5.00 9.00 39.27 1.23
19 125.88 82.01 3.05 40.82 4.00 10.00 9.00 26.88 2.08
20 95.37 78.48 5.75 11.14 8.00 6.00 5.00 13.65 7.56
21 19.51 4.57 9.67 5.27 3.00 2.00 2.00 0.47 2.70
22 44.06 27.89 14.60 1.57 6.00 6.00 2.00 1.91 27.06
23 135.95 106.17 19.41 10.37 11.00 8.00 7.00 5.47 12.11
24 176.39 144.02 14.31 18.06 16.00 13.00 9.00 10.06 8.77
25 147.52 52.50 68.53 26.49 13.00 40.00 18.00 0.77 4.57
26 234.84 174.53 30.28 30.03 6.00 20.00 23.00 5.76 6.82
27 239.41 90.58 110.63 38.20 11.00 63.00 34.00 0.82 5.27
28 177.89 116.32 27.96 33.61 10.00 18.00 13.00 4.16 4.29
29 295.99 153.10 94.46 48.43 21.00 74.00 31.00 1.62 5.11
30 684.09 591.02 31.45 61.62 28.00 24.00 12.00 18.79 10.10
31 162.43 100.10 4.66 57.67 7.00 5.00 7.00 21.48 2.16
32 46.78 20.42 3.27 23.09 2.00 4.00 2.00 6.24 1.03

roots of correlation matrix, and the corresponding
eigenvectors are referred to as principal components. It has
been recommended that only those principal components,
which are greater than unity, are statistically significant and

Table 4 Log normalized data of Karharbari Formation,
Giridih coalfield.

K1 K2 K3 K4 K5 K6 K7 K8 K9
I 2.74 2.72 0.99 1.09 1.0 0.77 0.60 1.73 1.63
2 2.69 2.67 1.04 1.14 0.84 0.60 0.47 1.63 1.54
3 2.62 2.55 1.37 1.63 1.14 0.90 0.84 1.18 0.95
4 2.46 2.39 1.42 1.32 0.95 0.70 0.70 0.96 1.17
5 2.69 2.63 1.44 1.56 0.84 0.95 0.70 1.19 1.17
6 2.71 2.64 1.67 1.44 0.84 0.84 0.90 0.97 1.24
7 2.65 2.58 1.18 1.70 0.77 0.60 0.84 1.40 0.90
8 2.53 2.41 1.11 1.66 0.90 0.90 0.47 0.90 0.81
9 2.70 2.66 1.21 1.42 1.0 0.95 1.0 1.45 1.25
10 2.49 2.47 1.14 0.96 069 0.47 0.70 1.32 1.52
11 2.69 2.64 1.25 1.58 095 0.84 0.77 1.39 1.07
12 2.67 2.61 1.14 1.64 0.90 0.84 0.95 1.47 0.98
13 2.66 2.63 1.32 1.23 0.90 0.70 0.60 1.30 1.41
14 2.67 2.59 1.39 1.73 0.90 0.77 0.84 1.20 0.88
15 2.69 2.62 1.40 1.66 0.95 0.95 0.77 1.21 0.98
16 2.59 2.44 1.70 1.62 1.04 1.0 0.95 0.74 0.89
17 2.09 1.86 1.39 1.44 0.60 080 0.47 0.47 0.54
18 2.25 2.18 1.08 1.20 0.84 0.47 0.60 1.09 1.01
19 2.59 2.49 1.50 1.62 0.90 1.07 0.77 0.99 0.92
20 2.70 2.62 1.70 1.61 0.90 1.17 1.07 0.92 1.05
21 2.51 2.42 1.24 1.61 0.90 0.60 0.84 1.18 0.60
22 2.63 2.55 1.29 1.60 0.95 0.84 084 1.10 0.99
23 2.72 2.67 1.23 1.62 0.95 1.07 1.17 1.44 1.07
24 2.55 2.48 1.17 1.53 0.90 0.60 0.84 1.31 0.96
25 2.40 2.32 1.09 1.50 0.95 0.77 0.60 1.22 0.84
26 2.72 2.65 1.64 1.54 1.0 1.0 0.84 1.0 1.14
27 2.49 2.40 1.56 1.30 0.47 0.95 0.77 0.84 1.14
28 2.71 2.64 1.77 1.22 0.70 0.90 060 0.85 1.47
29 2.61 2.54 1.78 1.47 0.60 0.77 0.30 0.76 1.18
30 2.70 2.49 1.89 1.93 1.20 0.90 1.0 0.69 0.73
31 2.14 1.85 1.19 1.33 0.60 0.70 0.30 0.29 0.68
32 2.70 2.68 1.18 0.82 0.90 0.95 0.70 1.49 1.86
33 2.65 2.61 1.44 1.22 0.84 1.0 0.60 1.16 1.38

Table 5 Log normalized data of Barakar Formation,
Korba coalfield.

8 I 82 83 84 85 85 86 88 89
1 1.79 1.43 0.02 1.53 0.47 0.0 0.30 1.41 0.00
2 1.92 1.64 0.78 1.52 0.69 0.60 1.43 0.86 0.12
3 1.73 1.32 0.83 1.41 0.47 0.60 0.95 0.49 0.02
4 1.74 1.34 0.64 1.44 0.30 0.60 0.47 0.70 -0.03
5 1.65 1.22 0.53 1.40 0.30 0.60 0.60 0.66 -0.10
6 2.23 2.07 0.94 1.64 1.04 1.00 0.77 1.11 0.44
7 2.33 2.20 1.07 1.61 0.84 1.04 0.95 1.11 0.62
8 2.27 2.14 1.15 1.54 0.77 1.04 069 0.98 0.63
9 1.96 1.72 1.14 1.34 0.84 1.04 0.30 0.58 0.47
10 2.36 2.34 1.04 0.65 0.60 1.00 0.30 1.32 1.69
11 2.09 1.93 0.95 1.48 0.95 0.84 0.60 0.98 0.49
12 2.28 2.11 0.98 1.71 0.69 0.69 0.77 1.13 0.41
13 2.40 2.29 1.02 1.65 0.84 1.11 0.90 1.25 0.65
14 2.01 1.89 0.75 1.52 0.77 0.77 0.47 1.04 0.30
15 2.16 2.03 0.99 1.47 0.77 1.00 0.60 1.04 0.59
16 1.96 1.76 0.29 1.50 060 0.0 0.30 1.47 0.26
17 2.10 2.08 0.24 0.24 0.95 0.30 0.0 1.83 1.84
18 1.60 1.25 0.71 1.25 0.60 0.69 0.95 1.59 0.09
19 2.09 1.91 0.48 1.61 0.60 1.00 095 1.42 0.30
20 1.98 1.89 0.76 1.04 0.90 0.77 0.69 1.13 0.87
21 1.29 0.66 0.98 0.72 0.47 0.30 0.30 -0.33 0.43
22 1.65 1.44 \.16 0.19 0.77 0.77 0.30 0.27 1.43
23 2.13 2.06 1.38 1.02 1.04 0.90 0.84 0.73 0.08
24 2.25 2.15 1.15 1.25 1.20 1.11 0.95 1.00 0.94
25 2.16 1.72 1.82 1.42 1.11 1.60 1.25 -0.12 0.65
26 2.37 2.24 1.48 1.47 0.77 1.30 1.36 0.76 0.83
27 2.38 1.95 2.06 1.58 1.04 1.79 1.53 -.09 0.71
28 2.25 2.06 1.44 1.52 1.00 1.25 1.11 0.62 0.63
29 2.47 2.18 1.97 1.68 1.32 1.86 1.49 0.21 0.70
30 2.84 2.77 1.49 1.79 1.44 1.38 1.07 1.27 1.00
31 2.26 2.00 0.66 1.76 0.84 0.69 0.84 1.33 0.33
32 1.67 1.31 0.51 1.44 0.30. 0.60 030 0.79 008
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can be used for geological interpretations (Jeffers, 1965;

Read and Dean, 1972).

Results and Sedimentological Interpretation

The basic data computed from borehole logs were
arranged into two separate matrices of 33x9 (Karharbari)
and 32x9 (Barakar), where 33 and 32 are the number of

borehole logs used and 9 refers to the number of variables
listed above. The data was normalized and correlation
coefficients were computed between each pair of variables
separately for the two data sets. In cases of both the

formations, correlation coefficients between 22 pairs out of
36 pairs show fairly good positive correlation (Tables 6 and
7). The ratio variables 8 and 9 (sandstone/shale ratio and

(sandstone+shale)/coal ratio) record less degree of
correlation in both cases in view of their dependency on
other lithologic variables. All the lithologic variables from
2 to 7 exhibit positive correlation with total thickness

(variable 1) in both the formations implying that an
increase in total thickness i.e. net subsidence is due to

increase in the thickness and number of constituent
lithologies. However, it cannot be said precisely at this
stage, which variable contribute more towards the net

subsidence of the Karharbari and Barakar Formations. The
two correlation matrices are then used to calculate

Table 6 Correlation coefficients between lithologic
variables of Karharbari Formation Giridih
coalfield.

Variables KI K2 K3 K4 K5 K6 K7 K8 K9

Tolal thickness
0.981 0.843

of strata (KI)
0.687 0.761 0.844 0.793 -0.13 -0.29

Total thickness

of sandstone 0.552 0.659 0.76 0.747 0.720 0.037 -0.18
1(1<2)

Total thickness

of shale (K3)
0.690 0.793 0.819 0.616 -0.68 -0.43

Tolal thickness
0.801 0.824 0.928

of coal (K4)
-0.44 -0.61

Total number of
0.885 0.751

sandstone (Ks)
-0.3 -0.34

Total number of

shale (K6)
0.828 -0.41 -0.36

Total number of

coal (K7)
-0.27 -0.43

Sandstone/shale
ratio (KS)

0.708

Sandstone +
shale/coal ratio

IrK9)

eigenvalues and eigenvectors separately for the two
formations. The cumulative variance of three eigenvalues,

which are greater than unity, is 92.46 % in the Karharbari

(Table 8) and 86.1 % in the Barakar (Table 9); the
corresponding three eigenvectors representing principal
components are therefore statistically significant and

considered for geological interpretation.
Figures 3 and 4 show projections of nine variable

vectors of unit length of the planes defined by three
combinations of eigenvectors (principal components),
which are also of unit length. Geological significance of

these components is as follows:

Karharbari Formation
In Fig. 3A referring to vectors I and II, the total

thickness (K ,), total sandstone (K2), total shale (K3), total

coal (K4), number of sandstone (Ks)' number of shale (K6)

and number of coal (K7) are closely clustered around vector
I. The ratio variables of (sandstone / shale) (Ks) and
(sandstone + shale) / coal (K9) occurring remotely from

other variables are not independent as they are derived

from total sandstone (K), total shale (K3) and total coal
(K4). In Fig. 3B, vectors II and III are taken as reference
axes; the total thickness (K 1), total sandstone (K2), number

of sandstone (Ks) and number of shale (K6) exhibit a closer

interrelationship. Greater degree of association of total

Table 7 Correlation coefficients between lithologic
variables of Barakar Formation, Korba
coalfield.

Variables BI B2 B3 B4 B5 B6 B7 B8 B9

Total thickness
0.966

of strata (B I)
0.405 0.562 0.805 0.473 0.365 0.023 0.099

Total thickness
0.187 0.442 0.736 0.258 0.170

of sandstone B2)
0.132 0.207

Total thickness

of shale (83)
0.232 0.558 0.972 0.803 -0.370 -0.064

Tolal thickness

of coal (B4)
0.358 0.318 0.362 -0.102 -0.522

Total number of

sandstone (BS)
0.616 0.435 -0.061 0.083

Total number of
shale (B6)

0.801 -0.324 -0.072

Total number of

coal (B7)
-0.317 -0.022

Sandstone/shale

ratio (8S)
0.575

Clastic ratio

(B9)
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coal (K4) and number of coal (K7) implies an increase in

coal due to number of coal beds. The ratio variables Kg

and K9, likewise, occur remotely. Taking vectors I and III
as reference axes (Fig. 3C), the picture is almost similar to

that of Fig. 3A, where all the variables from K1 to K7 are

clustered in a zone showing closer interrelationship than

variables Kg and K9, which are ratios and occur remotely.

Evidently, the increase in total thickness of Karharbari

Formation, i.e. net subsidence, is largely due to total

sandstone and number of sandstones, whereas shale and

Table 8 Matrix of three principal components for the 9 variables of Karharbari Formation.

Variables Principal Components

(1) (2) (3)

Eigenvalues 3.845 2.752 1.224

% of total variance 67.27 18.27 6.912

Cumrnulative % of total variables 67.276 85.552 92.464

Total thickness of strata (KI ) 0.366 0.366 -0.140

Total thickness of sandstone (K2) 0.328 0.387 -0.0793

Total thickness of shale (K)) 0.345 -0.187 0.547

Total thickness of coal (~) 0.375 -0.066 -0.332

Total number of sandstone (Ks) 0.371 0.113 0.202

Total number of shale (Ko) 0.382 0.055 0.216

Total number of coal (K7) 0.362 0.090 -0.337

(Sandstone/Shale) ratio (Ks) -0.188 0.658 -0.271

Classic (sand + shale)/coal ratio -0.216 0.522 0.554

Table 9 Matrix of three principal components for the 9 variables of Barakar Formation.

Variables Principal Components

(I) (2) (3)

Eigenvalues 4.212 2.127 1.410

% of total variance 46.8 23.6 15.670

Cumrnulative % of total variables 46.80 70.43 86.100

Total thickness of strata (B I ) 0.398 -0.346 -0.177

Total thickness of sandstone (B2) 0.318 -0.457 -0.206

Total thickness of shale (B)) 0.396 0.231 0.357

Total thickness of coal (B4) 0.286 0.022 -0.572

Total number of sandstone (Bs) 0.405 -0.226 0.033

Total number of shale (B6) 0.418 0.190 0.304

Total number of coal (B7) 0.370 0.261 0.200

(Sandstone/Shale) ratio (Bs) -0.137 -0.493 0.132

Classic ratio (B9) -0.068 -0.466 0.564
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coal contribute subordinately. The total coal (K4) showing
greater degree of interrelationship with total shale (K3)

Vector II

+11

(Fig. 3A) and total sandstone (K2) (Figs. 3A and C)

indicates that peat swamps developed in distal flood planes
and also in the areas of abandoned channels, supporting the
independent inferences based on cluster analysis of vertical
facies transitions (Tewari, 1997).

Fig. 3 Graphic plots of three Principal Components
(vectors) of Kharharbari Formation.

Barakar Formation
In Fig. 4A, where vectors I and II are taken as

reference axes, variables Bland B7 are clustered into two

zones close to vector 1. It implies that total thickness of
Barakar (B\), total sandstone (B2) and number of sandstone
(B s) are more closely linked. On the other hand, total shale
(B 3), total coal (B4), number of shale (B 6) and number of
coal (B 7) show greater degree of interrelationship. The
ratio vmiables (Bs and Bg) occurring remotely from others
are not independent vm·iables. In fig. 4B, based on vectors
II and ill, total thickness (B) shows close association with

total sandstone (B 2), though number of shale (B 6) and

number of coal (B7) are also close to total thickness (B \) as
compared to number of shale (B 6) implying that coal
contribute more in net subsidence than shale. Fig. 4C
based on vectors I and ill is quite similar to that of Fig. 4A,

in which all the variables except ratio variables are
clustered close to vector 1.

It is evident from the above plots that total sandstone,
number of sandstone beds and number of coal beds have
greater control over an increase in total thickness and

hence net subsidence of Barakar Formation. A close
association of number of coal beds with total sandstone and

number of sandstone beds further suggests that peat
swamps developed largely in the areas of abandoned
channels.
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Fig. 4 Graphic plots of three Principal Components
(vectors) of Barakar Formation.
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Conclusions

The early Permian Karharbari and Barakar coal

measures of Giridih and Korba coalfields of eastern India
are composed of repetitive fining upward fluvial cycles of
sandstone, shale and coal. These coal measures exhibit
variations in total thickness i.e. net subsidence throughout
the respective coalfields.

The multivariate principal component analysis is

applied to explain the variation in net subsidence of the two
coal measures sequences with respect to lithologic
variables. The greater degree of association of total
thickness with total sandstone and number of sandstone
beds in Km'harbari Formation suggests that net subsidence
of the KarI1m'bm'i coal measures is Im'gely controlled by the
increase in thickness and number of sandstone beds. In
compm'ison, close association of total thickness with total
sandstone, number of sandstone and number of coal beds
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indicate that these lithologic variables contribute more

towards net subsidence during Barakar sedimentation.

Based on the close interrelationship of total coal with total

sandstone and total shale in the Karharbari, and total

sandstone and number of sandstone in the Barakar, it is

further suggested that peat swamps were mainly developed

in distal flood planes and abandoned channels during

Karharbari and largely abandoned channels during the

deposition of Barakar sediments.
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