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FOR A FLUCTUATING BROWNIAN FUNCTIONAL
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Abstract
By using excursions from the maximum, we get asymptotic information on the

hitting law of a fluctuating Brownian functional. This extends a result of Isozaki and
Kotani who considered the case when the underlying Lévy process is stable.

1. Introduction

Take a Radon measurem = m+ + m�, with m� supported onR� respectively, and
denote by ˜v the positive bounded solution on the right half-plane of

(1.1)
1

2

�2ṽ�y2
+

m(dy)

dy
sgn(y)

�ṽ�x
= �(ṽ � 1), ṽ(0, y)1(y�0) � 0.

Then, for 02 supp(m�) and mf0g = 0, we investigate howv(x) := ṽ(x, 0) behaves as
x # 0. In previous workm was assumed absolutely continuous with density a multiple
of jxj . There is an extensive literature dealing with the case = 1.

Our approach depends on the following probabilistic interpretation. Given a Brown-
ian motionY, with local time denoted byl , we define

X = x +
Z

l (a, . ) sgn(a)m(da); T X = infft > 0: Xt � 0g.
In McKean’s [23] terminologyZ = (X, Y) represents a resonator driven by a white-
noise, rotating clockwise about the origin, andT X determines its half-winding time.
Our question now concerns the rate of convergence forEx,0[1� e��T X

] as x # 0.
We adapt a device of Isozaki-Kotani [11]. In the casem�(dx) = c�jxj dx, they

used properties ofW, the Lévy process obtained by sampling�X on the zero set ofY,

to derive an integral representation forv. In like manner, assuming lim supt"1 Wt
a.s.
= 1,

we will prove the existence ofk = k�: R+ ! R+ and two Radon measuresR�=	 satisfying

(1.2) v(x) = v(x, �) := Ex,0[1� e��T X
] =

Z x

0
R�(dy)

Z 0

�1 R	(ds)k(x � y� s).
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Section 2 explains how (1.2) arises from applying the Wiener-Hopf method tok :=
P+Gv, whereG denotes the generator ofW. The formula includes (3.23)–(3.24) of [11]
and, by estimation of the integral, it leads to the followingextension of [11] (2.14).

Theorem. Let m be a Radon measure satisfying0 2 supp(m�) and mf0g = 0.
Assume that:
(1) lim supt"1 Wt

a.s.
= 1;

(2)
R 0�1 e

p
2�am(da) <1;

(3) The Lévy measure� of W satisfies either of:
(A) �[x, 1) = O(�[2x, 1)) as x" 1;
(B)

R1
1 x�(dx) <1.

Then there exists0< C(�) <1 such thatv(x, �) � C(�) R�[0, x] as x# 0.

REMARK 1.1. (1) Conditions (A) and (B) overlap but neither includesthe
other—consider�[x, 1) = x�1=2, e�x.
(2) Our proof of (1.2) identifiesR� as the potential of the positive Wiener-Hopf factor
of W.
(3) In [11], wherem�(da) = c�jaj (da), the processW is stable of order� = 1=(2+ )
with R�[0, x] a multiple of x�� for 0< � < 1. By exploiting scaling properties, they
found C(�) � ��=2C(1) as� # 0 and showedx��� t�=2Px[T X > t ] � C(1)=0(1� (�=2))
as x2�=t # 0.
(4) Barring m+ = 0, the value ofC(�) is known only whenm(da) = da. See Isozaki-
Watanabe [10] for a computation based on work of McKean [23].

The motivation for writing this article comes from several sources. Besides the work
of Isozaki-Kotani [11], itself prompted by Sinai’s [31] investigations of a similar ques-
tion for random walks, there are links with David Williams’ research [33] into fluc-
tuating clock constructions for Markov chains and diffusions. We also observed that,
for m+ = 0 and henceX monotone, Yamazato [32] used Krein’s [15] spectral theory to
connect asymptotics ofP[T X > t ] with exponents form�. Results in [11] suggest that
(1.2) may play a similar role for fluctuating functionals. Lastly, the well-known affin-
ity between Sturm-Liouville problems and diffusions contrasts sharply with the mini-
mal impact of pseudo-differential operators on the theory of Lévy processes. Bertoin
[1] has an interesting example in this vein. Our heuristic explanation for (1.2), in Sec-
tion 2, offers another perspective.

We organize the proof of our theorem as follows.
2. Method
3. Proof of (1.2)
4. DecomposingY�
5. The classCM+

6. Regularity ofv
7. Properties ofk
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8. Proof of Theorem
Inspired by the Greenwood-Pitman [9] approach to Rogozin’s[28] Wiener-Hopf de-
composition, we shall prove (1.2) by applying Maisonneuve’sexit formula [22] toM�,
the set of times whenW visits its maximum. Recall thatM� is regenerative and,
if regular, it has a continuous local timel �. Sampling W in this timescale defines
W�, the ladder height process (cf. [2] or [6]). For informationon Q	, the measure
governing excursions ofW away from its maxima, we refer to [21], [22]. The triple
(W�, l �, Q	) is sometimes called the exit system forM�.

The main technical obstacle to proving (1.2) is not the deployment of Maisonneuve’s
machinery, as one might expect, but rather justifyingk := P+Gv and deriving proper-
ties thereof. Since our theorem points to non-existence ofv0(0), we will proceed by
showing that the law ofXÆ� , the minimum, has continuous density away from zero.
So in Sections 4–6 we bring to bear results of Rogers [27] and Kent [17] by invok-
ing: a path decomposition of Brownian motion, Krein’s characterization of Stieltjes
transforms, Krein’s correspondence for generators of gap-diffusions, and Yamazato’s
representation for first-passage laws of the latter—which we examine in some detail,
following Knight [19], Kotani-Watanabe [20] and Yamazato [32]. However, for the
crucial estimate of Section 7 we emulate [11] by exploiting apath decomposition in
the Brownian excursion.

The idea of studyingZ via properties ofW is not new. One can use it to charac-
terize transience/recurrence and also to show thatZ doesn’t hit points—by appealing
to a famous result of Kesten [18]. In this note we quantify theboundary behaviour of
Z in terms of fluctuation theory forW. Remark, however, that the approach fails to
determineC(�).

NOTATION. All processes are right-continuous. Fix� d
= exp(�) independent and

denote byPx,y the law of Z = (X, Y) started at (x, y). We write X�
t = sup0<s�t Xs

(resp.XÆ
t = inf0<s�t Xs). If � = l�1(0, . ) thenW := �X� is a driftless Lévy process of

bounded variation whose Laplace exponent we define byE[e�z(Wt�W0)] = e��(z)t ; thus�(z) = G(ez.)(0) =
R

[1 � e�zx]�(dx) determines the generatorG and Lévy measure�.
Writing �� for the restriction toR� respectively, then� = �+ + �� denotes additive
decomposition while we write� = ���	 for the multiplicative Wiener-Hopf (WH) fac-
torization. This convention applies throughout, as inm = m+ + m� or G = G� � G	,
although for random variables we keepU� = sup(�U , 0). The projection operator onto
(0,1) is denotedP+.

2. Method

This section is purely descriptive. It introduces the method of [11], gives a heuris-
tic explanation for (1.2), and finishes with a summary of our probabilistic proof. Dis-
cussion of the major technical difficulty, proving smoothness of v, has been shunted
off to Section 6.
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First we explain the notation. By the strong Markov propertyW := �X� is a
(bounded variation, driftless) Lévy process. The WH factors G�=	 of its generatorG
are themselves generators of positive/negative subordinators W�=	 ([2] p.166 or see
Lemma 5.4) so their respective potentialsR�=	 define Radon measures on the line.

Assuming for the moment thatGv exists, the method of [11] has three distinct parts:
(I) Inversion of k := P+Gv � 0 to obtain (1.2);
(II) Proving

R 0�2 k(�y)R	(dy) finite by boundingk;

(III) Bounding
R �2�1 k(�y)R	(dy) via an estimate fork at infinity.

These steps are far from trivial. Although we write them analytically, our proofs will
utilize their probabilistic interpretation.

As it happens, the formula (1.2) has a straightforward heuristic explanation. We
get it by invertingk = P+Gv, a convolution equation on the half-line, using the classical
WH technique. A concise description goes as follows. Dropping P+ gives

G	 � G�v = Gv = k + k1,

with P+k1 = 0, whereupon convolution byR	 = (G	)�1 yields

G�v = P+G�v = P+[R	 � (k + k1)] = P+[R	 � k].

Applying R� we now deducev = R� � P+[R	 � k], alias our formula (1.2).
By dint of hard analysis, and using the explicit WH factorization of a stable pro-

cess, Isozaki-Kotani [11] managed a rigorous proof of (1.2)along the lines indicated
whenm�(da) = c�jaj da. However, the difficulty of finding analytic estimates for WH
factors suggests that the above template may prove unsuitedfor use with generalm.

We therefore offer a probabilistic approach to (I), starting from the remark that
k = P+Gv determines a martingale. This leads to a path-integral representation forv, which we then transform into (1.2) by applying Maisonneuve’s formula [22] (4.3)
to the excursions ofW from M�. Our proof of (II) is also probabilistic, but more
straightforward, in that we work with the Brownian excursion and employ the same
path decomposition used in [11]. As to the estimate (III), weprove it by formulating
the various quantities probabilistically and applying results from the preceding sections.

For example,
R �2�1 �[�x,1)R	(dx) <1 appears as an attribute of the excursion mea-

sureQ	. So (I) and (III) are properties of Maisonneuve’s exit system(W�, l �, Q	)
while (II) depends on the structure of the more prosaic Brownian excursion.

3. Proof of (1.2)

We first obtain a path integral representation forv in terms ofk = P+Gv. To this
end, let us consider theP0 local martingale

(3.1) t ! v(x � Wt )1(W�
t <x) +

Z t

0
k(x � Ws)1(W�

s <x) ds.
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where we define

(3.2) k(x) = P+Gv(x) = 1(x>0)

Z
[v(x)� v(x � y)]�(dy).

Existence1 of the latter requires

(3.3) v increasing and continuously differentiable on (0,1).

We prove (3.3) in Section 6. However, Remark 8.4 (1) explainswhy v0(0) doesn’t
exist and this, in turn, casts doubt on the finiteness ofk(0+). So in Section 7 we will
show that

(3.4) k is positive, continuous, and bounded on (0,1).

Taken together, these results imply (3.1) is a martingale and hence

v(x) = E[v(x � Wt )1(W�
t <x)] + E

�Z t

0
1(W�

s <x)k(x � Ws) ds

�
.

Now let t " 1. From W�
t " 1 the first expectation vanishes. In the other term,k � 0

means we can pass to the limit by monotone convergence. Hencethe path integral
representation

(3.5) v(x) = E

�Z 1
0

1(W�
s <x)k(x � Ws) ds

�

which we claim coincides with (1.2).
To prove our claim, we will decompose the path integral usingthe excursions of

W away from the optional setM� = ft : Wt = W�
t g. We therefore takeW defined on

(�,A,F ,P), with filtration F = (Ft )t�0 satisfying the usual conditions, where for every
F -stopping timeT the incrementWT+. � WT is independent ofFT . By the strong
Markov property ofW � W�, noted in Bingham [3],M� is F -regenerative: for all

F -stopping times [T ] � M� we haveM� d
= M� Æ �T with the latter independent of

FT on (T <1). Such random sets satisfy a zero-one law [21]. Either zero is isolated
in M�, which is then (topologically) discrete, or else zero is a limit point andM� has
no isolated points. In the latter case, assumed henceforth unless otherwise indicated,
M� has a continuous local timel �. We denote its right-continuous inverse by� �.

Maisonneuve’s theory [22] applies to closed sets and, while right-continuity of W
implies M� closed under decreasing limits, in generalM� 6= M̄�. Nevertheless, since

1Our definition of the generator simplifies comparing (3.5) with (1.2). It appears again in Sec-
tions 7–8 but the notation is not standard—unlike our convention on the Laplace exponent and Lévy
measure.
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both sets have the same Itô excursions, we will continue to state our results in terms
of M�.

Defining W� = W� � , the strong Markov property ofW applied at the stopping
times (� �t )t�0 shows that (� �, W�) is a bivariate subordinator—known as the ladder
process. Write�� (resp. R�) for the Laplace exponent (resp. potential) ofW� and
remark that ifW, and henceM�, is F -adapted thenW� is adapted toF� := F� � .

The next result was extracted from [21].

Lemma 3.1. The following relations hold almost surely.
(1)

�S
t>0(� �t�, � �t )

� \M� = ;.
(2) The rangef� �t : t � 0g �M�.
(3) If � � has drift b�, the Lebesgue measurejM� \ [0, � �t ]j = b�t .
(4) W�

t� = W�
s > Ws on � �t� < s< � �t .

Our probabilistic description of�� involves samplingW onM�. For a probabilistic inter-
pretation of�	 we use the excursions ofW away fromM�. IntroducingE as the space
of strictly negative paths, and writingE for the � -algebra determined by the Skorohod
topology, we define the excursion process (Et )t�0 by Et (u) = fWu+� �t� � W�

t� : 0 < u <1� �t g whenever1� �t > 0. By Lemma 3.1 (1) this takes values in (E, E). Then [22]
shows there exists a measureQ	 on (E, E) such that, for anyB(R+)
 E measurable
F : R+ � E ! R+,

(3.6) E

" X
0<s�t

UsFs Æ Es

#
= E

�Z t

0
UsQ

	[Fs] ds

�

wheneverU is positive, bounded, andF�-predictable. In our application

Fs Æ Es =
Z � �s
� �s� k(x � Wu) du =

Z %
0

k(x � W�
s� � Es(u)) du,

using % for the excursion lifetime. By [22] (6.4) formula (3.6) applies here also.
With this in mind, let us return to our task of rearranging (3.5). We start fromZ � �t

0
1(W�

s <x)k(x � Ws) ds

=
X

0<s�t

Z � �s
� �s� 1(W�

u<x)k(x � Wu) du +
Z � �t

0
1(W�

s <x)k(x � Ws)1M�(s) ds.

For the first term on the right, we invoke Lemma 3.1 (4) to replace W�
u ! W�

s� on
each excursion interval thus

X
0<s�t

1(W�
s�<x)

Z � �s
� �s� k(x � W�

s� + Es(u)) du.
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Applying (3.6) withUt = 1(W�
t�<x), and using Lemma 3.1 (3) for the other term, now gives

E

�Z � �t
0

1(W�
s <x)k(x � Ws) ds

�

= E

�Z t

0
1(W�

s�<x)

�
Q	�Z %

0
k(x � W�

s� � Es(u)) du

�
+ b�k(x � W�

s )

�
ds

�
.

For the final step, we use continuity of the integrator to replace W�
s� ! W�

s . Then,
recalling thatR� is the potential measure ofW�, the limit as t " 1 yields

(3.7)

v(x) = E

�Z 1
0

1(W�
s <x)k(x � Ws) ds

�

=
Z x

0
R�(dy)

�
Q	�Z %

0
k(x � y� E(u)) du

�
+ b�k(x � y)

�
,

where we’ve replacedEs by the generic excursionE . Defining

(3.8) R	(dy) = b�Æ0(dy) + Q	�Z %
0

1(E(u)2dy) du

�
,

which by Lemma 3.1 (1) is supported on (�1, 0), we thereby identify (3.7) with (1.2).
This completes the proof whenM� has no isolated points a.s.

It remains to dispose of the discrete case. ThereM� =
S

n�0[Tn] for an increas-
ing sequence of stopping times, and the passage from (3.5) to(1.2) becomes much
simpler—the above operations reduce to manipulating i.i.d. sums. We therefore omit
the details.

REMARK 3.2. (1) The local time on the set of minimaMÆ = ft : Wt = WÆ
t g de-

fines a negative subordinator̂W	 := W� Æ whose potentialR̂	 can, in fact, be identified
with a multiple of R	 (the present case is covered by Remark 5.5).
(2) By examining its Laplace exponent, we findW	 is compound Poisson iffb� > 0
(cf. [6] p.31).

4. DecomposingY�
This section, and the next, prepare the ground for the proofsin Section 6. There we

use a path decomposition ofY to establish smoothness ofx ! P0[XÆ� < �x]. The idea
is to split XÆ� into independent components, which are then analysed separately—using
results on Lévy processes with completely monotone jump density and related properties
of gap-diffusion hitting times.

Introducing� for a generic Brownian motion started at zero, and writing

TY = infft > 0: Yt = 0g; LY = supf0< t � � : Yt = 0g,
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we therefore describe the conditional law ofY on each of the intervals [0,TY], [TY, LY],
and [LY, � ]. The results come from [13] Proposition I.2.4 (but see also[24] or [26]).

The initial excursion [0,� ^ TY] has two subcases. UsingPy[� > TY] = e�p2� jyj
we find that on (� > TY) the process satisfies

(4.1) Yt = y + �t �p2� sgn(Y0)t , 0< t < TY,

a.k.a. Brownian motion with constant drift stopped at zero.Write its law asP(4.1)
y .

Similarly, on the set (� < TY)

(4.2) Yt = y + �t +
Z t

0

p
2� sgn(Ys)e�p2� jYsj

1� e�p2� jYsj ds, 0< t < � ,

whose law we denote byP(4.2)
y .

The interval [TY, LY] is non-empty only on (TY < � ) so, by the strong Markov
property, we can assumeY0 = 0. Introducing the SDE

(4.3) Ȳt = �t �p2� Z t

0
sgn(Ȳs) ds,

then from [13] p.253 (but see also [24]) we have

(4.4) fYt : 0� t � LYg law
= fȲt : 0� t � �g

for independent̄l (0, �)
d
= exp(

p
2�). Informally, the conditioned law obeys (4.3) until

its local time l̄ (0, . ) hits an independent exp(
p

2�) variable. Jeulin’s proof uses filtra-
tion enlargement. Alternatively, one can appeal to Itô’s Poisson Point Process theory.
For example, applying the PPP lemma of [9] to the excursion straddling � shows that
l̄ (0,�) has exponential law of parameterQ[� > � ] =

p
2� where� denotes the Brown-

ian excursion lifetime.
It remains to specifyY on [LY, � ]. This portion is independent and is governed by

P(4.2)
0 but, in order to apply a result of Kent [17], we describe it using time-reversal.

Explicitly,

(4.5) fY��t : 0� t � �g under P(4.2)
0 [ . j Y� = y] has law P(4.1)

y

which follows by reversibility of the conditional law ofY.^� given fY0, Y� g. The
corollary

(4.6) P0[X� � XLY 2 dx j Y� = y] = P(4.2)
0 [X� 2 dx j Y� = y] = P(4.1)

y [XTY 2 dx]

will be needed in Section 6.
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This completes our description of the conditional law ofY on the three time in-
tervals specified above. The connection with (3.3) comes from

(4.7) XÆ� = XÆ
LY � (X� � XÆ

LY )� = XÆ
LY � (XLY � XÆ

LY + 1(Y�<0)(X� � XLY ))�,

whereP0[XÆ
LY < 0] = 1 since 02 supp(m�). In Section 6 we will use (4.7) to prove

(4.8) P0[XÆ� � x] 2 C1((�1, 0))

and (3.3) then follows via

(4.9) ṽ(x, y) = Ex,y[1� e��T X
] = E0,y[1� e��T X�x ] = P0,y[� < T X�x] = P0,y[XÆ� > �x]

with T X
x = infft > 0: Xt = xg.

5. The classCM+

Itô-McKean [12] p.217 noted that the Lévy measure ofW = �X� has completely
monotone density. They asked for a characterization. Knight [19] remarked the rele-
vance of Krein’s theory and answered their question in the context of gap-diffusions.
See also Kotani-Watanabe [20].

Rogers [27] subsequently examined WH factorization for general Lévy processes
with completely monotone jump density. We use his result twice: directly when prov-
ing (6.1a) and, in modified form, to justify our estimate in Section 8. Here we prove
the modified version as it applies to bounded variation processes.

We therefore writeV 2 CM+ to denote a subordinator with completely monotone
Lévy measure, meaning that its Laplace exponent

�+(z) = 1 +  +z +
Z 1

0
(1� e�zx)�+(dx) = 1 +  +z +

Z 1
0

z

k(z + k)
2+(dk)

with 2+ � 0. ThusV 2 CMbv := CM+ � CM+ has exponent

(5.1) �(z) = �+(z) + ��(�z) =  z +
Z 1
�1

z

z + k
4(dk)

for 4 � 0: the killing rate is 4f0g while the constraints on� amount toR
(1 + jkj)�14(dk) <1.

DEFINITION 5.1. WriteF 2H0 if holomorphic on the lower half-plane with=F �
0 there. If, in addition,F is holomorphic onC n (�1, 0] and positive on (0,1) then
F 2 H.
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H0 is related to the Pick functions of [7] whileH appears in Krein’s characterization
[14] of Stieltjes transforms, to the effect that

(5.2) F(z) =  +
Z 1

0

4(dk)

k + z

defines a bijection betweenH and pairs ( ,4) satisfying � 0 and
R1

0 (1+k)�14(dk)<1. Thus

(5.3) V 2 CM+ � z�1�+(z) 2 H

and from (5.2) we easily verify

(5.4) F 2 H � z! 1=[zF(z)] 2 H.

For us, WH factorization ofV amounts to finding positive and negative subordinators,
denoted byV� and V	 respectively, with Laplace exponents satisfying� = ���	. The
method is well-known (e.g. [25]). It depends on identifyinglog � = log�� + log�	 as
an additive decomposition. We use this, together with the remark that

(5.5) if F 2 H0 satisfies 0� =F < � on =z< 0 then eF 2 H0,
to prove the following simplified version of Rogers’ [27] result (direct implication only).

Lemma 5.2. If V 2 CMbv then V� (resp. V	) lies in CM+ (resp. �CM+).

Proof. We assume=z < 0 throughout. By (5.1)z�1�(z) 2 H0 has argument in
(0, �) so we can define a branch of log�(z) � log z 2 H0 with imaginary part in the
same range. From the Herglotz representation for Pick functions [7] p.20

log �(z) = 0 + 1z +
Z 1
�1
�

1

z + k
� k

1 + k2

�9(dk) + log z

with
R

[1 + k2]�19(dk) < 1. Moreover, growth properties of log� on the imaginary
axis give us9f0g = 0 = 1. Now define

log ��(z) = 0 +
Z 1

0

�
1� kz

z + k

1

1 + k2

�9(dk) + log z.

Using 0� =[log ��(z)� log z] � =[log �(z)� log z] < � , this representation and (5.5)
entail z�1��(z) 2 H. For the other factor, 1=�	(�z) 2 H because of (5.5) and

0� =[� log �	(�z)] =
Z 0

�1
�y

(k� x)2 + y2
9(dk) � Z 1

�1
�y

(k� x)2 + y2
9(dk) < �

for z = x + iy. Thus (5.4) showsz�1�	(�z) 2 H and we finish by noting (5.3).
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REMARK 5.3. (1) The choice of log�� is unique up to an additive constant.
Consequently, the factors (��, �	) are unique up to constant multiple.
(2) If V has zero drift then the same holds for its WH factors. See [6] p.56.

Rogers [27] treats general Lévy processes with completely monotone Lévy measure but
states his result differently. He works with Rogozin’s [28]WH factorization (see also
[9] Lemma 2.1), namely

E[e�zV� ] =
�� + �(z)

=
1�̃�(�, z)

1�̃	(�, z)
= E[e�zV�� ]E[e�z(V��V�� )],

and describes the factors in terms ofME . Following Sato [30] pp.388–389, we say
U 2ME if

(5.6) P[U 2 dx] = �Æ0(dx) + (1� �)1(x>0) dx
Z �e��x2(d�)

for a probability measure2 on (0,1) and 0� � � 1. Comparison with (5.2) shows that

(5.7) U 2ME iff its Laplace transform belongs toH,

while by [27] the independent variables

(5.8)
V�� and V�� � V� belong to ME

whenever V has completely monotone Lévy density.

Here �̃�=	(�, 0) = 1 guarantees uniqueness of the factors but note that Lemma 5.2
makes sense when� = 0. Rogers’ proof of (5.8) follows the pattern of Lemma 5.2.
He defines ˜�� by additive decomposition of log(�+�) 2 H, verifies that 1=�̃� belongs
to H, whereupon the result follows from (5.7). The details in [27] are more demanding
since his process may have unbounded variation.

We now invoke Krein’s correspondence [15] as detailed in [8]. To any positive
measurem1 on [0,1) this associatesD(0,z) 2H, determined from the unique positive
solution of

(5.9) d Dx(x, z) = 2zD(x, z)m1(dx), Dx(0�, z) = �1, Dx(1, 0) = 0,

the final condition being operative only whenm1 is Radon with compact support. From
Tanaka’s formuladY+

t = 1(Yt�0) dYt + (1=2) dl(0, t) we find

t ! D(Y+
t , z) exp

��z
Z 1

[0
l (a, t)m1(da) +

1

2
l (0, t)=D(0, z)

�

is a local martingale, whereupon timechangingt ! �t exhibits 2D(0, z) 2 H as the
reciprocal of the Laplace exponent for

R1
[0 l (a, � )m1(da).
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Lemma 5.4. W 2 CMbv and hence�W	 2 CM+.

Proof. Using (5.3)–(5.4), the first part follows by the aboveapplied tom+(dx)
and m�(�dx). To conclude we use Lemma 5.2.

REMARK 5.5. To relate Rogozin’s factorization to our decomposition W !
(W�, W	) note that, forz purely imaginary, the excursion argument in Section 3 ap-
plied to E

�R1
0 e�zWt��t dt

�
yields

1� + �(z)
= E

�Z 1
0

e�zW�
t ��� �t dt

�
Q	�Z %

0
e�zE(u)��u du + b�� :=

1��(z, �)

1�	(z, �)

using��=	(z, 0) =��=�(z). By Remark 5.3 (1) this differs from Rogozin’s factorization
by a multiple (depending on�).

6. Regularity of v
In this section we establish (3.3) by proving (4.8). Until further noticeZ = (X, Y)

has lawP = P0 and, for brevity, we write variouslyU 2 P, � 2 P or f 2 P, to mean
that the random variableU , of law � or density f , satisfies propertyP. In addition,
FU (x) = P[U � x] while ME0 denotes the strictly positive elements ofME .

Our proof of (4.8) shadows the decomposition in Section 4. There we wroteP(4.x)
y

for the law of (4.x) started aty. We begin with an outline of the main steps in our
argument. First, using (4.4), Rogers’ result (5.8), and Krein theory from the previous
section, we show

XLY � XÆ
LY is independent of XÆ

LY 2 �ME0.(6.1a)

Denote by p1 the density ofXÆ
LY . Next, we study properties ofP(4.1)

y [XTY 2 dx]. In

fact, definingLY
y = supft < TY : Yt = yg, we prove that

when y < 0 the density P(4.1)
y [XTY � XLY

y
2 dx]=dx 2 C1# (R).(6.1b)

The proof of (6.1b) is adapted from [32] and requiresy 2 supp(m�). However, har-
monic interpolation using the strong Markov property underP(4.1) shows the result holds
generally. By path decomposition atLY

y we deduce that

for y < 0 the density p(x, y) := P(4.1)
y [XTY 2 dx]=dx 2 C1(R).(6.1c)

The role of y 2 supp(m�) is to identify x ! p(�x, y) as the density of a gap-diffusion
first-passage law. Rösler [29] proved these are unimodal by taking the weak limit (see
[30] p.396) in Keilson’s [16] result for birth-death processes. Jeulin [13] p.273 has
a direct treatment, as does Yamazato [32] who gave the representation�1 � �2 with�2 2ME0 and�1 strongly unimodal—convolution by unimodal gives unimodal.
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Using (6.1b) and unimodality ofx ! p(x, y) we will prove that the density

p2(x) := P[X� � XLY 2 dx; Y� < 0]=dx

(4.6)
=
Z 0

�1 p(x, y)P[Y� 2 dy] 2 C((�1, 0)).
(6.1d)

Example 6.3 below shows thatp2(0�) can be infinite so, before proving (4.8), let us
note the following elementary facts.

REMARK 6.1. Assume (U , V ) independent, non-negative, withFU 2 C1((0,1)).
(1) If F 0

U (0+)<1 and FV 2 C((0,1)) then FU+V 2 C1((0,1)).
(2) If FV 2 C1((0,1)) then FU+V 2 C1((0,1)).
(3) F(U�V)+ 2 C1((0,1)).

To deduce (4.8) from (6.1a)–(6.1d) we first apply Remark 6.1 (3), with

U = 1(Y�<0)[XLY � X� ]; V = XLY � XÆ
LY ,

to get P[(X� � XÆ
LY )� � x] 2 C1((0,1)). This lets us apply Remark 6.1 (2) with

U = �XÆ
LY and V = (X� � XÆ

LY )� to deduceP[�XÆ� � x] 2 C1((0,1)).
So to complete the proof of (4.8) it remains to establish (6.1a)–(6.1b) and (6.1d).

For (6.1a)–(6.1b) we follow closely the reasoning of [32], the essential difference being
that, since we have Brownian motion with drift, adapting Yamazato’s argument to our
case involves changing scale (5.9). The following covers our present needs.

Take s convex, strictly increasing, and twice differentiable on [0,1) with s(0) =
0. Given a measurem2 we definem1[0, s(x)] =

R x
0 (1=s0(y))m2(dy). Then G(x, z) :=

D(s(x), z) satisfies

(6.2) dGx � s00
s0 Gx dx = 2zG dm2; � G(0, z)

Gx(0�, z)
= �D(0, z)

s0(0)
2 H

provided m1 is Radon andD solves (5.9). Recall howGx(0�, z) = Gx(0, z) when
m2f0g = 0.

Proof of (6.1a). Denote (Y, l ,� ) underP(4.3)
0 by (Ȳ, l̄ , �̄ ). HenceW̄ :=

R
l̄ (a, �̄ )m(da)

is a Lévy process with, by (4.4), 0< XÆ
LY

d
= �W̄�� for independent� d

= exp(
p

2�).

By (5.8) our result follows ifW̄ 2 CMbv. We therefore takes(x) = e2
p

2�x�1 in (6.2),
use Itô’s formula to see

G(Ȳ+
t , z) exp

��z
Z 1

0
l̄ (a, t)m(da)� 1

2
l̄ (0, t)Gx(0, z)=G(0, z)

�

is a local martingale, and follow the reasoning of Lemma 5.4.
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Proof of (6.1b). Yamazato’s [32] p.155 representationP(4.1)
y [�XTY 2 dx] = �1 ��2(dx), with y 2 supp(m�), has the pathwise interpretation

�2(dx) = P(4.1)
y [�XLY

y
2 dx]; �1(dx) = P(4.1)

y [XLY
y
� XTY 2 dx].

By a simple calculation theP(4.1)
y conditional law ofY on [LY

y , TY] satisfies

Yt = y + �t +
Z t

0

p
2� coth

p
2�(Ys � y) ds, 0< t < TY � LY

y .

This diffusion hasy as entrance boundary so using [17] Corollary 5.1

(6.3)
Z 1

0
ezx�1(dx) = E(4.1)

y [exp(�z[XLY
y
� XTY ])] =

Y
n�1

�
an

an + z

�
,

for positive (an)n�1 satisfying
P

a�1
n <1. Crucially, since (6.1b) is determined by the

final excursion fromy < 0, these eigenvalues depend only onm restricted to [y, 0].

Lemma 6.2. In (6.3) �1 has C1# (R) density if (an)n�1 is infinite.

Proof. The characteristic function satisfies limjt j!1 jt jn�(t) = 0. By induction, us-
ing �0(t) = �i�(t)

P
n�1(an � i t )�1, we deduce� 2 C1# (R)—which is invariant under

Fourier transform.

We claim (an)n�1 is infinite. If not, the corresponding Krein spectral measure has finite
support. By [8] §5.8–5.9 hence also the restriction ofm to [y, 0] . Thereby contra-
dicting 02 supp(m�) and mf0g = 0.

Proof of (6.1d). By the strong Markov property ofY under P(4.2)
0 at TY

y =
infft > 0: Yt = yg
E[ez(X��XLY ) j Y� � y]

(4.2)
= E(4.2)

0 [ezX� j Y� � y] = E(4.2)
0 [exp(zXTY

y
)] E(4.2)

y [ezX� j Y� � y]

(4.5)
= E(4.1)

y [exp(z[XTY � XLY
y
])] E(4.2)

y [ezX� j Y� � y].

Thus for yn " 0, we infer from (6.1b) thatE0[X� � XLY 2 dx j Y� � yn] has C1(R)
density

p̄n(x) :=

R yn�1 p(x, y) P[Y� 2 dy]

P[Y� � yn]
!n p2(x) =

Z 0

�1 p(x, y) P[Y� 2 dy],

noting (4.6) and (6.1c). We claim uniform convergence on (�1, �Æ). Indeed, the

weak convergence limy"0 P(4.1)
y [XTY 2 dx]

d
= Æ0(dx) implies limy"0

R �Æ�1 p(x, y) dx =
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0 and, using unimodality of x ! p(x, y) for y 2 supp(m�), we deduce
limy"0 supx��Æ p(x, y) = 0. This suffices.

EXAMPLE 6.3. If m�(da) = da then for independent�U
d
= exp(

p
2�) formula

(4.6) leads to

E[ez(X��XLY ) j Y� < 0] = E[E(4.1)
U [e�zTY

]] = E[e(
p

2�+2z�p2�)U ] =

p
2�p

2� + 2z
.

Using Borodin-Salminen [5] p.223 we deduce that 2p2(�t) = e��tp�=� t , this being
also the density forP(4.2)

0 [� 2 dt].

For application in the next section, we now employ similar arguments to study ˜v. We
therefore drop our convention thatZ = (X, Y) has law P0. It is also convenient to
write ũ = 1� ṽ and u = 1� v. The next result, on Brownian local time, is probably
well-known but we were unable to find an explicit statement.

Lemma 6.4. For m2 a Radon measureP
�R

l a� m2(da) � x
� 2 C1((0,1)).

Proof. Let K =
R

l a� m2(da) and assume firstY0 = 0 2 supp(m2). Thus K = K " +

K #, independent and contributed respectively by the positiveand negative excursions.
Remark 6.1 (2) shows it suffices to treatK #. So we may assume 0 = sup(supp(m2) �
(�1, 0]). If this is a limit point, then (4.8) applies withm+ = 0 andm� = m2. On the
other hand, ifsupp(m2)n f0g has supremumx0 < 0, the strong Markov property at first
passage there impliesK = K 0 + e with the latter independent exponential. We therefore
apply Remark 6.1 (1), withU = e andV = K 0, noting K 0 doesn’t charge (�1, 0) (same
argument atx0). Hence result ifY0 = 0 2 supp(m2). In general, the strong Markov
property lets us decomposeK as a mixture of three independent variables: a Dirac
mass at zero andK conditioned byY positive/negative at first hit of supp(m2). The
above argument applies to the latter.

REMARK 6.5. Lemma 6.4 holds for other diffusion laws—such asP(4.2)
y . The

decisive step is to establish (4.8) form+ = 0 andm� = m2 which, by scale and time
change, reduces to the Brownian case for a different measureand more general killing
functional. For the analogue of (4.4), whereby on [TY

y , LY
y ] the process solves an SDE

stopped at an independent exponential local time, we refer to [13] p.253.

Lemma 6.6. x ! ũ(x, y) is continuously differentiable on(0,1).

Proof. Fix x > 0. Assumingy > 0, the strong Markov property in (4.9) gives

ũ(x, y)

Py[TY < � ]
= P0,y[XÆ� � �x j TY < � ]

(4.1)
=
Z 1

0
P(4.1)

0,y [XTY 2 ds]u(x + s)
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which suggests that

ũx(x, y) = Py[TY < � ]
Z 1

0
P(4.1)

0,y [XTY 2 ds]u0(x + s).

This would hold, by the dominated convergence theorem, ifu0 was bounded far
out—clear for p1 by (5.6) but less so for its convolution with

P[1(Y�<0)(X� � XÆ
LY ) 2 dx]=dx =

Z 1
0

P[XLY � XÆ
LY 2 dw] p2(x � w), x < 0.

Nevertheless, when proving (6.1d) we showed thatp2 = p̄n + (p2 � p̄n), respectively
C1(R) and bounded far out. The former presents no difficulty, while our comment
applies to the contribution from the latter. This completesthe argument fory > 0.
When y < 0 we have

ũ(x, y) = Py[TY < � ]
Z 0

�1 P(4.1)
0,y [XTY 2 ds]u(s + x) + Py[TY � � ] P(4.2)

0,y [X� � �x],

by the strong Markov property. Now use (6.1c) (resp. Remark 6.5) to get smoothness
of the first (resp. second) term.

7. Properties of k

In this section we prove (3.4) by applying the strong Markov property in the Brownian
excursion. The idea comes from [11]. Forx > 0 they write (3.2) as

k(x) = Gv(x) =
Z

[u(x � y)� u(x)]�(dy) = Q[u(x + X� )� u(x)],

whereQ governsZ = (X , Y), the excursions ofZ = (X, Y) from the x-axis, while� is the Brownian excursion lifetime. Introducing�x = inffs > 0: Xs = �xg ^ � , we
claim that

(7.1) k(x) = 1(x>0)Q[u(x + X� )[1� e���x ]].

This relation suffices to prove (3.4): it entails 0� k � Q[1� e��� ] =
p

2� which, via
the dominated convergence theorem, means thatk inherits continuity fromu.

To prove (7.1) we deal separately with the positive/negative excursions ofZ, which
travel respectively right/left. As usual,Y�� (resp.YÆ� ) denotes the maximum (resp. mini-
mum) of Y. On the positive excursions�x = � so we look at these first.

Lemma 7.1. For x > 0

Q[ũ(x + X� , 0)� ũ(x, 0);Y�� > 0]� 1

2
ũy(x, 0+)

= Q[ũ(x + X� , 0)[1� e��� ]; Y�� > 0].
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Proof. SincePx,y[TY < T X ] = 1 when y > 0, the strong Markov property gives

ũ(x, y) = E0,y[e��TY
ũ(x + XTY , 0)] and hence

(7.2) E0,y[ũ(x + XTY , 0)� ũ(x, y)] = E0,y[[1 � e��TY
]ũ(x + XTY , 0)].

SinceQ defines an entrance law forZ killed on the x-axis, we deduce

Q[ũ(x + X� � XSy , 0)� ũ(x, y); Y�� � y]

= Q[[1 � e��(��Sy)]ũ(x + X� � XSy , 0);Y�� � y]

for Sy = inffu > 0: Yu � yg. To get the result we takey # 0. On the right, we use
Sy # 0 Q a.e. and domination of the integrand by 1� e��� . On the left, we split the
integral in two. First,

Q[u(x + X� � XSy)� u(x); Y�� � y] # Q[u(x + X� )� u(x); Y�� > 0]

by monotone convergence. For the other part, Williams’ formulaQ[Y�� > y] = 1=2y gives

Q[ũ(x, 0)� ũ(x, y); Y�� � y] =
ũ(x, 0)� ũ(x, y)

2y
!�1

2
ũx(x, 0+)

where existence and finiteness of the limit follows from thatof the other terms.

On the negative excursions we apply the argument of Isozaki-Kotani [11]. For y<
0 they replaced relation (7.2) by

(7.3) Ex,y[ũ(XTY , 0)� ũ(x, y)] = Ex,y[[1 � e��(TY^T X )]ũ(XTY , 0)].

The proof uses the strong Markov property ofY andu(XTY , 0) = 1 onT X � TY to write

ũ(x, y) = Ex,y[e��T X
; TY < T X ] + Ex,y[e��T X

; T X � TY]

= Ex,y[e��TY
ũ(XTY , 0); TY < T X] + Ex,y[e��T X

ũ(XTY , 0); T X � TY].

By passing to the excursion measure, as in Lemma 7.1, equation (7.3) yields

Q[ũ(x + X� , 0)� ũ(x, 0);YÆ� < 0] +
1

2
ũy(x, 0�)

= Q[ũ(x + X� , 0)[1� e���x ]; YÆ� < 0]

which, together with the result of Lemma 7.1, means (7.1) follows if ũy(x, 0+) =
ũy(x, 0�). For this we use (1.1) to write

ũy(x, y)� ũy(x, �y) = 2
Z y

�y
�ũ(x, s) ds� 2

Z y

�y
sgn(s)ũx(x, s)m(ds)
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and takey # 0. Remark howũx � 0 guarantees finiteness of the second integral—
otherwiseũ would be identically infinite on each half line.

8. Proof of Theorem

We first proveC(�) :=
R 0�1 k(�s)R	(ds) < 1. Then, by an extra argument, we

establish

lim
x#0

v(x)

R�[0, x]
(1.2)
= lim

x#0

1

R�[0, x]

Z x

0
R�(dy)

Z 0

�1 k(x � y� s)R	(ds) = C(�).

Here R� has monotone decreasing density on (0,1) (cf. results onR	 below).

To estimateC(�), we note first, from (3.4) andR	 Radon, that
R 0�2k(�s)R	(ds)<

1. It remains to bound
R �2�1 k(�s)R	(ds). Consider

0� k(s)
(3.2)
= 1(x>0)

Z 1
�1[v(s)� v(s� y)]�(dy)

� Z 0

�1[v(s)� v(s� y)]�(dy) +
Z 1

0
[v(s)� v(s� y)]�(dy)

+
Z s=2

1
[v(s)� v(s� y)]�(dy) +

Z 1
s=2 [v(s)� v(s� y)]�(dy),

where the first term on the right is negative. Writing the second term asG1v(s), and
using obvious bounds for the others, we get

(8.1) 0� k(s) � G1v(s) + �[1, 1)u(s=2) + �[s=2,1),

for u := 1�v. So to estimate
R �2�1k(�s)R	(ds) we will replacek by each term of (8.1)

in turn.
We need extra information onR	. Being the potential of a negative subordinator

started at zero, the boundR	[�n, 0] � nR	[�1, 0] is a well-known consequence of
the strong Markov property (e.g. [2] p.74). Moreover, by Lemma5.4

�W	 2 CM+ (5.3)) z�1�	(�z) 2 H
(5.4)) 1=�	(�z) 2 H.

Thus its inverse Laplace transformR	 2 C1((�1, 0)). We denote byr	 its (strictly
increasing) density.

Estimate for G1v. By Fubini’s theorem and (3.3)

G1v(s) =
Z 1

0
[v(s)� v(s� y)]�(dy) =

Z 1

0
�(dy)

Z y

0
v0(s� t) dt

=
Z 1

0
dt �[t , 1]v0(s� t),
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for probability densityv0 and Lévy measure�. Hences ! G1v(s)1(s>2) is integrable

and, by monotonicity ofr	, we deduce
R �2�1 G1v(s)r	(�s) ds<1.

REMARK 8.1. The above argument yields

sup
x>0

Z 1
n

G1v(x + s)r	(�s) ds� r	(�n)
Z 1

0
dt �[t , 1].

We will use this in Lemma 8.3.

Estimate for u(s=2). First, by the strong Markov property and (4.4)

E0[l (a, � )] = Ea[l (a, � )]P[TY
a < � ] = (1=p2�)e�p2� jaj,

so
R 0�1 e

p
2�am(da) <1 implies 0< �XÆ� � R 0�1 l (a, � )m(da) is P0 integrable. Now

consider

Z 2n

2
u(s=2)r	(�s) ds = R	[�2n, �2]u(n) +

1

2

Z 2n

2
v0(s=2)R	[�s, �2] ds.

By (4.9), subadditivity of R	, and Chebychev’s inequality, the first term on the
right is dominated byR	[�1, 0] 2nP[XÆ� � �n] � 2R	[�1, 0]E[�XÆ� ]. Similarly,
2R	[�1, 0]E[jXÆ� j] dominates the other term.

Estimate for �[s=2,1). This uses hypotheses (A) and (B). If we assume (B),
then in

Z 2n

2
�[s=2,1)r	(�s) ds = �[n, 1)R	[�2n, �2] +

Z n

1
R	[�2s, �2]�(ds)

it suffices to useR	[�n, 0] � nR	[�1, 0] together withn�[n, 1) !n 0. Under as-
sumption (A), the result follows immediately from the following estimate.

Lemma 8.2.
R �2�1 �[�s, 1)R	(ds) <1.

Proof. Applying Doob’s theorem atTW = infft > 0: Wt � 0g to the martingale

t ! X
0<s�t

1(1Ws>�Ws�) � Z t

0
�[�Ws, 1) ds

givesEx
�R TW

0 �[�Wt ,1)dt
�

= 1. Next, noting (3.8) and taking%2 = inffu> 0: Eu ��2g,
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we rewrite our integral as

Q	�Z %
0

1(Eu��2)�[�Eu, 1) du

�

=
Z �2

�1 Q	[E%2 2 dx]Ex

"Z TW

0
�[�Wt , 1)1(Wt��2) dt

#
,

since by [22] (6.3)Q	 defines an entrance law forW killed at TW. Then

Q	[EÆ% � �2] sup
x��2

 
Ex

" Z TW

0
�[�Wt , 1) dt

#!
� Q	[EÆ% � �2] <1

provides the required bound.

We have now establishedC(�) < 1. Introducing K (x) =
R 0�1 k(x � s)R	(ds), our

theorem is an immediate consequence of the following.

Lemma 8.3. C(�) = K (0+).

Proof. Note that, given" > 0, there existsN such that
R1

N k(x + s)r	(�s) ds<" uniformly in x � 0. In fact, this holds for each term in (8.1): the last two are
decreasing while forG1v we can apply Remark 8.1. Then, fromR	 Radon andk
continuous we get

lim
x#0

Z N

0
k(x + s)r	(�s) ds =

Z N

0
k(s)r	(�s) ds.

Thus jK (0+)� C(�)j < 2".
REMARK 8.4. (1) From (6.1a)p01(0) does not exist, meaningv is never differ-

entiable at zero.
(2) We havev0(0+)<1 only in the discrete case. In fact, [4] 1.7.2 saysR�[0, x] �
c1x as x # 0 iff ��(z) � 1=c1 as z " 1. This in turn is equivalent toW� compound
Poisson which holds iffM� is countable.
(3) Bertoin has formulated, in terms of�, a criterion for deciding whenW� is com-
pound Poisson. See [6] Theorem 22.
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