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Abstract
We study the action of the mapping class groupM(F) on the complex of curves

of a non-orientable surfaceF . Following the outline of [1] we obtain, using the
result of [4], a presentation forM(F) defined in terms of the mapping class groups
of the complementary surfaces of collections of curves, provided that F is not
sporadic, i.e. the complex of curves ofF is simply connected. We also compute
a finite presentation for the mapping class group of each sporadic surface.

1. Introduction

Presentations for the mapping class groupM(Fn
g ) of a compact orientable surface

of genusg with n boundary components have been found by various authors. Hatcher
and Thurston [10] derived a presentation forM(F1

g ) from its action on a simply con-
nected 2-dimensional complex, thecut system complex. This complex was simplified
by Harer [8] and using this simplified complex, Wajnryb [22] obtained a simple pre-
sentation forM(F1

g ) and M(F0
g ). Starting from Wajnryb’s result, Gervais [7] found

a simple presentation forM(Fn
g ) for any n and g � 1. Benvenuti [1] and Hirose

[11] showed independently how the Gervais presentation canbe recovered using two
different modifications of the classical complex of curves introduced by Harvey [9].
Benvenuti used theordered complex of curvesand obtained a presentation forM(Fn

g )
in terms of the mapping class groups of the complementary surfaces of collections of
curves.

If Fn
g is a non-orientable surface of genusg with n boundary components (i.e.Fn

g

is homeomorphic to the connected sum ofg projective planes, from whichn open discs
have been removed), then presentations forM(Fn

g ) are known only forg� 3 and small
n. The complex of curves ofFn

g has been studied by various authors. Ivanov [12]
determined its homotopy type used it to compute the virtual cohomological dimension
of the mapping class groupM(Fn

g ).
In this paper we study the action of the mapping class groupM(F) on the com-

plex of curves of a non-orientable surfaceF = Fn
g . Our main result says thatM(F)
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can be presented in terms of the isotropy subgroups of the collections of curves, pro-
vided thatF is not sporadic, i.e. the complex of curves ofF is simply connected. On
the other hand we show that a presentation for the isotropy subgroup of a collection
of curves A can be obtained from a presentation for the mapping class group of the
surface obtained by cuttingF along A. Thus our result recursively produces a presen-
tation for M(F), provided that we know presentations for the mapping classgroups
of all sporadic subsurfaces. In this paper we compute an explicit finite presentation
for the mapping class group of each sporadic surface.

The paper is organized as follows, In the next two sections wepresent basic defi-
nitions and preliminary results about simple closed curves. In Section 4 we determine
the structure of the stabilizer of a simplex of the complex ofcurves, and in Section 5
we determineM(F)-orbits of simplices. In Section 6 we use the ordered complex of
curves to obtain, by a result of Brown [4], a presentation forthe mapping class group.
Then we show how this presentation can be simplified. Finally, in Section 7 we com-
pute presentations for mapping class groups of sporadic surfaces.

2. Basic definitions

Let F denote a smooth, compact, connected surface, orientable ornot, possibly
with boundary. Define Diff(F) to be the group of all (orientation preserving ifF is
orientable) diffeomorphismsh : F ! F such thath is the identity on the boundary of
F . The mapping class groupM(F) is the group of isotopy classes in Diff(F). By
abuse of notation we will use the same symbol to denote a diffeomorphism and its
isotopy class. Ifg and h are two diffeomorphisms, then the compositiongh means
that h is applied first.

By a simple closed curvein F we mean an embeddinga : S1 ! F . Note thata
has an orientation; the curve with opposite orientation butsame image will be denoted
by a�1. By abuse of notation, we also usea for the image ofa. If a1 and a2 are
isotopic, we writea1 ' a2.

We say thata : S1 ! F is non-separatingif F n a is connected andseparating
otherwise. According to whether a regular neighborhood ofa is an annulus or a Möbius
strip, we calla respectivelytwo- or one-sided. If a is one-sided, then we denote by
a2 its double, i.e. the curvea2(z) = a(z2) for z 2 S1 � C. Note that althougha2 is not
simple, it is freely homotopic to a two-sided simple closed curve.

We say thata is essentialif it neither bounds a disk nor is isotopic to a boundary
curve. We say thata is generic if it is essential and does not bound a Möbius strip.
Note that every one-sided curve is generic.

Define ageneric r-family of disjoint curvesto be ar -tuple (a1, : : : , ar ) of generic
simple closed curves satisfying:
• ai \ a j = ;, for i 6= j ;

• ai is neither isotopic toa j nor to a�1
j , for i 6= j .
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We say that two genericr -families of disjoint curves (a1,: : : ,ar ) and (b1,: : : ,br ) are
equivalentif there exists a permutation� 2 6r such thatai ' b�1� (i ) for each 1� i � r .
We write [a1, : : : , ar ] for the equivalence class of a genericr -family of disjoint curves.

The complex of curvesof F is the simplicial complexC(F) whoser -simplices are
the equivalence classes of generic (r + 1)-families of disjoint curves inF . Vertices of
C(F) are the isotopy classes of unoriented generic curves. The mapping class group
M(F) acts simplicially onC(F) by h[a1, : : : , ar ] = [h Æ a1, : : : , h Æ ar ].

3. A few results about simple closed curves

A bigon cobounded by two transversal simple closed curvesa and b is a region
in F , whose interior is an open disc and whose boundary is the union of an arc ofa
and an arc ofb. Moreover, we assume that except for the endpoints, these arcs are
disjoint from a \ b, and that the endpoints do not coincide. If the endpoints coincide
(i.e. the arcs are closed curves), then we say thata andb cobound adegenerate bigon.

Lemma 3.1 (Epstein [6]). Let a, b be two two-sided essential curves in F, and
suppose a is isotopic to b.
i) If a \ b = ;, then there exists an annulus in F whose boundary components are a
and b.
ii) If a \ b 6= ;, and they intersect transversely, then a and b cobound a bigon.

Lemma 3.2. Let a, b be two one-sided simple closed curves and suppose a is
isotopic to b. Then a\ b 6= ;. If they intersect transversely, then:
i) if ja \ bj = 1, then a and b cobound a degenerate bigon,
ii) if ja \ bj > 1, then a and b cobound a bigon.

Proof. We choose a regular neighborhoodNa of a, diffeomorphic to the Möbius
strip, and denote bya0 its boundary curve which is homotopic toa2. Similarly we
defineNb andb0 homotopic tob2. Now a0 andb0 are simple closed curves anda0 ' b0,
sincea ' b.

If F is the projective plane or the Möbius strip, then the proof is trivial. In the
other casea0 and b0 are essential and we can apply Lemma 3.1.

Assumea \ b = ;. Then we can chooseNa and Nb disjoint. By Lemma 3.1,
a0 and b0 cobound an annulusA. But then F = A [ Na [ Nb is diffeomorphic to the
Klein bottle anda and b are clearly not isotopic. Thus we have proved thata and b
intersect.

Assume thata and b intersect transversely. Then we can chooseNa and Nb in
such a way thata0 and b0 also intersect transversely andja0 \ b0j = 4ja \ bj. By
Lemma 3.1a0 and b0 cobound a bigonD. If ja \ bj = 1 then M = Na [ Nb [ D
is a Möbius strip which containsa and b. In this casea and b cobound a degenerate
bigon in M. Assume thatja \ bj � 2. Then there exist an arcc of a, an arcd of
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b and closed subsetsNc � Na and Nd � Nb such that: jc \ dj = 2 and the interior
of Nc [ Nd [ D is homeomorphic to an open disc. Nowc and d cobound a bigon in
Nc [ Nd [ D.

The next two propositions are proved in [18] (Propositions 3.5 and 3.10) for ori-
entable surfaces. Their proofs are based on Lemma 3.1 and canby applied also in the
non-orientable case if the involved curves are two-sided. Therefore, in the proofs we
restrain ourselves to the case of one-sided curves, where weuse Lemma 3.2 instead of
Lemma 3.1.

By a subsurface Nof F we mean a closed subset which is also a surface. We
say furthermore thatN is essentialif no boundary curve ofN bounds a disk inF .

Proposition 3.3. Let N be an essential subsurface of F, and let a, b: S1 ! N
be two essential simple closed curves. (In particular a is not isotopic to a boundary
curve of N.) Then a is isotopic to b in F if and only if a is isotopic to b in N.

Proof. The nontrivial thing to show is that ifa andb are isotopic inF , then they
are also isotopic inN. We assume thata and b are one-sided. By Lemma 3.2 they
intersect. We may assume that they intersect transversallyand argue by induction onja \ bj.

If ja \ bj = 1, then by Lemma 3.2,a and b cobound a degenerate bigonD in F .
Since N is essential,D \ �N = ; and henceD � N. Now we can useD to define
an isotopy inN from a to b�1. If a ' b�1 in N, thenb' b�1 in F , which can only
happen if F is the projective plane (cf. [6], Theorem 1.7). But the projective plane
does not contain any essential subsurface. Thusa ' b in N.

If ja \ bj > 1, then by Lemma 3.2,a and b cobound a bigonD � F . As above,
D � N and we can useD to define an isotopy inN from b to a curveb0 with ja\b0j =ja \ bj � 2. By the inductive hypothesis,b0 is isotopic toa in N, hence so isb.

Proposition 3.4. Let (a1, : : : , ar ), (b1, : : : , br ) be two generic r-families of disjoint
curves such that ai ' bi for all 1 � i � r . Then there exists an isotopy ht : F ! F ,
t 2 [0, 1], such that h0 = identity and h1 Æ ai = bi for all 1� i � r .

Proof. We use induction onr . The proposition is obvious forr = 1 and we as-
sume that it is true for (r � 1)-families. Replacing eachai by h1 Æ ai , we may assume
that ai = bi for 1� i � r � 1. Thenar and br are disjoint fromai = bi for i < r and
ar ' br . Now it suffices to show that there is an isotopy ofF which takesar to br and
does not move the curvesai = bi for i < r . We assume thatar and br are one-sided
and intersect transversally. We argue by induction onjar \ br j.

If jar \ br j = 1, then by Lemma 3.2,ar and br cobound a degenerate bigonD in
F . Since the curvesai = bi for i < r are generic, they are all disjoint fromD. Now
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it is easy to construct an isotopy ofF , which takesar to br acrossD and is equal to
the identity outside a neighborhood ofD, so the other curves do not move.

If jar \ br j > 1, then by Lemma 3.2,ar and br cobound a bigonD in F . As
above, the curvesai = bi for i < r are disjoint fromD, and there is an isotopy ofF ,
fixed outside a neighborhood ofD, which takesar acrossD and reduces the numberjar \ br j without moving the other curves. By the inductive hypothesis there is a final
isotopy takingar to br .

Given a two-sided simple closed curvea we can define a Dehn twistta abouta.
Since we are dealing with non-orientable surfaces, it is impossible to distinguish be-
tween right and left twists. The direction of a twistta has to be specified for each
curve a. Equivalently we may choose an orientation of a tubular neighborhood ofa.
Then ta denotes the right Dehn twist with respect to the chosen orientation. Unless we
specify which of the two twists we mean,ta denotes (the isotopy class of) any of the
two possible twists.

The next proposition is proved in [18] for orientable surfaces and in [20] for non-
orientable surfaces.

Proposition 3.5. Suppose that F is not homeomorphic to the Klein bottle. Con-
sider r two-sided simple closed curves a1, : : : , ar satisfying:
i) ai is either generic or isotopic to a boundary curve;
ii) ai \ a j = ;, for i 6= j ;

iii) ai is neither isotopic to aj nor to a�1
j , for i 6= j .

Then the subgroup ofM(F) generated by Dehn twists ta1, : : : , tar is a free abelian
group of rank r.

Note that if F is homeomorphic to the Klein bottle, then up to isotopy thereis
only one generic two-sided curvea, and ta has order 2.

4. The structure of the stabilizer

In this section we follow the outline of Paragraph 6 of [19] toexpresses the stabi-
lizer of a simplex ofC(F) by means of the mapping class group of the complementary
surface. Our Proposition 4.2 is a generalization to the caseof a non-orientable surface
of Proposition 6.3 of [19].

Let A = (a1, : : : , ar ) be a genericr -family of disjoint curves. Denote byFA the
compact surface obtained by cuttingF along A, i.e. the natural compactification of
F n �Sr

i =1 ai
�
. Note that FA is in general not connected. Denote byN1, : : : , Nk the

connected components ofFA. Then we write

M(FA) = M(N1)� � � � �M(Nk).
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Denote by�A : FA ! F the continuous map induced by the inclusion ofF n �Sr
i =1 ai

�
in F . The map�A induces a homomorphism�� : M(FA) !M(F).

A pair of pantsis a compact surface homeomorphic to a sphere with 3 holes. We
say that the familyA determines apants decompositionif each component ofFA is
a pair of pants. Such a family exists if and only if the Euler characteristic ofF is
negative. In such case, a generic familyA determines a pants decomposition if and
only if A represents a maximal simplex inC(F). Given a generic familyA = (a1,:::,ar )
we can always complete it to a pants decomposition, i.e. there exist generic curves
(ar +1, : : : , as) such that (a1, : : : , as) determines a pants decomposition. Recall that ifN
is a pair of pants thenM(N) is the free abelian group of rank 3 generated by Dehn
twists along the boundary curves.

Lemma 4.1. Assume that F has negative Euler characteristic. Let A= (a1, : : : , ar )
be a generic family of disjoint curves in F such that a1, : : : , ap are two-sided and
ap+1, : : : , ar are one-sided. For each i2 f1, : : : , pg let a0i and a00i denote the boundary
curves of FA such that�A Æ a0i = �A Æ a00i = ai , and choose ta0i and ta00i so that��(ta0i ) =��(ta00i ). For each j2 fp + 1, : : : , r g let a0j denote the boundary curve of FA such that

�A Æ a0j = a2
j . Then ker�� is generated by

�
ta01t�1

a001 , : : : , ta0p t�1
a00p , ta0p+1

, : : : , ta0r 	 and is a

free abelian group of rank r.

Proof. Let G denote the subgroup ofM(FA) generated by

�
ta01t�1

a001 , : : : , ta0p t�1
a00p , ta0p+1

, : : : , ta0r 	.
Clearly G � ker�� and it follows from Proposition 3.5 thatG is a free abelian group
of rank r . It remains to show that ker�� � G.

Let c1, : : : , cn denote the boundary curves ofF and c01, : : : , c0n the corresponding
boundary curves ofFA (i.e. �A Æ c0i = ci ). CompleteA to a pants decompositionA0 =
(a1, : : : , ar , ar +1, : : : , aq, : : : , as), wherear +1, : : : , aq are two-sided andaq+1, : : : , as

one-sided. Leta0r +1, : : : , a0s denote the generic curves inFA such that�A Æ a0j = a j for
r + 1� j � s.

Let h be an element of ker�� and j 2 fr + 1,: : : , sg. We have�A ÆhÆa0j ' �A Æa0j
and it follows by Proposition 3.3 thath Æ a0j ' a0j . Hence, by Proposition 3.4 we may
assume thath Æ a0j = a0j . Now h induces a diffeomorphism ofFA0 , and hence by the
structure of the mapping class group of the pair of pants we can write:

h = tu1

a01 tv1

a001 � � � tup

a0p t
vp

a00p t
up+1

a0p+1
� � � tuq

a0q tw1

c01 � � � twn
c0n ,

whereu1, : : : , wn 2 Z. The equality

1 = ��(h) = tu1+v1
a1

� � � tup+vp
ap tur +1

ar +1
� � � tuq

aq tw1
c1
� � � twn

cn
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implies by Proposition 3.5:

u1 + v1 = � � � = up + vp = ur +1 = � � � = uq = w1 = � � � = wn = 0,

and we haveh =
�
ta01t�1

a001 �u1 � � � �ta0p t�1
a00p �up t

up+1

a0p+1
� � � tur

a0r .

Denote by [A] the simplex inC(F) represented by the familyA = (a1, : : : , ar ), and
by Stab([A]) the stabilizer of [A] in M(F).

Define thecubic groupCubr to be the group of linear transformations� 2 GL(Rr )
such that�(ei ) = �ej for all 1� i � r , wherefe1, : : : , er g denotes the canonical basis
of Rr . There is a natural homomorphism8A : Stab([A]) ! Cubr defined as follows:

8A(h)(ei ) =

�
ej if h Æ ai ' a j ,�ej if h Æ ai ' a�1

j .

Denote by Stab+([ A]) the kernel of8A. By Proposition 3.4, each element of Stab+([ A])
is represented by a diffeomorphismh 2 Diff( F), such thath Æai = ai for all 1� i � r .
Consider the subgroupH of Stab+([ A]) consisting of the isotopy classes of diffeo-
morphisms preserving each curve ofA with its orientation and preserving orientation
of a tubular neighborhood of each two-sided curve ofA. If A contains p two-sided
curves, then there is an obvious homomorphism Stab+([ A]) ! (Z2)p with kernel H .
Finally observe thatH is equal to Im��.

Now we can summarize the considerations of this section in the following propo-
sition.

Proposition 4.2. Assume that F is a surface of negative Euler characteristic. Let
A be a generic r-family of disjoint curves containing p two-sided curves(0� p � r ).
Then we have the following exact sequences:

1! Zr !M(FA)
���! Stab+([ A]) ! (Z2)p,

1! Stab+([ A]) ! Stab([A])
8A�! Cubr .

REMARK 4.3. The homomorphisms Stab+([ A]) ! (Z2)p and8A are in general
not surjective. By an easy analysis case by case it is possible to describe their images
exactly.

5. The orbits

For the rest of this paper we assume thatF = Fn
g is a non-orientablesurface of

genusg with n boundary components (n � 0). Recall that this means thatF is diffeo-
morphic to the connected sum ofg projective planes, from whichn disjoint open discs
have been removed. We also assume thatF has negative Euler characteristic, i.e.g +
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n > 2. In this section we determine theM(F)-orbits of simplices of the complex of
curvesC(F). We say that two simplices [A] and [B] of C(F) are M(F)-equivalent
if they are in the sameM(F)-orbit. If A = (a1, : : : , ar ), B = (b1, : : : , br ), then [A]
and [B] are M(F)-equivalent if and only if there existh 2 Diff( F) and permutation� 2 6r , such thath Æ ai ' b�1� (i ). By Proposition 3.4 that is equivalent to existence of

h 2 Diff( F), such thath Æ ai = b�1� (i ).
Let A = (a1, : : : , ar ) be a generic family of disjoint curves. Let us fix boundary

curvesc1, : : : , cn of F . By abuse of notation we also denote byci the boundary curve
ci : S1 ! �N such that�A Æ ci = ci , where N is a connected component ofFA. We
say thatci is an exterior boundary curveof N.

Let ai : S1 ! F be a two-sided curve in the familyA. There exist two connected
componentsN 0 and N 00 of FA, and two distinct curvesa0i : S1 ! �N 0 and a00i : S1 !�N 00 such that�A Æ a0i = �A Æ a00i = ai . We say thatai is a separating limit curve
of N 0 (and N 00) if N 0 6= N 00, and ai is a non-separating two-sided limit curveof N 0
if N 0 = N 00.

Let ai : S1 ! F be a one-sided curve inA. There exists a componentN of FA

and a curvea0i : S1 ! �N such that�A Æ a0i = a2
i . We say thatai is a one-sided limit

curve of N.

Lemma 5.1. Suppose that N is a non-orientable connected surface and c: S1 !�N is a boundary curve in N. There exists a diffeomorphism h: N ! N such that h
is the identity on�N n c and hÆ c = c�1.

Proof. Let N 0 be the surface obtained by gluing a discD to N along c. Let p
be the center ofD, and� : (S1, 1)! (N 0 n �N 0, p) any one-sided simple loop based at
p. There exists an isotopyht : N 0 ! N 0, 0� t � 1, such that:h0 = identity, ht (p) =�(e2� t ), ht is the identity on�N 0 for all t , and h1 Æ c = c�1. We defineh : N ! N
to be the restriction ofh1 to N. Such diffeomorphism is calledthe boundary slide
(cf. [15]).

Proposition 5.2. Let A = (a1, : : : , ar ) and B = (b1, : : : , br ) be two generic
r-families of disjoint curves. The simplices[ A] and [B] are M(F)-equivalent if and
only if there exists a permutation� 2 6r , such that for all subfamilies A0 � A and
B0 � B, such that ai 2 A0 , b� (i ) 2 B0, there exists a one to one correspondence
between the connected components of FA0 and those of FB0 , such that for every pair
(N, N 0) where N is any component of FA0 and N0 is the corresponding component of
FB0 , we have:
• N and N0 are either both orientable or both non-orientable, of the same genus;
• if ci is an exterior boundary curve of N, then it is also an exterior boundary
curve of N0;
• if N is orientable and ci and cj induce the same orientation of N, then they also
induce the same orientation of N0;
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• if ai is a separating limit curve of N, then b� (i ) is a separating limit curve of N0;
• if ai is a non-separating two-sided limit curve of N, then b� (i ) is a non-separating
two-sided limit curve of N0;
• if ai is a one-sided limit curve of N, then b� (i ) is a one-sided limit curve of N0.

Proof. Suppose [A] and [B] are M(F)-equivalent. Then there existh 2 Diff( F)
and � 2 6r , such thath Æ ai = b�1� (i ) for 1 � i � r . For each subfamilyA0 � A, h
induces a diffeomorphismh0 : FA0 ! FB0 , such thath Æ �A0 = �B0 Æ h0. We define a
correspondence between the connected components ofFA0 and those ofFB0 as follows.
If N is any component ofFA0 then N 0 = h0(N) is the corresponding component ofFB0 .
Note that we haveh0 Æ ci = ci and henceci is an exterior boundary curve ofN if and
only if it is an exterior boundary curve ofN 0. Furthermore, ifN is orientable and
ci , c j induce the same orientation ofN, then they also induce the same orientation
of N 0. Suppose thatai 2 A0 is a two-sided limit curve ofN. Then ai = �A0 Æ a0i for

a0i : S1 ! �N and b� (i ) = h Æ a�1
i = h Æ �A0 Æ (a0i )�1 = �B0 Æ h0 Æ (a0i )�1. Henceb� (i ) is a

two-sided limit curve ofN 0. Clearly if ai is separating then so isb� (i ). Similarly, if
ai is a one-sided limit curve ofN and a2

i = �A0 Æ a0i , then b2� (i ) = �B0 Æ h0 Æ (a0i )�1 and
b� (i ) is a one-sided limit curve ofN 0.

Assume now that there exists a permutation� 2 6r , such that for each subfamily
A0 � A the conditions of the proposition are satisfied. Let us assume, for simplicity,
that � is the trivial permutation� (i ) = i for 1 � i � r . Denote byN1, : : : , Nk the
connected components ofFA, and by N 0

1, : : : , N 0
k the corresponding components of

FB. By the classification of compact surfaces there exist diffeomorphismshi : Ni !
N 0

i , 1 � i � k, such that for each exterior boundary curvecl : S1 ! �Ni we have

hi Æ cl = c�1
l , and if a j is a limit curve of Ni , then�B Æ hi Æ a0j = b�1

j if a j = �A Æ a0j ,
and �B Æ hi Æ a0j = (b2

j )
�1 if a2

j = �A Æ a0j . We will show that we can choosehi so that
for each boundary curve

(5.1) hi Æ cl = cl ,

and for each two-sided limit curvea j of Ni and Nm, if a j = �A Æ a0j = �A Æ a00j then

(5.2) �B Æ hi Æ a0j = b j () �B Æ hm Æ a00j = b j .

Notice that if hi satisfy (5.1) and (5.2), then they induceh 2 Diff( F) such thathÆa j =

b�1
j for 1� j � r , which proves Proposition 5.2.

If all Ni are non-orientable, then by Lemma 5.1 we can composehi with suitable
boundary slides, so that (5.1) and (5.2) are satisfied. Suppose thatN1,:::, Ns, 1� s� k
are all orientable components ofFA. We defineA0 � A to be any maximal subfamily
consisting of separating limit curves ofN1, : : : , Ns such that: the surfaceM obtained
by gluing

`s
i =1 Ni along A0 is orientable; eachai 2 A0 separatesM, i.e. M n ai has

more connected components thanM. Notice thatA0 may be empty. The surfaceM is
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in general disconnected and it is the sum of all orientable components ofFAnA0 . Let
M 0 denote the surface obtained by gluing̀s

i =1 N 0
i along B0, wherebi 2 B0 , ai 2 A0.

Notice that M 0 is the sum of all orientable components ofFBnB0 . We claim that we
can choosehi for i � s, so that (5.2) holds for eacha j 2 A0. First notice, that after
re-numbering the orientable components ofFA if necessary, we may assume that for
eachm� s there is at most onea j 2 A0 such thata j is a separating limit curve ofNm

and Ni for i < m. Now we definehi inductively. We choose anyh1. Suppose that
we have chosenhi for all i < m � s. If there is a j 2 A0 such thata j is a separating
limit curve of Nm and Ni for i < m, then we choosehm so that (5.2) is satisfied. If
there is no such curve, then we choose anyhm. Such chosenhi induce h̃ : M ! M 0,
so thath̃ Æ cl = c�1

l for each exterior boundary curve ofM. Let ci , c j be two exterior
boundary curves of one component ofM. SinceAnA0 and BnB0 satisfy the conditions
of the proposition,ci and c j induce the same orientation of the component ofM if
and only if they induce the same orientation of the corresponding component ofM 0,
henceh̃ Æ ci = ci , h̃ Æ c j = c j . Now it is clear that composing if necessary somehi

with orientation reversing diffeomorphism, we can assumeh̃ Æ cl = cl for each exterior
boundary curve ofM. Thus hi also satisfy (5.1).

Suppose thata j 2 A n A0 is a two-sided limit curve ofNi and Nm, i � m � s.
Since A0 is maximal, a j is a non-separating limit curve of some componentM j of M,
i.e. a j = �AnA0 Æ a0j = �AnA0 Æ a00j for a0j , a00j : S1 ! M j . Then b j = �BnB0 Æ b0j = �BnB0 Æ b00j
for b0j = h̃ Æ (a0j )�1, b00j = h̃ Æ (a00j )�1. Note that the surface obtained fromM j by gluing
along a j is orientable if and only ifa0j and a00j induce opposite orientations ofM j .
Since A n (A0 [ fa j g) and B n (B0 [ fb j g) satisfy the conditions of the proposition, the
surface obtained fromM by gluing alonga j is diffeomorphic to the surface obtained
by gluing M 0 along b j . In particular, one of these surfaces is orientable if and only if
the other one is. Hencea0j and a00j induce the same orientation ofM j if and only if

b0j and b00j induce the same orientation ofh̃(M j ). Thus h̃ Æ a0j = b0j , h̃ Æ a00j = b00j and
so (5.2) holds fora j .

Once we have chosenhi for i � s, it is easy to construct, using Lemma 5.1,
diffeomorphismshi for i > s satisfying (5.1) and (5.2) for all curves.

Corollary 5.3. There are only finitely manyM(F)-orbits in C(F).

Proof. Let N be a disjoint union ofg + n � 2 pairs of pants. Choose boundary
curves ofN

(5.3) c1, : : : , cn, a01, : : : , a0s, a001 , : : : , a00r ,

where r � s, n + r + s = 3(g + n � 2). Consider the surfaceM = N=�, where�
identifies pairs of boundary points as follows:a0i (z) = a00i (z) for i � r , a0i (z) = a0i (z2)
for i > r . Let � : N ! M denote the canonical projection. Generic family of disjoint
curves (a1, : : : , as), whereai = � Æa0i for i � r , a2

i = � Æa0i for i > r , determines a pants
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Fig. 1. Non-separating curves.

Fig. 2. Separating curves.

decomposition ofM. Notice that for some choices of curves (5.3) we haveM = Fn
g ,

i.e. M is a connected, non-orientable surface of genusg. Furthermore, every pants
decomposition ofFn

g can be obtained in this way, and thus, by Proposition 5.2, there
is at most as manyM(F)-orbits of pants decompositions, as the number of different
(i.e. not isotopic) choices of curves (5.3). Since that number is finite and every generic
family of disjoint curves can be completed to a pants decomposition, there are only
finitely manyM(F)-orbits in C(F).

Let us list all M(F)-orbits of the vertices ofC(F). We call a vertex [a] one- or
two-sided, and separating or non-separating ifa has the appropriate property.

Suppose thatF is closed and has genusg � 3. Consider the three non-separating
curvesa1, a3, a3 in Fig. 1. In this figure, and also in other figures in this paper, the
shaded discs represent crosscaps; this means that their interiors should be removed and
then the antipodal points in each boundary component shouldbe identified. We have:
• a1 is two-sided,Fa1 is non-orientable;
• a2 is one-sided,Fa2 is non-orientable;
• Fa3 is orientable,a3 is one-sided ifg is odd, and two-sided ifg is even.
For each integerk, such that 1� k � (g=2)� 1 and for eachl such that 2� l � g=2
we define separating generic curvesbk and dl represented in Fig. 2. We have:
• one component ofFbk is orientable and has genusk, the other component is non-
orientable and has genusg� 2k;
• both components ofFdl are non-orientable and have general and g� l .
By Proposition 5.2, every vertex ofC(F) is M(F)-equivalent to one of the vertices
[a1], [a2], [a3], [bk], [dl ]. Thus we have 3 orbits of non-separating vertices and
2([g=2]� 1) orbits of separating vertices, where [g=2] denotes the integer part ofg=2.
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Now suppose thatF has boundary, that isn � 1, and g is arbitrary such that�(F) = 2�g�n< 0. For each pairfI , I 0g of sets such thatI [ I 0 = f1,:::,ng, I \ I 0 = ;
there is oneM(F)-orbit consisting of all non-separating vertices [a] such that
• Fa is orientable, andci , c j induce the same orientation ofFa if and only if fi , j g �
I or fi , j g � I 0.
There are 2n�1 such orbits. The remaining non-separating vertices have form [a], where
Fa is non-orientable. Ifg = 1 then there are no such vertices. Ifg = 2 then they are all
one-sided and form oneM(F)-orbit. If g � 3 then they form 2 orbits, one contains
all one-sided vertices, the other one contains all two-sided vertices.

The orbits of separating vertices are of two types, like for closed F . For every
integerk such that 0� k � (g� 1)=2, and pairfI , Jg of disjoint subsets off1, : : : , ng
such thatg + n � 2 � 2k + #(I [ J) � 2 there is oneM(F)-orbit consisting of all
separating vertices [b] such that
• Fb has one orientable componentNo of genusk and one non-orientable component
Nn of genusg� 2k;
• ci � No , i 2 (I [ J); ci , c j induce the same orientation ofNo if and only iffi , j g � I or fi , j g � J.
For every integerl such that 1� l � g=2 and everyI � f1,: : : , ng such thatl + #I � 2
there is oneM(F)-orbit consisting of all separating vertices [d] such that
• Fd has two non-orientable componentsN1 andN2 of general andg� l respectively;
ci � N1 , i 2 I .

6. The presentation for M(F)

In [4] Brown describes a method to produce a presentation of agroup acting on a
simply-connected CW-complex. In [1] Benvenuti uses a special case of Brown’s theo-
rem to obtain a presentation for the orientable mapping class group from its action on
the ordered complex of curves. In this section we apply the method of [1] to the case
of a non-orientable surface.

The following theorem is fundamental for this section.

Theorem 6.1 (Ivanov [12]). Let F = Fn
g denote a non-orientable surface of genus

g with n boundary components andC(F) the complex of curves of F. Then C(F) is
(g� 3)-connected if n2 f0, 1g, and (g + n� 5)-connected if n� 2.

In particular, except for the surfacesFn
g where

(g, n) 2 f(1, n) j n � 4g [ f(2, n) j n � 3g [ f(3, n) j n � 2g
that we callsporadic, the complex of curves ofFn

g is simply connected.
Now we define, following [1], theordered complex of curvesof F denoted by

Cord(F). The r -simplices ofCord(F) are equivalence classes oforderedgeneric (r + 1)-
families of disjoint curves: (a1,:::,ar ) and (b1,:::,br ) represent the same (r�1)-simplex
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in Cord(F) if and only if ai ' b�1
i for all i 2 f1, : : : , r g. We denote byha1, : : : , ar i the

simplex of Cord(F) represented by the family (a1, : : : , ar ). Note that the vertices of
Cord(F) coincide with those ofC(F) and in general to eachr -simplex of C(F) corre-
spond (r + 1)! different simplices ofCord(F) with the same set of vertices.

The following proposition is proved in [1]. The same proof applies to the case of
a non-orientable surface.

Proposition 6.2. If C(F) is simply connected, then Cord(F) is also simply con-
nected.

The mapping class groupM(F) acts onCord(F) by hha1,:::,ar i = hhÆa1,:::,hÆar i.
Two simplicesha1, : : : , ar i and hb1, : : : , br i of Cord(F) areM(F)-equivalent if and only
if the conditions of Proposition 5.2 are satisfied with� (i ) = i , i 2 f1, : : : , r g. Observe
that to eachM(F)-orbit of r -simplices ofC(F) correspond (r + 1)! orbits in Cord(F).

Let A = (a1, : : : , ar ) be a genericr -family of disjoint curves. Denote by Stab(hAi)
the stabilizer inM(F) of the simplex ofCord(F) represented byA. The group Stab(hAi)
consists of thoseh 2M(F) which satisfyhÆai ' a�1

i for i 2 f1,: : : , r g. It is clearly a
subgroup of Stab([A]) and by Proposition 4.2, we have the following exact sequence:

(6.1) 1! Stab+([ A]) ! Stab(hAi) 8A�! (Z2)r .

Here (Z2)r is identified with the subgroup of Cubr consisting of those� 2 GL(Rr )
such that�(ei ) = �ei for all 1� i � r .

Denote byX the orbit spaceCord(F)=M(F) and by p : Cord(F) ! X the canoni-
cal projection. The spaceX inherits fromCord(F) the structure of a CW-complex; the
r -cells of X correspond to theM(F)-orbits of r -simplices ofCord(F).

By Remark 5.3,X is a finite CW-complex. We denote byXr the r -skeleton of
X. Since the edges ofCord(F) are oriented and the action ofM(F) preserves the ori-
entation, the edges ofX are also oriented. Ife is an edge in eitherCord(F) or X then
we denote byi (e) and t(e) respectively the initial and terminal vertex ofe. An edge
e2 X1 for which i (e) = t(e) = v is called aloop based atv.

The advantage of the ordered complex of curves over the ordinary complex of
curves is thatM(F) acts on (Cord(F))1 without inversion, which simplifies the state-
ment of Theorem 6.3 below.

In order to describe a presentation forM(F) we need to make a number of choices:
(a) We choose a maximal treeT in X1.
(b) For everyv 2 X0 we choose a representatives(v) 2 (Cord(F))0, and for everye 2
X1 a representatives(e) 2 (Cord(F))1 (i.e. p(s(v)) = v and p(s(e)) = e), so thats(i (e)) =
i (s(e)) for every e 2 (Cord(F))1, and s(t(e)) = t(s(e)) for every e 2 T . We denote by
Sv the stabilizer Stab(s(v)) and by Se the stabilizer Stab(s(e)).
(c) For everye2 (Cord(F))1 we choosege 2M(F) such that

ge(s(t(e))) = t(s(e)).
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Fig. 3. A triangle in X and its representative inCord(F).

If e 2 T then we takege = 1. Note, then, that the conjugation mapce given by g 7!
g�1

e gge maps Stab(t(s(e))) onto Stab(s(t(e))); in particular, ce(Se) � St(e).
(d) For every triangle� 2 X2, with edgesa, b, c such thati (c) = i (a) = u, t(a) =
i (b) = v, t(b) = t(c) = w, we choose a representatives(� ) in (Cord(F))2, such that ifã,
b̃, c̃ are the corresponding edges ofs(� ), then i (c̃) = i (ã) = s(u) (see Fig. 3). We also
choose three elements

h� ,a 2 Su, h� ,b 2 Sv, h� ,c 2 Sw,

such thath� ,a(s(a)) = ã, h� ,agah� ,b(s(b)) = b̃, h� ,agah� ,bgbh� ,cg�1
c (s(c)) = c̃. Let us

defineh� = h� ,agah� ,bgbh� ,cg�1
c . Observe, thath� 2 Su.

The next result is a special case of a general theorem of Brown[4] (cf. Theorem 3
of [1]).

Theorem 6.3. Suppose that F is not sporadic and:
(i) for eachv 2 X0 the group Sv has the presentation Sv = hGv j Rvi,
(ii) for each e2 X1 the stabilizer Se is generated by Ge.

ThenM(F) admits the presentation:

generators=
[
v2X0

Gv [ fge j e2 X1g,
relations=

[
v2X0

Rv [ R(1) [ R(2) [ R(3),

where:

R(1) = fge = 1 j e2 T g.
R(2) = fg�1

e ie(g)ge = ce(g) j g 2 Ge, e2 X1g,
where ie is the inclusion Se ,! Si (e) and ce : Se ! St(e) is as in (c) above.

R(3) = fh� ,agah� ,bgbh� ,cg�1
c = h� j � 2 X2g.

In Theorem 6.3,ie(g), ce(g), h� ,a, h� ,b, h� ,c andh� should be expressed as words
in the generators

Sv2X0 Gv.
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Suppose that two of the edges of a triangle� 2 (X)2 belong to the maximal tree
T . Then, using the relationsR(1) and R(3) we can express the generating symbol cor-
responding to the third edge as a product of stabilizers of the representatives for the
vertices. The same is true if two of the symbols for the edges were already expressed
as products of stabilizers. We say that a symbolge is determinable(or simply that the
corresponding edgee is determinable), if using recursively relationsR(1) and R(3), it is
possible to expressge as a product of elements in

Sv2X0 Gv. Thus, every edgee2 T

is determinable, and if a triangle inX2 has two determinable edges, then its third edge
is also determinable.

Theorem 6.4. Suppose that Fng is not sporadic. Then there exists a choice of the
maximal treeT such that all the edges of X are determinable.

Proof. We fix boundary curvesc1, : : : , cn. For each generic family of disjoint
curves A we identify a generic curveb in FA with the curve�A Æ b in F . For any
surfaceX, we denote byg(X) its genus.

Construction of T for g � 4. Suppose thatg � 4. Let v1 denote the non-
separating, two-sided vertexv1 = p([a]), where Fa is non-orientable. For each vertexv
different fromv1, we define an edgeev 2 X1 with initial vertex v1 and terminal vertexv as follows. We fix a curveb, such thatp([b]) = v and constructa in Fb, such that
p([a]) = v1. We consider cases.

CASE 1. b is non-separating andFb is non-orientable. Sincev 6= v1, b must be
one-sided and from the comparison of Euler characteristicswe know thatg(Fb) � 3.
We definea to be any two-sided and non-separating curve inFb, such thatF(a,b) is
non-orientable.

CASE 2. b is non-separating andFb is orientable. NowFb has genus at least 1
and hence it contains a non-separating curve. Leta be any such curve. Note thatFa

is non-orientable because we can construct a one-sided curve in Fa by connecting two
boundary points ofF(a,b) by an arc.

CASE 3. b is separating,Fb = N q N 0. We consider two sub-cases.
CASE 3a. One of the components, sayN, is orientable. Ifg(N) � 1 then we

definea to be any non-separating curve inN (note thatN 0 is non-orientable, and hence
so is Fa). If g(N) = 0, then we definea to be any non-separating, two-sided curve in
N 0, such thatN 0

a is non-orientable (such curve exists, asg(N 0) = g � 4).
CASE 3b. Both componentsN and N 0 are non-orientable. Assumeg(N) � g(N 0).

If g(N) = g(N 0) and n � 1, then we assume thatN contains the boundary curvec1. If
g(N) � 3 then we definea to be any non-separating, two-sided curve inN, such that
Na is non-orientable. Ifg(N) = 2, then we choose fora any non-separating, two-sided
curve in N, such that all exterior boundary curves ofN induce the same orientation of
Na. If F is closed andg(N) = g(N 0), then we can not distinguish betweenN and N 0.
However, whether we choosea in N or N 0, we obtainM(F)-equivalent edgesha, bi.
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In each case we havep([a]) = v1 and we defineev = p(ha, bi). By Proposition 5.2
this definitions do not depend on the choices of the curvesa and b. We define the
maximal treeT = fev j v 6= v1g.

REMARK 6.5. Suppose thatF is closed and consider the curvesa1, a2, a3, bk,
dl in Figs. 1 and 2. As it was discussed in Section 5, these curvesrepresent all vertices
of X. Clearly p([a1]) = v1 and in the construction of the maximal tree described above
we can takeb to be a2 (Case 1),a3 (Case 2),bk (Case 3a) ordl (Case 3b). Then, in
each case, we can takea = a1. Thus

T =
n

p(ha1, a2i), p(ha1, a3i), p(ha1, bki), p(ha1, dl i) 2� k + 1, l � g

2

o
.

Lemma 6.6. Suppose that g� 4 and T is defined as above. Then the following
edges of X are determinable:
(i) all the loops based atv1;
(ii) all the edges with both ends in non-separating vertices;
(iii) all the edges with one end in a non-separating vertex and the other end in a sep-
arating vertex;
(iv) all the edges with both ends in separating vertices.

Proof. Let e = p(ha, bi) be any edge inX and let F 0 denote the surfaceF(a,b).
(i) Supposep([a]) = p([b]) = v1. The surfaceF 0 is either connected or it has two

connected components, at least one of which must be non-orientable.
Suppose thatF 0 has a non-orientable connected component of genus at least 2or

it has two non-orientable components. Then there exists a one-sided curvec in F 0
such thatF(a,c) and F(b,c) are non-orientable. By the definition of edgesev (Case 1),
we have thatp(ha, ci) = p(hb, ci) = ep([c]) , the trianglep(ha, b, ci) has two edges inT ,
and thuse is determinable.

Suppose now thatF 0 is connected and orientable. Leta0, a00, b0, b00 denote the
boundary curves ofF 0 such that�(a,b) Æa0 = �(a,b) Æa00 = a, �(a,b) Æb0 = �(a,b) Æb00 = b. Let
c be a separating curve inF 0 such thatfa0, b0g and fa00, b00g are in different components
of F 0

c. Observe thatc is non-separating inF . Every one-sided curve inF intersects
a[b odd number of times, thus it intersectsc. HenceFc is orientable andp([c]) 6= v1.
The triangle p(ha, b, ci) has edgese, ep([c]) , ep([c]) (Case 2 in the construction ofT ),
thus e is determinable.

Finally suppose thatF 0 has two componentsN1 and N2, such thatN1 is non-
orientable of genus 1 andN2 is orientable. Sinceg(N2) � 1, there is a non-separating
two-sided curvec in N2. Note that p([c]) = v1 and the loopsp(ha, ci), p(hb, ci) are
determinable by previous arguments, becauseF(a,c) and F(b,c) are connected. Hencee
is also determinable, byp(ha, b, ci).

(ii) Suppose that both ends ofe are non-separating. If both of them are one-
sided, thenF 0 is connected and has genus at least 1 if it is orientable, or atleast 2
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if it is non-orientable. In both casesF 0 contains a non-separating, two-sided curvec.
Now p(hc, ai) = ep([a]), p(hc, bi) = ep([b]) (Case 1 in the construction ofT ), hencee
is determinable byp(hc, a, bi).

Suppose that one end ofe is one-sided and the other one is two-sided. ThenF 0
is connected and the two-sided end isv1. Thus if b is one-sided, thene = ep([b]) . If
a is one-sided, then we choose any separating curvec in F 0, such thatFc is con-
nected. Nowp(hc, ai) = ep([a]) and p(hc, bi) is a loop atv1, which is determinable
by (i). Hencee is determinable byp(hc, a, bi).

Suppose that both ends ofe are two-sided. We can assume that at least one of the
ends is notv1, so F 0 is orientable. If F 0 is connected, then we choose a separating
generic curvec in F 0, such thatF(a,c) and F(b,c) are connected. Nowp(hc, ai) is either
ep([a]) (if Fa is orientable) or a loop atv1 (if Fa is non-orientable) and similarly for
p(hc, bi). Hencee is determinable byp(hc, a, bi). If F 0 is not connected, thenFa

and Fb are orientable. NowF 0 has a componentN with g(N) � 1 and for any non-
separating curvec in N we have p(hc, ai) = ep([a]) and p(hc, bi) = ep([a]) . Hencee is
determinable byp(hc, a, bi).

(iii) Assume, without loss of generality, thata is separating andb is non-separating.
Suppose that both components ofFa have genus� 1. Let a1 be a generic curve inF 0
such thatp(ha1, ai) 2 T , and choose any non-separating curvec in the other compo-
nent of Fa. Notice thatp(hc, a1i) is determinable by (ii), andp(hc, ai) is determinable
by the trianglep(hc, a1, ai). Now if a1 and b belong to different components ofFa,
then p(ha1, bi) is determinable by (ii), ande is determinable byp(ha1, a, bi). If a1

and b belong to the same component ofFa, then e is determinable byp(hc, a, bi). If
one of the components has genus 0, thenb is contained in the other componentN.
Now there exists a two-sided generic curvea1 in Nb, such thatNa1 is connected and
non-orientable. Indeed, ifNb is orientable, theng(Nb) � 1 and a1 may be any non-
separating curve inNb. If Nb is non-orientable, theng(Nb) � 2 and we may takea1

to be separating inNb. For sucha1 we have p(ha1, ai) 2 T , and p(ha1, bi) is deter-
minable by (ii). Hencee is determinable byp(ha1, a, bi).

To prove (iv) notice that in this caseF 0 must have a non-orientable component.
Choose a one-sided curvec in F 0 and consider the trianglep(hc, a, bi). The assertion
follows by (iii).

This finishes the proof of Theorem 6.4 forg � 4.
Construction of T for g = 3. Suppose thatg = 3. SinceF is not sporadic we

have n � 3. Let v1 denote the non-separating, two-sided vertexp([a]), where Fa is
non-orientable. Note that this is the only non-separating,two-sided vertex inX. As
we did for g � 4, for eachv 6= v1 we define an edgeev form v1 to v. We fix b such
that v = p([b]) and definea in Fb so that p([a]) = v1.

CASE 1. b is one-sided andFb is non-orientable. NowFb has genus 2. We
define a to be any two-sided and non-separating curve inFb, such that all exterior
boundary curves induce the same orientation ofFb.
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If Fb is connected and orientable (Case 2) or disconnected (Case 3), then we de-
fine a in the same way as we did forg � 4. We only remark that in Case 2,b is
one-sided and henceFb has genus 1; and in Case 3a, ifg(N) = 0 then g(N 0) = 3,
which suffices to choose two-sided and non-separatinga with N 0

a non-orientable.
As previously we defineev = p(ha, bi) and T = fev j v 6= v1g.
Lemma 6.7. Suppose that g= 3 and T is defined as above. Then the following

edges of X are determinable:
(i) all the loops based atv1;
(ii) all the edges with one end inv1;
(iii) all the edges with at least one edge in one-sided vertex;
(iv) all the edges with both ends in separating vertices.

Proof. First observe that every edge inX satisfies one of the conditions (i)–(iv).
Therefore Lemma 6.7 implies Theorem 6.4 forg = 3.

Let e = p(ha, bi) be any edge inX and F 0 = F(a,b).
(i) If p([a]) = p([b]) = v1 then F 0 has two connected components, at least one of

which contains two exterior boundary curves. Letc be a curve inF 0 bounding a pair
of pants together with two exterior boundary curves. The edge e is determinable by
the trianglep(ha, b, ci) having two edges inT .

(ii) Assume p([a]) = v1. If Fb is connected and orientable or it has an orientable
component, thene 2 T . In the other casee 2 T if and only if all exterior boundary
curves induce the same orientation of the orientable component of F 0. Suppose that
e =2 T . Denote byN the connected component ofFb having genus 2 and byN 0 the
orientable component ofF 0 (thus N 0 = Na). There exists a separating curvec in N 0,
which is non-separating inN and such that any two exterior boundary curves induce
opposite orientations ofN 0 if and only if they belong to different components ofN 0

c.
The surfaceNc, which can be obtained fromN 0

c by gluing alonga, is the orientable
component ofN(b,c). Note that all exterior boundary curves induce the same orientation
of Nc, hence p(hc, bi) = ep([b]) . The loop p(hc, ai) is determinable by (i), thuse is
determinable byp(hc, a, bi).

Now assumep([b]) = v1 and choose any generic curved in F 0. The edgesp(hb, ai)
and p(hb, di) have initial vertexv1 and we have already proved that such edges are
determinable. Hencep(ha, di) is determinable byp(hb, a, di), and e by p(ha, b, di).

(iii) Suppose thate has both ends in one-sided vertices. Choose any curvec in
F 0 bounding a pair of pants together with two exterior boundarycurves. Letd be any
two-sided non-separating curve inF(a,c). Then p([d]) = v1, and p(hd, ci) and p(hd, ai)
are determinable by (ii), thusp(hc, ai) is determinable byp(hd, c, ai). Analogously
p(hc, bi) is determinable by a different trianglep(hd0, c, bi). Finally e is determinable
by p(hc, a, bi).

Suppose thate has one vertex in a one-sided vertexv and the other end in a sepa-
rating vertex. Assume without loss of generality thata is separating and denote byN
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the component ofFa which containsb, and the other component byN 0. If g(N) = 3
or g(N) = 1, thenF 0 contains a non-separating two-sided curvec ande is determinable
by p(hc, a, bi) and (ii). If g(N) = 2, then we choose a one-sided curved in N 0 and
two-sided, non-separating curvec in N. Now p(ha, di) is determinable byp(hc, a, di)
and (ii), and p(hb, di) is an edge with two one-sided ends, determinable by previous
argument. Finallye is determinable byp(ha, b, di).

(iv) If e has both ends in separating vertices thenF 0 has a non-orientable connected
component. Choose a one-sided curvec in F 0 and consider the trianglep(ha, b, ci). The
assertion follows by (iii).

Construction of T for g = 2. Suppose thatg = 2 andn � 4. Let v2 denote the
unique one-sided vertex ofX. For each separating vertexv we will define an edge
ev 2 X1 from v2 to v. We fix b such thatp([b]) = v and assumeFb = N q N 0. We
defineev = p(ha, bi), wherea is a one-sided curve inFb defined as follows.

CASE 1. One component ofFb, say N, is orientable. Then we definea to be
any one-sided curve inN 0.

CASE 2. Both components are non-orientable. Assume thatN contains the exte-
rior boundary curvec1. We choosea in N, so that all exterior boundary curves ofN
induce the same orientation ofNa.

Suppose thatw is a two-sided, non-separating vertex ofX. Let us chooseb such
that p([b]) = w. Now Fb is orientable and has genus 0. We choose a curvea in Fb

bounding a pair of pants together with the exterior boundarycurves c1 and c2. We
defineew = p(ha, bi).

We claim thatT = fev j v 6= v2g is a maximal tree inX1. First notice thatT 0 =fev j v is separatingg is a tree, because every edgeev 2 T 0 connectsv to v2. Now
T n T 0 = few j w is two-sided and non-separatingg and every two-sided and non-
separating vertexw is connected to exactly one vertex ofT 0 by ew. It follows that
T indeed is a tree and since it contains all vertices ofX it is a maximal tree.

Lemma 6.8. Suppose that g= 2 and T is defined as above. Then the following
edges of X are determinable:
(i) all the loops based atv2;
(ii) all the edges with one end inv2;
(iii) all the edges with both ends in two-sided vertices;

Proof. Let e = p(ha, bi) be any edge ofX and F 0 = F(a,b).
(i) Suppose thatp([a]) = p([b]) = v2. Choose any separating generic curvec in

F 0 such that one component ofFc is orientable. Thenp(ha, ci) = p(hb, ci) = ep([c]) and
hencee is determinable by the trianglep(ha, b, ci).

(ii) Suppose thate has one end inv2 and the other end in a separating vertexv.
Assume without loss of generality, thata is separating. IfFa has an orientable com-
ponent then for each one-sided curvec in F 0 we havep(hc, ai) 2 T . Now p(hc, bi) is
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Fig. 4. Representatives of different vertices of the complex X of
F5

1 : p([a]) = v;, p([b]) = vf3,4g, p([c]) = v;,f2,3g, p([d]) = vf1g,f4g.
determinable by (i), hencee is determinable byp(hc, a, bi). Suppose that both com-
ponents ofFa are non-orientable and letc and d be two one-sided curves in different
components ofFa, such thatp(hc, ai) = ev. Since p(hc, di) is determinable by (i),
p(hd, ai) is determinable byp(hc, d, ai). We haveb\ c = ; or b\ d = ;, hencee is
determinable byp(hc, a, bi) or p(hd, a, bi).

(iii) If both ends of e are separating, then there is a one-sided curvec in F 0 and
e is determinable by (ii). Suppose thate has one separating and one non-separating
end. Assume without loss of generality, thata is non-separating. Then there is a sep-
arating generic curvec in F 0 such that all boundary curves ofF are contained in one
connected component ofFc. In particular, there is a curved in F(a,c) bounding a pair
of pants together withc1 and c2, that is p(ha, di) = ep([a]) . The edgep(hc, di) is de-
terminable by the previous argument, hencep(ha, ci) is determinable byp(ha, c, di).
If c ' b�1 then we can assumeb \ d = ;, and e is determinable byp(ha, b, di). In
the other casee is determinablep(ha, b, ci). Finally suppose that both ends ofe are
non-separating. Sincen � 4, F 0 contains a generic curveb0, ande is determinable by
p(ha, b, b0i).

Construction of T for g = 1. Suppose thatg = 1 and n � 5. It follows from
Proposition 5.2 that each separating vertexp([a]) 2 X0 is uniquely determined by a
pair I , J � f1, : : : , ng such thatI \ J = ;, 2 � #I + #J � (n � 1), and if N is the
orientable connected component ofFa then
• ci is a boundary curve ofN if and only if i 2 I [ J,
• ci and c j induce the same orientation ofN if and only if fi , j g � I or fi , j g � J.

We denote such vertex byvI , J , where we assume #I � #J, and if #I = #J then
min I < min J. Each one-sided vertexp([a]) is uniquely determined by a subsetI �f1, : : : , ng such thatci andc j induce the same orientation ofFa if and only if fi , j g � I
or fi , j g � I 0, where I 0 = f1,: : : , ngn I . We denote such vertex byvI , where we assume
#I � n=2, and if #I = n=2 then 12 I (see Fig. 4, where we assume that all boundary
curves have positive orientations with respect to the standard orientation of the plane
of the figure).
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If # I + #J � #K + #L then vI , J and vK ,L are connected by an edge inX if and
only if one of the following conditions is satisfied:
• I � K , J � L, #I + #J < #K + #L;
• I � L, J � K , #I + #J < #K + #L;
• (I [ J) \ (K [ L) = ;.
VerticesvI and vJ,K are connected by an edge if and only if eitherJ � I , K � I 0 or
K � I , J � I 0. There are no edges connecting two one-sided vertices because every
two one-sided curves in a surface of genus 1 intersect. It follows that X has no loops.
Moreover, it follows from Proposition 5.2 that for each pairv,w 2 X0 there is at most
one edge inX1 with initial vertex v and terminal vertexw. If such edge exists, then
we denote it byhv;wi. If every two of three verticesu, v, w are connected by an edge
in X, then there are 6 triangles inX2 with verticesu, v, w. We denote byhu; v; wi
the triangle with edgeshu; vi, hu; wi, hv; wi.

We define the maximal tree as

T =
[

vI , J2X0

fhvI ; vI , Jig [ [
vI 2X0nfv;gfhvI ; v;, I 0ig.

Lemma 6.9. Suppose that g= 1 and T is defined as above. Then the following
edges of X are determinable:
(i) all edges with ends invI , J and vK ,L , where I� K , J � L;
(ii) all edges with ends invI , J and vK ,L , where (I [ J) \ (K [ L) = ;;
(iii) all edges with ends invI , J and vK ,L , where I� L, J � K ;
(iv) all edges with ends invI , J and vK .

Proof. Let e be an edge with ends invI , J and vK ,L .
(i) If I = K then e is determinable by a triangle with third vertexvI . Suppose

I ( K , J = L. The edgehv;, J ; v;,K 0i is determinable by the previous argument, hencehvK ; v;, Ji is determinable byhvK ; v;, J ; v;,K 0i. If I = ; then e is determinable by the
triangle with edgese, hvK ;v;, Ji and hvK ;vK , Ji. If I 6= ; then e is determinable by the
triangle with edgese, hvI , J ; v;, Ji, hvK , J ; v;, Ji, whose last two edges are determinable
by the previous argument. Finally, ifI ( K and J ( L then e is determinable by the
triangle with edgese, hvI , J ; vI ,Li, hvK ,L ; vI ,Li, because the last two edges are deter-
minable by previous arguments.

(ii) If #( I [ J [ K [ L) < n then e is determinable by a triangle with third vertexvI[K , J[L , whose remaining two edges are determinable by (i). If #(I [ J [ K [ L) = n
then we assume #(I [ J) � 3. Then there is a vertexvM,N such thatM � I , N � J
and #(M [N) < #(I [ J). Now hvM,N ;vK ,Li is determinable by the previous argument,
and hvM,N ; vI , Ji is determinable by (i). Hencee is also determinable.

(iii) SupposeJ = K , I ( L. If #J � 2 then the edgeshv;,L ;vJ,Li and hv;, J ;v;,Li
are determinable by (i) and (ii), hence any edge connectingv;, J with vJ,L is deter-
minable. In particular,e is determinable ifI = ;, and if I 6= ; then e is determinable
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by the triangle with edgese, hvJ,L ; v;, Ji, hvI , J ; v;, Ji, whose last edge is determinable
by (i). Suppose #J = 1. Then #I = 1 and #L � 2. Now e is determinable by a triangle
with third vertexv;,M , whereM = L n I if #L � 3, andM = (J[L)0 if #L = 2 (#M � 2,
since n � 5). In both casese is determinable by (i) and (ii). Finally, ifJ ( K and
I ( L then e is determinable by the triangle with edgese, hvI , J ; vJ,Li, hvK ,L ; vJ,Li,
becausehvI , J ; vJ,Li is determinable by previous arguments, andhvK ,L ; vJ,Li by (i).

(iv) First assumeK = ;. Then I = ; and if vK = i (e) then e 2 T . SupposevK = t(e). Observe that there is a vertexv;,L such thatL ( J or J ( L. Now e is
determinable byhv;, J ;v;;v;,Li. Now assumeK 6= ; and #J � 2. Any edge connectingvK with v;, J is determinable by a triangle with third vertexv;,K 0 . In particular, e is
determinable ifI = ;, and if I 6= ; thene is determinable by the triangle with edgese,hvK ; v;, Ji, hvI , J ; v;, Ji, whose last edge is determinable by (i). It remains to consider
the case #I = #J = 1. It is easy to check that then there is a triangle with verticesvK ,vI , J , vL,M , where I [ J ( L [ M. The edge connectingvK with vL,M is determinable
by the previous argument, hencee is also determinable.

This completes the proof of Lemma 6.9 and Theorem 6.4

We a corollary we obtain the following theorem.

Theorem 6.10. Suppose that F= Fn
g is not sporadic andT is as in Lemma 6.4.

Then it is possible to express all the generators ge appearing in Theorem 6.3as a
product of elements in

Sv2X0 Gv. Hence, the presentation inTheorem 6.3reduces to

M(F) =

*[
v2X0

Gv [
v2X0

Rv [gR(2) [gR(3)

+
,

wheregR(i ) are the relations obtained substituting in R(i ) the expressions for the gener-
ators ge.

7. The sporadic surfaces

Suppose thatF is not sporadic. To obtain a finite presentation of the groupM(F)
using Theorem 6.10 we need finite presentations for the groups Stab(s(v)) and finite
sets of generators of the groups Stab(s(e)). By Proposition 4.2 we can reduce these
problems to analogous problems for the groupsM(N), where N is a connected com-
ponent of Fs(v) or Fs(e). Note that N has either lower genus thanF or equal genus,
but less boundary components. IfN is orientable then a finite presentation ofM(N)
is known (see [7] for the most general case). IfN is non-orientable and not sporadic
then we can obtain such presentation from Theorem 6.10. Thusapplying recursively
Theorem 6.10 we obtain a finite presentation forM(F), provided that we know a finite
presentation of the mapping class group of each sporadic subsurface.
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The groupsM(F0
1 ) and M(F1

1 ) are well known to be trivial (cf. [6]);M(F2
1 ) is

generated by Dehn twists along the boundary curves and is isomorphic toZ2; M(F0
2 ) =

Z2�Z2 ([16]). Simple presentation forM(F1
2 ) was found in [20], and forM(F0

3 ) in
[3]. In this section we determine a finite presentation ofM(Fn

g ) for the remaining
sporadic surfaces, i.e. for (g, n) 2 f(1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2)g.

We begin by introducing the pure mapping class group of a punctured surface and
Birman’s exact sequence, which is our main tool in this section. Let S be anorientable
surface with 2r distinguished points6 = fq1, : : : , q2r g called punctures. The pure map-
ping class groupPM(S, 6) is the group of isotopy classesrel6 of all those diffeo-
morphisms ofS which fix eachqi . Up to isomorphism, this group does not depend on
the choice of6, only on the number of punctures. We also definePM(S,;) to be the
ordinary mapping class groupM(S). Forgetting thatq2r�1 and q2r are distinguished
defines a homomorphism� : PM(S, 6) ! PM(S, 60), where60 = 6 n fq2r�1, q2r g.
Let Q = f(x1, x2) 2 (Sn 60)2 j x1 6= x2g. We definethe pure braid group PB2(Sn 60)
as �1(Q, (q2r�1, q2r )). If the Euler characteristic ofSn 60 is negative, then there is a
short exact sequence due to Birman (see [2]):

1! PB2(Sn60) j�! PM(S, 6)
��! PM(S, 60) ! 1,

where the homomorphismj is defined as follows. A loop� 2 PB2(Sn60) defines an
isotopy of 0-dimensional submanifold (q2r�1, q2r ) � Sn 60, which can be extended to
an isotopyht 2 Diff( S, 60), 0� t � 1 such thath0 = 1 andh1(qi ) = qi for 1� i � 2r .
We define j (�) to be the isotopy class in Diff(S, 6) of h1.

Suppose that� : S! S is an orientation reversing involution ofS, without fixed
points, and such that� (q2k�1) = q2k for 1 � k � r . Then S=� is a non-orientable sur-
face with r distinguished points0 = fp1, : : : , pr g. Consider the subgroupPM(S,6, � )
of PM(S,6) consisting of all isotopy classes which admit a representative which com-
mutes with� . It can be shown that two such representatives are isotopicrel6 if and
only if they are isotopic via an isotopy which commutes with� at each time (cf. [3]).
Since every diffeomorphism ofS=� has a unique orientation preserving lift toS which
commutes with� (the two lifts differ by� which is orientation reversing),PM(S,6, � )
can be identified with the group of isotopy classesrel 0 of diffeomorphisms ofS=�
which fix eachpi and preserve the local orientation ofS=� at eachpi .

It follows from the definition of j , that j (�) 2 PM(S, 6, � ) if and only if � is
represented by a loop of the formt 7! (at , � (at )), where t 7! at is a loop in Sn 60
based atq2r�1. Thus the pre-imagej�1(PM(S, 6, � )) can be identified with�1(Sn60, q2r�1) and we obtain the exact sequence:

(7.1) 1! �1(Sn60) j�! PM(S, 6, � )
��! PM(S, 60, � ) ! 1.

Suppose now thatF is a non-orientable surface of genusg with r punctures0 =fp1,:::, pr g. Let PM(F ,0) denote thepure mapping class groupof F . It is defined as
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Fig. 5. j (�) = ta1ta2.

the group of the isotopy classesrel 0 of all diffeomorphisms ofF which fix eachpi .
Consider the subgroupPM+(F , 0) of PM(F , 0), consisting of the isotopy classes of
those diffeomorphisms which preserve the local orientation of F at eachpi . If S is the
orientable double cover ofF and F = S=� , then it follows from above considerations
that PM+(F , 0) can be identified withPM(S, 6, � ). Note that�1(S n 60) can be
identified with the subgroup�+

1 (F n 00, pr ) of �1(F n 00, pr ) consisting of the two-
sided loops. With such identifications the sequence (7.1) becomes:

(7.2) 1! �+
1 (F n 00, pr )

j�! PM+(F , 0)
��! PM+(F , 00) ! 1,

where we assume that the Euler characteristic ofF n 00 is negative (that isg + r > 3).
In this paper we use the same symbol to denote a loop and its homotopy class in

the fundamental group. In order forj to be a homomorphism, the product�� of two
loops should mean first travel along� and then along�.

If � is a simple loop inF based atpr , then j (�) is the isotopy class of a diffeo-
morphism obtained by slidingpr once along�.

The next two lemmas are proved in [13], (6.1).

Lemma 7.1. Let � 2 �+
1 (F n 00, pk) be a two-sided simple loop and let a1, a2

denote boundary curves of a tubular neighborhood of�. Then j(�) = ta1ta2, where ta1

and ta2 are Dehn twists about a1 and a2 in the directions indicated by arrows inFig. 5.

The pure mapping class groupPM(F , 0) acts on�+
1 (F n 00) in the obvious way.

We denote this action byh(�) for h 2 PM(F , 0) and � 2 �+
1 (F n 00).

Lemma 7.2. The homomorphism j isPM(F , 0)-equiveriant. That is j(h(�)) =
hj(�)h�1 for h 2 PM(F , 0) and � 2 �+

1 (F n 00).
Suppose thatF̃ = Fn

g is a non-orientable surface of negative Euler characteristic

(i.e. g + n > 2) and letc1, : : : , cn : S1 ! � F̃ denote the boundary curves. LetF = F0
g

be the closed surface with punctures0 = fp1, : : : , png obtained by gluing a disc with
a puncturepi to � F̃ along ci for 1 � i � n. We identify F̃ with a subsurface ofF
and denote byi� : M(F̃) ! PM+(F , 0) the homomorphism induced by the inclusion
i : F̃ ! F . It can be proved, using the same methods as in the proof of Proposi-
tion 4.1, that keri� is a free abelian group of rankn generated by Dehn twists about
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the boundary curvesci . Thus we have the exact sequence

(7.3) 1! Zn !M(Fn
g )

i��! PM+(F0
g , 0) ! 1.

REMARK 7.3. Note that keri� is a central subgroup ofM(Fn
g ). Indeed, for ev-

ery i 2 f1, : : : , ng and h 2M(Fn
g ) we havehtci h

�1 = th(ci ) = tci .

We record without proof the following easy lemma.

Lemma 7.4. Consider a short exact sequence of groups

1! K
i�! G

p�! H ! 1

and suppose that K and H admit presentations

K = hGK j RK i, H = hGH j RH i.
Then G admits the presentation

(7.4) hi (GK ) [gGH j i (RK ) [ fRH [ Ri,
where:

i (GK ) = fi (k) j k 2 GK g, gGH = fh̃ j h 2 GH g,
where h̃ is any element in G such that p(h̃) = h,

i (RK ) = fi (k1) � � � i (kn) j k1 � � � kn 2 RK g,fRH = fh̃1 � � � h̃nw(h1 � � � hn) j h1 � � � hn 2 RH g,
R = fh̃i(k)h̃�1w(k, h) j h 2 GH , k 2 Gkg,

wherew(h1 � � � hn) and w(k, h) are suitable words in generators i(GK ).

We can now obtain finite presentations for the mapping class groups M(Fn
g ) of

the sporadic surfaces in the following way. Starting from known presentations of the
groupsPM+(F0

1 , fp1, p2g), PM+(F0
2 , fp1g) and M(F0

3 ), we obtain presentations for
all PM+(F0

g , 0), by applying recursively Lemma 7.4 to the sequence (7.2). To do

this, we need finite presentations for the groups�+
1 (F0

g n 00). These can be obtained

from standard presentations of fundamental groups�1(F0
g n 00) by the Reidemeister-

Schreier method (see, for example, [17]). Once we have foundthe presentations for
PM+(F0

g , 0), we obtain presentations forM(Fn
g ), by applying Lemma 7.4 to the se-

quence (7.3).
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Fig. 6. The curves of the lantern relation.

7.1. Sporadic surfaces of genus 1.Until the end of this paper we use the cap-
ital letter A to denote a Dehn twist about the curve labelled asa. In order for this
notation to be unambiguous, we have to specify the directionof the twist A for each
curve a. Equivalently we may choose an orientation of a tubular neighborhood ofa.
Then A denotes the right Dehn twist with respect to the chosen orientation.

Consider a 2-sphereS with four holes embedded inF . Let a0, a1, a2, a3 denote
disjoint boundary curves ofS, anda12, a13, a23 separating generic curves such thatai j

separatesai and a j from the other two boundary curves ofS (Fig. 6). If Ai and A jk

are right Dehn twists with respect to the standard orientation of the plane of Fig. 6,
then we have the well known lantern relation:

(7.5) A0A1A2A3 = A12A13A23.

The lantern relation was discovered by Dehn [5] and rediscovered by Johnson [14].
Note that sinceAi j commutes withAk, we have:

(7.6) A12A13A23 = A13A23A12 = A23A12A13.

Let us fix four pointsp1, : : : , p4 in the projective planeF = F0
1 represented in

Figs. 7 and 8, where the curvec1 bounds inF a disc containingp1. Let n 2 f3, 4g
and consider the embeddingi : F̃ ! F , where F̃ = Fn

1 , and the induced homomorphism
i� : M(F̃) ! PM+(F , fp1, : : : , png) (if n = 3 then we forget thatp4 is distinguished).
We identify F̃ with i (F̃), and a curvea in F̃ with i Æ a in F .

Consider the loops�i , � jk , � jk represented in Figs. 7 and 8, where we as-
sume, that each of them represents a two-sided simple loop in�+

1 (F nfp1, p2g, p3) or�+
1 (F n fp1, p2, p3g, p4). The boundary of a tubular neighborhood of such loop consist

of two two-sided simple closed curves, one of which is trivial (i.e. it either separates a
Möbius strip or a disc containing one puncture). We use the symbol ai or a jk or b jk

to denote the non-trivial boundary component of the tubularneighborhood of the cor-
responding loop (see Fig. 7). Then by Lemma 7.1, we havej (�i ) = Ai , j (� jk) = A jk ,
j (� jk) = B jk . Note thatai , a jk , b jk may be chosen to be generic curves inF̃ .
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Fig. 7. Generators of�+
1 (F n fp1, p2g, p3) and generic curves

in F3
1 .

Fig. 8. Generators of�+
1 (F n fp1, p2, p3g, p4).

Theorem 7.5. The groupPM+(F , fp1, p2, p3g) is free, generated by A3, A23,
B23. The groupM(F3

1 ) is generated by A3, A23, B23, C1, C2, C3 and isomorphic to
Z3 � PM+(F , fp1, p2, p3g).

Proof. It can be deduced from Theorem 4.1 of [15] that the group PM+(F , fp1, p2g)
is trivial. Thus

j : �+
1 (F n fp1, p2g, p3) ! PM+(F , fp1, p2, p3g)

is an isomorphism. The fundamental group�1(F n fp1, p2g, p3) is free on generators�23 and x, wherex is a one-sided loop, such thatx2 = ��1
3 , x�23x�1 = �23. Now f1,xg

is a Schreier system of representatives of right cosets of�+
1 (F n fp1, p2g, p3) and by

the Reidemeister-Schreier method we obtain that the last group is freely generated by
the loops�3, �23, �23. Hence the first part of Theorem 7.5. The second part follows
from the sequence (7.3). Indeed, the sequence splits as�+

1 (F n fp1, p2g, p3) is free,
and the kernel ofi� is central by Remark 7.3.
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Theorem 7.6. The groupPM+(F , fp1, p2, p3, p4g) admits a presentation with
generatorsfA3, A4, A23, A24, A34, B23, B24, B34, Dg and relations:
(1) A23A4 = A4A23, A24A3 = A3A24,
(2) A�1

3 A4A34B34 = B34A�1
3 A4A34,

(3) A4A34A24B23 = B23A4A34A24,
(4) A34A�1

3 A23B24 = B24A34A�1
3 A23,

(5) A34A24A23 = A24A23A34 = A23A34A24,
(6) B34A23B24 = A23B24B34 = B24B34A23,
(7) A4A34A�1

3 = A34A�1
3 A4 = A�1

3 A4A34,

(8) A�1
34 B24B23 = B24B23A�1

34 = B23A�1
34 B24,

(9) A24B23D�1 = B23D�1A24 = D�1A24B23,
(10) D = A�1

34 A�1
4 B34A4A34.

The groupM(F4
1 ) is isomorphic toZ4 � PM+(F , fp1, p2, p3, p4g).

Proof. Let us denote, for simplicity,

� = �+
1 (F n fp1, p2, p3g, p4), G = PM+(F , fp1, p2, p3, p4g).

The fundamental group�1(F nfp1, p2, p3g, p4) is free on generators�24, �34 andx, where
x is a one-sided loop, such thatx2 = �4, x�24x�1 = �24, x�34x�1 = �34. Now f1, xg is a
Schreier system of representatives of right cosets of� and by the Reidemeister-Schreier
method we obtain that� is freely generated by the loops in Fig. 8. By Lemma 7.4
applied to sequence (7.2) and Theorem 7.5,G admits a presentation with generators
A3, A23, B23, A4 = j (�4), Ak4 = j (�k4), Bk4 = j (�k4), k = 2, 3 and relationshgh�1 2
j (�) for eachh 2 fA3, A23, B23g, g 2 fA4, Ak4, Bk4 j k = 2, 3g. We will show that all
these relations are consequences of (1)–(10). We have:

(1) ) A23A4A�1
23 , A3A24A�1

3 2 j (�);

(2) ) A3B34A�1
3 2 j (�);

(10) ) D 2 j (�).

From (5) follows

A23A34A�1
23 = A�1

24 A34A24 2 j (�),

A23A34A24A�1
23 = A34A24 ) A23A24A�1

23 2 j (�).

Analogously we have

(6)–(9)) fA23B24A�1
23 , A23B34A�1

23 , A3A34A�1
3 , A3A4A�1

3 ,

B23A34B�1
23 , B23B24B�1

23 , B23DB�1
23 , B23A24B�1

23 g � j (�).

From (3) follows

B23A4A34B�1
23 2 j (�);
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from this and (8) we have

B23A4B�1
23 2 j (�)

and from (10) follows

B23B34B�1
23 2 j (�).

Finally we have

(4)) A3A�1
34 B24A34A�1

3 = A23B24A�1
23 ,

and by (6), (7) we have

A3B24A�1
3 2 j (�).

Now we show that relations (1)–(10) are satisfied inM(F̃), and hence also in
G. By relation (10), the generatorD is a Dehn twist about the curveA�1

34 A�1
4 (b34)

bounding a pair of pants together withc3 and c4. The relations (1) are obvious. By
considering appropriate embeddings of a 2-sphere with fourholes in F̃ , it is easy to rec-
ognize (5)–(9) as relations of type (7.6), i.e. consequences of the lantern relation. In par-
ticular, we have lantern relationA12C3C4 = A4A34A�1

3 , whereA12 is Dehn twist about a
curve bounding a pair of pants together withc1 andc2. SinceB34 commutes withA12,
C3 and C4, the relation (2) holds. By Lemma 7.1, we havej (�4�34�24) = A14 2 G,
wherea14 bounds a pair of pants iñF together withc1 andc4. Thus inM(F̃) we have
A4A34A24 = A14C, whereC is a product of twistsC1, : : : , C4. SinceB23 commutes with
A14 andC, (3) holds. Consider a monomorphismj 0 : �+

1 (F n fp1, p2, p4g, p3) ! G, de-
fined like j . There exists exactly one loop�034 such thatj 0(�034) = A34 2 G, and we have

j 0(�034��1
3 �23) = A13 2 G, wherea13 bounds a pair of pants iñF together withc1 andc3.

SinceB24 commutes withA13, (4) holds.
We have shown that (1)–(10) are relations inG, and all relations from Lemma 7.4

are consequences of (1)–(10). HenceG admits presentation with relations (1)–(10).
Since these relations hold also inM(F̃), the sequence (7.3) splits, and since the kernel
of i� is central, we obtainM(F̃) = Z4 � G.

7.2. Sporadic surfaces of genus 2.Consider the Klein bottleK with one hole
represented in Fig. 9. LetU be a diffeomorphism ofK interchanging the shaded discs
in Fig. 9 and such thatU2 is the Dehn twist about the boundary curvec, right with
respect to the standard orientation of the plane of the figure. Up to isotopy,U acts on
the arcd as it is shown in Fig. 9 (see [21] for precise definition). We fixDehn twist
A1 about the curvea1, in the direction indicated by arrows in Fig. 9. The composition
U A1 is the Y-homeomorphism (or cross-cap slide) introduced by Lickorish [16]. The
next theorem follows immediately from Theorem A.7 of [20].
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Fig. 9. The diffeomorphismU .

Fig. 10. The surfaces̃F = F2
2 and F̃a1.

Theorem 7.7. The mapping class groupM(K ) is generated by A1 and U and
admits the presentationhA1, U j U A1U�1 = A�1

1 i.
Let F̃ = F2

2 be the surface obtained by gluing a pair of pants toK , and letc1 and
c2 denote the boundary curves ofF̃ (Fig. 10). We extendU by the identity outsideK
to a diffeomorphism ofF̃ . Let C, C1, C2 D1, D2 be Dehn twists about the curves
represented in Fig. 10, right with respect to the standard orientation of the plane of the
figure. We also define Dehn twistA1, A2 in the indicated directions. Note thatU2 = C
and U D2U�1 = D1.

The right hand side of Fig. 10 represents the four-holed sphere F̃a1 obtained by
cutting F̃ along a1, where�a1 Æ a01 = �a1 Æ a001 = a1, �a1(c

0
i ) = ci for i = 1, 2, �a1(c

0) =
c, �a1(a

0
2) = a2, �a1(b) = U (a2). If C0

i , C0, A01, A001, A02, B are right Dehn twists with
respect to the standard orientation of the plane of Fig. 10, then��(C0

i ) = Ci , ��(C0) = C,��(A01A001) = 1, ��(A02) = A2, and��(B) = U A2U�1.

Lemma 7.8. In M(F̃) we have(A2U )2 = (D2U )2 = C1C2.

Proof. We have the lantern relationC0
1C0

2A01A001 = A02BC0. By applying�� to both
sides we obtainC1C2 = A2(U A2U�1)U2 = (A2U )2. By another lantern relation we have
C1C2 = D2D1C = D2(U D2U�1)U2 = (D2U )2.

Let F = F0
2 be the Klein bottle obtained by gluing a disc with a puncturepi to� F̃ along ci for i = 1, 2. We identifyU , A1, A2, D2, with i�(U ), i�(A1), i�(A2), i�(D2)
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Fig. 11. Generators of�1(F n fp1g, p2) and�+
1 (F n fp1g, p2).

respectively, wherei� : M(F̃) ! PM+(F , fp1, p2g) is the homomorphism induced by
the inclusion ofF̃ in F .

Theorem 7.9. The groupPM+(F , fp1, p2g) admits a presentation with genera-
tors fA1, A2, D2,Ug and relations: A1A2 = A2A1, U A1U�1 = A�1

1 , A2U D2 = D�1
2 A2U ,

(A2U )2 = (D2U )2 = 1.

Proof. Consider the exact sequence (7.2):

1! �+(F n fp1g, p2)
j�! PM+(F , fp1, p2g) ! PM+(F , fp1g) ! 1.

By Theorem 7.7 and sequence (7.3),PM+(F , fp1g) has presentation

hA1, U j U A1U
�1 = A�1

1 , U2 = 1i.
The fundamental group�1(F n fp1g, p2) is free on generatorsx1, x2 in Fig. 11. Nowf1, x2g is a Schreier system of representatives of cosets of�+

1 (F n fp1g, p2) and by the
Reidemeister-Schreier method we obtain that the last groupis freely generated byÆ2 =
x2

2, �2 = x2x1 andx1x�1
2 . It follows that�+

1 (F nfp1g, p2) is free on generatorsÆ2, �2, 
 ,

where
 = x2
2(x1x�1

2 )(x2x1). Observe thatj (
 ) = U�2, j (�2) = A2A�1
1 , j (Æ2) = D2. By

Lemma 7.4,PM+(F , fp1, p2g) admits presentation with generatorsU , A1, j (
 ), j (�2),
j (Æ2) and relationsU A1U�1 = A�1

1 , U2 = ( j (
 ))�1, and (by Lemma 7.2):

U j (
 )U�1 = j (
 ), U j (�2)U�1 = j (��1
2 
 ), U j (Æ2)U�1 = j (Æ�1

2 
 ),

A1 j (
 )A�1
1 = j (
 ), A1 j (�2)A�1

1 = j (�2), A1 j (Æ2)A�1
1 = j (
��1

2 Æ2�2).

Substituting j (
 ) = U�2, j (�2) = A2A�1
1 , j (Æ2) = D2 we obtain a presentation which can

easily be shown to be equivalent to that in Theorem 7.9.
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Theorem 7.10. The groupM(F2
2 ) admits a presentation with generatorsfC1, A1,

A2, D2, Ug and relations:

C1Ai = Ai C1, for i = 1, 2,

C1D2 = D2C1, C1U = UC1,

A1A2 = A2A1, U A1U
�1 = A�1

1 , A2U D2 = D�1
2 A2U ,

(A2U )2 = (D2U )2.

Proof. From sequence (7.3), Theorem 7.9 and Lemma 7.8 we obtain a presenta-
tion for M(F2

2 ) with generatorsfC1, C2, A1, A2, D2, Ug and relations listed in Theo-
rem 7.10 and

(7.7) C1C2 = C2C1, C2D2 = D2C2, C2U = UC2, C2Ai = Ai C2,

for i = 1, 2 and

(7.8) (A2U )2 = C1C2.

We claim that the relations (7.7) are consequences of the relation (7.8) and relations
from Theorem 7.10. Clearly it suffices to check that relations

D2(A2U )2 = (A2U )2D2, U (A2U )2 = (A2U )2U , Ai (A2U )2 = (A2U )2Ai ,

follow from those in Theorem 7.10. Observe thatA1(A2U )2 = (A2U )2A1 follows from
A1A2 = A2A1 andU A1U�1 = A�1

1 . From A2U D2 = D�1
2 A2U we haveD�1

2 (A2U )2D2 =

(A2U )2 andU (A2U )2U�1 = U (D2U )2U�1 = D�1
2 (D2U )2D2 = D�1

2 (A2U )2D2 = (A2U )2.

Finally we haveA�1
2 (A2U )2A2 = U (A2U )2U�1 = (A2U )2. It follows that relations (7.7)

are redundant, and hence they can be removed from the presentation. Then the gener-
ator C2 can also be removed together with the relation (7.8).

We fix a point p3 2 F n K , different from p2 and p1, and such thatp3 and p2 are
in different components ofF n (a1[a2). We identify U , A2, A1 and D2 with elements
of PM+(F , fp1, p2, p3g). Let A3 and D3 be such Dehn twists thatj (�3) = A3A�1

2
and j (Æ3) = D3, where�3, Æ3 are the loops in Fig. 12, andj : �+(F n fp1, p2g, p3) !
PM+(F , fp1, p2, p3g) is the monomorphism from sequence (7.2).

Theorem 7.11. The groupPM+(F , fp1, p2, p3g) admits a presentation with gen-
erators fA1, A2, A3, D2, D3, Ug and relations:
(1) Ai A j = A j Ai , for i , j 2 f1, 2, 3g;
(2) U A1U�1 = A�1

1 ;

(3) A2U D2 = D�1
2 A2U ;

(4) (A2U )2 = (D2U )2 = (U D2)2;
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Fig. 12. Generators of�1(F nfp1, p2g, p3) and�+
1 (F nfp1, p2g, p3).

(5) (U D3)2 = (D3U )2;
(6) D3U D2U�1 = U D2U�1D3;
(7) A3U D2D3 = U D2D3A�1

3 ;
(8) (U A3)2 = (U D2D3)�2;
(9) A2(A3U D2)2 = (A3U D2)2A2;
(10) A2A�1

1 D3A1A�1
2 = A3U D2D�1

3 (A3U D2)�1;

(11) A1(A3U D2)2A�1
1 = (U D2)�1(A3U D2)2U D2.

Proof. Let us denote, for simplicity,

� = �+
1 (F n fp1, p2g, p3), G = PM+(F , fp1, p2, p3g).

The fundamental group�1(F n fp1, p2g, p2) is free on generatorsÆ23, y1, y2 in Fig. 12.
Now f1, y2g is a Schreier system of representatives of cosets of� and by the Reidemeister-
Schreier method we obtain that the last group is freely generated byÆ23, Æ3 = y2

2, " =

y2Æ23y�1
2 , y2y1 and y1y�1

2 . It follows that � is free on generatorsÆ23, Æ3, ", �3, Æ12,

whereÆ12 = Æ3(y1y�1
2 )(y2y1), �3 = y2y1Æ23. By Lemmas 7.1 and 7.8 we have

(7.9) j (Æ23) = (U A3)2, j (Æ12Æ23) = (U D2)�2.

First we show that relations (1)–(11) are satisfied inG: (1) and (6) are obvious; (4) and (5)
follow from Lemma 7.8; (2), (3), (7) are relations of typehtah�1 = t�1

h(a) and hence they

can be checked by looking at the effect ofh on the curvea; (10) follows fromA2A�1
1 (Æ3) =

A3U D2(Æ�1
3 ); (8) is equivalent toU D2D3D�1

2 U�1 = (U A3)�2D�1
3 (U D2)�2, which fol-

lows from U D2(Æ3) = Æ�1
23 Æ�1

3 Æ12Æ23. It can be checked that"Æ3 = A3((Æ12Æ23)�1Æ3) and

hence j (") = A3(U D2)2D3A�1
3 D�1

3 ; from this and (7) we obtain

(7.10) j (") = (A3U D2)2.

Now (9) and (11) follow from (7.10) and the equalitiesA2(") = " andA1(") = (U D2)�1(").
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By Theorem 7.9 and sequence (7.2),G admits presentation with generatorsfA1, A2, D2, U , j (�3), j (Æ3), j (Æ12), j (Æ23), j (")g and relations (2), (3),A1A2 = A2A1,
(A2U )2 = (D2U )2 = j (Æ�1

23 Æ�1
12 ) and:

(i) U j (�3)U�1 = j (Æ23��1
3 Æ12Æ23);

(ii) U j (Æ3)U�1 = j (Æ�1
3 Æ12);

(iii) U j (Æ23)U�1 = j (Æ23);
(iv) U j (Æ12)U�1 = j (Æ12);
(v) U j (")U�1 = j (Æ�1

3 Æ12Æ23��1
3 "�3Æ�1

23 Æ�1
12 Æ3);

(vi) D2 j (�3)D�1
2 = j (Æ�1

23 Æ�1
3 "Æ3�3);

(vii) D2 j (Æ3)D�1
2 = j (Æ�1

23 Æ3Æ23);

(viii) D2 j (Æ23)D
�1
2 = j (D2(Æ�1

3 )Æ3Æ23);

(ix) D2 j (Æ12)D
�1
2 = j (Æ12Æ23D2(Æ�1

23 ));

(x) D2 j (")D�1
2 = j (D2(�3)��1

3 Æ23);

(xi) A2 j (�3)A�1
2 = j (�3);

(xii) A2 j (Æ3)A�1
2 = j (Æ12Æ23��1

3 "Æ3�3);

(xiii) A2 j (Æ23)A�1
2 = j (��1

3 Æ23�3);

(xiv) A2 j (Æ12)A�1
2 = j (Æ12Æ23)A2 j (Æ�1

23 )A�1
2 ;

(xv) A2 j (")A�1
2 = j (");

(xvi) A1 j (�3)A�1
1 = j (�3);

(xvii) A1 j (Æ3)A�1
1 = j (Æ12Æ23��1

3 Æ3�3Æ�1
23 );

(xviii) A1 j (Æ23)A�1
1 = j (Æ23);

(xix) A1 j (Æ12)A�1
1 = j (Æ12);

(xx) A1 j (")A�1
1 = j ((U D2)�1(")).

It remains to check, that the relations (i)–(xx) above are consequences of (1)–(11)
in Theorem 7.11 and (7.9), (7.10),j (Æ3) = D3. We have:

(i)()U A3A�1
2 U�1 =(U A3)2A�1

3 A2(A2U )�2() (A2U )2 =(U A2)2( (4);

(ii)()U D3U
�1 = D�1

3 (U D2)�2(U A3)�2 (8)
= D�1

3 D�1
2 U�1D3U D2D3

(6)
= D�1

3 U�1D3U D3

() (5);

(iii) () (U A3)2 =(A3U )2( (7), (8);

(iv)()U (U A3)2(U D2)2U�1 =(U A3)2(U D2)2( (4), (7), (8);

(v)
(9)()U (A3U D2)2U�1 = D�1

3 (U D2)�1(A3U D2)2(U D2)D3

(7)
= A�1

3 D�1
3 A3(U D2)2D3

(4), (6), (7)() D3(A3U )2D2 =(A3U )2D2D3

(8)()D3(U D2D3)�2D2 =(U D2D3)�2D2D3
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( (4), (5), (6);

(vi)()D2A3A�1
2 D�1

2 =(A3U )�2D�1
3 (A3U D2)2D3A3A�1

2

(3), (7)()D2 =(A3U )�2D�1
3 A3(U D2)2D3U D�1

2 U�1A�1
3

(6), (4)
= (A3U )�2D�1

3 (A3U )2D2D3
(8)
= (U D2D3)2D�1

3 (U D2D3)�2D2D3

( (4), (5), (6);

(vii)()D2D3D�1
2 =(U D2D3)2D3(U D2D3)�2( (4), (5), (6);

(viii) ()D2(U D2D3)�2D�1
2 = D2D�1

3 D�1
2 D3(U D2D3)�2( (4), (6);

(ix)()D2(Æ12Æ23)=Æ12Æ23() (U D2)2 =(D2U )2( (4);

(x)()D2(A3U D2)2D�1
2 = D2A3A�1

2 D�1
2 A2A�1

3 (A3U )2( (3);

(1) ) (xi);

(xii)() A2D3A�1
2 =(U D2)�2A2A�1

3 (A3U D2)2D3A3A�1
2

(7)() A2(U D2)2 =(U D2)2A2

( (4);

(xiii) () A2(U A3)2A�1
2 = A2A�1

3 (U A3)2A3A�1
2

(1)() (U A3)2 =(A3U )2( (7), (8);

(xiv)() A2(U D2)2 =(U D2)2A2( (4);

(9) ) (xv);

(xvii)() A1D3A�1
1 =(U D2)�2A2A�1

3 D3A3A�1
2 (U A3)�2

(1), (2), (4)() A2A�1
1 D3A1A�1

2 = A3(U D2)2D3(U A3)2A�1
3

(8)() (10);

(1), (2), (4) ) (xvi), (xviii), (xix);

(xx)() (11).

Let F̃ = F3
2 be a subsurface ofF such that boundary curveci : S1 ! � F̃ bounds

in F a disc with puncturepi for i = 1, 2, 3. We identifyfA1, A2, A3, D2, D3, Ug with
elements ofM(F̃).

Theorem 7.12. The groupM(F3
2 ) admits a presentation with generatorsfA1, A2,

A3, D2, D3, U , C1, C2, C3g and relations(1)–(7), (9)–(11)from Theorem 7.11and
(80) (U A3)2(U D2D3)2 = (C1C2C3)2, Ci C j = C j Ci , Ci A j = A j Ci , Ci Dk = Ci Dk, Ci U =
UCi , for i , j 2 f1, 2, 3g, k 2 f2, 3g.

Proof. Let H denote the subgroup ofM(F̃) generated by the twistsfC1, C2, C3g.
It is easy to see that relations (1)–(7) and (10) are satisfiedin M(F̃). In the proof
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Fig. 13. The torusT3.

of Theorem 7.11 we showed thatj (") = (A3U D2)2 in PM+(F , fp1, p2, p3g). On the
other hand, by Lemma 7.1,j (") is equal to a Dehn twistE about a generic curvee.
Thus inM(F̃) we haveE(A3U D2)�2 2 H . It can be checked that inM(F̃) we have
A2E A�1

2 = E and A1E A�1
1 = (U D2)�1E(U D2), and hence (9) and (11) hold, sinceH

is central.
Let d23 and l denote boundary curves of tubular neighborhoods of the loops Æ23

and Æ3Æ23, such that inPM+(F , fp1, p2, p3g) we haveD23 = j (Æ23), L D�1
2 = j (Æ3Æ23).

The curvesd23 and c1 bound in F̃ a Klein bottle with two holes, whilel , c2, c3

bound a 4-holed sphere, together with a curve bounding a Möbius strip. Thus we
have lantern relationLC2C3 = D23D2D3 and relation (U A3)2 = (U L)2 = C1D23 from
Lemma 7.8. Now

(U A3)2 = (U L)2 = (U D23D2D3(C2C3)�1)2 = D2
23(C2C3)�2(U D2D3)2

= (U A3)4(C1C2C3)�2(U D2D3)2

() (80).
Theorem 7.12 follows from Theorem 7.11 and sequence (7.3).

7.3. Sporadic surfaces of genus 3.Consider a torus with three holesT3 repre-
sented in Fig. 13, and letT2 be the torus with two holes obtained by gluing a disc to
the boundary ofT3, along the curvec2. We fix in T3 and T2 the orientation induced
by the standard orientation of the plane of Fig. 13, and letCi , Ai , B, i = 1, 2, 3 denote
Dehn twists along the curves in the figure, right with respectto that orientation. The
next theorem follows from the main result of [7].

Theorem 7.13. The groupM(T3) admits presentation with generatorsfCi , Ai , B j
i = 1, 2, 3g and relations:

Ci C j = C j Ci , Ci A j = A j Ci , Ci B = BCi ,(7.11)

Ai A j = A j Ai , Ai B Ai = B Ai B,(7.12)
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Fig. 14. The surfaceF̃ = F2
3 .

for i , j = 1, 2, 3, and

(7.13) (A1A2A3B)3 = C1C2C3.

A presentation forM(T2) may be obtained by adding to the above presentation rela-
tions C2 = 1 and A2 = A3.

REMARK 7.14. The relation (7.13)) is called “star” in [7]. InM(T2) it takes
form (A1A2

2B)3 = C1C3, and it follows from relations (7.12) that (A1A2
2B)3 = (A2

1A2B)3.

Let F̃ = F2
3 be the surface obtained by gluing a Möbius stripM to the boundary

of T3 along c3. We identify F̃ with the surface represented in Fig. 14, whereM is a
regular neighborhood of the one-sided curvee. Consider an embedding� : K ! F̃ ,
where K is the holed Klein bottle in Fig. 9, such that� Æ c = c and � Æ a1 = a1. We
define U = ��(U ), whereU : K ! K is defined in Subsection 7.2. We identifyA1,
A2, A3, and B with elements ofM(F̃) (the directions of these twists are indicated by
arrows in Fig. 14).

Let F = F0
3 be the closed surface obtained by gluing two discs to� F̃ . We fix a

point p1 2 F inside the disc bounded byc1, and p2 2 F inside the disc bounded byc2.

Theorem 7.15. The groupPM+(F , fp1g) admits a presentation with generatorsfA1, A2, B, Ug and relations:
(1) A1A2 = A2A1;
(2) A1B A1 = B A1B, A2B A2 = B A2B;
(3) U A1U�1 = A�1

1 ;

(4) U BU�1 = A�1
2 B�1A2;

(5) (U A2)2 = 1;
(6) (A1A2

2B)3 = 1.

Proof. Let us denoteG = PM+(F , fp1g). Notice that relations (1)–(6) are satis-
fied in G: (1) is obvious; (2), (3), (4) are relations of typehtah�1 = t�1

h(a); (5) follows
from Lemma 7.8; (6) is a star relation (cf. Remark 7.14).
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Fig. 15. Generators of�1(F , p1) and �+
1 (F , p1).

Consider the exact sequence (7.2):

1! �+(F , p1)
j! G !M(F) ! 1.

The fundamental group�1(F , p1) is generated by the loopsx1, x2, x3 in Fig. 15 sat-
isfying one defining relationx2

3x2
2x2

1 = 1. Now f1, x3g is a Schreier system of repre-
sentatives of cosets of�+

1 (F , p1) and by the Reidemeister-Schreier method we obtain

that the last group is generated byu1 = x1x�1
3 , u2 = x2x�1

3 , u3 = x3x1, u4 = x3x2 and
u5 = x2

3 satisfying two defining relations:u5u2u4u1u3 = 1, u5u4u2u3u1 = 1. After Tietze
transformations (cf. [17]) we obtain

�+
1 (F , p1) = h�1, �1, Æ, 
 j ��1

1 Æ�1
�1��1Æ�1�1
 = 1i,
where�1 = u4, Æ = u5, �1 = u2u3, 
 = u1u3 are the loops in Fig. 15. It follows from
Theorem 2 of [3] thatM(F) admits a presentation with generatorsfA1, B, Ug and
relationsA1B A1 = B A1B, U A1U�1 = A�1

1 , U BU�1 = A�1
1 B�1A1, U2 = 1, (A3

1B)3 = 1.
The last relation is a special form of the star relation (7.13) and it can be checked that
in G we have (A3

1B)3 = j (��1
1 �1�1��1

1 ). We also haveU BU�1A�1
1 B A1 = j (��1

1 ��1
1 ).

By Lemma 7.4,G admits presentation with generatorsfA1, B, U , j (�1), j (�1), j (
 ), j (Æ)g
and relations:
(i) A1B A1 = B A1B;
(ii) U A1U�1 = A�1

1 ;

(iii) U BU�1A�1
1 B A1 = j (��1

1 ��1
1 );

(iv) U2 = j (
 );
(v) (A3

1B)3 = j (��1
1 �1�1��1

1 );

(vi) j (��1
1 Æ�1
�1��1Æ�1�1
 ) = 1;

(vii) A1 j (�1)A�1
1 = j (�1);

(viii) A1 j (�1)A�1
1 = j (��1

1 �1);

(ix) A1 j (
 )A�1
1 = j (
 );

(x) A1 j (Æ)A�1
1 = j (
�1��1

1 Æ�1);
(xi) Bj(�1)B�1 = j (�1�1);
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(xii) Bj(�1)B�1 = j (�1);
(xiii) Bj(
 )B�1 = j (��1

1 
 Æ�1);
(xiv) Bj(Æ)B�1 = j (Æ);
(xv) U j (�1)U�1 = j (��1

1 
�1);
(xvi) U j (�1)U�1 = j (
 Æ�1�1);
(xvii) U j (
 )U�1 = j (
 );
(xviii) U j (Æ)U�1 = j (Æ�1
�1).

We have:

(7.14) j (
 ) = U2, j (�1) = A2A�1
1 , j (�1) = A1A�1

2 B A2A�1
1 B�1.

It can be checked thatU�1B(�1) = Æ�1, and hence

(7.15) j (Æ) = U�1B A2A�1
1 B�1U B A1A�1

2 B�1A2A�1
1 .

Let H denote the subgroup ofG generated byfA1, A2, Bg. Consider the homomorphism
i� : M(T2) ! G induced by the inclusion ofT2 in F . It can be proved, using the
same methods as in the proof of Lemma 4.1, that keri� is generated byfC1, C3g. Now it
follows from Theorem 7.13 thati�(M(T2)) = H and every relation inH is a conse-
quence of (1), (2), (6).

We will show that relations (i)–(xviii) after replacingj (�1), j (�1), j (
 ) and j (Æ)
by expressions (7.14), (7.15), are consequences of (1)–(6). Relations (i), (ii) are the
same as (2), (3); (iv), (xi), (xvii) are trivial; (v), (vii),(viii), (xii) are relations in H ,
hence they follow from (1), (2), (6). We have

U BU�1A�1
1 B A1

(4)
= A�1

2 B�1A2A�1
1 B A1

(2)
= B A�1

2 A1B�1 () (iii);

(3) ) (ix);

(1), (3), (5) ) (xv);

(x), (xiii), (xiv) can easily be reduced to relations inH , by using (1)–(4).
Let X = U B A�1

2 A1B�1A�1
1 A2B A�1

1 A2B�1U , and note that to prove (1)–(6))
(xvi), (xviii), it suffices to show (1)–(6)) X 2 H . By (2), (3), (4) we have

U A1U
�1 2 H , U BU�1 2 H , B A2B�1 = U B�1U�1,

thus

X 2 H () U A�1
2 B�1A�1

1 A2B A�1
1 A2B�1U 2 H () U A�1

2 B�1A�2
1 B�1U 2 H .

It can be checked that from (1), (2), (6) followsA�1
2 B�1A�2

1 B�1A�1
2 = A1B A2

1B A1,
henceX 2 H , U A2U 2 H ( (5). Finally, we have

j (��1
1 Æ�1
�1��1

1 Æ�1�1
 )
(xvi)
= j (��1

1 Æ�1)U�2 j (��1
1 )U�1 j (�1)U

= U�1 j (��1
1 ��1

1 )U�1 j (��1
1 )U�1 j (�1)U ,
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thus

(vi) () (U j (�1))2 = 1( (1), (3), (5).

Theorem 7.16. The groupM(F1
3 ) admits a presentation with generatorsfA1, A2,

B, Ug, relations (1)–(4) from Theorem 7.15and (A2U )2 = (U A2)2 = (A2
1A2B)3.

Proof. Consider the surfaceF1
3 obtained by gluing a disc to the boundary ofF̃

along c2. Observe that relations (1)–(4) from Theorem 7.15 are satisfied in M(F1
3 ),

and we have (A2
1A2B)3 = C1 (star) and (A2U )2 = C1 (Lemma 7.8). After replacing

the generatorC1 in the presentation ofM(F1
3 ) resulting from applying Lemma 7.4 to

sequence (7.3), we obtain Theorem 7.16.

Theorem 7.17. The groupPM+(F , fp1, p2g) admits a presentation with gener-
ators fA1, A2, A3, B, D1, D2, D3, Ug and relations:
(1) Ai A j = A j Ai , i , j = 1, 2, 3;
(2) Ai B Ai = B Ai B, i = 1, 2, 3;
(3) U A1U�1 = A�1

1 ;

(4) U BU�1 = A�1
3 B�1A3;

(5) U D1 = D1U ;
(6) U D3 = D3U ;
(7) BD2 = D2B;
(8) (U A2)2 = D1;
(9) (A2

1A3B)3 = (U A3)2 = D3;

(10) A�1
2 U D2U�1A2 = U B�1D�1

1 BU�1;
(11) (U D2)2D1D3 = U2;
(12) (A1A2A3B)3 = 1.

Proof. Let us denoteG = PM+(F , fp1, p2g). The fundamental group�1(F nfp1g, p2)
is free on generatorsy1, y2, y3 in Fig. 16. Now f1, y3g is a Schreier system of repre-
sentatives of cosets of�+

1 (F n fp1g, p2) and by the Reidemeister-Schreier method we

obtain that the last group is freely generated byv1 = y1y�1
3 , v2 = y2y�1

3 , v3 = y3y1,v4 = y3y2, v5 = y2
3. It follows that �+

1 (F n fp1g, p2) is free on generatorsÆ2 = v5,Æ1 = v1v3, �2 = v2v3, Æ3 = Æ2v2v4Æ1, �2 = Æ3v4 (see Fig. 16). We introduce Dehn twists
Di = j (Æi ), i = 1, 2, 3. We also have

j (�2) = A3A�1
2 , j (�2) = A�1

3 A2B A�1
2 A3B�1.

Let us check that relations (1)–(12) are satisfied inG: (1), (2), (12) follow from
Theorem 7.13; (3), (4), (10) are relations of typehtah�1 = t�1

h(a); (5), (6), (7) are obvi-
ous; (8), (9) follow from Lemma 7.8 and star relation; (11) follows from the equality
U (Æ2) = Æ�1

2 Æ�1
3 Æ�1

1 and relations (5), (6).
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Fig. 16. Generators of�1(F n fp1g, p2) and�+
1 (F n fp1g, p2).

By Theorem 7.15 and Lemma 7.4 for sequence (7.2),G admits a presentation with
generatorsfA1, A2, B, U , j (�2), j (�2), j (Æi ) j i = 1, 2, 3g and relations (1), (2), (3) and:
(i) U BU�1A�1

2 B A2 = j (��1
2 ��1

2 );
(ii) (U A2)2 = j (Æ1);
(iii) ( A1A2

2B)3 = j (��1
2 Æ�1

3 �2�2��1
2 );

(iv) A1 j (�2)A�1
1 = A2 j (�2)A�1

2 = j (�2);

(v) A1 j (�2)A�1
1 = j (��1

2 Æ3�2);

(vi) A1 j (Æ1)A�1
1 = A2 j (Æ1)A�1

2 = U j (Æ1)U�1 = j (Æ1);

(vii) A1 j (Æ3)A�1
1 = Bj(Æ3)B�1 = U j (Æ3)U�1 = j (Æ3);

(viii) A1 j (Æ2)A�1
1 = j (Æ�1

3 Æ�1
1 ��1

2 Æ3Æ2Æ�1
3 �2);

(ix) A2 j (�2)A�1
2 = j (��1

2 �2);

(x) A2 j (Æ3)A�1
2 = j (��1

2 Æ3�2);

(xi) A2 j (Æ2)A�1
2 = j (��1

2 Æ�1
3 �2Æ3Æ2�2Æ�1

1 ��1
2 ��1

2 Æ3�2);
(xii) Bj(�2)B�1 = j (�2�2);
(xiii) Bj(�2)B�1 = j (�2);
(xiv) Bj(Æ1)B�1 = j (��1

2 Æ1Æ3Æ2�2);
(xv) Bj(Æ2)B�1 = j (Æ2);
(xvi) U j (�2)U�1 = j (Æ3��1

2 Æ�1
1 );

(xvii) U j (�2)U�1 = j (Æ1Æ3Æ2Æ�1
3 �2�2);

(xviii) U j (Æ2)U�1 = j (Æ�1
2 Æ�1

3 Æ�1
1 ).

We will show that relations (i)–(xviii) after substitutingj (�2) = A3A�1
2 , j (�2) =

A�1
3 A2B A�1

2 A3B�1, j (Æi ) = Di , are consequences of (1)–(12).
Let H denote the subgroup ofG generated byfA1, A2, A3, Bg. As in the proof

of Theorem 7.15, we haveH = i�(M(T3)), wherei� is the homomorphism induced by
the inclusion ofT3 in F , and every relation inH is a consequence of (1), (2), (12),
by Theorem 7.13. Note that by the star relation (9),D3 2 H .

Relations (i)–(vii), (ix), (x), (xii), (xiii), (xv) follow easily from (1)–(12) or are
relations in H ;

(8), (9) ) (xvi);
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(5), (6), (11) ) (xviii);

by (5), (8) we haveA2D1 = D1A2 and

(xiv)
(xviii)() j (�2)BD1B�1 j (��1

2 ) = U j (Æ�1
2 )U�1

() A�1
3 B A3D1A�1

3 B�1A3 = A�1
2 U D�1

2 U�1A2

( (4), (5), (10);

(xvii)
(xviii)() U j (�2)U�1 = U D�1

2 U�1D�1
3 j (�2�2)

(5), (6), (11)() j (�2) = U D2U
�1D1U

�1 j (�2�2)U

(xiv), (xviii)() BD1B�1 = j (��1
2 )D1U

�1 j (�2�2)U

() D�1
1 A2A�1

3 B A3A�1
2 D1 = U�1 j (�2�2)U B

(4), (8)() A�1
2 B�1A2 = j (�2�2)U BU�1

( U BU�1 2 H ( (4);

(viii)
(vii)() A1(Æ3Æ2Æ�1

3 ) = Æ�1
1 ��1

2 Æ3Æ2Æ�1
3 �2Æ�1

3

(xvii)() A1(Æ�1
1 U (�2)��1

2 ��1
2 ) = Æ�1

1 ��1
2 Æ�1

1 U (�2)��1
2 Æ�1

3

(iv), (v), (vi)() A1U (�2) = ��1
2 Æ�1

1 U (�2)

(8)() A1U j (�2)U�1A�1
1 = A�1

3 U�1A�1
2 j (�2)U�1

(3)() A2U A3U A�1
1 j (�2)A1 = j (�2)

( U A3U 2 H ( (9);

(xi)
(xiv), (xviii)() A3D2A�1

3 = D�1
3 A3A�1

2 D3D2B�1U D2U
�1B A2A�1

3 D3

(vii), (7), (11)() D3D2D�1
3 = A�1

2 B�1D�1
1 B A2

(xvii)() D�1
1 U j (�2)U�1 j (��1

2 ��1
2 ) = A�1

2 B�1D�1
1 B A2

(8)() U�1A�1
3 B A3A�1

2 B�1U�1B A�1
3 A2B�1A�1

2 = B�1D�1
1 B

( (2), (4), (8).

Theorem 7.18. The groupM(F2
3 ) admits a presentation with generatorsfA1, A2,

A3, B, D1, D2, D3, U , C1, C2g and relations(1)–(7), (9), (10)from Theorem 7.17and
(80) (U A2)2 = D1C1,
(110) (U D2)2D1D3 = U2C1C2

2,
(120) (A1A2A3B)3 = C1C2 = C2C1,
Ci A j = A j Ci , Ci Dk = DkCi , Ci B = BCi , Ci U = UCi , for i = 1, 2, j , k = 1, 2, 3.
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Proof. The relations (1)–(7), (9), (10) from Theorem 7.17 are satisfied inM(F̃) =
M(F2

3 ); (80) follows from Lemma 7.8; (120) is the star relation; (110) follows from

Lemma 7.8 and lantern relationC1C2U2 = ((U D2)2C�1
2 )D1D3. Now Theorem 7.18 fol-

lows from Theorem 7.17 and Lemma 7.4 for sequence (7.2).
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