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Abstract
We study the wellposedness in the Gevrey clagseand in C* of the Cauchy
problem for 2 by 2 weakly hyperbolic systems. In this paper shell give some
conditions to the case that the characteristic roots aseiltapidly and vanish at an
infinite number of points.

1. Introduction

In this paper we shall consider the Cauchy problem, onT[0x RY,

&U — > Aj(t)ax,U + B()U =0,
1) =

U (0, x) = Ug(X),
where

) Aj € AC([0, T]), Be L0, T),

AC([0, T]) denoting the space of absolutely continuous functions.
Here, we restrict ourselves to the case when Aj€t)’s are 2x 2 matrices with
real entries, whereaB(t) is a complex Z 2 matrix. We write, for {,£) € [0, T] x R",

N s e (A E) bt £) _(et) @)
A(t’g)';A‘“)é"<c(t,s) a09) 0= (50 no )

Finally, we assume thaf\(t, &) is a hyperbolic matrix, which means that
(3) A(t, &) = (@a—d)>+4bc=(a—d)®+(b+c)’>— (b—c)*> > 0.
We shall denote bg¥([0, T]), with k=v+a e R*, v=[k] € N, and 0< & < 1, the

space ofC” functions with v-th derivativea-Holder continuous (ife > 0). Moreover,
C™ = C*(R™) will be the space of infinitely differentiable functionsnday® = yS(R"),
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s > 1, the space of Gevrey functions of ordgri.e., the functions satisfying

supDZg(x)| < CkAl'at®, forall K € R" ande € N".
xeK

We say that the Cauchy problem (1) is well posedy/in(resp. inC®) if, for any
Up € yS (resp.Up € C™®), there exists a unique solutidn(t, x) in C1([0, T];yS) (resp. in
CY([0, TJ; ).

Concerning the second order equatign— t“uy, +t'u, =0, with k,| > 0, in case
thatk — 2 — 2> 0 (resp.k — 21 — 2 =0), lvrii [10] proved the wellposedness ir
for 1<s< (2k—2)/(k—2 —2) (resp. inC*®). For hyperbolic equations of higher
order, suitable Levi conditions on the lower order termsavproved to be sufficient
for the wellposedness, by Kajitani, Wakabayashi and YagdjL2] and D’Ancona and
Kinoshita [4]. The first goal of the present paper is to findlagaus Levi conditions
for 2 by 2 systems.

On the other hand, for the homogeneous equatigr- c(t)uyxx = 0, with c(t) > 0
belonging toCX([0, T]), Colombini, Jannelli and Spagnolo [1] proved the wellpdsess
in ySfor 1 <s < 1+k/2 (see also [3] and [14]). For equations of the more genepad ty
Ugt — C(t)Uxy — d(t)urx = O with d(t)? + 4c(t) > 0, wherec(t), d(t) belong toCX([0, T]),

k > 2, Kinoshita and Spagnolo [9] proved the wellposednesg®ifor 1 <s < 1+k/2,
under the condition on the characteristic roots

AZ+23
1 2 <M < oo,

) (A1 —22)2 —

which is equivalent to each of the following ones on the cokgffits:

lc®l  _ d(t)®

©) A0+ 260 ~ M qE+ac = M

where, M, M1, M, are constants independent oré. A similar result holds true also
for hyperbolic equations of higher order (see [9] and [4]).

Going back to the X 2 systems, Nishitani [15] found a necessary and sufficient
condition for theC*>, wellposedness in case of analytic coefficients dependisg a
on x. In [13] (see also [6]), this result was partially extendedsystems with non-
analytic, sufficiently smooth coefficients, by proving the wellposedness fos < s(k),
wherek is the regularity of the coefficients. Here we shall prove aemurecise result,
by relating the degree of Gevrey wellposedness also wittottler of vanishing of the
discriminant of the system.

On the other hand, in our previous paper [7] the result of [Hsvextended to
m x m systems,m = 2, 3, with Holder coefficients, i.e., with smoothnesx& < 1.
Thus, the second goal of the present paper is to study thekcask and in particular
to find a suitable generalization of (4) and (5) fox2 systems withk > 2.
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We must mention that, from the point of view of wellposednetse 2x 2 sys-
tems obtained from a second order equation are not the best dndeed, for some
systems with a special structure, we expect stronger gesidt instance the Cauchy
problem for a symmetric system is always well posed’. This suggests that the
wellposedness can be related to the another quantity, dsetie difference of the roots.

To formulate our result, we associate Aft, &) the tracelessmatrix

(6) Aolt, §) = Alt, §) — %M)' ) <(a _cd)/z (d —ba)/z )

Taking the matrix norm|X||2 = Tr(XX*) = x,2] we have

@ ||A0||2:%{(a—d)2+(b+0)2+(b—0)2} > %A.

Next, for 0< ¢ < 1, andé € R", we introduce the sets:

Q. = Q:(8) = {t € [0, T]: VA, &) < el€]},
Q. = Q.(8) = {t € [0, T]: V2| Ao(t, &)l < e},

which depend only org/|&]. The measure;uSQs) is a measure of the defect of strict
hyperbolicity. By (3) and (7) it follows thaf2, C Q.. Then, denoting by the deriv-
ative in time, we define
© M8 = (@ dP+ b+ o),

1
9) O, §) = gb-oll@a-d)b+c) — (b+c)a-dyl,

Note that by (3) and (7), it follows

1 1 1
1 Z(b—cP<I, SA<T<-= 2<or
(10) 4(b c)° <T, 70 = _2||Ao|| <2r,
and
1 ’
(11) ®] < —2F||Aoll-

By (11) and (2), it follows that®I'~1)(t,£) belongs toL'(0,T) for all £, with uniform
norm as|é| = 1. We also note that

(12) Tr(AoB) = %{(a— d)(h—e)—(b+c)(f +g)+(b—-0o)(f —9g)}

The main result of this paper is the following:
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Theorem 1.1. Let A € AC([0, T]), B € L0, T), and assume3). Moreover
assume thatfor somea > 0, 8 > 0, and some M> 0,

(13) w(2:) < Meg®,
®/T +Tr(AsB A '
(14) |©/T +Tr(AoB)| dH/ |f|dt+/ 120 4t < Me—?
0.ThE: VA pThe. VA o1 Aol
forall 0<e <1andall || =1. Then (1) is well posed iny* for
a+l
(15) l1<s<1+ .

Thus, in order to get larges > 1 in (15), we must take larger > 0 and smaller
B > 0.
Concerning the wellposedness @°, we prove:

Theorem 1.2. Let Ay € AC([0, T]), B € L*(0, T), and assumg3). Moreover
assume thatfor some M> 0,

O/ + Tr(A,B A /
(16) 18/r + T(AeB)I dt+/ WA dt+/ %ol 4t < Mioge
0. TI\2. VA oThe. VA 1\& Aol

forall 0<e <1andall|¢]=1. Then (1) is well posed inC*™.

REMARK 1.3. We can strengthen the assumptions (14) and (16) of €hesof..1
and 1.2, by replacing the first integral by

/ |O1/T +ITr(AB)|
[0, TI\ . \/K .

The meaning of (14) and (16) is the following:

(i) the conditions Onlx/Z/V\/Z and || Agll/ll Aoll take care of the low regularity of
the coefficients,

(ii) the condition on®/T is the analogous of (4) and (5) for a system, while the con-
dition on Tr(AgB) is a kind of Levi condition.

REMARK 1.4. The following are typical examples of “good” lower orderms.
(i) B=¢(t)l, with ¢(t) scalar function. Therefore: TA;B) = 0.
(i) n=1, B= Ay(t) = At, £)é~L. Therefore: TrgB) = (1/2)A& L.
(i) n=1, B = A[(t) = A, £)~L. Therefore: TrfoB) = (1/2)A’s 1.
In all these cases (note that /«/A = 2(v/A) € LY0, T)), we have

/ |©/T + Tr(AoB)| dts/ |®|/T di+C
0. Th\e. VA 0The VA
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for some constan€. Hence, the presence & does not affect the Gevrey, @,
wellposedness ensured by Theorems 1.1 and 1.2.

ExXAMPLE 1.5. Letn=1,b=&, c=tX¢, g=t', a=d=e=f =h=0. Then (1)
is equivalent to the equatiom; — t“uy, +t'u, = 0, and

A=4tRe? @, = [o, %52/"}, ®=0, Tr(AB)=t¢.

Letl >0andk —2 —2 >0 (respk — 2 —2=0). Then, for|| =1,

/ {|Tr(AoB)|+|¢K’|}dt_/T okt
[0, TG N/K \/Z (1/2)e2/% 2tk/2

.
< C/ K2 gt < Gl @+2/K)

(1/2)e2/
(resp.< C’loge™d).

On the other hand, the third term in (14) is estimatedMby—# for all 8 > 0, since
| Aoll = |E|v/t% + 1. Thus, applying Theorem 1.1 wita=2/k and g =1— (2 +2)/k
(resp. Theorem 1.2), we get the wellposedness for ¥ s < (2k — 21)/(k — 2 — 2)
(resp. theC* wellposedness). This coincides with the result of Ivrii JJ10

When the coefficients of the system are sufficiently smodib, terms|v/A'|/v/A
and || All/1l Aoll in (14) and (16) can be omitted, and from Theorems 1.1 and we2,
derive:

Corollary 1.6. Let A € CKk([0, T]) with k> 2, and Be L0, T). Assume(3).
Also assume that there is M 0 such that for all |£] =1,

17

T
/ |©/T +Tr(AoB)| dt < M.
0

AL/2-1/k
Then (1) is well posed inys for 1 <s < 1+k/2.

Corollary 1.7. Instead of(3), assume that\(t,&) > O for all t > 0. Also assume
that the A(t)'s are analytic on[0, T], and

(18)

r+
O/F THAB) My

T <

with a uniform constant M fof&| = 1. Then (1) is well posed inC*.
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To prove Corollary 1.7, we use the inequality

|A'(t, &) 1
— 2 dt<ClI ,
/{ﬂze} A(t, &) ==oge

which is an easy consequence of the fact that the quadratic fo

1,n
Aft, §) = Z 8ij (1&g =0,

]

has analytic coefficients;; (t).

Let us now prove Corollary 1.6. Under our assumptions, we dbget any in-
formation about the set®, and .. Thus, in order to derive the wished result from
Theorem 1.1, we are forced to takke= 0 in condition (13). On the other side, we can
take 8 = 2/k in (14). Indeed we have, fo| = 1. putting® = ®/I" + Tr(AoB),

4 -/
f |®|+|ﬂ|dt<8_2/k/ DL+ IVAT
oThe. VA - oI, AYZK

!
=82/k{/ 19 dt+/ a1 dt}
o.The, AYZVK 0. The, 2A71K

< Mgk,

The last inequality follows from (17), and from the assumptihat A € CX([0, T]),
whenceA e CK([0, T]), thanks to the following lemma:

Lemma 1.8 ([1]). Let f(t) € CX(0, T]), k > 1, f(t) > 0. Then f(t)¥k e
AC([0, T]) and there exists G C(k, T) > 0 such that

19 Tt dt < C{|| f Lk

(19) TSR {Il fllckgo,mp 3"

If we drop the assumption of positivity by considering anitagoy function g(t) €
cKk([o, T]with k > 1, we can apply (19) withf = g2 to get the following estimate
(see [16])

T /
1g'(1)] 2/k
(20) /0 G2k dt < C{liglickqo, 1"

A similar estimate also holds to any matrix functiof(t) € CX, k > 1. Indeed, by

applying (20) to each entry oX(t), we find:

T ’
X"l .
21 —— " dt < C{|| X 3
“ /o | X(t) |12k < C{lIXllcxqo, )
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Now, for & running in {|§] = 1} the matrix function Ag(t, &) belongs uniformly to
Ck([0, T]), and || Al > ¢ in ©,. Hence for|&| = 1 we get

/ Aol dt</ Aol dt < Ce 2,
[ [

omna. Aol = Joma, I Aollt=2ke?/

This concludes the proof of Corollary 1.6.

REMARK 1.9. In the case k¥ k < 2, we obtain the same conclusion of Corol-
lary 1.6 without the assumption (17). Indeed, by applyingdiem 1.1 withe =0 and
B =2/k, we get, recalling tha®/T € L(0, T),

/ |©/T +Tr(AoB)| dt < Ce! < Ce—2k,
[0, T\

VA

while

!
VA A A
/ udt:/ udtf/ sariiemE 0t = Ce 2
oThe. VA oThe. 24 .The, 2ATH(ER)Y

A similar estimate holds fofl Ayll/ll Aoll, as proved above.

Also in the case (< k < 1, the result of Corollary 1.6 holds true without the
assumption (17): this was proved in our previous paper [7].
Summing up, we get the following:

Corollary 1.10. Let A € CK(0, T]) with 0 <k < 2, and Be L0, T). As-
sume(3). Then (1) is well posed iny® for 1 <s < 1+k/2.

ExampPLE 1.11. Letn=1. Ifa=d=0, b=§&, c=c(t), c(t) >0, andB =0.
Then, (1) is equivalent to the equatiaR — c(t)uxx =0, and (17) is trivially fulfilled.
Thus, if c € C¥([0, T]), Corollary 1.6 ensures the wellposednessg/ifor s < 1+k/2,
which is the result of [1].

EXAMPLE 1.12. Letn=1. Ifa=0, b=¢, c=c(t), d =d(t)¢, andB =0, (1)
is equivalent to the equatiom; — d(t)uy — c(t)uxy = 0. Now, if A =d?+4c> 0, and

c,d e CX([0, T]) with k > 2, the assumption (17) in Corollary 1.6 is a consequence of
the condition (5). Indeed, fog| = 1, such a condition implies

|©/T / Ic’| +]d'|
————dt<C ——————dt
/[O,T]\Qg AV = g g, {d2+ dcy/2-1K

<C T—|C/| dt+ T—|d/| dt; <M
=2 THEST o A2k = W
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Here we have applied the inequality (20) to the functit{t), and then to the function
c(t) but with k replaced byh = 4k/(k + 2), so that 2 — 1/k =1 — 2/h. Note that
k > 2 impliesk > h, hencec € C" sincec e CX. Thus, Corollary 1.6 gives thgs
wellposedness fos < 1 +k/2, which coincides with the result of [9].

Before stating the next Corollary, we consider the follogvitonditions, where the
constantsM are uniform for|&| = 1.

(22) la—d| < MVA,
(23) Ib+c| < MVA,
(24) Ib—c| < MVA,

noting that, by the identitya(— d)? + (b + ¢)?> = A + (b — ¢)?, it follows
(25) (22) and (23= (24).
Then, we have:

Corollary 1.13. i) Assume(24). Then if A; e CX([0, T]), the Cauchy prob-
lem (1), for any Be L(0,T), is well posed iny® for s < 1+k/2, while, if the Aj(t)'s
are analytic (1) is well posed inC®.

i) Assume eithe(22), or (23). Let A € ck(o, T]) (resp A; analytig. Then (1)

is well posed iny® for s < 1 +k/2 (resp in C*), provided Be L1(0, T) satisfy the
uniform estimatefor |£] = 1,

(26)

/T | TM(AB)I <M, (resp |Tr(AgB)| < MVA/).

N
Proof. i) Since 2Al|> = A +2(b — c)? (see (7)), by (24) it follows
A <2|A]? < (1+2M?)A,
Now |®]/T < C.|| Ayl (see (11)), while, forBo(t) = B(t) — {Tr B(t)}!,

ITr(AoB)| = [Tr(AoBo)| < Call Aol | Boll,

hence we get, sinc&(t) € L1(0, T),

O/ + Tr(AB) _ IR
VA T TIAl

Proceeding as in the proof of Corollary 1.7, we reach the losian.

+y(t), with ¥ e L0, T).
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i)  Writing (9) in the form
1
©=gb-c@-db+c)ib+cyb+ o l-(@-d@-d,

and noting thatb + c| < 2/T, we see that each one among (22) and (23) implies
|®VF<:1M{Kb+®I+Ka—dH}_

JA ~2 | b+c  ja—d
Thus, applying (20) to the€X functionsb + ¢, a —d, and using (26), we reach the
conclusion. The analytic case can be handled in a similar way O

REMARK 1.14. By (12) we derive that, under the assumption (22), tedie
tion (26) is fulfilled, in particular, if one has

() + 9]+ (1) — g(t)] < CVA,

REMARK 1.15. It is easily seen that (24) is equivalent to say that rtrerix
A(t, &) is uniformly symmetrizabléut, in general, not smoothly). Thus, Corollary 1.13
provides another proof of Theorem 1.3 of Colombini and Néasfii [2]. In the case
b=c, A, £) is symmetric. On the other hand, recalling thmt= (a — d)? + 4bc, we
get a special case of (22) by assuming> 0. In such a caseA(t, &) is a pseudo-
symmetricmatrix in the sense of [5].

NOTATION 1.16. In the following we shall write, for the sake of breyity

+d b+ —Db —d
@7) a:az , ﬁ=7°, y=C s=2—d

2’ 2
Moreover we put, accordingly with [13] and [15],

(28) D1=y8 —8y’, D2=By' —yBp, D?=Di+iDa
Therefore, the quantities (3), (7), (8), and (9) take thenfor

(29) A=AB2+82—y?), A =2(82+y*+5%), T =p2+8,
(30) ® =y(B8 —p") = D1 — 8Dy,

and by Schwarz’ inequality it follows

(31) 19| < VT|D?.

REMARK 1.17. LetB(t) = 0. By (31), we derive that the condition (17) of
Corollary 1.6 (resp. the condition (18) of Corollary 1.7)liviie fulfilled if, for |£] =1,

T |D#/VT IDf|/VT M
(32) /OmdtsM, resp.TgT,
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Hence, in the case wheA € C*, this yields a new proof of thez> wellposedness
proved in [13] (see also [6]). In case of analytic coefficggnive obtain the> well-
posedness proved by Nishitani in [15] (where also the caseddpending coefficients
was considered).

REMARK 1.18. Beside®D* (see (28)), let us introduce the complex functayn=
B+is. WhenA(t) is analytic, the following necessary and sufficient candifor theC*>
wellposedness of (1) was given in [15]:

|D* +a* Tr(AgB)| + |D* + a*Tr(AgB)| < M|a”|\/TZ,
or equivalently, sinceaf) ! =a‘l 1,
fair-1 2L + Tr(AqB)
(33) |D*afT"~* + Tr(AgB)| N |D*afT~* + Tr(AgB)| < M
VA NIN t
Now, a simple computation gives
D*aF = (D1 + D28) +i(D2B — D1)
(34) = (v (B8 — 880} +1{(B* +6%)y" — y (BB’ + 85},
=O+i 1A - A’
= 2 Y 8V .

In view of (33), we must estimate the complex functibiaI'1(v/A)~1. The imag-
inary part is easily estimated. Indeed, singé| < C||Ayll, VT > (1/2WA, VT >
(1/2)ll Aoll, and|y| < /T (see (10)), we get

Aly'| - VA - ClIAYl - VA - CIA| :4C|IA6||

VA ~ r ~ (1/4VA A 1 Aoll”

Al VTIAT A VA

<2 =

rva~ VA A VA
Hence, by (34) it follows

x(Dial ! !

3O _ JIVAT, 1A ]
rva VA Al

Now, in the analytic case, the left hand side of last ineqgas majorized, up to a

constant factor, by /t, hence in (33) we have only to take care¥%fD’a’) = ©. In
conclusion, (33) is equivalent to

©/T +Tr(AB) _ M
=,

(35) Ta <
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which is just our condition (18).
A similar argument applies to the non-analytic coefficiefsse [6]).

2. The energy estimate

It is well known that the Cauchy problem (1) is well posed ie ttlass of real
analytic functions. Therefore, in the following we shallsasies > 1. By Fourier
transform with respect tx, the system (1) turns into

(36) { U =iA(t, £)U - B()U,

U(0, £) = Ug(&).

Fixed a non-increasing, smooth functigfr) >0 forr > 0, such thatp =1 forr <1,
p=0forr > 2, and|¢’| < 2, we define

we(t, £) = el€lp(eMEITV AL, £)),
@:(t, €) = el&lp(e Mgl V2] Ao(t, £)1).

Then we have

wos[ 51280

and the same fow,; with Q. in place of2.. Moreover we have
/| < 2V,

Finally, recalling thaty/A < +/2|| Ao||, it holds

(38) @ (t, &) < we(t, §).

The basic tool in our proof is the energy density

|Ao(t, £)012 + {(1/4)A(t, £) + (1/2)we(t, £)%}U

39 E t, =

9 ) Ac(t, §)

where we put

(40) Ae =A +a)§.

We note that

(41) E(t, £) > %|0|2+ AU2AT > |AOJUAL|SU| . KAf/UAfU)"

If A is symmetric, i.e., ifb = c, we see thatiA)U2 = (1/4)A|UJ2. Hence, E(t, &)
equals (¥2)|U|?, the classical energy for symmetric systems.
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Proposition 2.1. For every smooth solutiotﬁ(t, &) of (36), it holds

/T +Tr(AB) + IVA'| 1Al
JAva? I Aoll + &

Proof. We differentiate (39) with respect to Since

(42) E'(t)<C e + 1B ¢ E(1).

d(L/A) = —ALATE = —{A + 20w, }A?,

& AU = 29 ((AU, AL) +i(AoAU, AqU) — (AoBU, AU)},
&IU 2 = 29{i (AU, U) — (BU, U)},

we find the equality

(43) E' = {Wi(t, &) + Wa(t, &) + W3(t, &)} AL(t, &)1
where

(a4) Wy = (A + 20w )E + {%A + w;w8}|0|2,

(45) W, = 2‘)1{|(A0AU AoU) + {1A+ ;a) }((lA B)U, U)}
(46) W3 = 201{(AgU, AoU) — (AoBU, AU)}.

We estimate the terms in the right hand side of (43):
Estimate of ¥;A1. We recall the inequalities, < vA,, || < 2lv/A'|, and
the identity A’ = 2/A v/A. Then, by (41) it follows

A
N7 VA

(47) | 1|§C| |E
A VA,

Estimate of ¥,AZ1.  From the definition (6), it follows the identity% =(1/4)Al.
Therefore

[ (PoAU, AU) =i(Ao(Ag+ 1)U, AU) =i {%A(O, A00)+a|A00|2},
wherea = (1/2) Tr A is real. On the other side,
<2'1A+ 1(,) >(|AU U) =i {<2A+ 1a) >[(A0U U)+a|U|2]}
Thus, noting that{, AqU) + (AU, U) € R, we get the equality

W, = %waﬂt{i(AOU, U)} — {iA + ;w }Z%(BU U),
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from which, using again (41) and noting that < vA,, we derive

48) el < Clon +IBODE.

&

Estimate of ¥3A1. Drawing inspiration from the ring ofuaternions we con-
sider the following base of the space o2 real matrices:

as(3 ) ==(55) =1 9) =2 %)

noting the relations

%:ell %:_el,ei:e]_,
€8 = &3 =6, E6& = €6 =6, ==&

Thus, our matrixA takes the form:

_(a b\ _[a+s B—y\ _
A= (2 2)=(570 2 )mume s

whereq, 8, ¥, 8 € R are defined in (27), while

(49) Ao = pe+yes+84, = yes+ Kep.
where
(50) K = Be; — ées.

The ring L{e1, &3} generated bye;, e3} can be identified with the complex field, via
the isomorphismx +iy — xe; + yes. In particular:

(51) KK* = (Bey — des)(Bey + 8e3) = (B% + 6%)e; = Tey.

To estimate of AyU, AgU), we put A, in the form A} = P + QAy, for suitable
P, Q € L{e1,e3}. More precisely, restricting ourselves to the non-singsl{A(t, £) #
0}, we derive from (49) the equality
Ay=v'es+K'ey = y'es+ K'KTH(Kep) = y'es + K'KTH(Ag — ye)
= ('K —yKNK a3 + K'K1A,.
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But K1 =T"1K* by (51), hence we obtain

(52) Ay =T~ H +T7IK'K* Ay,

where we put

(53) H = ('K —yK)K"es.

We observe that, up to a multiplicative constant, the fumgtiy, |K]|, ||K*| and
| Aoll are majorized bw/T,while |y’| and |K’| are majorized byl Ayll. Consequently,
[H|I~! and |K'K* Aol " are majorized by|All, and hence belong tb*(0, T) for
all £&. Thus, the identity (52) is a.e. true on the whole intervalTD

Going back to (46), we note that for any2 matrix X it holds X+ X = {Tr X}I,
where X is the cofactor matrix Thus, putting

T = Tr(AgB),
and noting thatA® = — A, we can write
(54) AoB = 7l — B®AL = r| + BPA,.
Introducing (52) and (54) in (46), we obtain
Wy = 20T H — 7130, AU) + I YK'K*AgU, AgU) — (B°AqU, AgU)}.
Now, by (53) and (50) we easily derive, recalling (30), that
H = {(y (8" — p8"ler+ (8% +8%)y" — v (BB’ +58")}es

— @ + 1A/ 1A/

hence, noting thag;, e; are matrices with norrs/2, and that BeAU| < [|B|||AgU ],
we get

|Wa(t, £)| < 2<H(®Fl +1)ey + (%AV — %yA’)Fles}U, AOO)

+ 20 Y| KK *|[] AgU? + 2/ B AgU || AgU|

< 2ﬁ{|®rl+r|+

1A' 1A,
4)’ 83/

F1}|0||A00|

+ 20 7KK * ([ AgU|2 + 2| BE(t) || AU 2.
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In order to estimatelsA_ ! we first compute, recalling (41),
2 F1|0||A00|}A51 <{Aly/I+lyIA 0/ ATE

< Cifalapir /a4 1a1Vra) T E
< Co{IAGlIAol + 307+ 1VA /82| E.

1A/ 1 A
14 81/

Indeed, from the inequalitiea < 4T, ||Ag||? < 4T, it follows (by (38)):

A A 4 - 4 - 42
TVA: TJA+w2 ~ T /Al +w2 = /[ AllZ+ w2 ~ Il Aol + &’

and |A'| = [2VA'VA| < 4VA'|VT.
Next we estimate the terfi" || K'K*|||AoU|?}A L. By (41) it follows

|AUI? < min{A,E, [|All|AU]1U]} < min{A,, || Aollv/AL)E,
while [[K'[l < CIA,ll, IIK*[l < CVT, ||Aoll < 24/T. Hence we find

MK K*[1AUPIA < CT Y AlIVT min{A,, | Aollv/AJEAS?
= C|| Ay min{v'T -1, || Agllv/(TA,)~1 E
< CllAyl min{vr—l, Z/A;l}E.
But min{1/x, 1/y} < 2/(x +y), thus we conclude that
(THK K AUPIA Y < CLIAGI(I Aol + @:) 1) E.
Finally, we have
1B[11AU|? < || B||AE.

Summing up, we have proved the estimate

W3l _ o [10/T+Tr(AB) + VAT 1Al
A~ JA+a? I Aoll +

Inserting (44), (45) and (46) into (43), we get (42). ]

(55) +|BJl } E.
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3. Proof of Theorem 1.1

Since B(t) € LY(0, T), from (42) it follows

T ’
(56) E(t.S)SCE(O,S)eXp{ /O [ @W A'Lﬁ\l”d) +w5+1} dt}

where we put

(57) J(t, &) = |©/T + Tr(AgB)| + [VA|.

To conclude the proof of Theorem 1.1, we prove that the assamgl4) allow us to
estimate the growth of the the integral in (56),sas> 0. Thus, we prove the following
lemma:

Lemma 3.1. Let J(t) = J(t, £) > 0 be a function in (0, T), homogeneous in
£ of degreel, with L norm bounded a$&| = 1. Assume thatfor someg > 0 and
some C> 0, one hasfor all |§|=1ande <1,

I
58 / dt <
8) o.The VA()
Then there exists C> 0 such that
T O
59 < Cle7P.
9) JA®R) + a)z(t

Proof. i) Letpg > 1. By the definitions of2, and w,, we derive, for allé =1,

= A(t) +e2>¢% for te Q:(8),
A(t) +wf(t)L 2, for té Q).

_82+a)§28

Hence

J
Zdt<Cel<Ce™®

/mdt</T

i) Let 0 < B < 1. We split the domain of integration in (60) as [0} = Q. U
([0, T]\ 2.). By (58), it follows

dt <Ce#
f[o The A+ a)2 /o 0. Th&
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On the other hand, writing
Q. = )9\ Qju), where Qj:=Q.,,

j=0
and recalling that, fot&| =1, w.(t) = ¢|&| = ¢ on 2., we have

o0

[ a2
Q. A+ w? 50 J2\2m VA +e?

Now,

J VA
/ dt < sup / —dt.
Q\Qju VA +g2 VA +g2 Q\Q VA

On Q; it holds A < 271, hencev/A/(VA +¢) < e271/e = 271; while by (58) it
follows

J J . .
—dt < / — dt < C{e2 ")y 7F = Ce#2PUD),
/.\sz.+1 VA 0.Th2js VA

Thus,

dt < 2—J . Cs—ﬁzﬁ(i’fl) - Czﬂg—ﬁz—J(l—ﬂ)_

J
/szj\szj+1 VA + g2

In conclusion we obtain, sincg < 1,

dt<ZC2ﬁ —Bo=i(1-B) = Ce_ﬁZZ 10-p) < C'eP,

Q VA +a)2 =
which concludes the proof of Lemma 3.1. O

Let us go back to (56). Proceeding as in Lemma 3.1, we provie(143 implies

Al .
60 —— 0 dt<Ce b
(60) /o Ao+, & = F

Finally, recalling (37), we have

]
(61) /0 o, dt = £]E (R (8)) < £l - Ce® = ez,
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In conclusion, if we introduce in (56) the estimates (59)0)(&nd (61), we obtain
E(t, §) < CE(0, &) exp{Ce ™ + Ce** |}

We can now conclude the proof of the theorem. It is sufficiengize an estimate for
|&] > 1, since for|¢| < 1 we have directly the estimatel(t, £)| < C|Ug(&)| from the
ordinary differential system (36), with as a parameter. Thus, f¢f| > 1 we choose

&= |§|71/(o¢+ﬂ+1)
and this leads to the final energy inequality
E(t, £) < CE(0, &) exp{|&|P/@*#*D)},

Therefore, by a standard argument, we obtain the wellp@ssdimys for s < 1 =
(¢ +1)/B8. This concludes the proof of Theorem 1.1. ]

4. Proof of Theorem 1.2

Theorem 1.2 can be proved quite similarly to Theorem 1.1. dihlg relevant dif-
ference is that, in place of Lemma 3.1, we must use the fofigWweémma (which can
be proved in a similar way):

Lemma 4.1. Assume thatfor all |§|=1ande <1,

J
—dt<Cloge
/[o,n\szg VA 9

Then

dt < C’loge™2.

T
/(; ,/A+a)§
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