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Abstract

For a knotK in S, Kakimizu introduced a simplicial complex whose vertices a
all the isotopy classes of minimal genus spanning surfage&f The first purpose
of this paper is to prove thé-skeleton of this complex has diameter bounded by
a function quadratic in knot genus, wheneweris atoroidal. The second purpose
of this paper is to prove the intersection number of two malirgenus spanning
surfaces forK is also bounded by a function quadratic in knot genus, whamkv
is atoroidal. As one application, we prove the simple cotimiég of Kakimizu’'s
complex among all atoroidal gendsknots.

1. Introduction

Let K be a knot in the 3-spher8®. A Seifert surfacefor K is a compact, con-
nected and orientable surface 8 whose boundary is preciselil. Fix a regular
neighbourhoodN(K) for the knot K, and denote byE(K), or just E, its exterior
S®—intN(K). We say thatE, or K, is atoroidal if every incompressible torus if is
boundary parallel. We shall say that a properly embeddeduwstdre ofE is a span-
ning surface for Kif it is contained in some Seifert surface fér. For any spanning
surface or Seifert surfacg, we denote its ambient isotopy class B§].[ Throughout
this paper, we shall assume, unless otherwise stated, nkiagieen pair of Seifert sur-
faces or spanning surfaces intersects transversely.

To the knotK there is an associated gragliK), constructed as follows. The ver-
tex set comprises the isotopy classes of minimal genus sparsurfaces fork, and
two distinct vertices are connected by an edge if and onlhéfytcan be represented
by a pair of disjoint spanning surfaces B It is a result of Scharlemann-Thompson
(Proposition 5 from [14]) thatf(K) is connected. As it happens, their main argument
implies d(o, ¢') < (o, ¢’) + 1, wheres and ¢’ are two isotopy classes of spanning
surfaces,d is the path-metric orG(K) assigning length 1 to each edge, add, o’)
denotes the least number of compong®8 S| among all pairsSe o, S € ¢’ of span-
ning surfaces intersecting transversely. We refer(#q ¢’) as theintersection number
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of o and o’. It is a result of Jaco-Sedgwick (see Oertel [10]) tBdK) is a finite
graph wheneveK has genus at least 2 and is atoroidal. By the work of Hayaghi [3
and of Wilson [21] it follows thatG(K) is a finite graph wheneveK is atoroidal even
if it has genus 1. However, it is a recent result of Tsutsundi] [that there exists an
infinite sequence of atoroidal knots of common genus, in emaius at least 2, with
an increasing number of isotopy classes of minimal genusrsépg surfaces. In par-
ticular, the number of vertices @f(K) among all atoroidal knot& of any common
genus, at least 2, is unbounded.

Our first result offers a uniform bound on the diametetG¢K), quadratic in knot
genusg(K).

Theorem 1.1. Suppose that K is an atoroidal knot B°. Then G(K) has di-
ameter at mosg(K)(3g(K) — 2) + 1.

The assumption tha{ be atoroidal is necessary here, for Theorem B of [6] asserts
that the graphG(K) is a bi-infinite line for many composite knot§. Such knots are
toroidal, and such graphs are unbounded.

One can go further and place a uniform quadratic bound onrttegsiection num-
ber of any pair of minimal genus Seifert surfaces.

Theorem 1.2. Suppose that K is an atoroidal knot §. Then «([S], [S]) is at
most2(3g(K) — 2)? for any two minimal genus Seifert surfaces S andoB K.

We note Theorem 1.2 also offers a second uniform bound oniétmeder ofG(K),
though less desirable than that already given in Theorem A.liseful consequence of
Theorem 1.2 is the following.

Corollary 1.3. Suppose that K is an atoroidal gendsknot in S3. Then G(K)
has diameter at mos2.

The better bound on diameter offered by Corollary 1.3 foratiroidal genus 1
knots is in fact sharp.

Proposition 1.4. There exists an atoroidal genudsknot K in S® such thatG(K)
has diameter2.

RecallG(K) is also the 1-skeleton of the corresponding simplicial ptax MS(K)
constructed by Kakimizu [6], where a set of pairwise didtinertices spans a simplex
if and only if they may simultaneously be realised disjgintt E. That this complex
is flag, so that any inclusion of the boundary of any given $ixpextends over the
whole simplex, is Proposition 4.9 from [13]. Applicationkthis complex are found in
classifying the incompressible Seifert surfaces of primet& of at most 10 crossings
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(see [7]), using a method that enhances that of Kobayad#i'sif [13], the first author
proves the contractibility of\MS(K) when K is a special aborescent link. In his joint
paper with Hirasawa [4], contractibility whel is a prime, special, alternating link is
announced. Together, this partially verifies a challengiagjecture of Kakimizu's [5],
asserting among other things th&tS(K) is always contractible. A full statement is
given as Conjecture 0.2 in [13].

Applying Theorem 1.2 and Corollary 1.3, we will prove theldaling.

Proposition 1.5. Suppose that K is an atoroidal knot of genlisThen the sim-
plicial complex MS(K) is simply connected

We remark the dimension oM S(K) is at most 6 whenever the knot is atoroidal
and has genus 1, as follows from Tsutsumi [18].

The structure of this paper is as follows. In Section 2 we Isteglall Kakimizu’s
characterisation of the metric afi(K). In Section 3 we use Section 2 to prove The-
orem 1.1. In Section 4 we prove Theorem 1.2, and then Coyolla3. In Section 5
we prove Proposition 1.5. In each of Section 3, Section 4 aecti@ 5, we will
rely on Theorem 3.1 of Fenley [1] which, among other thingdes out the existence
of an accidental peripheral in any minimal genus Seiferfager whenever the knot is
atoroidal. To recall, araccidental peripheralon a surfaceS in S° is a simple loop
essential onS which is homotopic, inE, to a loop ondE. In Section 6 we prove
Proposition 1.4. In Section 7 we investigate the growth mnmkter ofG(K) with knot
genusg(K), proving the following.

Proposition 1.6. For every positive integer ,gthere is an atoroidal knot K of
genus g such that the diameter @(K) is equal to2g — 1.

It seems appropriate to close the introduction by posingdhewing open question.

QUESTION 1.7. Considering the quadratic upper bound on diametereuffdy
Theorem 1.1, can this be improved to a linear function of kyenus?

REMARK. A few months after making the first version of this paper piplavail-
able, the authors learned in [11] that Roberto Pelayo haspigdently since found a
version of Theorem 1.1 as part of his PhD thesis, in pregarainder the supervision
of Danny Calegari.

2. A characterisation of distance

Let us recall Kakimizu’'s characterisation of the metric G(K) before giving a
proof to Theorem 1.1. For a knd€ in S3 let E denote its exterior and consider the
infinite cyclic cover¢: E — E, denoting byt a generator for the deck transformation
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group. LetS be any minimal genus spanning surface #rand denote byE, the
closure inE of any ¢-lift of the complementE — S. SetE; = 71(Ep) and S =Ej_1nN
E; for each integerj.

For a second such spanning surf&&ewe may similarly formE;, the closure in
E of any lift of E — S via ¢, and then denote b¥| the translaterj(E(’)) for each
integer j. Settingm_ = min{k € Z: EoNE; # @} andm, = maxk € Z: EoNE; # 7}, we
can then definal. (S, S) = m, — m_. Finally, for any two verticesr ando’ of G(K)
we defined, (o, 0’) = min{d.(S, S): Se o, S € ¢'}. The following statement combines
two key results due to Kakimizu, Proposition 1.4 and Prapmsi3.2 (2) of [6].

Proposition 2.1 ([6]). The function ¢ is a metric on the vertex set of(K).
Moreover for any two verticesr and o’ of G(K), we have do, o') = d,(o, o).

3. Proof of Theorem 1.1

We begin by proving two statements regarding the interseatif a pair of span-
ning surfaces.

Lemma 3.1. Suppose that S and’ &re two distinct minimal genus spanning
surfaces for the atoroidal knot K Then S is ambient isotopic to a third minimal
genus spanning surface” Such that $1 S’ is a disjoint union of loops and such that
di(S, S') = di(S, ).

Proof. SupposesN S contains an arc component, thatd$ and 0S' intersect.
Then, S and dS bound a bigon o E, because they are isotopic af. Using this
bigon, we deduceS is isotopic to a second spanning surfé&esuch thatjaSNoS’| <
[0SNaS|—2 while d,(S, S") < d.(S, S). A proof can now be completed by induction.

O

Lemma 3.2. Suppose that S and &re two distinct minimal genus spanning sur-
faces for the atoroidal knot K intersecting only in loopBhen S is ambient isotopic
to a third minimal genus spanning surfacé Such that 1 S’ is a disjoint union of
loops essential both on S and orf’,Sand such that (S, S”) < d.(S, S).

Proof. Suppose for contradiction some componremtf SN S is inessential orS,
that is« is null-homotopic onS or is boundary parallel org. If « is null-homotopic
on S then, by the incompressibility o8, it must also be null-homotopic 08. The
irreducibility of E then allows us to reduce the cardinalitg N S| by an isotopy of
S or of S without increasingd,(S, S). We may thus assume is boundary parallel
on S. By Theorem 3.1 of [1], must also be boundary parallel &

There exist two Seifert surfaces extendifgand S, respectively, whose inter-
section is precisely§N S)UK. Out of convenience, we shall proceed by usiignd
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S to respectively denote such a pair of Seifert surfaces. &ém « with a second
component ofSN S, boundary parallel or5, we may assume borders an annulus
A C Ssuch thatANnS =9 A, the uniona UK. Let A’ ¢ S be the annulus bounded by
dA. The unionAU A, denoted byT, is an embedded torus &° such thatk c T.
Let V be a solid torus ir52 bounded byT. SinceK is a non-trivial and atoroidal
knot, K is isotopic to the core o¥/ and hence the paiM, A") can be given a product
structure @&’ x [0, 1], A" x {0}). We deduceS is isotopic to a second surfac® such
that|0SNaS’| < |aSNa3S| while d.(S, S") < d,(S, S). A proof can now be completed
by induction. 0

REMARK. We claim that in factS NV = A’, so that the above isotopy &
can be chosen to fix pointwise the complement of a regularhbeigrhood ofA’ in
S. To see this, let us argue by supposing otherwise. etlenote the open surface
S — A'. The intersection ofS, with V is then by assumption non-empty and, &isis
connected and aS,NT = (S - A)NintA=¢, so S, is entirely contained in the interior
of V. However, the closure 0§, is a surface inv whose only boundary component
is «. That is, ] is trivial in Hi(V, Z) despitea being a longitude forv. We have
a contradiction, and we dedu@nNV = A.

We shall henceforth denote bythe function 8 —2 on the set of all knots, noting
n(K) is the size of any maximal collection of pairwise disjoimdanon-isotopic essen-
tial simple loops on any minimal genus spanning or Seiferfase for K. Since an
estimate on diameter is easily found for a trivial knot, walkhlso assume the genus
of K is positive.

Let o and o’ be any two vertices ofj(K), and take representativé € o and
S € ¢’ so thatd,(S, S) is minimal and so thaS and S’ intersect transversely in a
disjoint union of essential simple loops, as per Lemma 3d leamma 3.2.

Suppose for contradictiod(o, o’) > 2g9(K)n(K)+2. According to Proposition 2.1,
we also haved.(S, S) > 2g(K)n(K) + 2. LetY; denote the surfack&; N §, for each
integer j where, perhaps after reindexing, we may assiimes non-empty if and only
if 1 <j<d(SS). It should be notedx(Y;) < 0 for each such indey, so that

Ix(H = Z?*:(ls’s) Ix(Yj)l. Here, x(S) denotes the Euler characteristic of a surf&e

Claim. For the finite sequencgY;: 2 < j < d.(S, S)—1} of non-empty surfaces
there aren(K) consecutive indices whose corresponding surfaces each beno Eu-
ler characteristic That is there exists a natural number, with 1 <r < d,(S, S) —
n(K) —1, such thaty(Y;) = 0 for each j with r+1 < j <r +n(K).

Proof. Set||K| equal to (K) — 1, the Thurston norm [16] of either generator
of Hy(E, 9E). In the identity [K| = |x(S)I = Z?*:(ls‘s) Ix(Yj)l, only at most| K|
of the summandsgy(Y;)| can be non-zero. The proof will now be completed by a
pigeonhole-type argument, in the following manner.
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We denote byw the string (v2,..., wq,(s s)-1) Of binary digits, wherew; is defined
equal to 0 ifx(Y;) is O or otherwise 1 for each of the indicgs= {2,...,d.(S, S)—1}.
If it should happen that for any(K) consecutive binary digitsv; at least one is al-
ways non-zero, we would then have the estimate< (J|K||+1)7(K)—1 on the length
|lw| of w. This follows from the fact that only at mogtK | of the binary digitsw;
can be non-zero. We can now find an upper bounddfer, o’) as follows:

d(o, 0') = di(S, S)
= |w|+2
= (1Kl + n(K) +1
= 29(K)n(K) + 1.

According to our standing assumption dfv,¢’), this is absurd. We deduce that there
exist n(K) consecutive zeros+1, ..., Wryk), thus proving the claim. ]

After shifting the indexingE; by r, we have|x(Y;)| =0 for 1< j < n(K), and
the setY; U --- U Yyxk) is both non-empty and a union of pairwise disjoint annuli.
Note that bothYy and Y,k)+1 are necessarily non-empty. In particular, b&hn §,
and S;k)+1 N § are non-empty. There thus exists a subannuusf Y; U - - - U Yy«
ending onS; and onS;k)+1.

Claim. There exist natural numbers p and with 1 < p < q < n(K) + 1, for
which there is a component of AN'S, and a componeng of AN S, such thatg(x)
and ¢(B) are isotopic loops on S

Proof. For each k j <n(K)+1, ¢(ANS;) is a non-empty collection of essential,
pairwise disjoint and pairwise non-isotopic loops nand the two set®(AN ) and
¢(ANS;) are disjoint for distinci and j. Since any collection of pairwise disjoint and
non-isotopic essential simple loops &has size at most(K), we deduce the claim.

O

Let A be the family of all those subannuli oA bounded by any pair of loops
found in the previous claim. Themd is non-empty and we can choogée A minimal
subject to inclusion. The annulus” C S bounded byp(d A') has interior disjoint from
¢(A) and so the unio(A) U A”, denotedT, is an embedded torus i&.

Claim. T is incompressible in E

Proof. We shall check the inclusicen T — E induces an injectior,: m1(T) —
m1(E) on fundamental groups. Let be either component af A’, and letp < g be
such thatd A’ C S, N §;. Let the simple loopy C T be the union of an arc igp(A’)
and an arc inA”. Observe thatr1(T) is generated by («x) andy, and that the image
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of ¢(«) and the image ok.(y) in Hi(E) = Z are 0 andg — p, respectively. Since
g — p is non-zero, it follows Kek,) is contained in the grougp(e)). However, ¢(«)
is an essential loop on the incompressible surf8&cim E. Hence Ker¢,) is trivial,
and T is incompressible irE. O

Claim. T is essential in E

Proof. The loopp(«) C T is essential orb. It follows from Theorem 3.1 [1] that
¢() is not isotopic INE(K) to a simple loop ordE. HenceT can not be boundary
parallel in E. ]

We now have a contradiction, fdf is atoroidal, and we deduceg@)n(K) + 1
is an upper bound for the diameter G{K). This completes a proof of Theorem 1.1.

4. Proof of Theorem 1.2

We shall once more denote hyK) the number §(K) — 2. An argument similar
to that found in the proof of both Lemma 3.1 and Lemma 3.2 psrims to represent
any given pair of vertices of/(K) by a pair of spanning surfaces fot intersecting
transversely and minimally, up to isotopy, in loops ess¢rdh both surfaces.

Let Sand S be a pair of such spanning surfaces. Suppose for contralittiat
ISN'S| > 2y(K)2+ 1. Then, there exist two distinct annui ¢ S and A’ ¢ S such
that AN Al =3 anddAUJA C AN A'. To see this, consider dnx m array, with
1 <1, m < n(K), whose entries are non-negative integers summingy(& ¥ +1. It is
not so hard to see that at least one of these entries must basitd. We may further
assumeA is minimal subject to inclusion, so that no componentfh (S — A) is
isotopic onS' to the core ofA.

The union AU A’ always separates the 3-sphere into three components, wlmse
sures we denote b¥j, Xz, X3 and indexed so thak c X3. Note it can happen that
one of theX; fails to be a manifold, in which case its frontier,Xr, is homeomorphic
to an immersed torus whose singular set is the simple loop imint A'.

Claim. int X3 is not an open solid torus

Proof. Suppose for contradiction iKg is an open solid torus. As the knét is
atoroidal, so eitheK is contained in a compact 3-ball inside X¢ or K is a core of
int X3, and we rule out both cases separately as follows.

Case I. K is contained in a compacd-ball B C int X3. Since S is connected
and sinceS N fr X3 contains a simple loop essential @ so SN 9B also contains
a simple loop essential 08. Thus, there exists a disD disjoint from the knotK
whose boundaryD is a non-trivial simple loop ors. However, S is incompressible
and we therefore have a contradiction.
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Case ll. K is a core ofint X3. Let F denote the open surfac&n (int X3 —
N(K)). Then, F is necessarily a non-empty disjoint union of open annuli, tfee
inclusion of F in E descends to a monomorphism on fundamental groups thatgacto
through the abelian group;(int X3 — N(K)) = Z & Z. Thus, S contains an annulus
with one boundary component equal ko and the other a component &N S. That
is, S and S intersect in at least one simple loop peripheral &n However, this is
contrary to the standing assumption ti&tnd S intersect only in loops essential on
S (and onS). ]

To complete a proof of Theorem 1.2 it suffices to rule out thofdng two mu-
tually exclusive cases. These correspond to the two distiays in which A and A’
can intersect one another.

CAase |. fr X4, fr Xo, fr X3 are each tori Then, at least one oX; U X, and X3
is a solid torus and, according to the claim, it can only X%gU X,. It follows that
both X; and X, are solid tori, and, using van Kampen’'s theorem, at least cag
X1, has a product structureX(, A”) = (A” x [0, 1], A” x {0}), where A” C fr X;N'S
is an annulus. ThusS is ambient isotopic to a second Seifert surface intersgcfin
fewer than([S], [S]) times and this is absurd.

Caske ll. Exactly one offr Xq, fr X5, fr X3 is not an embedded torushen, either
fr X3 is not an embedded torus or exactly one oKfror fr X, is not an embedded
torus. We thus need only consider the following two subcases

SuBcAsEelll. frXzis an immersed singular toru§hen, N(X,U X,) is necessari-
ly a solid torus. It follows bothX; and X, are solid tori and at least one, sy, has a
product structureXy, A”) = (A’ x [0, 1], A” x {0}), whereA” C fr X; N Sis an annulus.
Once more, we will findS is ambient isotopic to a second Seifert surface intersg@&in
fewer than([S], [S]) times and this is absurd.

SUBCASE II.2. fr X3 is an embedded torusThen, X; U X, is necessarily a solid
torus. LetF’ denote that component & N (X3 U X,) containing intANint A’. The
minimality of A impliesdF’'—dA comprises of loops essential &, none of which is
isotopic onS' to the core ofA’. Hencer1(F’) is non-abelian and, aS is incompress-
ible, the inclusion ofF’ in E descends to a monomorphism on fundamental groups. In
particular, it has non-abelian image. However, this monguniem also factors through
the abelian groupri(X; U X3) = Z and as such has abelian image, a contradiction.

We thus complete a proof of Theorem 1.2. Let us finish thisi@ediy providing
a proof of Corollary 1.3.

Proof of Corollary 1.3. Letr; ando» be two vertices olG(K). Let § € o7 and
S € o, be a pair of representative spanning surfaces, togethésingaintersection
number, and such the N S, is a collection of loops, perhaps empty, essential both
on § and onS. Then, sinceg(S) andg(S) are both equal to 1, s§,NS, comprises
only of non-separating loops, parallel @& and onS,. Applying to Theorem 1.2, we
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have|S N S| < 2 and it follows that each lift ofS, intersects at most one lift of;.
Thus, d.(S1, &) < 2. By Proposition 2.1, we have(oq, 02) < 2 as required. L]

5. Proof of Proposition 1.5

We shall need the following criterion for the simple conmétt of a simplicial
complex whose 1-skeleton is a metric graph of diameter at oand then a restric-
tion on the intersection number of two genus 1 spanning cesfa

Lemma 5.1. SupposeC is a simplicial complex whose 1-skeleton can be re-
alised as a metric graph of diameter at mdxt for which every simplicial circuit of
length at mosb is contractible Then C is simply connected

Proof. Letoy,..., o, be the cyclically indexed vertices of a circuitof lengthn.
Sinced(oy,0i) <2 for 3<i <n—1, so there exists a simplicial path of length at most
2 connectingo; to oj for each such. It follows c can be expressed as a finite sum of
simplicial 3-, 4- and 5-circuits. Each such circuit is cawmtible, by assumption, and
so ¢ must also be contractible. Hencé,is simply connected. O

By the proof of Corollary 1.3, we have the following lemma.

Lemma 5.2. Let K be an atoroidal genu% knot Then for any pair of vertices
o and ¢’ of G(K), we havei(o, ¢’) € {0, 2.

In proving the following lemma, we shall make use of a corttam that amounts
to a special case of the so-calldduble curve sumafter Scharlemann-Thompson [14],
and of a construction of Kakimizu’s [6].

Lemma 5.3. Let K be an atoroidal genud knot For any pair of verticeso
and o’ of G(K), with d(o, 0’) = 2, there exists a third verte® such that ds, o) =
d(s, ¢’) = 1 and such that for any fourth vertexu, if «(u, o) = «(u, ¢’) = 0, then
t(u, 8) =0.

Proof. By Lemma 5.2 and arguments given in Section 3, theigt egpresenta-
tives Se o and S € o’ such thatSN S is a pair of loops essential both d& and
on S. Let P C S denote the 3-holed sphere bordered &y and by SN S, and let
A’ C S be the closed annulus bordered 8, S. Then, PU A’ is a genus 1 spanning
surface for the knoK and, after a small isotopy, is disjoint from bofhand S. We
take § to be the isotopy classP[U A’], noting that«(§, o) = ¢(§, ") = 0 by construction.
Sinced(o, o) =2, sod(s, o) =d(§, o) = 1.

Now supposeu is a fourth vertex, adjacent to both and o’. We claim that
(8, ) =0, and to prove this it suffices to prove the existence ofpmesentative ofx
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simultaneously disjoint both from® and fromS. By assumptiony(u,o) =0 and hence
there exists a representati®e u disjoint from S. Perhaps after replacing with an
isotopic surface also disjoint fror§, we may further assume th& is transverse t&.

As (u, 0') =0, by Proposition 4.8 (2) of [13] there exists a productioagV
betweenR and S such thatV N R=frVN RandV NS =frVNS. Note that,
should SNV not be empty, therSNV is parallel inV to a subsurface o§ NV, by
Corollary 3.2 of [20]. It followsS and S would share a removable intersection, and
this is absurd. ThusSNV is empty. We can therefore use the reghrto replaceR
with an isotopic surfaceR’ such thatR' and S are disjoint and such thaR' N S| <
IRN S| — 1.

Continuing inductively, we deducR is isotopic to a spanning surface simultaneous-
ly disjoint both fromS and fromS. ]

Lemma 5.4. Let K be an atoroidal genud knot Supposes, o1 and o, are
three vertices ofG(K) such that do, 01) = d(o, 02) = 2 and such that (b1, 00) = 1
Then there exist two vertice$; and §, of G(K) such that do, &) =d(5;, o;) = 1, for
i € {1, 2}, and such that {5, 62) < 1.

Proof. LetSeo,S €0; and S € o, be such thatS N S, is empty and such
that S intersects bothS, and S, transversely and in a collection of loops essential on
each surface.

Let E denote the infinite cyclic cover of the knot exteri, with covering map
denotedp, and denote by either generator of the deck transformation group. &g§
denote any lift ofS;, and letS;, denote the translate”(S; o) for each integen € Z.

We similarly introduce the notatio,,, whereS, q is to separatéS; o and S, ;.

The following claim permits us to isotop® so that in addition each lift o inter-
sects only one lift ofS, and only one lift ofS,. Recall the definition of the function
d, from Section 2.

Claim. There exists an isotopy of S after which(8 ) =d.(S, &) = 2.

Proof. Supposel.(S, S) + d.(S, $) > 5, and denote byS any lift of S. Then,
sinced, (o, 01) = d.(0, 02) = 2, so there exists a componeRtof ¢~%(SUS) such that
RNSis not empty and for which there exists an isotopySolifting to an isotopy ofS
after whichRN Sis empty. By Proposition 4.8 (2) of [13], there thus existsradpict
regionV in E betweenR and S and such tha¥ NR=frVNRandVNS=frvnS.

As S and each component @f~1(S, U S,) separate inE, so there exists a subregion
V' C V such thatv'n(SU¢=(S,US)) =frV’. Let us denote byR' the one component
of $~1(S U S) such thatR' NV’ is not empty.

Applying Corollary 3.2 of [20] to the product regiovi, we find R NV’ and SNV’
are parallel throughv’. Note, V’ is contained in a single fundamental region. Pro-
jecting V' to E then, we can therefore isotof® so as to remove the corresponding
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intersection betwee® and § and without introducing any new intersections between
» (LU S) and S.

That is, so long a%l.(S, §) + d.(S, ) > 5, we can successively remove inter-
sections betweep1(S,US) and S via an isotopy ofS. There are only finitely many
such intersections to begin with, thus in finite time we cangtan isotopy ofS after
which d,(S, §) +d.(S, $) < 4. The statement of the claim is deduced. O

Isotope S as indicated by the claim, and denote Bythe lift of S intersecting
S0 and $,0. Now let N denote a small regular neighbourhood ) S, U S, ¢ in
the infinite cyclic coverE, so thatt!(N) is disjoint from S, S,y and $, ¢ for each
non-zero integerj We defineR; and R, to be the two “outermost” components of
fr N, that is R, and R2 bound a reglon inE containingN and indexed so thalR, and
Szo are separated bﬁlo Note, R, and t1(R,) are disjoint, are both 1-holed tori,
and are both contained in the fundamental region bordere&hy and S, o. Thus,
R, and t~X(R,) project to disjoint genus 1 spanning surfaces, denotepentively R,
and Ry, both of which are disjoint fron, and from S;.

Finally, we respectively defing; and é, to be the isotopy classef{] and [Ry].
This completes a proof of Lemma 5.4. 0

In view of Corollary 1.3 and Lemma 5.1, to prove the simple remxtivity of
MS(K), for an atoroidal genus 1 kndf, it suffices to prove the following three
claims.

Claim. Every simplicial 3-circuit in MS(K) is contractible

Proof. This is immediate, foMS(K) is a flag simplicial complex. That is, any
embedding of the 1-skeleton of any given simplex igtK) is the restriction of an
embedding from the whole simplex intMS(K). ]

Claim. Every simplicial4-circuit in MS(K) is contractible

Proof. Supposeri, os, 03, 04 are the cyclically indexed vertices of a simplicial
4-circuit in MS(K). Assumingd(oy, 03) = 2, by Lemma 5.3 there exists a vertéx
such thatd(s, 1) =d(8, 03) = 1 and such that(s, o3) = (8, 64) =0. We deduce spans
an edge witho, and with o4. Appealing to the previous claim, one may now find an
appropriate compressing disc as the union of at most foumplges.

The remaining cases may be similarly treated. ]

Claim. Every simplicial5-circuit in MS(K) is contractible

Proof. Supposes, o2, 03, 04, 05 are the cyclically indexed vertices of a simplicial
5-circuit in MS(K). Assumingd(oy, o3) = d(o1, 04) = 2, by Lemma 5.4 there exist
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verticesds and 84 of G(K) such thatd(oy, 8i) =d(8i, 0y) = 1, fori € {3, 4, and such
that d(8s, 84) < 1. If furthermores; and §4 are distinct, thend, 83, §4) is a 3-circuit
and @1, 02, 03, 83), (83, 03, 04, 84), and @1, 84, 04, 05) are each circuits of length at most
4. Appealing to the previous two claims respectively, one mew find an appropriate
compressing disc as the union of at most four other discs.

The remaining cases may be similarly treated. O

This completes a proof of Proposition 1.5.

6. A genus 1 knot

The purpose of this section is to prove Proposition 1.4, teato construct an
atoroidal genus 1 knoK whose graphj(K) has diameter 2.

Let Vp be a solid torus, and lef; and A, be annuli ondV, essential inVy such
that 9A; N3dA, = 0A; = A, and such that the cyclic group; (Vo) is not generated
by the core ofA;. Note, dA; UdA, =dVy. Let V be a genus 2 handlebody obtained
from Vy by attaching a 1-handl®? x [1, 2], whereD? x {i} is identified with a disc
in int Ay for bothi € {1, 2. By assumption, the region i bounded byA; and A,
does not admit a product structufg x [0, 1]. After pushing int; into intV, for both
i €{1, 2}, we have a pair of annuli properly embedded\vn

Let «, B8 be the two components @&A;, with orientation induced by either orien-
tation of A; (see Fig. 1). We can choos® and a band surk of « and 8 such thatk
is complicatedwith respect to a preferred maximal meridan sys{é, D,, D3} for V,
in the sense of Kobayashi [8]. That is, R; and Ry, both compact 3-holed spheres,
denote the two components 8% — int N(aD; U dD, U dDg), then:

e There is no bigonB on aV such thatdB is the union of a subarc of and a
subarc ofdR; for somei € {1, 2}, and

e For any two boundary components of either 3-holed spligrethere is a subarc
of k joining them inR;.

Appealing to Lemma 6.1 of [8], we have the following.

Lemma 6.1. 9V —int N(k) is incompressible in V

Perhaps after an isotopy, we may assuknis disjoint froma U 8. Let 6 denote
any graph with two vertices, connected by three edges, edeieih S° and whose
exterior W admits a complete and finite volume hyperbolic metric wittallg geodesic
boundary. According to Section 3.3 of [17], one may, for amste, takey to be the
Kinoshita theta curve. Lef: V — N(0) be any homeomorphism, and defikeequal
to the imagef (k). Let N(K) be a regular neighbourhood &f in S® such thatN(K)N
f(V) and N(K) N W are regular neighbourhoods &f in f(V) and W respectively.
Note, the exteriorE = S® — int N(K) of K is the union of f (V) —int N(K) and W —
int N(K), with common subsurfacé f (V) — int N(K) = aW — int N(K). It should
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Fig. 1. The curvek is a band sum ofx and 8, and is compli-
cated with respect to the indicated maximal meridan system i
the sense of Kobayashi.

also be noted thaf (V) — int N(K) is homeomorphic tof (V) via a homeomorphism
constant ond f (V) — int N(K), and thatW — int N(K) is homeomorphic toV via a
homeomorphism constant aiW — int N(K).

Lemma 6.2. The surfacedW — int N(K) is incompressible in W

Proof. SinceK is an essential loop a#W so the natural inclusiofW —intN(K) —
dW descends to an injection on fundamental groups. WAsdmits a hyperbolic metric
in which W is totally geodesic sOW is incompressible i'W, and we find the natural
homomorphismr (0W —int N(K)) — (W) is also injective. It followssW —int N(K)
is incompressible iW. ]

Lemma 6.3. K is a non-trivial knot inS8.

Proof. According to Lemma 6.1, the group(oV — int N(K)) naturally injects
into 71(V). According to Lemma 6.2, the same groap(dV — int N(K)) naturally
injects intor1(W). The knot groupry(E) is, by using van Kampen’s theorem, there-
fore isomorphic to the amalgamated free productrgfvV) and (W) over a common
subgroup isomorphic to the fundamental group of a 2-holedstoHence,71(E) is a
non-abelian group, an& cannot be a trivial knot. ]
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Lemma 6.4. The pair (W, dW — int N(K)) does not contain an essential annu-
lus. That is suppose A is an essential annulus properly embedded ,iwith 9 A C
dW —intN(K). Then A is parallel to an annulus i®W —int N(K) or to the annulus
N(K) N aw.

Proof. The pair (v, 3W) cannot contain an essential annulus, Yr admits a
hyperbolic metric in whichoW is totally geodesic. LetA be any incompressible an-
nulus properly embedded W — int N(K) so thato A ¢ dW — int N(K). Then, A is
parallel inW to an annulushA’ Cc dW. If A’ NK is empty thenA is also parallel toA’
in W —int N(K). If instead A’ N K is not empty, therK ¢ A’ and, asK is essential
on dW, so K is the core of A'. Thus, A is parallel to the annulutdN(K)naw. [

Lemma 6.5. K is an atoroidal knot inS3.

Proof. Supposerl is an incompressible torus ik. As both f(V) and W are
atoroidal, we may assume thatintersectssW —intN(K) only in a collection of loops
essential ordW and that each component &N f (V) and T NW is an incompressible
annulus inf (V) and W, respectively.

Let A be a component of NW, and consider the dichotomy contained in Lem-
ma 6.4. If A is parallel to an annulus iaW —intN(K), then we can decreas$€& NW|
by an isotopy ofT. We may thus assume every componentToff W is an annulus
parallel in W — int N(K) to aN(K) N W. In which case,T N dW consists of loops
parallel toK in aW.

Now let A denote any component df N f(V). By the preceding argument, both
components o A are parallel toK in dW. Hence, A is parallel in the handlebody
f (V) to the annulusA’ on 3 f(V) bounded byd A. By the minimality of [T N W], so
A’ necessarily containg.

We conclude thafl is the union of two annuli, one properly embeddedfi(V)
and the other properly embedded W and both parallel toA’. It follows that T is
necessarily peripheral ik, and henceK is atoroidal. ]

The setk U U 8 dividesdV into a pair of 3-holed spheres$?; and P,. We now
define §; to be equal tof (B U A;), for eachi, j € {1, 2}. Each is a genus 1 Seifert
surface forK and, by Lemma 6.3, each is therefore of minimal genus. Rgingdsf
need be, we may assun®; and S, intersect transversely along and alongg. Let
us abbreviate§; to § for bothi € {1, 2). Then, S U S dividesS® into the following
three regions:

e W, a hyperbolic 3-manifold;

e The solid torusf(Vp), bounded byf (A;) and f(Ag), and

e A third region that contain§g NS and that is branched alon§ N S,. In partic-
ular, this region is not a 3-manifold.
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None of these regions can give a product region betwgeand S;. (Recall f (Vo) does
not give a product region betwedy andA;.) It follows from the contrapositive of Propo-
sition 4.8 (2) in [13] thatS; and S intersect essentially. In particulad([S], [S]) > 2.
According to Corollary 1.3, the diameter 6{K) is at most 2. We conclude that the di-
ameter ofG(K) is exactly 2. This completes a proof of Proposition 1.4.

7. An infinite class of atoroidal knots

The purpose of this section is to prove Proposition 1.6,rivffea family of atoroidal
knots, parameterised by knot genus, each of whose assbgetphs has diameter pre-
cisely the modulus of the knot Euler characteristic. In ipatar, their diameters grow
linearly with knot genus.

Given any non-negative integey, pick a sequence of integees, ay, ..., ag of
length g such that|a;| > 2 for every j. Let K be the 2-bridge knot whose slope is
represented by the continued fraction

[2&1, —2ap, ..., 2&29_1, —2a2g] =
2a; —

2ay + !
a .
2 , 1
a 1 - —
2g9—1 2329

Then, the genus oK is preciselyg. We show that the diameter ¢f(K) is equal to
2g — 1 by using [13], where the structure of Kakimizu's compl&xS(K) is explicitly
described. To recall, leT be a tree, withn := 2g vertices, whose underlying space is
homeomorphic to a closed interval, and 1gt vy, ..., v, be the vertices ofl, lying
on the interval in this order. For each vertex we associate an unknotted oriented
annulusF(vj) in S® with a;-right hand full twists. ThenK is equal to the boundary
of a surface obtained by successively plumbing the anR(@t), F(v), ..., F(v,), and
this surface is a minimal genus Seifert surface Kar Moreover, every minimal genus
Seifert surface oK is obtained in this way (see [2]).

There are 2! different ways of successive plumbing, according’as, is plumbed
to A; from above or from below with respect to a normal vector fietd &. Thus,
successive plumbing can be represented bpr@ntation of T, directing each edge in
one of two ways, by the following rule: Ip is an orientation ofT, then we plumb
Aj+1 to A; from above or below according as the edge joiningand vj.; has initial
point vj or vj+1, respectively, with respect tp. See Section 2 of [13] for a more
detailed account.

We denote byS(p) the Seifert surface oK determined by the orientation. The
condition that|a;| > 2 for every ] guarantees the correspondence> S(p) determines
a bijection from the se©(T) of all orientations ofT to the vertex set ofMIS(K) (see
Theorem 2.3 of [13]).
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To describe the structure 0¥1S(K), we introduce a few definitions. A vertex
of T is said to be asink for the orientationp of T if every edge ofT incident on
vj points towardsv;. If v; is a sink forp, then letv;(p) denote the orientation of
obtained fromp by reversing the orientations of each edge incidenpnA cyclein
O(T) is a sequence

2 Vin-1 )
pL—> P2 —> ++—> Pn —> P1,
where (1, j2,---, jn) IS @ permutation of1, 2,...,n} and py, p2, ..., pn are mutually

distinct elements of)(T) such thatvj, (ok) = px+1 for every k, where our indices are
considered modulm. According to Theorem 3.3 of [13]MS(K) can be described
as follows:
e The vertex set ofMS(K) is identified withO(T), and
e A set of vertices{pg, p1, - .., px} spans a&-simplex in MS(K) if and only if it is
contained in a cycle o©O(T).

Moreover, MS(K) gives a triangulation of the cubE’~! whose vertices are all
the corners of the cube (see Proposition 3.9 of [13]).

We now show that the diameter ¢f(K) is equal ton — 1. Identify O(T) with
{—,+}=1 by identifying p € O(T) with (e1,€2,...,€n_1), Wheree; is + or — according
as the initial point of thej-th edge isvj or vj+1, respectively.

Lemma 7.1. For any two elementg and p’ of O(T), we have dp, o) <n-—1,
where d denotes the edge-path distance&;{iK).

Proof. We prove the lemma by inducting on Note that ifn is odd, so not of
the form y(K), we may still consider a linear tréE with n vertices and a simplicial
complex with vertex seO(T). If n=1, O(T) consists of a single element and the
lemma obviously holds.

Let p = (€1, €2,...,€n1) and p’ = (€}, €3, ..., €,_;) be two elements ofO(T),
where T hasn vertices. Suppose first that_1 = ¢/ ;. Let To be the sub-tree of
obtained by deleting the last edge. By the inductive hymithethe distance between
po = (€1, €2, ..., €n—2) and p; = (€7, €5, . . ., €,_,) in O(Tp) is at mostn — 2. Since
every edge in0(Ty) = {—, +}("2 lifts to an edge in{—, +}("2 x {¢} c O(T), where
€ =en_1 =€, ,, We seed(p, p’) is at mostn — 2.

Suppose next that,_1 7 €/ _,. Let p” be the element o(T) obtained fromp’
by replacinge;,_, with e,_;. Then, we have

d(p, o) = d(p, p") +d(p", p) <n—-2+1=n-1
and this completes a proof of Lemma 7.1. 0

Lemma 7.2. Letp_=(—,—,...,—) and p. =(+,+,...,+). Then d(p_, p+) > n—1.
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Proof. Letw(p) be the number of + entries ¢f € {—, +}(™ Y, so thatw(p_) =0
andw(p+) =n—1. The statement of the lemma follows once we pravéo) —w(p’)| <
1 for any edge 4, o) of G(K). To prove this, observe that if; is a sink forp then
w(vj(p)) is equal tow(p), w(p)+ 1, or w(p) — 1 according ag € {2, 3,...,n—1},
j=1orj=n. Let (o, 0) be an edge ofi(K). Then, {p, o’} is contained in the vertex
set of a maximal simplex, oMS(K), which in turn is the set of all orientations for
some cycle, say

Vj Vip Vjn-1 Vjn
pL—> P2 —> -+ —> Pn —> P1.

Since every vertex appears in a cycle, the above observatiphies the set{w(p1),
w(p2), ..., w(pn)} consists of two successive integers. In particilafp) — w(p’)| < 1,
and this completes a proof of Lemma 7.2. ]

By Lemma 7.1 and Lemma 7.2 we see that the diamet&i(K&f) is equal ton—1,
thus completing a proof of Proposition 1.6.

RESEARCH UPDATE. Roberto Pelayo’s thesis [12] became publicly availabbenfr
April 2007. The upper bound given in Theorem 10.1 of [12] isdpatic in knot genus
though is not computed. The argument found therein is basedinimal surface theory,
and is quite different from that given here in Section 3.

In August 2007, Jennifer Schultens [15] gave an elegantfpgbothe simple con-
nectivity of Kakimizu's complex, using PL-minimal surfatieeory. In fact her argument
can be extended to prove that the second homotopy group afrfiaks complex is also
trivial.

The Kakimizu conjecture remains open.
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