Choi, T. and Kim, J. Osaka J. Math. **46** (2009), 87–104

DECOMPOSITION THEOREM ON G-SPACES

TAEYOUNG CHOI¹ and JUNHUI KIM²

(Received March 19, 2007, revised November 19, 2007)

Abstract

In this paper, we introduce the weak G-expansivity which is a generalization of both expansivity and G-expansivity. Also, we define G-stable and G-unstable sets of a homeomorphism on a metric G-space X and investigate properties of them. Finally, we consider the decomposition theorem on G-spaces.

1. Introduction

Let X be a topological space, G be a topological group, and $\theta: G \times X \to X$ be a map. The triple (X, G, θ) is called a *topological G-space* if the following three conditions are satisfied:

(1) $\theta(e, x) = x$ for all $x \in X$, where e is the identity of G;

(2) $\theta(g, \theta(h, x)) = \theta(gh, x)$ for all $x \in X$ and for all $g, h \in G$;

(3) θ is continuous.

Here, gh is the group operation on G. Simply, we denote $\theta(g, x)$ by gx and X is usually said to be a *topological G-space*.

For any subset A of X, G(A) is denoted by the set $\{ga : g \in G, a \in A\}$. G(x) is called a *G-orbit* of x. A subset A of X is called *G-invariant* if G(A) = A. A map $f : X \to X$ on a *G*-space X is said to be *pseudoequivariant* provided that f(G(x)) = G(f(x)) for all $x \in X$, and f is said to be *equivariant* provided that f(gx) = gf(x) for all $x \in X$ and $g \in G$.

N. Aoki has proved the following topological decomposition theorem in 1983 ([1]), which is an extension of Smale's spectral decomposition theorem and Bowen's decomposition theorem in dynamical systems. All undefined notions can be found in [2].

Theorem 1.1 ([1]). Let $f: X \to X$ be a homeomorphism on a compact metric space X and let CR(f) be the chain recurrent set. If $f|_{CR(f)}: CR(f) \to CR(f)$ is an expansive homeomorphism with the shadowing property, then

(1) CR(f) contains a finite sequence B_i $(1 \le i \le k)$ of f-invariant closed subsets such that

²⁰⁰⁰ Mathematics Subject Classification. Primary 54H20; Secondary 37B05.

This work was supported by the National Institute for Mathematical Sciences¹ and the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-037-C00005)².

- (a) $CR(f) = \bigcup_{i=1}^{k} B_i$ (disjoint union);
- (b) $f|_{B_i}: B_i \to B_i$ is topologically transitive,
- (2) for each B_i , there exist a subset X_p of B_i and a > 0 such that
 - (a) $f^a(X_p) = X_p;$
 - (b) $X_p \cap f^j(X_p) = \emptyset \ (0 < j < a);$
 - (c) $f^a|_{X_p} \colon X_p \to X_p$ is topologically mixing;
 - (d) $B_i = \bigcup_{j=0}^{a-1} f^j(X_p).$

A point $x \in X$ is called a *G*-periodic point of f if there exist an integer n > 0 and $g \in G$ such that $f^n(x) = gx$. A point $x \in X$ is called a *G*-nonwandering point of f if for every open neighborhood U of x, there exist n > 0 and $g \in G$ such that $gf^n(U) \cap U \neq \emptyset$. $Per_G(f)$ (resp. $\Omega_G(f)$) is denoted by the set of all *G*-periodic (resp. *G*-nonwandering) points of f.

For a homeomorphism f on a metric G-space X, a sequence $\{x_i \in X : i \in \mathbb{Z}\}$ is called a (δ, G) -*pseudo orbit* for f provided that for each i, there exists $g_i \in G$ such that $d(g_i f(x_i), x_{i+1}) < \delta$. A (δ, G) -pseudo orbit $\{x_i\}$ for f is said to be ϵ -traced by a point $x \in X$ provided that for each i, there exists $g_i \in G$ such that $d(f^i(x), g_i x_i) < \epsilon$.

DEFINITION 1.2 ([5]). A homeomorphism $f: X \to X$ has the *G*-shadowing property (GSP) provided that for any $\epsilon > 0$, there exists $\delta > 0$ such that every (δ, G) -pseudo orbit $\{x_i\}$ in X for f is ϵ -traced by a point $x \in X$.

REMARK 1.3. It was proved by E. Shah that, when X is a compact metric G-space and the orbit map $\pi: X \to X/G$ is a covering map, a pseudoequivariant homeomorphism f on X has the GSP if and only if the induced map $\hat{f}: X/G \to X/G$ has the shadowing property ([5]).

If a pseudoequivariant continuous onto map $f: X \to X$ has the GSP where X is a compact metric G-space with G compact, then $f|_{\Omega_G(f)}$ has the GSP ([5]).

The main purpose of this paper is to prove the following theorems on compact metric G-spaces.

Theorem A. Let X be a compact metric G-space with G compact. If $f: X \to X$ is a pseudoequivariant G-expansive homeomorphism with the GSP, then $\Omega_G(f)$ contains a finite sequence B_i $(1 \le i \le n)$ of f-invariant, G-invariant, and closed subsets such that

- (1) $f|_{\Omega_G(f)}$ is topologically *G*-transitive;
- (2) $\Omega_G(f) = \bigcup_{i=1}^n B_i$ (disjoint union);
- (3) $f|_{B_i}$ has the GSP.

A homeomorphism $f: X \to X$ is said to be *topologically G-mixing* provided that for every nonempty open subsets U and V of X, there exists an integer N such that

for each $n \ge N$, there is $g_n \in G$ satisfying $g_n f^n(U) \cap V \neq \emptyset$.

Theorem B. Let $f|_{\Omega_G(f)}$: $\Omega_G(f) \to \Omega_G(f)$ be a *G*-expansive homeomorphism with the GSP. Then, for any *f*-invariant, *G*-invariant, open and closed subset $B \subset \Omega_G(f)$ such that $f|_B \colon B \to B$ is topologically *G*-transitive, there are $X_p \subset B$ and a > 0 such that

- (1) $f^a(X_p) = X_p;$
- (2) $X_p \cap f^j(X_p) = \emptyset \ (0 < j < a);$
- (3) $f^a|_{X_p} \colon X_p \to X_p$ is topologically *G*-mixing;
- (4) $B = \bigcup_{i=0}^{a-1} f^{i}(X_p).$

DEFINITION 1.4. A homeomorphism $f: X \to X$ on a metric *G*-space *X* is said to be *weak G-expansive* provided that there exists $\delta > 0$ such that for every $x, y \in X$ with $G(x) \neq G(y)$ if $u \in G(x)$ and $v \in G(y)$, there exists $n = n(u, v) \in \mathbb{Z}$ such that

$$d(f^n(u), f^n(v)) > \delta.$$

The constant δ is called a *weak G-expansive constant* for f.

The weak *G*-expansivity is a generalization of both expansivity and *G*-expansivity. Here, *G*-expansivity has been defined by R. Das ([4]). A homeomorphism $f: X \to X$ is said to be *G*-expansive provided that there exists $\delta > 0$ such that for every $x, y \in X$ with $G(x) \neq G(y)$, there exists $n \in \mathbb{Z}$ such that

$$d(f^n(u), f^n(v)) > \delta$$
 for all $u \in G(x), v \in G(y)$.

The constant δ is called a *G*-expansive constant for *f*.

REMARK 1.5. R. Das proved that there is no implication between G-expansivity and expansivity by giving counterexamples ([4]).

EXAMPLE 1.6 ([4]). Consider the compact space $X = \{1/n, 1-1/n : n \in \mathbb{N}\}$ with the usual metric and let the topological group $G = \{-1, 1\}$ act on X with the action θ defined by $\theta(1, x) = x$ and $\theta(-1, x) = 1 - x$. Define a homeomorphism $f : X \to X$ by

 $f(x) = \begin{cases} x & \text{if } x = 0, 1; \\ \text{next to the right of } x & \text{if } x \in X \setminus \{0, 1\}. \end{cases}$

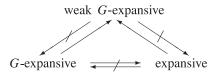
Then f is an expansive map with expansive constant δ (0 < δ < 1/6). But, it is easy to see that for x, $y \in X \setminus \{1/2\}$ with $G(x) \neq G(y)$, there is no $n \in \mathbb{Z}$ such that

$$|f^n(u) - f^n(v)| > \delta$$
 for all $u \in G(x), v \in G(y)$,

whatever $\delta > 0$ may be. This means that f is not G-expansive.

EXAMPLE 1.7 ([4]). Consider the compact space $X = \bigcup_{i=1}^{n} C_i$ with the usual metric, where each C_i is the circle in \mathbb{R}^2 with center the origin and radius *i*. Denote G = SO(2) by the set of all 2×2 matrices whose determinants are ± 1 and define an action $\theta: G \times X \to X$ by the usual rotations on *X*. Then the identity map on *X* is *G*-expansive with *G*-expansive constant δ ($0 < \delta < 1$).

Therefore, all properties of the following diagram are distinguished as we see in Examples 1.6 and 1.7:



DEFINITION 1.8. Let $f: X \to X$ be a homeomorphism of a metric *G*-space *X*. We define a *local G-stable set* $W^s_{\epsilon}(x)$ and a *local G-unstable set* $W^u_{\epsilon}(x)$ by

$$W^{s}_{\epsilon}(x) = \{ y \in X : \text{ for each } n \ge 0,$$

there is $g_{n} \in G$ such that $d(f^{n}(g_{n}x), f^{n}(y)) \le \epsilon \},$
 $W^{u}_{\epsilon}(x) = \{ y \in X : \text{ for each } n \ge 0$
there is $g_{n} \in G$ such that $d(f^{-n}(g_{n}x), f^{-n}(y)) \le \epsilon \}.$

We modify results of [3] into the following results by weakening the condition "equivariant" into "pseudoequivariant" and deleting the condition "invariant metric". A metric *d* on a *G*-space *X* is called an *invariant metric* provided that d(x, y) = d(gx, gy) for all $x, y \in X$ and $g \in G$.

REMARK 1.9. Let X be a compact metric G-space with G compact. If $f: X \to X$ is a weak G-expansive pseudoequivariant homeomorphism with weak G-expansive constant $\delta > 0$, then for every $\gamma > 0$, there is N > 0 such that for each $x \in X$ and for each $n \ge N$,

$$f^n(W^s_{\delta}(x)) \subset W^s_{\nu}(f^n(x))$$

and

$$f^{-n}(W^u_{\delta}(x)) \subset W^u_{\gamma}(f^{-n}(x)).$$

Proof. We shall prove only the case of a local *G*-stable set because the other case can be proved similarly. To do it, suppose that there exists $\gamma > 0$ such that for all N > 0, there are $x \in X$ and $n \ge N$ satisfying

$$f^n(W^s_{\delta}(x)) \not\subset W^s_{\nu}(f^n(x)).$$

Let N > 0. Then there are $x_1 \in X$ and $n \ge N$ satisfying

$$f^n(W^s_{\delta}(x_1)) \not\subset W^s_{\nu}(f^n(x_1)),$$

that is, there exists $y_1 \in W^s_{\delta}(x_1)$ such that $f^n(y_1) \notin W^s_{\gamma}(f^n(x_1))$. So there exists $i \ge 0$ such that for every $h \in G$,

$$d(f^{i}(hf^{n}(x_{1})), f^{i}(f^{n}(y_{1}))) > \gamma.$$

Because f is pseudoequivariant, there exists $i \ge 0$ such that for every $g \in G$,

$$d(gf^{i+n}(x_1), f^{i+n}(y_1)) > \gamma.$$

Take $m_1 = i + n$ and choose $N = m_1 + 1$.

Continuing the process, we can find sequences $m_n > 0$, x_n , and $y_n \in X$ such that (1) $y_n \in W^s_{\delta}(x_n)$;

- (2) $d(hf^{m_n}(x_n), f^{m_n}(y_n)) > \gamma$ for all $h \in G$;
- (3) $\lim_{n\to\infty} m_n = \infty$.

It follows from $y_n \in W^s_{\delta}(x_n)$ that for each $i \geq -m_n$, there exists $g_{i+m_n} \in G$ such that

$$d(f^{i+m_n}(g_{i+m_n}x_n), f^{i+m_n}(y_n)) \leq \delta.$$

Since f is pseudoequivariant, for each g_{i+m_n} , there exists $h_{i+m_n} \in G$ such that

$$d(f^{i}(h_{i+m_{n}}f^{m_{n}}(x_{n})), f^{i}(f^{m_{n}}(y_{n}))) = d(f^{i+m_{n}}(g_{i+m_{n}}x_{n}), f^{i+m_{n}}(y_{n}))$$

Hence, for each $i \geq -m_n$,

$$d(f^{i}(h_{i+m_{n}}f^{m_{n}}(x_{n})), f^{i}(f^{m_{n}}(y_{n}))) \leq \delta.$$

If $f^{m_n}(x_n) \to x$, $f^{m_n}(y_n) \to y$, and $h_{i+m_n} \to h$ as $n \to \infty$, then

$$d(f^{i}(hx), f^{i}(y)) \leq \delta$$
 for all $i \in \mathbb{Z}$.

Since δ is a weak *G*-expansive constant for *f*, G(x) = G(y). But $d(hx, y) = \lim_{n \to \infty} d(hf^{m_n}(x_n), f^{m_n}(y_n)) \ge \gamma > 0$ for all $h \in G$ by (2). Thus $hx \ne y$ for all $h \in G$, and hence $G(x) \ne G(y)$. This is a contradiction.

For a homeomorphism f on a compact metric G-space, we define the following:

 $W^{s}(x) = \left\{ y \in X : \text{ there exists a sequence } g_{n} \in G \text{ such that} \\ \lim_{n \to \infty} d(f^{n}(g_{n}x), f^{n}(y) = 0 \right\};$ $W^{u}(x) = \left\{ y \in X : \text{ there exists a sequence } g_{n} \in G \text{ such that} \right\}$

$$\lim_{n\to\infty} d(f^{-n}(g_nx), f^{-n}(y) = 0\}$$

 $W^{s}(x)$ (resp. $W^{u}(x)$) is called a *G*-stable set (resp. *G*-unstable set).

REMARK 1.10. Let X be a compact metric G-space with G compact. If $f: X \to X$ is a weak G-expansive pseudoequivariant homeomorphism with weak G-expansive constant $\delta > 0$, then for each ϵ with $0 < \epsilon < \delta$,

$$W^{s}(x) = \bigcup_{n \ge 0} f^{-n}(W^{s}_{\epsilon}(f^{n}(x)));$$
$$W^{u}(x) = \bigcup_{n \ge 0} f^{n}(W^{s}_{\epsilon}(f^{-n}(x))).$$

Proof. (C): Let $y \in W^s(x)$ and $0 < \epsilon < \delta$. Then there exists N > 0 such that for each $n \ge N$, we can choose $g_n \in G$ satisfying

$$d(f^n(g_nx), f^n(y)) \le \epsilon.$$

Thus,

$$d(f^i(f^N(g_{i+N}x)), f^i(f^N(y))) \le \epsilon$$
 for all $i \ge 0$.

Since f is pseudoequivariant, $f^N(y) \in W^s_{\epsilon}(f^N(x))$. Therefore,

$$y \in f^{-N}(W^s_{\epsilon}(f^N(x))) \subset \bigcup_{n \ge 0} f^{-n}(W^s_{\epsilon}(f^n(x))).$$

(⊃): Let $y \in f^{-n}(W^s_{\epsilon}(f^n(x)))$ for some $n \ge 0$. Then $f^n(y) \in W^s_{\epsilon}(f^n(x))$. It follows from Remark 1.9 that for every $\gamma > 0$ there exists N > 0 such that for each $x \in X$ and $m \ge N$,

$$f^{m+n}(y) \in f^m(W^s_{\epsilon}(f^n(x))) \subset W^s_{\nu}(f^{m+n}(x)).$$

So for each $n \ge N$, we can find $g_n \in G$ such that

$$d(f^{m+n}(g_n x), f^{m+n}(y)) \le \gamma.$$

Since f is pseudoequivariant, $y \in W^s(x)$. The proof is completed. The case of a G-unstable set can be proved similarly.

2. Decomposition theorems

First we prepare the following four lemmas to show Theorem A.

Lemma 2.1 ([3]). Let (X, G, θ) be a compact metric G-space with G compact. Then for any $\epsilon > 0$, there is a finite open cover $\mathcal{U} = \{U_1, \ldots, U_s\}$ of X such that $\operatorname{diam}(g\overline{U_i}) \leq \epsilon$ for all $g \in G$ and i with $1 \leq i \leq s$. In Lemma 2.1, notice that, for each $g \in G$, the open cover $\{gU : U \in \mathcal{U}\}$ of X satisfies diam $(hg\overline{U_i}) \leq \epsilon$ for all $h \in G$ and i with $1 \leq i \leq s$.

Lemma 2.2. Let X be a compact metric G-space with G compact. If U is a finite open cover of X, then there exists $\delta > 0$ such that for each subset A of X with diam $(A) \leq \delta$, $A \subset gU$ for some $U \in U$ and $g \in G$.

Proof. Suppose not. Then for every n > 0 there exists a subset A_n of X such that diam $(A_n) \le 1/n$ and $A_n \not\subset gU$ for all $U \in \mathcal{U}$ and $g \in G$. Choose $x_n \in A_n$ for each $n \in \mathbb{N}$. Since X is compact, there exist a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \to x$. We fix $g \in G$. Then there is $U \in \mathcal{U}$ with $x \in gU$. Since $X \setminus gU$ is compact, $d(x, X \setminus gU) > 0$. Put $\epsilon = d(x, X \setminus gU)$ and take $n_i > 0$ such that $1/n_i < \epsilon/2$ and $d(x_{n_i}, x) < \epsilon/2$. Then for any $y \in A_{n_i}$,

$$d(y, x) \leq d(y, x_{n_i}) + d(x_{n_i}, x) \leq \frac{1}{n_i} + \frac{\epsilon}{2} < \epsilon.$$

So $y \in gU$. Therefore, $A_{n_i} \subset gU$. This is a contradiction.

Lemma 2.3. Let X be a compact metric G-space with G compact. Then for any $\epsilon > 0$, there exists $\delta > 0$ ($\delta < \epsilon$) such that

$$d(x, y) < \delta \implies d(gx, gy) < \epsilon \text{ for all } g \in G.$$

Proof. Let $\epsilon > 0$. Then it follows from Lemma 2.1 that, for any positive $\epsilon_1 < \epsilon$, there is a finite open cover \mathcal{U} such that diam $(g\overline{\mathcal{U}}) \leq \epsilon_1$ for all $g \in G$ and $U \in \mathcal{U}$. Also, by Lemma 2.2, there is a constant $\delta = \delta(\mathcal{U}) > 0$ such that for any subset A with diam $(A) \leq \delta$, $A \subset gU$ for some $g \in G$ and $U \in U$. Let x and y in X with $d(x, y) < \delta$. Then $x, y \in g_0 U_0$ for some $g_0 \in G$ and $U_0 \in \mathcal{U}$. Note that $\{g_0 U : U \in \mathcal{U}\}$ is an open cover of X. For any $g \in G$, take $g_1 \in G$ such that $g_1 = gg_0$. Then, by Lemma 2.1, diam $(gg_0\overline{U}) \leq \epsilon_1$, that is, diam $(g_1\overline{U}) \leq \epsilon_1 < \epsilon$ for all $U \in \mathcal{U}$. Since $gx, gy \in gg_0 U_0 = g_1 U_0$, $d(gx, gy) < \epsilon$.

Lemma 2.4. Let X be a compact metric G-space with G compact and let f be a pseudoequivariant homeomorphism on X. Then f has the GSP if and only if for any $\epsilon > 0$, we can find $\delta > 0$ such that for every (δ, G) -pseudo orbit $\{x_i\}$ of X for f, there exist $x \in X$ and $h_i \in G$ satisfying

$$d(f^{i}(h_{i}x), x_{i}) < \epsilon \text{ for all } i \in \mathbb{Z}.$$

Proof. Suppose that *f* has the GSP and let $\epsilon > 0$. Then, by Lemma 2.3, there exists $\epsilon_0 > 0$ ($\epsilon_0 < \epsilon$) such that for each *x*, $y \in X$,

$$d(x, y) < \epsilon_0 \implies d(gx, gy) < \epsilon \text{ for all } g \in G.$$

Let δ be the constant corresponding to ϵ_0 in the definition of the GSP. Then every (δ, G) -pseudo orbit $\{x_i\}$ of X for f is ϵ_0 -traced by a point $x \in X$, that is, for each i, there exists $g_i \in G$ such that

$$d(f^{i}(x), g_{i}x_{i}) < \epsilon_{0}$$
 for all $i \in \mathbb{Z}$.

Since f is pseudoequivariant, for each $g_i \in G$, there exists $h_i \in G$ such that

$$g_i^{-1}f^i(x) = f^i(h_i x)$$

Moreover, $d(g_i^{-1}f^i(x), x_i) < \epsilon$ and hence $d(f^i(h_i x), x_i) < \epsilon$ for all $i \in \mathbb{Z}$.

The converse can be proved similarly.

We have ([5]) that $f(\Omega_G(f)) = \Omega_G(f)$ and $CR_G(f) = \Omega_G(f)$ for a pseudoequivariant homeomorphism f with GSP on a compact metric G-space X where G is compact.

For $x, y \in X$ and $\delta > 0$, x is said to be (δ, G) -related to y (denoted by $x \stackrel{\delta}{\sim}_G y$) if there exist finite (δ, G) -pseudo orbits $\{x = x_0, x_1, \dots, x_k = y\}$ and $\{y = y_0, y_1, \dots, y_n = x\}$ for f. If for every $\delta > 0$, x is (δ, G) -related to y, then x is said to be *G*-related to y (denoted by $x \sim_G y$). A point x is said to be a *G*-chain recurrent point of fif $x \sim_G x$. $CR_G(f)$ is denoted by the set of all *G*-chain recurrent points of f. A homeomorphism $f: X \to X$ is called topologically *G*-transitive provided that for every nonempty open subsets U and V of X, there exist an integer n > 0 and $g \in G$ such that $gf^n(U) \cap V \neq \emptyset$.

Proof of Theorem A. Since the pseudoequivariant homeomorphism f satisfies the GSP, $CR_G(f) = \Omega_G(f)$. Thus $\Omega_G(f) = \bigcup_{\lambda} B_{\lambda}$ where each B_{λ} is an equivalence class under the relation \sim_G which is defined in $CR_G(f)$.

Claim 1. Each B_{λ} is closed in $\Omega_G(f)$.

Proof. Let $x \in \overline{B_{\lambda}}$. Then we can find a sequence $\{x_i\}$ in B_{λ} which converges to x. Let $\alpha > 0$ be given. Then there exists a finite open cover $\{U_1, \ldots, U_s\}$ of X such that

$$\operatorname{diam}(g\overline{U_i}) \leq \frac{\alpha}{2}$$
 for all $g \in G$ and i with $1 \leq i \leq s$

by Lemma 2.1. So $f(x) \in U_i$ for some *i*. Choose an ϵ_0 -neighborhood $N_{\epsilon_0}(f(x))$ of f(x) such that $N_{\epsilon_0}(f(x)) \subset U_i$. Then since *f* is uniformly continuous, there exists $\delta_0 > 0$ such that

$$d(x, y) < \delta_0 \implies d(f(x), f(y)) < \epsilon_0.$$

Because $\{x_i\}$ converges to x, there is J > 0 such that $d(x_J, x) < \min\{\alpha/2, \delta_0\}$. From the fact that $x_J \in CR_G(f)$, we can find a $(\alpha/2, G)$ -pseudo orbit

$${x_J = y_0, y_1, \ldots, y_{k-1}, y_k = x_J}.$$

So $d(gf(y_0), y_1) < \alpha/2$ for some $g \in G$. Also $d(f(y_0), f(x)) < \epsilon_0$ and hence $d(gf(y_0), gf(x)) < \alpha/2$. Thus,

$$d(gf(x), y_1) \le d(gf(x), gf(y_0)) + d(gf(y_0), y_1) < \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha.$$

Therefore, $\{x, y_1, \ldots, y_k = x_J\}$ is an (α, G) -pseudo orbit. It is clear that there is an (α, G) -pseudo orbit from x_J to x by the uniform continuity of f. It follows from $x \stackrel{\alpha}{\sim}_G x_J$ that $x \stackrel{\alpha}{\sim}_G x_i$ for all i because each $x_i \in B_{\lambda}$. Since α is arbitrary, $x \in B_{\lambda}$. Therefore, B_{λ} is closed.

Claim 2. Each B_{λ} is *f*-invariant.

Proof. To prove this, we firstly show that $x \sim_G f(x)$ for all $x \in \Omega_G(f)$. Let $\alpha > 0$. Then there is $\delta > 0$ ($\delta < \alpha$) such that

$$d(a, b) < \delta \implies d(f^2(a), f^2(b)) < \alpha.$$

Since $x \in \Omega_G(f)$, there are n > 0 and $g \in G$ such that

$$gf^n(N_{\delta}(x)) \cap N_{\delta}(x) \neq \emptyset$$

where $N_{\delta}(x)$ is a δ -neighborhood of x. Then there exists $z \in N_{\delta}(x)$ such that $gf^n(z) \in N_{\delta}(x)$. Hence

$${f(x), f^{2}(z), \ldots, f^{n-1}(z), x}$$

is an (α, G) -pseudo orbit and thus, $x \sim_G f(x)$. Since f is a homeomorphism, we can show that $x \sim_G f^{-1}(x)$ for all $x \in \Omega_G(f)$ similarly. Therefore, $f(B_{\lambda}) = B_{\lambda}$ for each λ .

Claim 3. $Per_G(f)$ is dense in $\Omega_G(f)$.

Proof. Let $\alpha > 0$ be a *G*-expansive constant for *f* and take $\epsilon < \alpha/2$. Since *f* has the GSP, there exists $\delta > 0$ ($\delta < \epsilon$) such that every (δ , *G*)-pseudo orbit is ϵ -traced by a point in *X*. Since *f* is uniformly continuous, there exists a positive constant $\gamma < \delta$ such that if $d(a, b) < \gamma$, then $d(f(a), f(b)) < \delta$. Let $p \in \Omega_G(f)$. Then for every γ -neighborhood $N_{\gamma}(p)$ of *p*, there exist an integer n > 0 and $g \in G$ such that

$$gf^n(N_{\gamma}(p)) \cap N_{\gamma}(p) \neq \emptyset.$$

Choose a point $y \in gf^n(N_{\gamma}(p)) \cap N_{\gamma}(p)$. Since $f^{-n}(g^{-1}y) \in N_{\gamma}(p)$,

$$d(f(p), f(f^{-n}(g^{-1}y))) < \delta.$$

Hence

{...,
$$x_0 = p, x_1 = f^{-n+1}(g^{-1}y), x_2 = f^{-n+2}(g^{-1}y), ..., x_{n-1} = f^{-1}(g^{-1}y), x_n = p, ...}$$

is a (δ, G) -pseudo orbit for f. Since f has the GSP, it follows from Lemma 2.4 that, for each $i \in \mathbb{Z}$, there exist $x \in X$ and $g_i \in G$ such that

$$d(f^{i}(g_{i}x), x_{i}) < \epsilon$$
 for all $i \in \mathbb{Z}$.

Thus,

$$d(f^{k}(f^{n}(g_{k+n}x)), f^{k}(g_{k}x)) \leq d(f^{k}(f^{n}(g_{k+n}x)), x_{k+n}) + d(x_{k+n}, f^{k}(g_{k}x))$$
$$= d(f^{k}(f^{n}(g_{k+n}x)), x_{k+n}) + d(x_{k}, f^{k}(g_{k}x))$$
$$< 2\epsilon < \alpha$$

for all k. Since α is a G-expansive constant for f,

$$G(f^n(x)) = G(x),$$

and hence

$$g_0 x \in Per_G(f) \cap N_{\epsilon}(p)$$

where $N_{\epsilon}(p)$ is an ϵ -neighborhood of p. Therefore, $Per_G(f)$ is dense in $\Omega_G(f)$.

Claim 4. Each B_{λ} is open in $\Omega_G(f)$.

Proof. Let $\alpha > 0$ be a G-expansive constant for f and let $\epsilon < \alpha$. Denote

$$N_{\delta}(B_{\lambda}) = \{ y \in \Omega_G(f) : d(y, B_{\lambda}) < \delta \}$$

where δ is the constant corresponding to ϵ in the definition of the GSP for $f|_{\Omega_G(f)}$. Then for a point $p \in N_{\delta}(B_{\lambda}) \cap Per_G(f)$, there exists $y \in B_{\lambda}$ such that

$$d(y, p) < \delta$$
.

Since $f|_{\Omega_G(f)}$ has the GSP, it follows from Remark 1.10 that

$$W^u(p) \cap W^s(y) \neq \emptyset$$

and

$$W^{s}(p) \cap W^{u}(y) \neq \emptyset.$$

Here, $W^{s}(p)$ and $W^{u}(p)$ are defined on $\Omega_{G}(f)$. So, there exists $y_{0} \in B_{\lambda}$ (in particular,

 y_0 belongs to the α -limit set $\alpha(y)$ such that $y_0 \sim p$, that is, $p \in B_{\lambda}$. Therefore,

$$B_{\lambda} \supset \overline{N_{\delta}(B_{\lambda}) \cap Per_G(f)} \supset N_{\delta}(B_{\lambda}) \cap \overline{Per_G(f)} = N_{\delta}(B_{\lambda}),$$

that is, B_{λ} is open in $\Omega_G(f)$.

Since X is compact and $\Omega_G(f)$ is a closed subset of X, $\Omega_G(f)$ can be covered by finitely many B_{λ} 's, that is, $\Omega_G(f) = \bigcup_{i=1}^n B_i$.

Claim 5. Each B_i is G-invariant.

Proof. Let $x \in B_i$, $g \in G$, and $\delta > 0$. We shall show that $gx \in B_i$. Since $x \in B_i$, there exists a (δ, G) -pseudo orbit $\{x_0 = x, x_1, \dots, x_{n-1}, x_n = x\}$. Then $d(g_0 f(x), x_1) < \delta$ for some $g_0 \in G$. Since f is pseudoequivariant, we can take $h \in G$ such that $g_0 f(x) = hf(gx)$. Thus $\{gx, x_1, \dots, x_{n-1}, x_n = x\}$ is a (δ, G) -pseudo orbit. By Lemma 2.3, there exists $\gamma > 0$ ($\gamma < \delta$) such that

$$d(x, y) < \gamma \implies d(gx, gy) < \delta$$
 for all $g \in G$.

Let $\{x_0 = x, x_1, \dots, x_{n-1}, x_n = x\}$ be a (γ, G) -pseudo orbit. Then

$$d(g_{n-1}f(x_{n-1}), x) < \gamma$$
 for some $g_{n-1} \in G$

and hence $d(gg_{n-1}f(x_{n-1}), gx) < \delta$. Thus $\{x_0 = x, x_1, \dots, x_{n-1}, gx\}$ is a (δ, G) -pseudo orbit. Since δ is arbitrary, $gx \sim_G x$. Therefore, $gx \in B_i$.

Claim 6. $f|_{B_i}$ has the GSP.

Proof. Let $0 < \epsilon < \min\{d(B_i, B_j): i \neq j, 1 \le i, j \le n\}$ be given. Since $f|_{\Omega_G(f)}$ has the GSP, there exists $\delta < \epsilon$ such that every (δ, G) -pseudo orbit $\{x_k\} \subset B_i$ is ϵ -traced by a point $x \in \Omega_G(f)$. This means that, for each k, there exists $g_k \in G$ such that

$$d(f^k(x), g_k x_k) < \epsilon.$$

Since B_i is G-invariant and $x_0 \in B_i$, $g_0 x_0 \in B_i$. Therefore $x \in B_i$.

Claim 7. $f|_{B_i}$ is topologically *G*-transitive.

Proof. Let U and V be nonempty open subsets of B_i . Take $x \in U$ and $y \in V$. Then $x \sim_G y$. Let $N_{\epsilon}(x)$ and $N_{\epsilon}(y)$ be ϵ -neighborhoods of x and y respectively such that $N_{\epsilon}(x) \subset U$ and $N_{\epsilon}(y) \subset V$. Choose a positive $\epsilon_1 < \epsilon$ such that

$$d(a, b) < \epsilon_1 \implies d(ga, gb) < \epsilon \text{ for all } g \in G.$$

Since $f|_{B_i}$ has the GSP, there exists $\delta_1 > 0$ such that every (δ_1, G) -pseudo orbit in B_i is ϵ_1 -traced by a point in B_i . Thus, a (δ_1, G) -pseudo orbit $\{x_0 = x, \ldots, x_n = y\} \subset B_i$ from x to y is ϵ_1 -traced by a point $z \in B_i$. In particular,

$$d(z, g_0 x) < \epsilon_1$$
 and $d(f^n(z), g_n y) < \epsilon_1$ for some $g_0, g_n \in G$

Since $d(g_0^{-1}z, x) < \epsilon$ and $d(g_n^{-1}f^n(z), y) < \epsilon$,

$$g_0^{-1}z \in N_\epsilon(x) \subset U$$

and

$$g_n^{-1}f^n(z) \subset N_{\epsilon}(y) \subset V.$$

Since $f^n(g_0^{-1}z) \in f^n(U)$ and f is pseudoequivariant,

$$g_1 f^n(z) \in f^n(U)$$
 for some $g_1 \in G$.

Choose $g \in G$ such that $gg_1 = g_n^{-1}$. Then $g_n^{-1}f^n(z) \in gf^n(U)$. Therefore, $gf^n(U) \cap V \neq \emptyset$.

We next prepare the following three lemmas to complete Theorem B.

Lemma 2.5. Let $f: X \to X$ be a pseudoequivariant homeomorphism on a compact metric G-space X with G compact. Then

$$W^i(x) = W^i(p)$$
 for any $x \in W^i(p)$ $(i = s, u)$.

Proof. We shall prove only the case i = s. Let $y \in W^s(x)$ and let $\epsilon > 0$. Since $y \in W^s(x)$, there exists $N_1 \in \mathbb{N}$ such that $n \ge N_1$ implies that

$$d(f^n(h_nx), f^n(y)) < \frac{\epsilon}{2}$$
 for some $h_n \in G$.

Let $\delta > 0$ be the constant satisfying the following:

$$d(x, y) < \delta \implies d(gx, gy) < \frac{\epsilon}{2}$$
 for all $g \in G$.

Since $x \in W^{s}(p)$, there exists $N_{2} \in \mathbb{N}$ such that $n \geq N_{2}$ implies that

$$d(f^n(g'_n p), f^n(x)) < \delta$$
 for some $g'_n \in G$.

Hence for some $h'_n \in G$ with $h'_n f^n(x) = f^n(h_n x)$,

$$d(h'_n f^n(g'_n p), h'_n f^n(x)) < \frac{\epsilon}{2}.$$

Since $h'_n f^n(g'_n p) = f^n(g_n p)$ for some $g_n \in G$,

$$d(f^n(g_np), f^n(h_nx)) < \frac{\epsilon}{2}.$$

Take $N = \max\{N_1, N_2\}$. Then $n \ge N$ implies that

$$d(f^{n}(g_{n}p), f^{n}(y)) \leq d(f^{n}(g_{n}p), f^{n}(h_{n}x)) + d(f^{n}(h_{n}x), f^{n}(y)) < \epsilon.$$

Therefore, $W^{s}(x) \subset W^{s}(p)$. Similarly, one can prove $W^{s}(p) \subset W^{s}(x)$.

Lemma 2.6. Let $f: X \to X$ be a pseudoequivariant homeomorphism on a compact metric G-space X with G compact and let $x \in W^i(p)$. Then

$$gx \in W^{\iota}(p)$$
 for every $g \in G$,

and hence

$$G(W^{i}(p)) = W^{i}(p) \quad (i = s, u).$$

Proof. Let $x \in W^s(p)$, $g \in G$ and let $\epsilon > 0$. Then there is $\delta > 0$ such that if $d(x, y) < \delta$, then $d(gx, gy) < \epsilon$ for all $g \in G$. Since for each $n \in \mathbb{Z}$, we have $g_n \in G$ such that

$$\lim_{n\to\infty} d(f^n(g_np), f^n(x))) = 0,$$

that is, there exists $N \in \mathbb{N}$ such that

$$n \ge N \implies d(f^n(g_n p), f^n(x)) < \delta.$$

Hence, for $h'_n \in G$ with $h'_n f^n(x) = f^n(gx)$,

$$d(h'_n f^n(g_n p), h'_n f^n(x)) < \epsilon.$$

Let $h'_n f^n(g_n p) = f^n(h_n p)$. Then

$$d(f^n(h_n p), f^n(gx)) < \epsilon.$$

Therefore, $gx \in W^{s}(p)$. Similarly, one can prove the statement for the case i = u.

Lemma 2.7. Let $f: X \to X$ be a pseudoequivariant homeomorphism on a compact metric G-space X with G compact. Then for any $\epsilon > 0$, there exists a positive

constant $\delta < \epsilon$ satisfying the following: if $x \in W^u_{\delta}(y)$, then for all $g \in G$,

(1)
$$gx \in W^u_{\epsilon}(y)$$

and

(2)
$$gy \in W^u_{\epsilon}(x).$$

Proof. Let $\epsilon > 0$. Then, by Lemma 2.3, there exists a positive constant $\delta < \epsilon$ such that

$$d(x, y) < \delta \implies d(gx, gy) < \epsilon \text{ for all } g \in G.$$

Let $x \in W^u_{\delta}(y)$ and let $g \in G$. Then for each $n \ge 0$, there exists $g_n \in G$ such that

$$d(f^{-n}(x), f^{-n}(g_n y)) < \delta.$$

(1) Take $g'_n \in G$ such that $g'_n f^{-n}(x) = f^{-n}(gx)$. Then

$$d(f^{-n}(gx), g'_n f^{-n}(g_n y)) < \epsilon.$$

Since f is pseudoequivariant, $gx \in W^u_{\epsilon}(y)$.

(2) Take $g'_n \in G$ such that $g'_n f^{-n}(g_n y) = f^{-n}(gy)$. Then

$$d(g'_n f^{-n}(x), f^{-n}(gy)) < \epsilon.$$

Since f is pseudoequivariant, $gy \in W^u_{\epsilon}(x)$ for all $g \in G$.

Proof of Theorem B. Let $\epsilon > 0$ be a constant which is less than the *G*-expansive constant for $f|_B$ and let $\delta > 0$ ($\delta < \epsilon$) be the constant corresponding to ϵ in the definition of the GSP. Let $X_p = \overline{W^u(p) \cap B}$ for $p \in B \cap Per_G(f)$. We can see directly from Lemmas 2.3 and 2.6 that X_p is *G*-invariant, that is, if $x \in X_p$, then $gx \in X_p$ for all $g \in G$.

Claim 1. X_p is open in B.

Proof. Since $p \in Per_G(f)$, we have an integer m > 0 and $g_1 \in G$ such that $g_1 f^m(p) = p$. Denote $N_{\delta}(X_p) = \{y \in B : d(y, X_p) < \delta\}$. Let $q \in N_{\delta}(X_p) \cap Per_G(f)$. Then there is $x \in W^u(p) \cap B$ with $d(q, x) < \delta$. Note that $g_2 f^n(q) = q$ for some integer n > 0 and $g_2 \in G$. Since $f|_B$ has the GSP, the (δ, G) -pseudo orbit

{...,
$$f^{-2}(x), f^{-1}(x), q, f(q), f^{2}(q), ...}$$

100

is ϵ -traced by a point $x' \in B$, that is, for each $t \in \mathbb{Z}$, there exists $h_t \in G$ such that (a) $d(x', h_0 q) < \epsilon$;

- (b) $d(f^{t}(x'), h_{t}f^{t}(q)) < \epsilon \ (t > 0);$
- (c) $d(f^{-t}(x'), h_{-t}f^{-t}(x)) < \epsilon \ (t > 0).$

Hence, it follows from Remark 1.10 that $x' \in W^s(q) \cap W^u(x) \cap B$.

Since f is pseudoequivariant and $p \in Per_G(f)$, for each $k \in \mathbb{Z}$, we have $g_{kmn} \in G$ such that $f^{kmn}(g_{kmn}p) = p$. Since $W^u(x) = W^u(p) = W^u(g_{kmn}p)$ by Lemmas 2.5 and 2.6,

$$f^{kmn}(x') \in f^{kmn}(W^u(g_{kmn}p)) = W^u(f^{kmn}(g_{kmn}p)) = W^u(p).$$

Since $q \in W^{s}(x')$, for each $k \in \mathbb{Z}$, one can find $h_{kmn} \in G$ such that

$$\lim_{k\to\infty} d(h_{kmn}f^{kmn}(x'), f^{kmn}(q)) = 0.$$

Take $i_{kmn} \in G$ such that $i_{kmn}(h_{kmn})^{-1} f^{kmn}(q) = q$. Then

$$\lim_{k \to \infty} d(i_{kmn} f^{kmn}(x'), i_{kmn}(h_{kmn})^{-1} f^{kmn}(q)) = \lim_{k \to \infty} d(i_{kmn} f^{kmn}(x'), q) = 0$$

Hence, $q \in \overline{W^u(p) \cap B} = X_p$ because $i_{kmn} f^{kmn}(x') \in W^u(p)$ for each $k \in \mathbb{Z}$ by Lemma 2.6. Therefore,

$$X_p \supset \overline{N_{\delta}(X_p) \cap Per_G(f)} \supset N_{\delta}(X_p) \cap \overline{Per_G(f)} = N_{\delta}(X_p),$$

that is, X_p is open in B.

Note that $f(X_p) = f(\overline{W^u(p) \cap B}) = \overline{f(W^u(p)) \cap f(B)} = \overline{W^u(f(p)) \cap B} = X_{f(p)}$. Since $X_p = X_{gp}$ for any $g \in G$ and $g_1 f^m(p) = p$,

$$f^{m}(X_{p}) = X_{f^{m}(p)} = X_{g_{1}f^{m}(p)} = X_{p}$$

Take the smallest integer a > 0 such that $a \le m$ and $f^a(X_p) = X_p$.

Claim 2. $B = \bigcup_{i=0}^{a-1} f^i(X_p).$

Proof. Let $y \in B$. Since $f|_B$ is topologically *G*-transitive, for each 1/n-neighborhood $N_{1/n}(y)$ of *y*, there are k > 0 and $h_n \in G$ such that $h_n N_{1/n}(y) \cap f^k(X_p) \neq \emptyset$. So $h_n N_{1/n}(y) \cap \left(\bigcup_{j=0}^{a-1} f^j(X_p)\right) \neq \emptyset$ for each $n \in \mathbb{N}$. We may assume that $h_n \to h \in G$ because *G* is compact. Since $\bigcup_{j=0}^{a-1} f^j(X_p)$ is closed in *B*, $hy \in \bigcup_{j=0}^{a-1} f^j(X_p)$. Since $G(f^j(X_p)) = G(X_{f^j(p)}) = X_{f^j(p)} = f^j(X_p)$, we have $y \in \bigcup_{j=0}^{a-1} f^j(X_p)$.

Claim 3. $X_p = X_q$ for $q \in X_p \cap Per_G(f)$.

Proof. Let $q \in X_p \cap Per_G(f)$ and suppose *m* and *n* are *G*-periodic numbers of *p* and *q* respectively. Since $N_{\delta}(X_p) = X_p$ for the constant $\delta > 0$ in the above of Claim 1, $W^u_{\delta}(q) \subset X_p$. We firstly show that $p \in X_q$. Suppose that $p \notin X_q$. Then $d(K, X_q) > 0$ where $K = X_p \setminus X_q$. Since $q \in X_p = \overline{W^u(p) \cap B}$, there exists $z \in W^u(p) \cap B$ such that $d(z, q) < d(K, X_q)$. Since $z \in X_p$ and $z \notin K$, $z \in X_q$. Furthermore, for each $j \in \mathbb{Z}$, there exists $g'_{mni} \in G$ such that

$$\lim_{j \to \infty} d(f^{-mnj}(z), f^{-mnj}(g'_{mnj}p)) = 0.$$

For each $j \in \mathbb{Z}$, choose $g_{mnj} \in G$ with $g_{mnj}f^{-mnj}(g'_{mnj}p) = p$. Then we have

$$\lim_{j\to\infty}d(g_{mnj}f^{-mnj}(z), p)=0.$$

So $g_{mnj}f^{-mnj}(z) \notin X_q$ for sufficiently large *j*. Hence,

$$h_{mnj}z \notin f^{mnj}(X_q) = X_q$$

for $h_{mnj} \in G$ with $g_{mnj} f^{-mnj}(z) = f^{-mnj}(h_{mnj}z)$. Thus, $z \notin X_q$. This is a contradiction. Therefore, $p \in X_q$.

Let $y \in W^u(q)$ and let $0 < \delta_1 < \delta_2 < \delta_3 = \delta$ such that

$$d(x, y) < \delta_i \implies d(gx, gy) < \delta_{i+1}$$
 for all $g \in G$ $(i = 1, 2)$.

Then there exists $N \in \mathbb{N}$ such that if $k \ge N$, then $d(f^{-k}(y), f^{-k}(h_k q) < \delta_1$ for some $h_k \in G$. Choose $j \in \mathbb{N}$ with $mnj \ge N$. Then

$$d((f^{-i} \circ f^{-mnj})(y), (f^{-i} \circ f^{-mnj})(h_{mnj+i}q)) < \delta_1 \text{ for all } i \ge 0,$$

that is,

$$f^{-mnj}(y) \in W^u_{\delta_1}(f^{-mnj}(q)).$$

By Lemma 2.7 (2), $gf^{-mnj}(q) \in W^u_{\delta_2}(f^{-mnj}(y))$ for all $g \in G$. Since $q \in Per_G(f)$, we have $q \in W^u_{\delta_2}(f^{-mnj}(y))$. Again, by Lemma 2.7 (2), $gf^{-mnj}(y) \in W^u_{\delta}(q)$ for all $g \in G$. In particular, $f^{-mnj}(y) \in W^u_{\delta}(q)$. This means that $y \in f^{mnj}(W^u_{\delta}(q))$ for some $j \ge 0$. So $W^u(q) \subset \bigcup_{j>0} f^{mnj}(W^u_{\delta}(q))$. Therefore,

$$X_q = \overline{W^u(q) \cap B} \subset \overline{\bigcup_{j \ge 0} f^{mnj}(W^u_\delta(q)) \cap B} \subset \overline{X_p \cap B} = X_p \cap B = X_p.$$

Similarly, we have $X_p \subset X_q$.

102

Claim 4. $X_p \cap f^j(X_p) = \emptyset$ for 0 < j < a.

Proof. Suppose $X_p \cap f^j(X_p) \neq \emptyset$ for some *j*. Since $X_p \cap f^j(X_p)$ is open in *B*, we can find $q \in X_p \cap f^j(X_p) \cap Per_G(f)$. Then $X_q = X_p = f^j(X_p)$, which is a contradiction to the choice of the integer *a*.

Claim 5. $f^a|_{X_p}$ is topologically *G*-mixing.

Proof. Let U and V be non-empty open subsets of X_p and let $q \in V \cap Per_G(f)$. Then $f^{aj}(q) \in X_p \cap Per_G(f)$ for all $j \in \mathbb{Z}$. Since $X_p = X_{f^{aj}(q)}$ for all $j \in \mathbb{Z}$,

$$U \cap W^u(f^{aj}(q)) = U \cap (W^u(f^{aj}(q)) \cap B) \neq \emptyset$$
 for all $j \in \mathbb{Z}$.

Let n > 0 be a *G*-periodic number of *q*. Then for each *j* such that $0 \le j \le n-1$, there exists $z_j \in U \cap W^u(f^{aj}(q))$. Since *f* is pseudoequivariant, we may take this statement: for each $t \in \mathbb{Z}$, there exists $h_t \in G$ such that

$$\lim_{t\to\infty} d(f^{-ant}(z_j), f^{aj}(h_t f^{-ant}(q))) = 0.$$

For each $t \in \mathbb{Z}$, choose $g_t \in G$ such that $g_t f^{aj}(h_t f^{-ant}(q)) = f^{aj}(q)$. Then we have

$$\lim_{t\to\infty} d(g_t f^{-ant}(z_j), f^{aj}(q)) = 0,$$

and thus

$$\lim_{t\to\infty}g_tf^{-ant}(z_j)=f^{aj}(q).$$

Since $f^{aj}(q) \in f^{aj}(V)$, for each j with $0 \le j \le n-1$, we may choose $N_j > 0$ such that for all $t \ge N_j$,

$$g_t f^{-ant}(z_j) \in f^{aj}(V).$$

Let $M = \max\{N_j : 0 \le j \le n-1\}$. For each $t \ge M$, we get t = ns + j. If $s \ge M$, then

$$f^{-at}(i_s z_j) = f^{-aj}(g_s f^{-ans}(z_j)) \in V$$

for each $i_s \in G$ such that $f^{-ans-aj}(i_s z_j) = f^{-aj}(g_s f^{-ans}(z_j))$. Hence,

$$i_s z_i \in f^{at}(V)$$
 if $s \ge M$ (that is, $t \ge nM$).

Thus, it follows from $z_i \in U$ that there exists $k_t \in G$ such that

$$k_t f^{at}(V) \cap U \neq \emptyset$$
 for each $t \ge nM$.

Therefore, $f^a|_{X_p}$ is topologically *G*-mixing.

ACKNOWLEDGEMENT. The authors would like to thank the referee for very detailed comments in improving the exposition of the paper.

References

- [1] N. Aoki: On homeomorphisms with pseudo-orbit tracing property, Tokyo J. Math. 6 (1983), 329–334.
- [2] N. Aoki and K. Hiraide: Topological theory of dynamical systems, Recent advances, North-Holland, Amsterdam, 1994.
- [3] T. Choi and J. Kim: G-expansive homeomorphisms on compact metric G-spaces, preprint.
- [4] R. Das: *Expansive self-homeomorphisms on G-spaces*, Period. Math. Hungar. **31** (1995), 123–130.
- [5] E. Shah: Dynamical properties of maps on topological spaces and G-spaces, Ph.D. Thesis, 2005.

Taeyoung Choi Department of Mathematics Chungnam National University Daejeon 305–764 South Korea

Current address: National Institute for Mathematical Sciences 628 Daeduk-Boulevard Yuseong-gu Daejeon South Korea e-mail: shadowcty@gmail.com

Junhui Kim Division of Mathematics & Informational Statistics Wonkwang University Iksan 570–749 South Korea e-mail: junhikim@wonkwang.ac.kr