# A NOTE ON TODOROV SURFACES 

Carlos RITO

(Received April 15, 2008)


#### Abstract

Let $S$ be a Todorov surface, i.e., a minimal smooth surface of general type with $q=0$ and $p_{g}=1$ having an involution $i$ such that $S / i$ is birational to a $K 3$ surface and such that the bicanonical map of $S$ is composed with $i$.

The main result of this paper is that, if $P$ is the minimal smooth model of $S / i$, then $P$ is the minimal desingularization of a double cover of $\mathbb{P}^{2}$ ramified over two cubics. Furthermore it is also shown that, given a Todorov surface $S$, it is possible to construct Todorov surfaces $S_{j}$ with $K^{2}=1, \ldots, K_{S}^{2}-1$ and such that $P$ is also the smooth minimal model of $S_{j} / i_{j}$, where $i_{j}$ is the involution of $S_{j}$. Some examples are also given, namely an example different from the examples presented by Todorov in [9].


## 1. Introduction

An involution of a surface $S$ is an automorphism of $S$ of order 2 . We say that a map is composed with an involution $i$ of $S$ if it factors through the double cover $S \rightarrow$ $S / i$. Involutions appear in many contexts in the study of algebraic surfaces. For instance in most cases the bicanonical map of a surface of general type is non-birational only if it is composed with an involution.

Assume that $S$ is a smooth minimal surface of general type with $q=0$ and $p_{g} \neq 0$ having bicanonical map $\phi_{2}$ composed with an involution $i$ of $S$ such that $S / i$ is nonruled. Then, according to [10, Theorem 3], $p_{g}(S)=1, K_{S}^{2} \leq 8$ and $S / i$ is birational to a $K 3$ surface (Theorem 3 of [10] contains the assumption $\operatorname{deg}\left(\phi_{2}\right)=2$, but the result is still valid assuming only that $\phi_{2}$ is composed with an involution).

Todorov ([9]) was the first to give examples of such surfaces. His construction is as follows. Consider a Kummer surface $Q$ in $\mathbb{P}^{3}$, i.e., a quartic having as only singularities 16 nodes $a_{i}$. The double cover of $Q$ ramified over the intersection of $Q$ with a general quadric and over the 16 nodes of $Q$ is a surface of general type with $q=0$, $p_{g}=1$ and $K^{2}=8$. Then, choose $a_{1}, \ldots, a_{6}$ in general position and let $G$ be the intersection of $Q$ with a general quadric through $j$ of the nodes $a_{1}, \ldots, a_{6}$. The double cover of $Q$ ramified over $Q \cap G$ and over the remaining $16-j$ nodes of $Q$ is a surface of general type with $q=0, p_{g}=1$ and $K^{2}=8-j$.

Imposing the passage of the branch curve by a 7 -th node, one can obtain a surface with $K^{2}=p_{g}=1$ and $q=0$. This is the so-called Kunev surface. Todorov ([8]) has

[^0]shown that the Kunev surface is a bidouble cover of $\mathbb{P}^{2}$ ramified over two cubics and a line.

I refer to [5] for an explicit description of the moduli spaces of Todorov surfaces.
We call Todorov surfaces smooth surfaces $S$ of general type with $p_{g}=1$ and $q=0$ having bicanonical map composed with an involution $i$ of $S$ such that $S / i$ is birational to a $K 3$ surface.

In this paper we prove the following:

Theorem 1. Let $S$ be a Todorov surface with involution $i$ and $P$ be the smooth minimal model of $S / i$. Then:
a) there exists a generically finite degree 2 morphism $P \rightarrow \mathbb{P}^{2}$ ramified over two cubics;
b) for each $j \in\left\{1, \ldots, K_{S}^{2}-1\right\}$, there is a Todorov surface $S_{j}$, with involution $i_{j}$, such that $K_{S_{j}}^{2}=j$ and $P$ is the smooth minimal model of $S_{j} / i_{j}$.

The idea of the proof is the following. First we verify that the evenness of the branch locus $B^{\prime}+\sum A_{i} \subset P$ implies that each nodal curve $A_{j}$ can only be contained in a Dynkin graph $G$ of type $\mathrm{A}_{2 n+1}$ or $\mathrm{D}_{n}$. Then we use a Saint-Donat result to show that $A_{j}$ can be chosen such that the linear system $\left|B^{\prime}-\mathrm{G}\right|$ is free. This implies b ). Finally we conclude that there is a free linear system $\left|B_{0}^{\prime}\right|$ with $B_{0}^{\prime 2}=2$, which gives a).

Notation and conventions. We work over the complex numbers; all varieties are assumed to be projective algebraic. For a projective smooth surface $S$, the canonical class is denoted by $K$, the geometric genus by $p_{g}:=h^{0}\left(S, \mathcal{O}_{S}(K)\right)$, the irregularity by $q:=h^{1}\left(S, \mathcal{O}_{S}(K)\right)$ and the Euler characteristic by $\chi=\chi\left(\mathcal{O}_{S}\right)=1+p_{g}-q$.

A (-2)-curve or nodal curve on a surface is a curve isomorphic to $\mathbb{P}^{1}$ such that $C^{2}=-2$. We say that a curve singularity is negligible if it is either a double point or a triple point which resolves to at most a double point after one blow-up.

The rest of the notation is standard in algebraic geometry.

## 2. Preliminaries

The next result follows from [7, (4.1), Theorem 5.2, Propositions 5.6 and 5.7].

Theorem 2 ([7]). Let $|D|$ be a complete linear system on a smooth $K 3$ surface $F$, without fixed components and such that $D^{2} \geq 4$. Denote by $\varphi_{D}$ the map given by $|D|$. If $\varphi_{D}$ is non-birational and the surface $\varphi_{D}(F)$ is singular then there exists an elliptic pencil $|E|$ such that $E D=2$ and one of these cases occur:
(i) $D \equiv \mathcal{O}_{F}(4 E+2 \Gamma)$ where $\Gamma$ is a smooth rational irreducible curve such that $\Gamma E=$ 1. In this case $\varphi_{D}(F)$ is a cone over a rational normal twisted quartic in $\mathbb{P}^{4}$;
(ii) $D \equiv \mathcal{O}_{F}\left(3 E+2 \Gamma_{0}+\Gamma_{1}\right)$, where $\Gamma_{0}$ and $\Gamma_{1}$ are smooth rational irreducible curves such that $\Gamma_{0} E=1, \Gamma_{1} E=0$ and $\Gamma_{0} \Gamma_{1}=1$. In this case $\varphi_{D}(F)$ is a cone over a rational


Fig. 1. Configuration (iii) b).
normal twisted cubic in $\mathbb{P}^{3}$;
(iii) a) $D \equiv \mathcal{O}_{F}\left(2 E+\Gamma_{0}+\Gamma_{1}\right)$, where $\Gamma_{0}$ and $\Gamma_{1}$ are smooth rational irreducible curves such that $\Gamma_{0} E=\Gamma_{1} E=1$ and $\Gamma_{0} \Gamma_{1}=0$;
b) $D \equiv \mathcal{O}_{F}(2 E+\Delta)$, with $\Delta=2 \Gamma_{0}+\cdots+2 \Gamma_{N}+\Gamma_{N+1}+\Gamma_{N+2}(N \geq 0)$, where the curves $\Gamma_{i}$ are irreducible rational curves as in Fig. 1.
In both cases $\varphi_{D}(F)$ is a quadric cone in $\mathbb{P}^{3}$.
Moreover in all the cases above the pencil $|E|$ corresponds under the map $\varphi_{D}$ to the system of generatrices of $\varphi_{D}(F)$.

## 3. Proof of Theorem 1

We say that a curve $D$ is nef and $\operatorname{big}$ if $D C \geq 0$ for every curve $C$ and $D^{2}>0$. In order to prove Theorem 1, we show the following:

Proposition 3. Let $P$ be a smooth $K 3$ surface with a reduced curve $B$ satisfying: (*) $B=B^{\prime}+\sum_{1}^{t} A_{i}, t \in\{9, \ldots, 16\}$, where $B^{\prime}$ is a nef and big curve with at most negligible singularities, the curves $A_{i}$ are disjoint (-2)-curves also disjoint from $B^{\prime}$ and $B \equiv 2 L, L^{2}=-4$, for some $L \in \operatorname{Pic}(P)$.
Then:
a) Let $\pi: V \rightarrow P$ be a double cover with branch locus $B$ and $S$ be the smooth minimal model of $V$. Then $q(S)=0, p_{g}(S)=1, K_{S}^{2}=t-8$ and the bicanonical map of $S$ is composed with the involution $i$ of $S$ induced by $\pi$;
b) If $t \geq 10$, then $P$ contains a smooth curve $B_{0}^{\prime}$ and ( -2 -curves $A_{1}^{\prime}, \ldots, A_{t-1}^{\prime}$ such that $B_{0}^{\prime 2}=B^{\prime 2}-2$ and $B_{0}:=B_{0}^{\prime}+\sum_{1}^{t-1} A_{i}^{\prime}$ also satisfies condition $(*)$.

Proof. a) Let $L \equiv(1 / 2) B$ be the line bundle which determines $\pi$. From the double cover formulas (see e.g. [1]) and the Riemann-Roch theorem,

$$
\begin{gathered}
q(S)=h^{1}\left(P, \mathcal{O}_{P}(L)\right), \\
p_{g}(S)=1+h^{0}\left(P, \mathcal{O}_{P}(L)\right), \\
h^{0}\left(P, \mathcal{O}_{P}(L)\right)+h^{0}\left(P, \mathcal{O}_{P}(-L)\right)=h^{1}\left(P, \mathcal{O}_{P}(L)\right) .
\end{gathered}
$$



Fig. 2. $\mathrm{E}_{6}$.
Since $2 L-\sum A_{i}$ is nef and big, the Kawamata-Viehweg's vanishing theorem (see e.g. [3, Corollary 5.12, c)]) implies $h^{1}\left(P, \mathcal{O}_{P}(-L)\right)=0$. Hence

$$
h^{1}\left(P, \mathcal{O}_{P}(L)\right)=h^{1}\left(P, \mathcal{O}_{P}\left(K_{P}-L\right)=h^{1}\left(P, \mathcal{O}_{P}(-L)\right)\right)=0
$$

and then $q(S)=0$ and $p_{g}(S)=1$. As

$$
h^{0}\left(P, \mathcal{O}_{P}\left(2 K_{P}+L\right)\right)=h^{0}\left(P, \mathcal{O}_{P}(L)\right)=0
$$

the bicanonical map of $S$ is composed with $i$ (see [2, Proposition 6.1]).
The ( -2 )-curves $A_{1}, \ldots, A_{t}$ give rise to ( -1 )-curves in $V$, therefore

$$
K_{S}^{2}=K_{V}^{2}+t=2\left(K_{P}+L\right)^{2}+t=2 L^{2}+t=t-8 .
$$

b) Denote by $\xi \subset P$ the set of irreducible curves which do not intersect $B^{\prime}$ and denote by $\xi_{i}, i \geq 1$, the connected components of $\xi$. Since $B^{2} \geq 2$, the Hodge index theorem implies that the intersection matrix of the components of $\xi_{i}$ is negative definite. Therefore, following [1, Lemma I.2.12], the $\xi_{i}$ 's have one of the five configurations: the support of $\mathrm{A}_{n}, \mathrm{D}_{n}, \mathrm{E}_{6}, \mathrm{E}_{7}$ or $\mathrm{E}_{8}$ (see e.g. [1, III.3] for the description of these graphs).

Claim 1. Each nodal curve $A_{i}$ can only be contained in a graph of type $A_{2 n+1}$ or $\mathrm{D}_{n}$.

Proof. Suppose that there exists an $A_{i}$ which is contained in a graph of type $\mathrm{E}_{6}$. Denote the components of $\mathrm{E}_{6}$ as in Fig. 2. If $A_{i}=a_{3}$ or $A_{i}=a_{6}$, then $a_{6} B=a_{6} a_{3}=1$ or $a_{3} B=1$, contradicting $B \equiv 2 L$. If $A_{i}=a_{1}$ or $A_{i}=a_{2}$, then $a_{2} B=1$ or $a_{1} B=1$, the same contradiction. By the same reason, $A_{i} \neq a_{4}$ and $A_{i} \neq a_{5}$.

Analogously one can verify that each $A_{i}$ can not be in a graph of type $A_{2 n}, E_{7}$ or $E_{8}$.

The possible configurations for the curves $A_{i}$ in the graphs are shown in Fig. 3. Fix one of the curves $A_{i}$ and denote by G the graph containing it.


Fig. 3. The numbers represent the multiplicity and the doted curve represent a general element $B_{0}^{\prime}$ in $\left|B^{\prime}-\mathrm{G}\right|$.

Claim 2. We can choose $A_{i}$ such that the linear system $\left|B^{\prime}-\mathrm{G}\right|$ has no fixed components (and thus no base points, from [7, Theorem 3.1]).

Proof. Denote by $\varphi_{\left|B^{\prime}\right|}$ the map given by the linear system $\left|B^{\prime}\right|$. We know that $\varphi_{\left|B^{\prime}\right|}$ is birational or it is of degree 2 (see [7, Section 4]). If $\varphi_{\left|B^{\prime}\right|}$ is birational or the point $\varphi_{\left|B^{\prime}\right|}(\mathrm{G})$ is a smooth point of $\varphi_{\left|B^{\prime}\right|}(P)$, the result is clear, since $\left|B^{\prime}-\mathrm{G}\right|$ is the pullback of the linear system of the hyperplanes containing $\varphi_{\left|B^{\prime}\right|}(\mathrm{G})$ and $\varphi_{\left|B^{\prime}\right|}^{*}\left(\varphi_{\left|B^{\prime}\right|}(\mathrm{G})\right)=$ G (see [1, Theorems III 7.1 and 7.3]).

Suppose now that $\varphi_{\left|B^{\prime}\right|}$ is non-birational and that $\varphi_{\left|B^{\prime}\right|}(\mathrm{G})$ is a singular point of $\varphi_{\left|B^{\prime}\right|}(P)$. Then $B^{\prime}$ is linearly equivalent to a curve with one of the configurations described in Theorem 2. Except for the last configuration, G contains at most two (-2)curves. But $t \geq 9$, thus in these cases there exists other graph $\mathrm{G}^{\prime}$ containing a curve $A_{j}$ such that $\varphi_{\left|B^{\prime}\right|}\left(\mathrm{G}^{\prime}\right)$ is a non-singular point of $\varphi_{\left|B^{\prime}\right|}(P)$ (notice that Theorem 2 implies that $\varphi_{\left|B^{\prime}\right|}(P)$ contains only one singular point).

So we can suppose that $B^{\prime}$ is equivalent to a curve with a configuration as in Theorem 2, (iii), b). None of the curves $\Gamma_{0}, \ldots, \Gamma_{N}$ can be one of the curves $A_{j}$. For this note that: if $\Gamma_{0}=A_{j}$, then $E B=E\left(B^{\prime}+\sum A_{i}\right)=2+E \Gamma_{0}=3 \not \equiv 0(\bmod 2)$; if $\Gamma_{1}=A_{j}$, then $\Gamma_{0} B=\Gamma_{0} \Gamma_{1}=1 \not \equiv 0(\bmod 2)$; etc. Again this configuration can contain at most two curves $A_{j}$, the components $\Gamma_{N+1}, \Gamma_{N+2}$.

Let $B_{0}^{\prime}$ be a smooth curve in $\left|B^{\prime}-\mathrm{G}\right|$. If G is an $\mathrm{A}_{2 n+1}$ graph, then, using the notation of Fig. 3,

$$
\begin{aligned}
\left(B_{0}^{\prime}+\sum_{1}^{n} E_{i}\right)+\sum_{n+2}^{t} A_{i} & \equiv\left(B^{\prime}-\sum_{1}^{n+1} A_{i}\right)+\sum_{n+2}^{t} A_{i} \\
& \equiv B^{\prime}+\sum_{1}^{t} A_{i}-2 \sum_{1}^{n+1} A_{i} \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

Therefore the curve

$$
B_{0}:=B_{0}^{\prime}+\sum_{1}^{n} E_{i}+\sum_{n+2}^{t} A_{i}
$$

satisfies condition (*).
The case where $G$ is a $D_{m}$ graph is analogous.
Proof of Theorem 1. Let $V \rightarrow S$ be the blow-up at the isolated fixed points of the involution $i$ and $W$ be the minimal resolution of $S / i$. We have a commutative diagram


The branch locus of $\pi$ is a smooth curve $B=B^{\prime}+\sum_{1}^{t} A_{i}$, where the curves $A_{i}$ are $(-2)$-curves which contract to the nodes of $S / i$. Let $P$ be the minimal model of $W$ and $\bar{B} \subset P$ be the projection of $B$. Let $L \equiv(1 / 2) B$ be the line bundle which determines $\pi$.

First we verify that $\bar{B}$ satisfies condition (*) of Proposition 3: from [2, Proposition 6.1], $\chi\left(\mathcal{O}_{W}\right)-\chi\left(\mathcal{O}_{S}\right)=K_{W}\left(K_{W}+L\right)$, hence $K_{W}\left(K_{W}+L\right)=0$, which implies that $\bar{B}$ has at most negligible singularities; now from [5, Theorem 5.2] we get $K_{S}^{2}=(1 / 2){\overline{B^{\prime}}}^{2}$ and $1=p_{g}(S)=(1 / 4)\left(K_{S}^{2}-t\right)+3$, thus $t=K_{S}^{2}+8$ and $\bar{B}^{2}={\overline{B^{\prime}}}^{2}-2 t=2 K_{S}^{2}-2 t=-16$, which gives $(\bar{B} / 2)^{2}=-4$ and ${\overline{B^{\prime}}}^{2} \geq 2$; finally $\overline{B^{\prime}}$ is nef because, on a $K 3$ surface, an irreducible curve with negative self intersection must be a ( -2 )-curve.

Now using Proposition 3, b) and a) we obtain statement b). In particular we get also that $P$ contains a curve $B_{0}^{\prime}$ and ( -2 )-curves $A_{i}^{\prime}, i=1, \ldots, 9$, such that $B_{0}:=$ $B_{0}^{\prime}+\sum_{1}^{9} A_{i}^{\prime}$ is smooth and divisible by 2 in the Picard group. Moreover, the complete linear system $\left|B_{0}^{\prime}\right|$ has no fixed component nor base points and $B_{0}^{\prime 2}=2$. Therefore, from [7], $\left|\boldsymbol{B}_{0}^{\prime}\right|$ defines a generically finite degree 2 morphism

$$
\varphi:=\varphi_{\left|B_{0}^{\prime}\right|}: P \rightarrow \mathbb{P}^{2} .
$$

Since $g\left(B_{0}^{\prime}\right)=2$, this map is ramified over a sextic curve $\beta$. The singularities of $\beta$ are negligible because $P$ is a $K 3$ surface.

We claim that $\beta$ is the union of two cubics. Let $p_{i} \in \beta$ be the singular point corresponding to $A_{i}^{\prime}, i=1, \ldots, 9$. Notice that the $p_{i}$ 's are possibly infinitely near. Let $C \subset \mathbb{P}^{2}$ be a cubic curve passing through $p_{i}, i=1, \ldots, 9$. As $C+\varphi_{*}\left(B_{0}^{\prime}\right)$ is a plane quartic, we have

$$
\left(\varphi^{*}(C)-\sum_{1}^{9} A_{i}^{\prime}\right)+B_{0}^{\prime}+\sum_{1}^{9} A_{i}^{\prime} \equiv \varphi^{*}\left(C+\varphi_{*}\left(B_{0}^{\prime}\right)\right) \equiv 0 \quad(\bmod 2),
$$

hence also $\varphi^{*}(C)-\sum_{1}^{9} A_{i}^{\prime} \equiv 0(\bmod 2)$, i.e. there exists a divisor $J$ such that

$$
2 J \equiv \varphi^{*}(C)-\sum_{1}^{9} A_{i}^{\prime} .
$$

Since $P$ is a $K_{3}$ surface, the Riemann-Roch theorem implies that $J$ is effective. From $J A_{i}^{\prime}=1, i=1, \ldots, 9$, we obtain that the plane curve $\varphi_{*}(J)$ passes with multiplicity 1 through the nine singular points $p_{i}$ of $\beta$. This immediately implies that $\varphi_{*}(J)$ is not a line nor a conic, because $\beta$ is a reduced sextic. Therefore $\varphi_{*}(J)$ is a reduced cubic. So $\varphi_{*}(J) \equiv C$ and then

$$
\varphi^{*}\left(\varphi_{*}(J)\right) \equiv 2 J+\sum_{1}^{9} A_{i}^{\prime} .
$$

This implies that $\varphi_{*}(J)$ is contained in the branch locus $\beta$, which finishes the proof of a).

## 4. Examples

Todorov gave examples of surfaces $S$ with bicanonical image $\phi_{2}(S)$ birational to a Kummer surface having only ordinary double points as singularities. The next sections contain an example with $\phi_{2}(S)$ non-birational to a Kummer surface and an example with $\phi_{2}(S)$ having an $\mathrm{A}_{17}$ double point.
4.1. $S / i$ non-birational to a Kummer surface. Here we construct smooth surfaces $S$ of general type with $K^{2}=2,3, p_{g}=1$ and $q=0$ having bicanonical map of degree 2 onto a $K 3$ surface which is not birational to a Kummer surface.

It is known since [4] that there exist special sets of 6 nodes, called Weber hexads, in the Kummer surface $Q \in \mathbb{P}^{3}$ such that the surface which is the blow-up of $Q$ at these nodes can be embedded in $\mathbb{P}^{3}$ as a quartic with 10 nodes. This quartic is the Hessian of a smooth cubic surface.

The space of all smooth cubic surfaces has dimension 4 while the space of Kummer surfaces has dimension 3. Thus it is natural to ask if there exist Hessian "nonKummer" surfaces, i.e. which are not the embedding of a Kummer surface blown-up at 6 points. This is studied in [6], where the existence of "non-Kummer" quartic Hessians $H$ in $\mathbb{P}^{3}$ is shown. These are surfaces with 10 nodes $a_{i}$ such that the projection from one node $a_{1}$ to $\mathbb{P}^{2}$ is a generically $2: 1$ cover of $\mathbb{P}^{2}$ with branch locus $\alpha_{1}+\alpha_{2}$ satisfying: $\alpha_{1}, \alpha_{2}$ are smooth cubics tangent to a nondegenerate conic $C$ at 3 distinct points. We use this in the following construction.

Let $\alpha_{1}, \alpha_{2}$ and $C$ be as above. Take the morphism $\pi: W \rightarrow \mathbb{P}^{2}$ given by the canonical resolution of the double cover of $\mathbb{P}^{2}$ with branch locus $\alpha_{1}+\alpha_{2}$. The strict transform of $C$ gives rise to the union of two disjoint ( -2 )-curves $A_{1}, A_{2} \subset W$ (one of these correspond to the node $a_{1}$ from which we have projected).

Let $T \in \mathbb{P}^{2}$ be a general line. Let $A_{3}, \ldots, A_{11} \subset W$ be the disjoint ( -2 )-curves contained in $\pi^{*}\left(\alpha_{1}+\alpha_{2}\right)$. We have $\pi^{*}\left(T+\alpha_{1}\right) \equiv 0(\bmod 2)$, hence, since $\alpha_{1}$ is in the branch locus, also

$$
\pi^{*}(T)+\sum_{3}^{11} A_{i} \equiv 0 \quad(\bmod 2)
$$

The linear systems $\left|\pi^{*}(T)+A_{2}\right|$ and $\left|\pi^{*}(T)+A_{1}+A_{2}\right|$ have no fixed components nor base points (see [7, (2.7.3) and Corollary 3.2]). The surface $S$ is the minimal model of the double cover of $W$ ramified over a general element in

$$
\left|\pi^{*}(T)+A_{2}\right|+\sum_{2}^{11} A_{i}
$$

or

$$
\left|\pi^{*}(T)+A_{1}+A_{2}\right|+\sum_{1}^{11} A_{i}
$$

4.2. $\quad \phi_{2}(S)$ with $A_{17}$ and $A_{1}$ singularities. This section contains a brief description of a construction of a surface $S$ of general type having bicanonical image $\phi_{2}(S) \subset$ $\mathbb{P}^{3}$ a quartic $K 3$ surface with $A_{17}$ and $A_{1}$ singularities. I omit the details, which were verified using the Computational Algebra System Magma.

Let $C_{1}$ be a nodal cubic, $p$ an inflection point of $C_{1}$ and $T$ the tangent line to $C_{1}$ at $p$. The pencil generated by $C_{1}$ and $3 T$ contains another nodal cubic $C_{2}$, smooth at $p$. The curves $C_{1}$ and $C_{2}$ intersect at $p$ with multiplicity 9 .

Let $\rho: X \rightarrow \mathbb{P}^{2}$ be the resolution of $C_{1}+C_{2}$ and $\pi: W \rightarrow X$ be the double cover with branch locus the strict transform of $C_{1}+C_{2}$. Denote by $\bar{l}$ the line containing the nodes of $C_{1}$ and $C_{2}$ and by $l \subset W$ the pullback of the strict transform of $\bar{l}$. The map given by $\left|(\rho \circ \pi)^{*}(\bar{l})+l\right|$ is birational onto a quartic $Q$ in $\mathbb{P}^{3}$ with an $A_{1}$ and $A_{17}$ singularities (notice that $l$ is a $(-2)$-curve and $\left.\left((\rho \circ \pi)^{*}(\bar{l})+l\right) l=0\right)$.

Let $B^{\prime} \in\left|(\rho \circ \pi)^{*}(\bar{l})+l\right|$ be a smooth element and $A_{1}, \ldots, A_{9}$ be the disjoint (-2)curves contained in $(\rho \circ \pi)^{*}(p)$. Let $S$ be the minimal model of the double cover of $W$ with branch locus $B^{\prime}+\sum_{1}^{9} A_{i}+l$. The surface $Q$ is the image of the bicanonical map of $S$ and $p_{g}(S)=1, q(S)=0, K_{S}^{2}=2$.

Acknowledgements. The author wishes to thank Margarida Mendes Lopes for all the support. He is a member of the Mathematics Center of the Universidade de Trás-os-Montes e Alto Douro and is a collaborator of the Center for Mathematical Analysis, Geometry and Dynamical Systems of Instituto Superior Técnico, Universidade Técnica de Lisboa. This research was partially supported by FCT (Portugal) through Project POCTI/MAT/44068/2002.

## References

[1] W. Barth, C. Peters and A. Van de Ven: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer, Berlin, 1984.
[2] C. Ciliberto and M. Mendes Lopes: On surfaces with $p_{g}=2, q=1$ and non-birational bicanonical map; Adv. Geom. 2 (2002), 281-300.
[3] H. Esnault and E. Viehweg: Lectures on Vanishing Theorems, DMV Seminar 20, Birkhäuser, Basel, 1992.
[4] J. Hutchinson: The Hessian of the cubic surface, Bull. Amer. Math. Soc. 5 (1898), 282-292.
[5] D.R. Morrison: On the moduli of Todorov surfaces; in Algebraic Geometry and Commutative Algebra I, Kinokuniya, Tokyo, 1988, 313-355.
[6] J. Rosenberg: Hessian quartic surfaces that are Kummer surfaces, math.AG/9903037.
[7] B. Saint-Donat: Projective models of K-3 surfaces, Amer. J. Math. 96 (1974), 602-639.
[8] A.N. Todorov: Surfaces of general type with $p_{g}=1$ and $(K, K)=1$, I, Ann. Sci. École Norm. Sup. (4) 13 (1980), 1-21.
[9] A.N. Todorov: A construction of surfaces with $p_{g}=1, q=0$ and $2 \leq\left(K^{2}\right) \leq 8$. Counterexamples of the global Torelli theorem, Invent. Math. 63 (1981), 287-304.
[10] G. Xiao: Degree of the bicanonical map of a surface of general type, Amer. J. Math. 112 (1990), 713-736.

Departamento de Matemática<br>Universidade de Trás-os-Montes e Alto Douro 5000-911 Vila Real<br>Portugal<br>e-mail: crito@utad.pt


[^0]:    2000 Mathematics Subject Classification. 14J29, 14J28.

