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Abstract

For each integek > 2, Johnson gave a 3-manifold with Heegaard splittings of
genera R and X — 1 such that any common stabilization of these two surfaces ha
genus at leastk3— 1. We modify his argument to produce a 3-manifold with two
Heegaard splitings of genu& 8uch that any common stabilization of them has genus
at least 8.

1. Introduction

A genus g Heegaard splittinfpr a closed 3-manifoldV is a triple &, H—, H™)
whereH™, H* are genugy handlebodies such thidi~UH* =M andH- N H* =
dH™ =9H™ = X. The genugy surfaceX is called theHeegaard surfaceAny closed,
orientable, connected 3-manifold has Heegaard splittifigg Heegaard splittings for
the same 3-manifold are calledotopic if there is an ambient isotopy taking one of
the Heegaard surfaces to the other.

Supposex is a properly embedded arc id ™ parallel toX. Add a regular neigh-
borhood ofa to H™ and delete it fromH™*. Then the result is a new Heegaard split-
ting whose genus is one greater than that of the originastabilizationof a Heegaard
splitting is another splitting obtained by a finite sequen€esuch processes. Any two
Heegaard splittings of the same 3-manifold have a commoliligetion [12], [17].
That is to say, there is a third Heegaard splitting which @dpic to a stabilization
of each of the initial splittings. Thetable genusof two Heegaard splittings is the
minimal genus of their common stabilizations.

It had been conjectured that the stable genus of any two Heggaplittings is at
most p + 1, where p is the larger of the two initial genera, which is calldte stabi-
lization conjecture This conjecture has been verified for many classes of 3{oldgj
including Seifert fibered spaces [15], most genus-two 3ifols [14] (see also [2])
and most graph manifolds [4] (see also [16]).

Johnson [9] gave a counterexample for this conjecture. Boh & > 2, he con-
structed an irreducible toroidal 3-manifold with Heegaamlittings of genera R— 1
and X such that the stable genus of these two splittingskis- 3. In fact, we can see
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that the stable genus is at mo% 31 by a simple observation, and the point is the
bounding from below. His construction can be easily modifiegproduce an atoroidal
3-manifold with Heegaard splittings of gener& 2 n and X whose stable genus is
3k —n, wheren is larger than 1. However, the largaris, the closer the stable genus
is to the genus of the original. I is larger thank — 2, it does not give a counter-
example for the conjecture. We modify his construction te tdpposite direction and
refine the bounding for the stable genus from bellow as thieviiahg:

Theorem 1. For every k> 2, there exists a&-manifold with two Heegaard split-
tings of genu2k whose stable genus Bk.

This 3-manifold is reducible. Actually, we get it by takingrmected sum of two
closed 3-manifolds with Heegaard splittings of gekusith high Hempel distance (see
Section 6). It may be a strong point of this paper that we camsttoct a counter-
example for the stabilization conjecture from genus-two@nifolds by substituting 2 for
k. There are fairly many studies on genus-two 3-manifolds.ifkstance, Kobayashi [10]
gave a complete list of genus-two 3-manifolds admittingtrivial torus decompositions.

Prior to Johnson [9], a counterexample for the “orientedsieer’ of the stabi-
lization conjecture was given by Hass, Thompson and Tharfsg In the “oriented
version”, two Heegaard splittings are called isotopic oiflyhe isotopy preserves the
order of the handlebodies. For a Heegaard splitting, theinmaihngenus of its stabi-
lizations where the handlebodies can be interchanged bysatopy is called thdlip
genus They showed that there is a Heegaard splitting whose flipugés twice the
initial genus.

For the oriented version, Johnson [8] gave an estimate foergé Heegaard split-
tings. He showed that the flip genus of any Heegaard splitiingenusk with Hempel
distanced is at least mif2k, (1/2)d}. His counterexample in [9] and ours for the non-
oriented version can be viewed as applications of this adiom.

Bachman [1] also gave several counterexamples using eiffaechniques. One is
for the oriented version, and another is for the non-origntersion.

| would like to express my appreciation to Ken'ichi OhshiKaguyoshi Kobayashi
and Makoto Sakuma for their advices and encouragement. Idnaigb like to thank
Jesse Johnson for helpful comments.

2. Heegaard splittings

To begin with, we will define Heegaard splittings for comp@&eimanifolds pos-
sibly with boundaries. Acompression bodis a connected 3-manifoléi which can be
obtained fromS x [0, 1] by attaching finitely many 1-handles ®x {1} where S is a
closed, orientable, possibly disconnected surface. Weusd the notations like_H =
Sx {0} anda,H = aH \ o_H. Handlebodies are regarded as the extreme cases of
compression bodies, i.8.H = @. A Heegaard splittingfor a compact 3-manifoldM is
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a triple (¢, H -, H*) whereH, H* are compression bodies such tht UH™ = M
andH NH*=09,H =d,H* = X. Thegenusof (£, H , H™) is the genus of:.

In addition to stabilizations, we will use some sorts of @pens to construct new
Heegaard splittings from given Heegaard splittings. Now, will define such opera-
tions in the next three paragraphs:

Suppose X1, H, H,") and (&, Hy, H)) are Heegaard splittings for compact
3-manifolds M; and My, respectively. LetB; be a ball inM; such thatZ; N B; is an
equatorial plane oB; for eachi =1, 2. Suppose: dB; — 9B, is a homeomorphism
such thatp(H; N 9B;) = Hy N 9B, and ¢(H,” N dB;y) = HY N 9B,. Let M be the
3-manifold obtained by gluing the closures bf; \ B; and My \ B, by ¢, namely, the
connected sum oM; and M,. Let H~ be the compression body obtained by gluing
the closures oH; \ B; and H; \ B; by ¢ and letH* be the compression body ob-
tained by gluing the closures df;" \ B, and H," \ B, by ¢. Then £, H, H™) is a
Heegaard splitting foM where X = 9, H~ =9, H™. It is called theconnected sum
of (21, H{, H;") and &2, H, H,).

SupposeMs, My, (21, Hy, H;Y) and €2, H,, H,") are as above. SupposeH;" is
non-empty and homeomorphic to H,". Let M be the union ofM; and M, identify-
ing 9_H," with 5_H,” by some homeomorphism. Sin¢¢* is a compression body, it
can be decomposed into a product manifaldd, " x[0, 1] and a collection of 1-handles
for eachi = 1, 2. The part {H;" x [0, 1]) U (0_H," x [0, 1]) of M can be collapsed
without changing the topology oM. Then we can regard the 1-handles which be-
longed toH," are attached tdd,, forming a new compression body *. Similarly,
H, and the 1-handles which belonged k"~ form another compression body .
Then (£, H™, HT) is a Heegaard splitting foM where® = 9, H™ = o, H™. We
will say that (£, H™, H™) is the amalgamationof (1, H, H;") and &2, Hy, H,").
Note thatH] c H™,H; c H* and (£, H*, H™) is the amalgamation ofs(;, H;, H,)
and &1, H, H;").

SupposeM is a compact 3-manifold with a single boundary componengl an
(2, H™, H') is a Heegaard splitting foM such thato_H* = 9M. DecomposeH
into a product manifoldh_H™* x [0, 1] and a collection of 1-handles. Let be a ver-
tical arc ino_H™ x [0, 1]. Add a neighborhood of the union of andd_H* to H™,
to obtain a compression body’*. Then the closure of the complement f* in M
is homeomorphic to the union ob(H* \ (an open disk)x [0, 1] and 1-handles. This
is a handlebody, denoted kby'~. We will call (¥, H~, H'*) the boundary stabiliza-
tion of (X, H™, H*) whereX’ = 9H'~ = 9, H'*. We are afraid the labels dfi’~ and
H’* are confusing, but we would like to keep the condition thM is contained in
the latter compression body.

Johnson’s counterexample was constructed by amalgamatliong the torus bound-
aries. All his arguments in [9] can be applied also if the luaries have genus more
than one. We will make the same construction changing theepdétorus boundaries by
sphere boundaries. Though it is common in theories on Heggaittings to assume
that the 3-manifolds do not have sphere boundaries, we dbawa to do so at least in
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the above definitions. It is useful in our arguments to dedhwimalgamations along
sphere boundaries while they are no other than connected aarthe following:

Proposition 2. Suppose(Zi, H~, H™) is a Heegaard splitting for a closed
3-manifold M, and B is an open ball in II-T for i =1, 2 Then the amalgamation of
(21, Hy, H{ \ B1) and (22, H,, H,7 \ By) is isotopic(in the oriented versionto the

connected sum ofzq, H;, H;") and (2, H,, H,).

Proof. See above pictures. In Fig. H," is regarded as a ball attached 1-handles
while H; as its complement. In Fig. 21,” and H, are figured similarly but inside
out. The handlebodiebl;", H; are painted gray an®,, B, are patterned with meshes.
The amalgamation is constructed by gluikg \ B; and M\ B, as Fig. 3 and collapsing
the product part as Fig. 4. On the other hand, choose aBjalthich intersectsy; in
a disk for eachi = 1, 2 as Figs. 5, 6. The connected sum is constructed by gluing

M1\ B; and M, \ B, as Fig. 7, which is equivalent to Fig. 4. [l
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Proposition 3. Suppose(z, H, H*) is a Heegaard splitting for a closed
3-manifold M, and B, B are open balls in H,H™, respectively. Then the bound-
ary stabilization of (X, H-, H" \ BT) is isotopic (in the oriented version to
(Z,Ht,H \ B").

This can be proved by pushinB* into H- from H*. The details are left to
the reader.

3. Sweep-outs and graphics

Rubinstein and Scharlemann [13] introduced a powerful nmech to analyze
Heegaard splittings. It is called tlRubinstein—Scharlemann graphic just thegraphic
for short. Roughly speaking, it is a 1-complex ir]], 1]x [—1, 1] representing the re-
lation between two Heegaard splittings for a 3-manifold. il/lheir original construc-
tion was based on the Cerf theory [3], it is useful to defineitarms ofstable maps
after Kobayashi and Saeki [11].

SupposeX, Y are smooth manifolds ang, ¥: X — Y are smooth maps. The maps
¢ and ¢ are calledisotopicif there are diffeomorphismhy: X — X andhy: Y =Y,
each isotopic to the identity map on its respective spaceh siaty = hy o ¥ o hy.

A smooth mapgp: X — Y is called stable if there exists an open neighborhboaf
@ in C*®(X,Y) (under the WhitneyC* topology, see [6]) such that every map lh
is isotopic top. A Morse function is a stable function from a smooth manifadRt.

SupposeM is a compact, orientable, connected, smooth 3-manifold, & =
d_MUd,M is a partition of boundary components bf. Let ®~ be a finite graph in
M adjacent to all components 6f M and let®* similarly for 3, M. A sweep-oufor
M is a smooth functionf: M — [—1, 1] such thatf ~(t) is a closed, connected surface
parallel to f ~1(0) for t € (=1, 1), while f 1(=1)=©"UJ_M and f (1) = ©F U, M.
The sets® U d_M and ®* U 9. M are called thespinesof f. We will say that
f representsa Heegaard splitting3, H—, H*) for M if f can be isotoped so that
f20) =%, f(-1)cH and f}(1)c H™.

SupposéaVy; is a compact, orientable, connected, smooth, 3-dimenissoitenanifold
of a smooth 3-manifoldM, and f; is a sweep-out foM; for eachi = 1, 2. Assume
M1 N My is a non-empty 3-dimensional submanifold lgf. We define a smooth map
fi x fo: M1 N My — [—1, 1] x [—1, 1] by (f; x f2)(p) = (f1(p), f2(p)). In the case
whenM; = M, = M, Kobayashi and Saeki [11] showed that we can defdgnand f,
by an arbitrarily small isotopy so thdg x f; is stable on the complement of the spines of
f; and f,. An almost identical argument induces the same propertiengeneral case.
Thus, we can assumf x f; is a stable map on the complemevit' of the spines off;
and fy in My N Mo.

The Rubinstein—Scharlemann graphic féy and f, is a properly embedded
1-complex in 1, 1] x [—1, 1] naturally extended from the discriminant set df &
f2)|m+. We mean the discriminant set as the image of the singulaSget, = {p €
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M* | rank@(f1 x f2))p < 1}. The singular set, .+, is a 1-dimensional smooth sub-
manifold in M* consisting of all the points where a level surface fafis tangent to
a level surface off,. The tangent point is either a “center” or a “saddle”. The- dis
criminant set is a smooth immersion &f ¢, into (=1, 1)x (=1, 1) with normal cross-
ings except for finitely many cusps. We regard the crossirsgsadence-four vertices
and the cusps as valence-two vertices of the graphic. Theycated crossing verti-
cesand birth-death verticesrespectively. On the boundary of1, 1] x [—1, 1], there
are valence-one or valence-two vertices of the graphic.hEsige is monotonously
increasing or decreasing as a graph (1) x (-1, 1). See [11] or [13] for de-
tailed descriptions.

For eachs € (—1, 1), the pre-image inf; x f, of the vertical arc{s} x [—1, 1] is
the level surfacef; 1(s). The restriction off, to the level surface has critical levels
corresponding to the intersections of the vertical arc dreddraphic.

DEFINITION 4. Sweep-outsf; and f, are calledgenericif f; x f, is stable on
M* and every vertical or horizontal arc or 1, 1]x[—1, 1] contains at most one vertex
of the graphic.

4. Labeling the graphics

We will characterize some relations of the level surfacesweéep-outs. It gives a
“labeling” for the complementary regions of the graphic.isTkind of labeling is one
of the most useful techniques for reading graphics.

SupposeM is a compact, orientable, connected, smooth 3-manifold, Nuns a 3-
dimensional submanifold oM. Let (X, H™, H') and (T, G—, G*) be Heegaard split-
tings for M and N, respectively. Letf andg be sweep-outs representing,(H™, H™)
and (T, G-, G*), respectively. We will use the notations liKEs = f~I(s), Hy =
f1([-1,8]), HF = f (s, 1]) and T; = g (t).

DEFINITION 5. Fors,t € (-1, 1), we will say thafl; is mostly abovess if Ho N
T; is contained in a disk iff;. Similarly, T; is mostly belowZs if H NT; is contained
in a disk inT;.

DEFINITION 6. For generic sweep-outé and g, we will say that f spans gif
T is mostly belowXs and T, is mostly aboveXs for some values, t_, t. € (-1, 1).
Moreover, we will say thatf spansg positivelyif t = < t,, or negativelyif t >t,.

DEFINITION 7. For generic sweep-outé and g, we will say thatf splits g if
there is a values € (—1, 1) such that for every € (—1, 1), the level surfacd; is neither
mostly above nor belowEs.

Let R, be the set of pointss(t) € (—1, 1)x (-1, 1) such thafl; is mostly above
s. Similarly, let Ry be the set of points such that is mostly belowXs. Note that
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if a point (s, t) is in Ry then its left side €1, s] x {t} is contained inR, because the
areaHg N T, in the surfacesl; increase withs. Symmetrically, if 6 t) € R, then
[s, 1) x {t} C Ry. The right side ofR, and the left side ofR, are bounded by edges
of the graphic.

Fig. 8 illustrates the condition that spansg positively. In Fig. 9, f spansg nega-
tively. In Fig. 10, f spansg positively and negatively. In Fig. 11f splits g. Note
that exactly one of the conditions spanning or splittinggeys for any generic pair of
sweep-outs.

DEFINITION 8. We will say that &£, H, H*) spang(T, G, G™) positively (nega-
tively) if (X,H-,H*)and (T,G,G™) are represented by generic sweep-dutndg, re-
spectively, such that spansgy positively (negatively). We will also say that(H—, H™)
splits(T,G~,G™)if (£,H ,H*)and (T,G,G™) are represented by generic sweep-outs
f andg such thatf splitsg.

Note that if (€, H™, H") spans T, G~, G") positively, (Z, H", H™) spans
(T, G-, G*) negatively.

5. Spanning sweep-outs

The spanning condition gives a bound for the genus of one efHbegaard split-
tings. SupposeX, H™, HT) is a Heegaard splitting for a smooth 3-manifdit, and
(T,G~,G") is a Heegaard splitting for a 3-dimensional submanifilabf M. Suppose
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f and g are generic sweep-outs representiiy H~, H™) and (T, G, G*), respect-
ively. Assume f spansg positively.

By the definition, there is a valuel <s <1 and values—1 <t <t, <1
such thatT, is mostly belowXs and T;, is mostly aboveXs. That is to say,T;
is contained inHg except for some disks whil&;, is contained inH;" except for
some disks as Fig. 12. In the product manifgd'([t_, to]), the surfacexs must be
“mostly separating” one boundary component from the otfiére reader can notice
that s N g~([t_, t;]) has genus at least the genusTof By similar observations, we
have the following:

Lemma 9. If f spans g the>sN N has genus at least the genus of T for some
value se (-1, 1). If f spans g positively and negatively th&3N N has genus at least
twice the genus of T for some valueeg—1, 1).

Recall that we allow 3-manifolds to have sphere boundai&sl, next four lem-
mas can be proved identically as those in brackets.

Lemma 10 ([8, Lemma 9]). Every Heegaard splitting spans itself positively.

Lemma 11 ([9, Lemma 12]). If (X,H,H™) spans(T,G~,G™) positively(nega-
tively) then every stabilization ¢f£, H—, H™) spans(T, G, G™) positively(negatively.

Lemma 12 ([9, Lemma 14]). Suppose(Zi, H;, H,") and (2, H,, H)) are
Heegaard splittings for compacsmooth 3-manifolds M and M, respectively. Let
(2, H, HT) be the amalgamation ofZ, Hi, H;") and (22, Hy, H)). Suppose
(T, G, G") is a Heegaard splitting for a3-dimensional submanifold N of M If
(21, Hy, H") spans (T, G-, G*) positively (negatively then (X, H-, H*) spans
(T, G, G*) positively (negatively.

Lemma 13 ([9, Lemma 16]). Suppose M is a smootB-manifold with a single
boundary component an, H™, H*) is a Heegaard splitting for M such that H+ =
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M. Suppos€T, G, G') is a Heegaard splitting for 8-dimensional submanifold N
of M. Let(Z', H'~, H'") be the boundary stabilization ¢, H ,H™). If (Z,H,H™)
spans (T, G-, G*) positively (negatively then (¥/, H~, H'*) spans (T,G, G")
negatively(positively).

6. Splitting sweep-outs

The curve complex CT) of a closed, orientable, connected surfacés a simpli-
cial complex defined as follows: The vertices ©{T) are isotopy classes of essential
loops inT. Distinct n vertices span an(— 1)-simplex of C(T) if and only if they are
represented by pairwise disjoint loopsTh There is a canonical distanceamong the
vertices. We mean that(v;, v2) is the number of edges on the shortest path between
two verticesv; and v, in the 1-skeleton ofC(T).

Suppose T, G-, G™) is a Heegaard spliting. Whe®~ and D* are essential
disks inG~ and G™, respectivelydD~ anddD™ can be regarded as vertices ©fT).
Hempel [7] defined thalistanceof (T, G, G*), denoted byd(T), as the minimum of
d(@D~, aD™") over all pairs of essential diskd~ ¢ G, D* c G*. It is a numerical
invariant indicating the irreducibility of Heegaard spiigs (see [7]).

The goal in this section is to estimate the genus ©f K—, H*) by d(T) when
a Heegaard splitting3, H~, H™) splits another Heegaard splittind (G—, GT). We
will almost trace the way of [9, Section 6] but modify it slifjnto avoid arguments
with the irreducibility of the manifolds.

SupposeM; and M, are irreducible, closed, smooth 3-manifolds other ti8in
Let M be the 3-manifold obtained by removing an open ball frivn for eachi =
1,2. LetM be the union ofM; and Mj glued at their boundaries, namely, the con-
nected sum ofM; and M. Take eitherM; or MJ, and rewrite it asN. Suppose
(,H,H™) is a Heegaard splitting of gentsfor M, and T, G, G*) is a Heegaard
splitting of genus at least 2 with distance at least 2 for Assume £, H, H™)
splits (T, G-, G™). By definition, there are generic sweep-outsand g representing
(Z,H,H") and (T, G, G"), respectively such thaf splits g.

Lemma 14. There exists a valugys (—1, 1) such that
(1) There are no vertices of the graphic on the vertical &sg} x [—1, 1].
(2) 5 N T contains an essential loop in; Tor each regular value t for fg_ .

Proof. LetC be the set of values, € (—1, 1) satisfying the condition (2). When
the condition (2) fails, eitheHg N'T; or Hs'g NT; is contained in a disk iM; for some
valuet, so T; is mostly above or belowkEg. ThereforeC can be considered as the
complement of the projections d®, U Ry in [—1, 1] x {pt}. Since f splits g, the set
C is a non-empty closed interval.

If C is a single point{s;}, there is a crossing vertes,(t;) of which the left quad-
rant is contained inR, and the right quadrant is contained Ry. For a smalle, the
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intersectionHg™_, N T, becomesHg,, N T, by a transformation including only two
singularities. HoweverH;g N Ty, is contained in a disk whiIeHSfH N T, coversT,
except for some disks. This is possible only whienis a torus. Since we assume the
genus of T, G~, G*) is at least 2, the closed interval is non-trivial.

There are finitely many vertices in the graphic, so theretexsvalues, in C such
that the vertical ardsp} x [-1, 1] passes through no vertices of the graphic. [

Similarly to H; and Hg", we will write G; = g~%([—1, t]) and G;" = g~([t, 1]).

Lemma 15. There exists a non-trivial closed intervfd, b] € [—1, 1] such that
(1) For a smalle, the intersectionzs, N To—. has a component bounding an essential
disk of G_, or a=—1.
(2) For each te (a, b), the intersectionXs, N T; does not have any loops bounding
essential disks of Gor G; .
(3) For a smalle, the intersectiontg, N Ty, has a component bounding an essential
disk of GI,, or b=1.

Proof. LetR_ be the set of pointss(t) € (=1, 1)x (-1, 1) such thaZs N T; has
a component bounding an essential diskGyf. Similarly, Let Ry be the set of points
such thatZs N T; has a component bounding an essential diskspf They determine
another labeling for the graphic.

Let a be the maximum of the closure &®® N ({so} x [—1,1]) (or =1 if R_. N
({0} x[—1, 1]) = 9). Let b be the minimum of the closure a®, N ({s} x[a, 1]) (or 1
if Ry N ({so} x[a, 1]) = 9).

If there is a horizontal arc{1, 1]x {to} which intersects botfiR_ and R, the level
surfaceT;, has a level loop off |1, bounding an essential disk @ and a level loop
bounding an essential disk @;". It contradicts that the distance of (G~, G™) is at
least 2. Therefore no horizontal arcs intersect bBthand R,.. If a = b then &, a)
must be a crossing vertex of the graphic. Since there are nize® on{s} x[—1, 1],
the closed intervald, b] is non-trivial. ]

Fig. 13 illustrates the segmefiy} x [a, b]. We will consider the intersection loops
on this segment and construct a subcomplexC¢fy) from these loops.

Let &' be a regular value fog|s_ just abovea and letb’ be a regular value for
gls, Just belowb. Let A be the union of the disks bounded by the inessential loops
of g, Ng7i({a,b}) in Xg. Let F be the union of£g, Ng~([a’, b']) and A. Consider
a projection mapr from g=*([a’, b']) onto To.

Lemma 16. If two level loops of ¢ are isotopic in F then their projections are
isotopic in .
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Proof. Any two level loops are disjoint ifr so if two level loops are isotopic
then they bound an annulud C F. Note that A may contain some disks ok. By
the condition (2) in Lemma 15, the boundary of a disk sfalso bounds a disk in
Ty or Ty. Replacing the disks ofA by the disks inTy or Ty, we can produce a
new annulusA’ contained ing~%([a/, b']). The projection of A’ into Ty determines a
homotopy from the image of one boundary Af to the image of the other. Thus the
projections of the two loops are isotopic. []

Let L be the set of isotopy classes of level loopsghf. A representative of an
elementl € L projects to a simple closed curve ify. If the projection is essential
in To, we definen,(l) to be the corresponding vertex of the curve compB{y). If
the projection is inessential, we defing(l) = 0. By the previous lemmag, is well
defined as a map from to the disjoint unionC(Tg) LI {O}.

Isotopy classes of essential level loopsgdf determine a pair-of-pants decompos-
ition for F. The following can be proved identically as [9, Lemma 23].

Lemma 17. If I; and I, are cuffs of the same pair of pants in\FL. then their
projections can be isotoped to be disjoint.

For each regular value € [&, b'] for g|g, let L' be the set of isotopy classes of
loops in F N T;. Loops inF N T; are pairwise disjoint so their projections are pair-
wise disjoint. Moreover the projections contain at least essential loop by the con-
dition (2) in Lemma 14. Therefore the subcomplek of C(To) spanned byr,(L') N
C(Tp) is non-empty.

If there are no critical levels fog|r between regular values andt, then L% =
L%, soLg = L&. If there is a single critical level of center tangency beiwé and
to, the difference betweeh™ and L% is the isotopy class of a trivial loop iff. By
the condition (2) in Lemma 15, a trivial loop iR projects to a trivial loop inTp. It
implies 7, (L") N To = 7. (L%) N To, so LE = LE. If there is a single critical level of
saddle tangency betweenandty, either one loop inF N'T,, is replaced by two loops
in FNT, or two loops inFNT, is replaced by one loop ik NT;, at the critical level.
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If those three loops are essential i they bound a pair of pants i \ L. By the
previous lemma, their projections can be isotoped to bemér disjoint. Thus, there
is an edge ofC(Ty) connectingL‘é and L‘é. If one of those three loops is trivial iR
thenLg and LE have common vertices. Becaukeis the union ofL! over all regular
values forg|g, the subcomplex.c of C(Tp) spanned byr.(L) N C(Tp) is connected.

Consider two vertices andv’ in L¢c. Supposer = vg, vs,...,v, = v is the shortest
edge path connecting them inc. Letl; € L projects tov; for eachi =0, 1,...,n.
If I; andl; are cuffs of the same pair of pants 1\ L then there is an edge dfc
connectingy; and vj. Since the path is minimal, and j must be consecutive. Then,
we can estimate the diameter bt by the number of pairs of pants iR \ L. The
number of pairs of pants ir \ L is at most the negative Euler characteristic Fof
Since the boundary components Bf are essential irntg, the Euler characteristic of
F is at least that of£. We can conclude that the diameter lof is at most R — 2.
See the proof of [9, Lemma 24] for the details of this argument

We are ready to prove the following:

Lemma 18. If (X, H™, HT) splits (T, G—, GT) then 2k > d(Tp).

Proof. Consider the case > —1. By the condition (1) and (2) in Lemma 15,
¥, N Tae has a component bounding an essential diskspf, while g N Tay, does
not. That impliesa must be a critical level forg|z, containing a saddle tangency.
As above, the projections of the level loops before and dfiex singularity can be
isotoped to be pairwise disjoint. The projection of one c thvel loops before this
singularity bounds an essential disk Gfy. The projections of the level loops after
this singularity are contained ihc. Thus, the boundary of the essential diskGy is
connected td_c by an edge inC(Tp).

Consider the casa = —1. The compression bod§; is a small neighborhood of
the spine. IfG is a handlebody, every component B§ N G is an essential disk of
Gy. It contradicts the condition (2) in Lemma 15. ThereféreG, = dN and every
component ofXg N Ty is parallel tod_G;. The compression bod, has essential
disks disjoint from any such loop because the genus,db, is at least 2. Similarly
to the above argument, the boundary of an essential diskjofs connected td_c by
an edge inC(Tp).

Symmetrical arguments fds imply that the boundary of an essential disk @f
is connected td_c by an edge inC(Tp). Since the diameter of ¢ is at most R — 2,
the distance of T, G—, G*) is at most R. O

7. lsotopies of sweep-outs

While we recognize Heegaard splittings up to isotopy, thanspg or splitting
condition can be changed by isotopies of the sweep-outs.hig dection, we need
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to observe the transition of the condition during an isotgpyne of the sweep-outs.
Recall we defined isotopies of smooth maps in Section 3.

Suppose agaimM; and M, are irreducible, closed, smooth 3-manifolds other than
S%. Let M7 be the 3-manifold obtained by removing an open ball frdin for each
i =1,2. LetM be the union ofM; and M; glued at their boundaries. Take either
M; or M3, and rewrite it asN. Suppose X, H™, H™) is a Heegaard splitting foM,
and (T, G-, G%) is a Heegaard splitting of genus at least 2 for

Lemma 19. If (X,H,H™) spans(T,G,G™") positively and negatively then ei-
ther there is a pair of sweep-outs f and g represenfiligH , H") and (T, G, G%)
such that f spans g positively and negatively(&r, H—, H*) splits (T, G, G™).

Proof. Since £, H,H™) spans T, G, G") positively, there are generic sweep-
outs fy and g representing X, H—, H*) and (T, G—, G™), respectively such thaf,
spansg positively. Since £, H—, HT) also spansT, G, G') negatively, there are
generic sweep-out$’ and g’ representingX, H-, H™) and (T, G, G%), respectively
such thatf’ spansg’ negatively.

The sweep-outg and g’ represent the same Heegaard splitting,gsavill be iso-
topic to g after an appropriate sequence of handle slides of the spifibe handle
slides can be done in an arbitrarily small neighborhood ef dhiginal spines so that
f’ still spansg’ negatively. Therefore we can assume there is an isotopypgaki to
g. By the definition, there are diffeomorphisrhg: N — N andh;: [-1.1] — [-1, 1]
such thatg = h; o g’ o hy. Let hy: M — M be an arbitrary extension dfy, and
define f; = h; o f” o hy. Then f; spansg negatively.

Similarly, we can assumdy is isotopic to f; becausef, and f; represent the
same Heegaard splitting. According to [9, Lemma 26], thera icontinuous family
of sweep-outy f; | r € [0, 1]} such thatf, and g is generic for all but finitely many
r € [0, 1]. At the finitely many non-generic points, there are aismtwo valence-two
or valence-four vertices at the same level, or one valenceestex.

For a generic value, the sweep-outf, either spang or splits g. Then we can
assume that except for finitely many non-generic valdesspansg positively or nega-
tively, but not both. Sincefy spansg positively and f; spansg negatively, there must
be some non-generic valug such thatf,,_. spansg positively while f;,,. spansg
negatively for a smalk > 0. Then we may consider three cases like Figs. 14, 15 and
16. In the case Fig. 14 or 15, there are three valence-fourcesrat the same level,
which is a contradiction. In the case Fig. 16, if the veriexs valence-four,T must
be a torus, as explained above. Even if the veitds valence-six, the same argument
implies T is a torus, which is a contradiction. [
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8. Planar surfaces in a product space

This section is for the final phase of the proof of the main teeo It may pos-
sibly be easy for the reader to take this section after a vieWeztion 9.

SupposeX is a closed, orientable, connected surface of gemuset W be the
product spacee x [s_, s;] wheres. < s,. SupposeP is a separating, planar surface
with mg components properly embedded M. SupposeP separatedV into W_ and
W,. For each levek € [s_, s;], let X*(s) be the intersection o x {s} with W..
We will focus onXx(s.) and *(s,). Let g andg, be the sum of the genera of all
components of£~(s_) and £*(s,), respectively.

Lemma 20. g>g- + 0+

Proof. We can assum is incompressible i'WW because compressions Bfdoes
not changeg_ or g..

Consider a component d® which has all its boundary components &nx {s_}.
Such a surface ig-parallel, i.e. it can be isotoped on® x {s_} [18, Corollary 3.2].
Whichever it is parallel to a component &f~(s_.) or ¥*(s_), the component has no
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1) ) 3) (1)
Fig. 17.

genus becaus® is planar. Therefore deleting the componentVigf or W, between
these parallel surfaces does not redgceor g.. Thus, it is sufficient to prove the
lemma assuming all such component has been deleted. Inwtrds, we can assume
every components oP has the boundaries both da x {s.} and = x {s,}.

Let my be the number of components af*(s;) and let p. be the number of
boundary components af*(s.). Then the Euler numbers of the surfaces concerned
can be written as fallows:

x(X)=2-2g,
x(E7(s))=2m_-29_ —p_,
x(Z7(sy)) = 2m, — 29, — py,
x(P) =2mo — p_— p;.

Let f: W — [s_, s;] be a projection. We can assunt® is in general position
with respect tof. Moreover, we can assum@ has been isotoped so that there are
no extrema because every componentPohas the boundaries both aa x {s } and
Y x{s;}. Write s =s,S41 =5, and lets, < s3 < --- < s, be the regular values
for f|p such that there is a single critical value fofp betweens ands.; for each
i=1,2,...,n. Write P = Pn fY[s, s.1]) for eachi = 1,2,...,n. EachP,
is a collection of annuli except for one pair of pants compdnaf some of types in
Fig. 17.

Consider the case wherf@ has a component of type (1) for example. The Euler
number of P, is —1. The surfacex*(s1) is homeomorphic to the union af*(s)
and P.. Therefore the Euler number a*(s,1) is one less than that at*(s). Con-
sidering the other cases similarly, we obtain the following

x(P)=Y_ x(R)=-ng—np—nz—n,
i=1

X(ET(8)) = x(BH) = ) _(x(ZHE) = x(E¥(s40))) = M+ —nz+ g
i=1

wheren; is the number of critical points of typegj ).
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BecauseX x {s_} is the union ofZ(s_) and =*(s_),
x(Z) = x(Z7(s2)) + x(Z7(s)).
Applying above equations, we can arrive at a formula:
9=0-+0++1+my—m_ —my +nz+ns

Let wy be the number of components W... Thenw_ + w, is the number of
components ofW \ P. It implies

1+mon_+w+.

Each ofm_ components of£~(s_) is contained in one of ther- components of
W_. Let W° be a component ofW_ which containsm® components of£~(s_). Ob-
serve the transformation &k° N X~(s) during the increasing of from s_ to s,.. Since
W0 is connected, there must be at least — 1 critical points for f |pryo where two
components oW° N ©~(s) come to be connected. Such critical points are type (4).
Thus,

Ng = M- —w_.
By the symmetrical argument,
N2 =My —wsy.
These inequalities immediately induge> g_ + g... O

9. The main theorem

Johnson [9] constructed a counterexample for the stabidizaconjecture by amal-
gamations of two Heegaard splittings with high distancengléhe torus boundaries.
We will make the same construction changing the place ofsttwaundaries by sphere
boundaries. By Proposition 2, an amalgamation along spheumdaries is no other
than a connected sum. In this way, we arrive at the followiogctusion. Since Hempel
[7] showed that there exist Heegaard splittings with aabity high distance, this imme-
diately induces Theorem 1.

Theorem 21. Suppose k 2 and (Ti, G, G;') is a Heegaard splitting of genus k
with distance at leasbk for a closed3-manifold M for eachi=1,2 Let(X;,H;, Hl*)
be the connected sum @F;, G, G)) and (T2, G,, GJ). Let(Zz, H,, H,") be the con-
nected sum ofTy, G, GI) and (T, G5, G,). Then the stable genus ¢£4, H,, H")
and (22, H,, H,N) is 3k.
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Proof. Since the genus of a connected sum is equal to the suheajenera of
original splittings, the genus ofsfy, H,, H,") and &2, H,, H,") is 2k. As remarked
in [5, Section 2], the flip genus of any Heegaard splitting tigrest twice the initial
genus. Therefore the Heegaard splittiig, G5, G;) become flippable after addirig
trivial handles. It implies that adding trivial handles makesXy, H;, H;") isotopic
to (2, Hy, H,Y). Thus, the stable genus is at most 3hen, we will show that the
stable genus is at leask.3

Let B, and B, be open balls inG]” and G, respectively. WriteM* = M; \ B
and G/ = G;" \ B for eachi =1, 2. The connected suml of M; and M, can be
obtained by gluingM; and M at their sphere boundariesT; (G;, G;") is a Heegaard
splitting for a 3-dimensional submanifold;” of M for eachi = 1,2. By Proposition 2,
(22, Hy, H,Y) is the amalgamation ofT¢, G;, G;*) and (T2, G,, G;*). By Propos-
itions 2 and 3, E1, H;, H,") is the amalgamation ofT¢, G, G;™) and the boundary
stabilization of T2, G,, G;T).

By Lemma 10, T1, G, G; ") spans itself positively. By Lemma 124, H,, H,")
spans {1, Gy, G;™) positively. Similarly, €z, H,, H,") spans T, G5, G,*) nega-
tively and (€1, H;, H;") spans Ty, G;, Gi*) positively. By Lemmas 10, 12 and 13,
(21, Hy, H{") spans Tz, G,, G;™) positively.

Suppose ¥/, H/~, H/*) is a stabilization of ¥;, H~, H,*) for eachi =1, 2. By
Lemma 11, &/, H/=, H/") spans T1, GT, G;*) and (I, G5, G5 ") with the same signs
as (i, H7, H*). If (21, H;, H;) and &), H,~, H,*) are isotopic, the isotopy takes
H;~ to eitherH,~ or H,".

Consider the case where the isotopy takés to H,  and H;* to H,". The
Heegaard splitting X7, H;~, H;*) spans Tz, G,, G;*) positively and negatively. If
(21, H, H{Y) splits (T2, G5, G;), Lemma 18 implies that the genus of
(21, H{7, H;T) is at least B. By Lemma 19, we can assume there is a pair of sweep-
outs f and g, representing ¥;, H;~, H;") and (T, G,, G,*) such thatf spansg
positively and negatively. By Lemma %,7%(s;) N M; has genus at leaskZor some
values, € (-1, 1). For a sweep-ouf; representing Ty, G7, G;™), if f splits g; then
Lemma 18 can be applied again. Therefore we can assumgansg;. By Lemma 9,
f~Y(s1) N M; has genus at least for some values, € (—1, 1). Assumes; < s, with-
out loss of generality. The intersectidvi; N M3 N f~([s;, 5]) is a separating, planar
surface properly embedded in a product spdcé([si, $]). By Lemma 20, the genus
of X is at leastk + 2k = 3k.

On the other hand, when the isotopy také&s to H,™ andH;* to H,~, the Heegaard
splitting (27, H;~, H;*) spans T1, G, G;*) positively and negatively. The same ar-
gument implies that the genus &f; is at least B. Thus, any common stabilization of
(21, H{, H;") and €2, Hy, H,") has genus at leask3 O
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