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Abstract
We give a geometric proof of the fact that any affine surfaceh wivial Makar-
Limanov invariant has finitely many singular points. We degluhat a complete
intersection surface with trivial Makar-Limanov invariaist normal.

1. Notation and introduction

Let us first fix some notation and recall some basic definitiofisroughout this
paper, unless otherwise specifiédwill always denote a field of characteristic zera
domain means an integral domain. Given a domRjrFracR denotes the field of frac-
tions of R. By kI, we mean the polynomial ring in variables ovekk and Frac™)
will be denoted byk™. The set of singular points of a variet{ will be denoted

by Sing(X).

DerINITION 1.1. Given ak-algebraB, a derivationD: B — B is locally nil-
potentif for eachb € B, there exists a natural numbar(depending orb) such that
D"(b) = 0. We use the following notations:

Der(B) = {D | D is a derivation ofB},
LND(B) = {D € Der(B) | D is locally nilpotent,
KLND(B) = {kerD | D € LND(B), D # 0}.

Given ak-domain B, one defines itdlakar-Limanov invariantby

ML(B)= (| kerD.
DeLND(B)

If X = SpecB is an affinek-variety, define MLK) = ML(B). The Makar-Limanov
invariant plays an important role in classifying and digtirshing affine varieties. We
say thatB has trivial Makar-Limanov invariant if MLB) = k.

Affine spacesA} are the simplest examples of varieties with trivial Makamhnov
invariant. While it is known thatAl is the only affine curve which has trivial
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Makar-Limanov invariant, the class of affine surfaces witkial Makar-Limanov in-
variant contains many more surfaces, some of which are nen eormal. (See Ex-
ample 5.4, for instance.)

Let M(k) denote the class of 2-dimensional affikedomains which have trivial
Makar-Limanov invariant. We say that an affine surfé&8e= SpecR belongs to the
classM(k) if R e M(k). Such a surfacé& is also called a Mtsurface

The following question arises naturallZlassify all surfaces in the clas§1(k).

In recent years, researchers including Bandman, DaiglepDioz, Gurjar, Masuda,
Makar-Limanov, Miyanishi, and Russell (see [1], [3], [6], [1®], [11]) have been ac-
tively investigating properties of normal (or smooth) siwds belonging to the class
M(K). However, it is desirable to understand what happens wrenlnap the assump-
tion of normality. For instance, it is natural to askat are all hypersurfaces of the
affine space&ﬁ with trivial Makar-Limanov invariant and it is not a priori clear that
all those surfaces are normal: the fact that they are indeethal is a consequence of
the present paper.

In this paper, we prove that a surface in the clag¢k) has only finitely many sin-
gular points. As an application, we prove that any complatersection surface with
trivial Makar-Limanov invariant is normal. Note that thesesults are valid over any
field k of characteristic zero. The results of this paper will beduse a joint paper
with D. Daigle [5], where we classify all hypersurfaces A)i (more generally, com-
plete intersection surfaces ovie) with trivial Makar-Limanov invariant.

To understand the necessity of some of the arguments givethisnpaper, the
reader should keep in mind certain pathologies that occlienvihis not assumed to
be algebraically closed. For instance, surfaBes SpecR belonging toM (k) are not
necessarily rational ovet and may have very few-rational points; moreover, ik is
the algebraic closure df, thenk ®, R is not necessarily an integral domain.

2. Preliminaries

In this section, we gather some basic results and known.facts

2.1. Suppose thaB is a k-domain, letD be a nonzero locally nilpotent deriva-
tion of B, and letA = kerD. The following are well-known definitions and facts about
locally nilpotent derivations:

(i) A is factorially closedin B (i.e., the condition, y € B\ {0} and xy € A imply
that x, y € A). ConsequentlyA is algebraically closed irB.

(i) Consider the multiplicative se® = A\ {0} of B. We can extend to an element
D € LND(S1B) defined byD(b/s) = D(b)/s. It is well-known thatS™*B = (FracA)[l.
(iii) For every A € k, the map

S n
eP: B — B, bl—)ZA”D—(m
= n!
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is a k-algebra automorphism dB.
(iv) Let 7: Sped — SpecA be the canonical morphism induced by the inclusion map
A — B. Then there exists a nonempty open Bett SpecA such that

7N (p) = Ay, for everyp e U, wherex(p) is the residue fieldA,/pA,.

Furthermore, ifk is algebraically closed and is k-affine, then
7 H(m) = Ay, = A for every closed pointa of U.

Lemma 2.2. Given an affinek-surface X= SpecB, let A; and A be two affine

f, f,
subalgebras of B of dimensioh Set Y = SpecA; and let ¥ «<— SpecB — Y, be
the canonical morphisms determined by the inclusions—AB (for i =1, 2). If B is
algebraic over its subalgebré[A; U A;], then

E={yeYz2| fi(f;(y)) is a poin{
is not a dense subset of,Ywhere by“y € Y,” we mean that y is a closed point of.Y

We leave the proof of Lemma 2.2 to the reader, as it is basiebadjc geometry and
is not directly related to the subject matter of this paper.

DEeFINITION 2.3. A domainA of transcendence degree 1 over a fiklés called
a polynomial curveover Kk if it satisfies the following equivalent conditions:
() Ais a subalgebra ok
(i) FracA=k® and A has one rational place at infinity.

NOTATION 2.4. Given a field extensiof /k, let Pr/ be the set of valuation
rings R of F/k such thatR # F.

Lemma 2.5. Let A be ak-domain. If there exists an algebraic extensidnof k
such thatk’ ®¢ A is a polynomial curve ovek’, then A is a polynomial curve ovéx.

Proof. We sketch a proof of this fact, as we were unable to firgliitable ref-
erence. It is easy to prove th#t is affine. We may assume that'[: k] < oo. Let
F = FracA and F’ = FracA/, where A’ = k" ® A. Note that F’: F] = [k’ : k] and
F' = kK'F. In the terminology of [12], the function fieldF’/k’ is an algebraic con-
stant field extension of /k. By [12, Theorem I11.6.3],F’'/k’ has same genus d5/k
(hence,F /k has genus zero) and’/F is unramified. It remains to prove tha# has
one rational place at infinity. Let

E={RePrx | AZR} and E' ={R ePry |K ® AZR]}.
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If Ris any element oE, then everyR' € Pr ¢ lying over R (i.e., satisfyingR' NF =

R) must belong toE’. But E’ is a singleton, sa)e’ = {R’}. It follows that E is a
singleton, sayE = {R}. Let " and k be the residue fields oR" and R, respectively.
Then [F': F] = ef, where f = [«’ : k] and e is the ramification index oR’ over R.

As F’/F is unramified, we have = 1. Sincek’ ®¢ A is a polynomial curve ovek’,

k' =k’. Hence

K':Kl=[F :F]l=ef =[«:«] =[K : k]
Thus,« = k and A has one rational place at infinity. ]
The following lemma can be obtained as an easy consequenge bémma 3.1].

Lemma 2.6. Let B be ak-algebra and {T) € B[T], where T is an indeterminate.
(&) If f(T) has infinitely many roots ik, then f(T) = 0.
(b) If J is an ideal of B and 1) € J for infinitely manyx € k, then f(T) € J[T].

DEFINITION 2.7. LetR be a ring andD € Der(R). An ideal | of R is called an
integral idealfor D if D(I) < I.

Lemma 2.8. Let R be ak-domain and let | be a nonzero ideal of R. If A
KLND(R), then the following statements are equivalent
1) 1 N A#(0).
(2) There exists D= LND(R) such thatkerD = A and | is an integral ideal for D.

Proof. Assume that (1) holds. Lets:8ac | N A, and letE € LND(R) be such
that A = kerE. Sincea € A, aE € LND(R) andaE has kernelA. Moreover, asa € |,
(@aE)(b) =a(Eb)e | forallbel. So @E)(1) € I, and henceD := aE is the required
locally nilpotent derivation ofR proving assertion (2).

In the other direction, assume that#OD € LND(R), kerD = A, and D(l) C I.
Choose any € |, b # 0. Then the sefb, Db, D?b, ...} is included inl and contains
a nonzero element oA. O

The following is an easy consequence of [2, Lemma 2.10].

Lemma 2.9. Let R be a noetheriak-algebra and let D e Der(R). If | is an
integral ideal for D, so is every minimal prime-over ideal of |I.

Lemma 2.10. Let B be ak-algebrg J an ideal of B and D € LND(B). If
e'P(J) € J for some nonzero & k, then J is an integral ideal for D.

Proof. First observe that #P(J) € J for some nonzera € k, thene'®(J) € J
for infinitely manyt € k. Let f € J. We will show thatD(f) € J. Let n = degy(f),
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i.e., n is the maximum nonnegative integer such tha( f) # 0. Define a polynomial
P(T) € B[T] by

D2(f)T2 D"(f)T"
bt o PHOTY

P(T) = f + D(NT + —, .

Then for infinitely manyt € k,

D?(f)t? D(f)tn
P(t)=f + D(f)t + (21) +---+%=e‘D(f)eJ.
By Lemma 2.6, all coefficients oP(T) belong toJ, so D(f) € J. O

Lemma 2.11. Let B be an affink-domain and let D LND(B). If B denotes
the normalization of Bthen there exist® e LND(B) such thatker D N B = ker D.

Proof. We recall the well-known argument. Write= kerD and letS= A\ {0}.
Then D extends to a locally nilpotent derivatich of S™B such thatB Nker® = A.
As S™1B is a polynomial ring over the fiel& 1A, it is normal, and consequentB C
B C S1B. It follows that there exists € S such that the locally nilpotent derivation
s9: S'B - S'B mapsB into itself. The restrictionD: B — B of s® satisfies
kerD N B = kerD. O

Lemma 2.12. For a two-dimensional affin&k-domain R
[KLND(R)| > 1 if and only if ML(R) is algebraic overk.

Proof. Assume that MLR) is algebraic ovek. Since trdeg A =1 for any A
KLND(R), it follows that |[KLND (R)| > 1. In the other direction, leA and A’ be distinct
elements ofkLND(R). As trdeg A= 1= trdeg. A" and AN A’ is algebraically closed
in R, it follows that AN A’ is algebraic ovek. Hence MLR) is algebraic ovek. []

Corollary 2.13. If R e M(k), then R e M(k') for some algebraic field extension
k' © k such thatk’ ¢ R. In particular if k is algebraically closedthen ML(R) = k.

Proof. AsR e M(k), we get|KLND(R)| > 1 by Lemma 2.12. LetA; and A, be
distinct elements okLND(R). There existA;, A; € KLND(R) satisfying A N R = A
(cf. Lemma 2.11), sdkLND(R)| > 1. Hence MLR) is algebraic ovek and is a field,
say, ML(R) = k'. Then clearlyk C k' ¢ R andk’ is algebraic ovek. Ol

Lemma 2.14. Let Be M(K). If B is normal and Ac KLND(B), then Az k!,
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Proof. This result is well-known whek is algebraically closed. (See [6, 2.3],
for instance.) To prove the general case, denote the algeti@sure ofk by k. Let
A € KLND(B) and note thatA is a 1-dimensional noetherian normal domain. To prove
that A = k™!, it suffices to check thaA < ki*l. By [3, Lemma 3.7],8 := k ® B is an
integral domain and ML) = k. If B denotes the normalization &, then ML(B) = k
by Corollary 2.13. Note that each element iafND (B) is isomorphic toklYl. Given
A € KLND(B), k ® A € KLND(B) and there exist® e LND(B) such that keD N B =
k@ A (cf. Lemma 2.11). As ke = k™, it follows thatk @ A € KU, Then A C k4
by Lemma 2.5. ]

3. Completion of surfaces and fibrations

Throughout Section 3, we fik to be an algebraically closed field of characteristic
zero. All varieties are assumed to kevarieties. In this section, we state some prop-
erties of affine normal surfaces, fibrations on such surfaaed completions of such
surfaces. The material of this section is well-known.

3.1. Let S be a complete normal surface. By &NC-divisoron S, we mean
a Weil divisor D = Zi”:l Ci whereCy, ..., C, are distinct irreducible curves o8
satisfying the following conditions:
(i) Supp@) = Ui, Ci is included inS\ Sing(S).
(i) Each irreducible componer; of D is isomorphic toP?.
(i) If i # j thenC NCj <1.
(iv) If i, j, k are distinct therC; N C; N Cx = @.

DEFINITION 3.2. An Al-fibration (respectively, aP!-fibration) on a surfaceS
is a surjective morphismp: S — Z on a nonsingular curv&Z whose general fibres
are isomorphic taA! (respectively, toP!). For our purposes, we will always consider
Alfibrations whose codomaii is A®.

DEFINITION 3.3. LetSbe an affine normal surface apd S — A® an Al-fibration.

By a completion of the pai(S, p), we mean a commutative diagram of morphisms of
algebraic varieties

[l

Al 5 p?

such that the “&>” are open immersionsS is a complete normal surface, a®\ S is
the support of an SNC-divisor db.
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It is well-known that given any affine normal surfaGeand anA-fibration p: S— A1,
there exists a completion ofS( p).

SETUP 3.4. Throughout Paragraph 3.4, we assume:
(i) Sis an affine normal surface.
(i) p: S— Al is an Al-fibration.
(iii) (S, p) is a completion of &, p), with notation as in Diagram (1); we ld be the
SNC-divisor of S whose support iS\ S.

As S is complete,; is closed. So given any cur@ C S, 5(C) is either a point or
all of P1. Accordingly we have:

DEFINITION 3.4.1. A curveC C Sis said to beg-vertical if 5(C) is a point.
Otherwise, we say that the curve fshorizontal ThusC C S is p-horizontal if and
only if 5(C) =P,

Lemma 3.4.2. Let the setup be as iBetup 3.4
(@) For a general point ze P!, 5 1(2) =~ P! and p%(2) N S = A'. In particular,
p: S— Pl is a Pl-fibration.
(b) Exactly one irreducible component of D jshorizontal.

Proof. As these facts are well-known, we only sketch the forBy commutativ-
ity of Diagram (1),p~%(2)N S= p~%(z) = A for generalz € P. Assertion (a) follows
from this. It also follows that the general fibjg'(z) meetsD in exactly one point,
and this implies thaD has exactly one horizontal component. [

4. Geometry of surfaces in the classM (k)

In this section,k is an arbitrary field of characteristic zero (except in Sefup
and Corollary 4.3, where it is assumed to be algebraicathged).

SETUP 4.1. The following assumptions and notations are valid uphmut Para-
graph 4.1. Suppose thétis algebraically closed. FiB € M(k), suppose thaB is
normal, and letS = SpecB. Consider distinct element8,, A, € KLND(B) and recall
from Lemma 2.14 tha®y, =~ kI for i =1, 2. Letp;: S— Al be the morphism deter-
mined by the inclusiom; — B for i = 1,2. It follows from Paragraph 2.1 (iv) thah
and p, are Al-fibrations, and Lemma 2.2 implies that and p, have distinct general
fibres. Choose a complete normal surfé@and morphismsoy, p2: S — P! such that,
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for eachi =1, 2, (S, i) is a completion of §, p;) in the sense of Definition 3.3. We
also consider the following diagram:

(1)

Al PL,

Let co be such thalP! = AU {oo} in Diagram (2). Fori = 1,2, letH; be the unique
irreducible component oD = S\ S which is j;-horizontal. (See Lemma 3.4.2.)

Lemma 4.1.1. We haveji(H,) = {co} and p(H;) = {oo}. In particular, Hy # H,.

Proof. Recall thatH; € D and g (H;) = P! for eachi = 1, 2. For a general
71 € P1, (p1)"Y(z0) = C1, whereC; is an irreducible curve o which intersectsH,
in a unique point, sayQ. As p1 and p, have distinct general fibres, we choageso
that ,02(,01_1(21)) is not a point. Thens,(C,) is not a point, sop»(C1) = PL. Choose
Q1 € C; such thatp,(Q1) = {oo}. Clearly, Q; € D. SinceC; meetsD in exactly one
point, C; N D = {Q1}. Consequently{Q} = C;NH; € C;ND ={Q,}. It follows that
{Q1} = C; N Hi. Repeating this process for infinitely many poimsof P!, we get
infinitely many pointsQ; € H; satisfying p1(Qi) = z and p2(Q;) = {oo}. Hence we
conclude thafp,(H;) = {oo}. Similarly, we can prove thas;(H) = {oc}. As p1(H;) =
P! = 5y(Hy), it follows immediately thatH; and H, are distinct. OJ

Proposition 4.1.2. There does not exist an irreducible curve € S such that
p1(C) and p,(C) are points.

Proof. By contradiction, suppose that there exists an ucidde curveCy of S
such thatp1(Co) = & and p»(Co) = a, for some pointsa; € Al. ConsiderC := Co,
the closure ofCy in S. ThenC is a curve inS such thatC N D # @, p1(C) = a,
and p»(C) = a, (whereay, a, € P1\ {o0}). Since D is connected, there is an integer
k> 1 and a sequencBy, ..., Dy of irreducible components oD satisfying:

e For each 1<i <k, Dj is pi-vertical andp,-vertical, andDy € {Hy, Hy}.
e CND;#@,andD; NDjy1 # @ (for 1 <i <K).

Note thatp;(Dx) = oo for somej € {1,2}. SinceCUD;U---U Dy is connected,
it follows that p;(C U Dy U --- U Dy) is connected and is a finite set of points, i.e., is
one point. Buta;j, co € pj(C U Dy U---U Dy), so we obtain a contradiction. ]

For the remainder of this paper, we assume thas an arbitrary field of characteris-
tic zero.
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DEFINITION 4.2. LetB be an integral domain of characteristic zero. We say that
B has property %) if B has no height 1 proper ideadl which intersects two distinct
elementsA;, A, € KLND(B) nontrivially. That is,B has property ) if | N Ay =0 or
I N A, = 0 for all height 1 proper ideal$ of B and all distinctA;, A, € KLND(B).

Our next goal is to prove Theorem 4.6. We do this in severalsstas follows.

Corollary 4.3. Suppose thak is algebraically closed and that B M(Kk) is nor-
mal. Then B has propertg).

Proof. By contradiction, suppose that there exist distiAgt Ao € KLND(B) and
a height 1 ideall of B such thatl N A; # 0 fori = 1, 2. Pick a height 1 prime ideal
p of B such thatp 2 |, and note thap N Ay # 0 fori = 1, 2. So the irreducible curve
C = V(p) C SpecB is mapped to a point by each canonical morphigm SpecB —
SpecA; (i =1, 2). This contradicts Proposition 4.1.2. []

NOTATION 4.4. LetB C B’ be integral domains of characteristic zero. We write
B <« B’ to indicate thatB’ is integral overB and that, for eachA € KLND(B), there
exists A’ € KLND(B’) such thatA’ N B = A. Clearly, < is a transitive relation.

Lemma 4.5. Let B,B’ be integral domains of characteristic zero such that B.
If B’ has property(x), then so does B.

Proof. Letl # B be a height 1 ideal oB and let A;, A, € KLND(B) satisfy
I NA #0. As B is integral overB, IB’ # B’ and ht B’ = 1. SinceB<«B’, there exist
AL, A, € KLND(B') such thatAl/NB = A for i =1,2. Moreover, A/NIB’ > ANl #0.
Since B" has property ), it follows that A} = A,. ConsequentlyA; = A;. O

Recall thatk is an arbitrary field of characteristic zero.
Theorem 4.6. Each element B oM (k) has property(x).

Proof. If B denotes the normalization &, B< B follows by Lemma 2.11. More-
over, Corollary 2.13 implies thaB € M(k') for some fieldk’. As B« B, it suffices to
prove the theorem wheB is normal by Lemma 4.5.

If B is normal,B = k®y B is an integral domain and M) = k by [3, Lemma 3.7].
Then the normalizatiols € M(k) by Corollary 2.13, sa3 has property £) by Corol-
lary 4.3. It suffices to prove tha < B because then the result follows by Lemma 4.5.

As k is integral overk, it follows thatk ® B is integral overk ®, B =~ B. Fur-
thermore, givenA € KLND(B), A = k ®, A belongs tokLND(B) and AN (k ®¢ B) = A.
This proves thaB < B. Finally, B<B and« is transitive, so it follows thaB < /5. [
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REMARK 4.7. Every two-dimensional affink-domain has propertyx). Indeed,
let B be such a ring. Ifl[kLND(B)| < 1, then it is trivial thatB has property %).
If |[KLND(B)| > 1 then B € M(k') for some fieldk’, wherek’ is algebraic overk
(cf. Lemma 2.12). Then the result follows from Theorem 4.6.

DEFINITION 4.8. An affine scheme Spet is regular in codimensionl if and
only if A, is regular for every height 1 prime idealof A.

Theorem 4.9 ([10, Theorem 73, p.246]).Let A an affine domain containing a
field. Then

U = {p € SpecA | A, is a regular local ring
is a nonempty open subset of the affine scheme SpecA.

Proposition 4.10. Let B be an affin&k-domain. Ifp is a heightl prime ideal of
B such that B is not regulay then D(p) < p for every De LND(B).

Proof. The sefl = {p € SpecB | B, is not regulay is a closed and proper sub-
set of X := SpecB. For everyp € T satisfying htp = 1, the closure{p} is an irre-
ducible component off andp is the unique generic point of that component. As
has only finitely many irreducible components, it followsatiA contains only finitely
many prime ideals of height 1. Denote these prime idealpby. ., p,.

Pick p € {p1,...,p,} and D € LND(B). We will prove thatD(p) < p. In view of
Lemma 2.10, it is enough to show that

(3) eP(p) Cp for some nonzero i € k.

As the group AutB) acts on the seT, it follows that it acts on{p4, ..., p,}. Further-

more, k = | J"_,{» € k | &P(p) = p;}. Sincek is infinite, there exists € {1,..., n}
such thatQ := {1 € k | &P(p) = p;} is infinite. Pick distinct elementsy, A, of Q.
Then =2+ (p) C p. So (3) is true. O

Corollary 4.11. If B € M(k) and X= SpecB, then the set
Sing(X) = {p € SpecB | B, is not a regular local ring
is finite. ConsequentlyB is regular in codimension.
Proof. The setT = Sing(X) is a proper closed subset of, so dimT < 1. It
follows by Proposition 4.10 that given a height 1 prime idpadf B belonging toT,

D(p) < p for every D € LND(B). Then Lemma 2.8 implies that N kerD # O for
every D € LND(B). Since B has property £) by Theorem 4.6, we obtain that the set
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KLND(B) is a singleton, a contradiction. Sb contains no height 1 prime ideal; con-
sequently,B is regular in codimension 1. This also proves that dir= 0. SoT is a
finite set of maximal ideals. Ll

5.  An application to complete intersections

DEFINITION 5.1. Let A be a domain containing a field. We say thatA is a
complete intersection ovek if it is isomorphic to a quotient

K[ X1, .-y Xnl/(f1, ..., Tp)

for somen, p € N, where (f1, ..., fp) is a prime ideal ofk[Xy, ..., X,] of height
p. If Ris a complete intersection ovér, we also call Spe® a complete intersection
over k.

Recall the following criterion for noetherian normal ringse to Serre.

Theorem 5.2 (Serre). A noetherian ring A is normal if and only if it satisfies
(R1) A, is regular for all p € SpecA with htp <1, and
(&) depthA, > min(htp, 2) for all p € SpecA.

Corollary 5.3. Let B e M(k). If B satisfies Serte condition(S), then B is
normal. In particular complete intersection surfaces in the clas$(k) are normal.

Proof. ConsideB € M(k) and suppose thaB satisfies &). To show thatB is
normal, it suffices to prove thaB satisfies R;). So letp € SpecB. If htp = 0, then
clearly B, is regular. If htp = 1, B, is regular by Corollary 4.11.

If B is a complete intersection, thé&is Cohen—Macaulay (cf. [8, Proposition 18.13]),
and so it satisfies) (cf. [10, 17.1, p. 125]). Then the result follows by the pimws case.

O

EXAMPLE 5.4. LetB = Kk[x, Xy, ¥%, y°]. ThenD = xd/dy, E = y?3/dx are
two nonzero locally nilpotent derivations & and ML(B) = k. Note thatB is not
normal. So by Corollary 5.3, Sp&is not a complete intersection surface okerBy
similar arguments, we can prove that= Speck[x?, x5, y3, y*, ¥°, Xy, X2y, Xy?, Xy°]
is a ML-surface which is not a complete intersection surfager &.
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