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Abstract
We introduce a polynomial invariant of virtual magnetic link diagrams. For vir-

tual links, this polynomial equals the polynomial invariant defined in [3]. We show
that it gives lower bounds of the classical crossing number and the virtual cross-
ing number of virtual links. Also we give various propertiesof this polynomial
and examples.

1. Introduction

Virtual knot theory is introduced by L.H. Kauffman as a generalization of classical
knot theory in the sense that if two classical link diagrams are equivalent as virtual links,
then they are equivalent as classical links [8]. A virtual link diagram is a link diagram inR2 possibly with some encircled crossings without over/underinformation, called virtual
crossings. A virtual link is the equivalence class of such a link diagram by generalized
Reidemeister moves, which consist of (classical) Reidemeister moves of typeR1, R2 and
R3 and virtual Reidemeister moves of typeV R1, V R2, V R3 and thesemivirtual move
V R4 as shown in Fig. 1. In [4], A. Ishii, N. Kamada and S. Kamada introduce avir-
tual magnetic link diagramas an oriented link diagram which may have virtual crossings
and nodes shown in Fig. 2. Two virtual magnetic link diagramsare equivalent if they
are related by a finite sequence of the generalized Reidemeister moves or nodal moves
which consist ofN1-moves andN2-moves as in Fig. 3. The nine moves, which are gen-
eralized Reidemeister moves and nodal moves, are called thebasic localmoves in this
paper. Avirtual magnetic linkis the equivalence class of a virtual magnetic link dia-
gram. Kauffman [7] used such a diagram to give an oriented state model for the Jones
polynomial of classical links. Note that a virtual magneticlink diagram can be regarded
as a generalized virtual link diagram because a virtual magnetic link diagram without
nodes is a virtual link diagram.

Until now, many invariants of virtual links are defined without regard to virtual
crossings, for example, the fundamental group, the Alexander polynomial, the Jones
polynomial, the quantum link invariants and the Vassiliev invariant, see [1, 2, 8, 10].
So, in many cases a classical invariant extends to an invariant of virtual links that is

2000 Mathematics Subject Classification. Primary 57M25; Secondary 57M27.
This work was supported for two years by Pusan National University Research Grant.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osaka City University Repository

https://core.ac.uk/display/35268825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1096 Y.H. IM , S. KIM AND K.I. PARK

Fig. 1.

Fig. 2.

Fig. 3.

an extension of ideas from classical knot theory. However, in some cases one has an
invariant of virtual links that vanishes for classical links. These are the polynomial
invariants studied by Sawollek [11], Silver and Williams [12] and by Kauffman and
Radford [9], which are eventually the same.

Also, A. Henrich [2] introduces a polynomial invariant of virtual knots which van-
ishes for classical knots. Later, Im, Lee and Lee [3] extend Henrich’s polynomial to
virtual links. The purpose of this paper is to introduce a polynomial invariant of virtual
magnetic links which is a generalization of the polynomial defined by Im, Lee and Lee,
and give various properties of this polynomial and examples. Also this polynomial can
be used to find lower bounds on the classical crossing number and the virtual crossing
number of virtual links.

This paper is organized as follows. Section 2 gives the basicdefinitions and results
of virtual links and virtual magnetic links. In Section 3, weintroduce a polynomial
invariant for virtual magnetic links and give the proof of the invariance. In Section 4,
we provide various properties of the polynomial invariant and some examples.
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Fig. 4.

Fig. 5.

2. Preliminaries

In this section, we give basic definitions and results which are needed throughout
this paper.

A state of a virtual magnetic link diagramD is a union of immersed loops inR2 with only virtual crossings and nodes, which is obtained by splicing all classical
crossings ofD. At each spliced crossing we attach a chord labeledA or B to represent
the splicing direction as shown in Fig. 4. A stateS of a virtual magnetic link diagram
D is normal if for any classical crossingx of D, the loops ofS spliced atx are of
type (1) or (2) in Fig. 5. A virtual magnetic link diagramD is normal if every state
of D is normal. A virtual magnetic linkL is normal if L is the equivalence class of a
normal diagram under the equivalence relation generated bygeneralized Reidemeister
moves, N1 and N2 moves. An edge of a virtual magnetic link diagramD means an
arc of D divided by nodes or a loop ofD without nodes. For a virtual magnetic link
diagramD, we denote byND the union of immersed circles inR2 obtained by ignoring
nodes and orientations of the edges ofD, and by replacing all classical crossings of
D with 4-valent vertices and leaving the virtual informationunchanged.

DEFINITION 2.1 ([6]). ND admits an alternate orientation if all edges (when re-
garding ND as a 4-valent planar graph) can be oriented as shown in Fig. 6.

Proposition 2.2 (cf. [6, Proposition 6]). A virtual magnetic link diagram D is nor-
mal if and only if ND admits an alternate orientation.
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Fig. 6.

Fig. 7.

Proposition 2.3 (cf. [6, Corollary 7]). Let D D D1 [ D2 [ � � � [ Dn be an
n-component virtual magnetic link diagram. If D is normal, then the number of all
classical crossings between Di and Dn Di is even.

3. The polynomial invariant PL(t) of virtual magnetic links

In this section, we define a polynomial of a virtual magnetic link and give the
proof of the invariance.

A classical crossing of a virtual magnetic link diagramD is said to be aself cross-
ing if the crossing is composed of two arcs which belong to thesame component of
D. We denote the set of self crossings ofD by SC(D). A classical crossing ofD is
said to bemixed crossing if the crossing is composed of two edges which belong to
different components ofD. We denote the set of mixed crossings ofD by MC(D).
If we denote the set of classical crossings ofD by CC(D), then it is obvious that
CC(D) D SC(D) t MC(D). The writhe of D denoted bywr(D) is the sum of signa-
tures of classical crossings ofD, that is

P
c2CC(D) sign(c).

We introduce a virtual magnetic link diagram derived fromD. Suppose that a clas-
sical crossingc of D is a self crossing. Then, there exists a unique component of
D which constitutesc. We denote it byDc. Let ODc be a virtual magnetic link dia-
gram obtained fromDc by smoothingc as shown in Fig. 7. Ifc is a mixed crossing
of D, then we defineODc as the subdiagram ofD which consists of two components
constituting c. An example is illustrated in Fig. 8. Aweight mapof ODc is a map� W e( ODc) ! {�1} such that� (e) ¤ � (e0) for adjacent edgese and e0 of ODc, where

e( ODc) is the set of edges ofODc. There exist 2#( ODc) weight maps, where #(ODc) is the
number of components ofODc. Note that #(ODc) is either one or two. We denote the set
of weight maps of ODc by W( ODc).
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Fig. 8.

Fig. 9.

A classical crossingd of ODc is composed of two arcs. The arc passing over atd
is called the over path atd and the other arc is called the under path atd. Let eo

d and
eu

d be edges including the over path and the under path atd, respectively. Theindex
numberof d with respect to a weight map� is given by (1=2) sign(d)(� (eo

d) � � (eu
d))

and is denoted by ind� (d). A diagrammatic description is given in Fig. 9 and note that
ind� (d) 2 {0,�1} [3].

DEFINITION 3.1. Let D be a virtual magnetic link diagram andc a classical
crossing of D. Let � be a weight map ofODc. The intersection index ofc with re-
spect to� , denoted byi� (c), is given by i� (c) DP

d2CC( ODc) ind� (d).

We will define polynomialsNPD(t) and PD(t) for a virtual magnetic link diagramD
and show thatNPD(t) is an invariant under the basic local moves except the Reidemeister
move of type I andPD(t) is an invariant for virtual magnetic link diagrams.
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DEFINITION 3.2. Let D be a virtual magnetic link diagram. Then, the poly-
nomials NPD(t) and PD(t) in Q[t�1] for D are given by

NPD(t) D X
c2CC(D)

0
�sign(c)

2#( ODc)

X
�2W( ODc)

t i� (c)

1
A

and

PD(t) D X
c2CC(D)

0
�sign(c)

2#( ODc)

X
�2W( ODc)

(t i� (c) � 1)

1
A.

REMARK 3.3. Note thatPD(t) D NPD(t) �Pc2CC(D) sign(c) D NPD(t) � wr(D).

Theorem 3.4. The polynomial NPD(t) is an invariant for virtual magnetic link dia-
grams under the basic local moves except the Reidemeister move of typeI.

Let D be a virtual magnetic link diagram andD0 a virtual magnetic link diagram
obtained fromD by applying a local move in a local diskB. Then, generally speaking,
we cannot regard a weight map ofD as that ofD0 because there exists a local move,
which changes the number of edges of a diagram, like theN2-move. However, we note
that D n B and D0 n B are identical. If the numbers of weight maps ofD and D0 are
equal, and, for a weight map� of D, there exists a unique weight map� 0 of D0 such
that the weight of each edge ofD0 outsideB is equal to that of the corresponding edge
of D, then we can give a bijection fromW(D) to W(D0) by sending� to � 0. We call
it the canonicalmap from W(D) to W(D0) denoted bycmW W(D) ! W(D0). For ex-
ample, if a local move is a basic one, then we see that there exists the canonical map.

Let c be a crossing ofD outside B. Since D n B and D0 n B are identical, there
exists a unique crossingc0 of D0 corresponding toc by the identity map fromD n B
to D0 n B. We call the crossingc0 the doubleof c and denote it bydb(c).

Lemma 3.5. Let D be a virtual magnetic link diagram and D0 a virtual mag-
netic link diagram obtained from D by applying a basic local move in a local disk
B. Let c be a classical crossing of D outside B and� a weight map of D. Then,
ind� (c) D indcm(� )(db(c)).

Proof. By definitions of the canonical mapcm and the crossingdb(c), we have� (do
c )D cm(� )(eo

db(c)) and� (du
c )D cm(� )(eu

db(c)). Since sign(c)D sign(db(c)), we obtain
the claim.

Lemma 3.6. Let D be a virtual magnetic link diagram and D0 a virtual magnetic
link diagram obtained from D by applying a basic local move ina local disk B. Let
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� be a weight map of D. Then,

X
c2CC(D\B)

ind� (c) D X
c2CC(D0\B)

indcm(� )(c),

where CC(E \ B) denotes the set of classical crossings of a diagram E in B.

Proof. The proof is divided into five cases. To begin with, we suppose that the basic
local move is any of virtual Reidemeister moves. Then,CC(D \ B) D CC(D0 \ B) D ;.
Thus, the claim is true. Next, we suppose that the basic localmove is a semivirtual move.
Then, each of the setsCC(D \ B) andCC(D0 \ B) consists of one element. Letc andc0
be the elements ofCC(D \ B) andCC(D0 \ B), respectively. Since� (eo

c) D cm(� )(eo
c0),� (eu

c )D cm(� )(eu
c0) and sign(c)D sign(c0), we have ind� (c)D indcm(� )(c0). Thus, the claim

is true. Next, we suppose that the basic local move is a Reidemeister move of type I. We
may assume that the number of crossings ofD is less than that ofD0. Then,CC(D\B)D; and CC(D0 \ B) consists of one crossinga. Sincecm(� )(eo

a) D cm(� )(eu
a), we have

indcm(� )(a) D 0. Thus, the claim is true. Furthermore, we suppose that the basic local
move is a Reidemeister move of type II. We may assume that the number of crossings
of D is less than that ofD0. Then,CC(D \ B) D ; and CC(D0 \ B) consists of two
crossingsa andb. Sincecm(� )(eo

a) D cm(� )(eo
b), cm(� )(eu

a) D cm(� )(eu
b) and sign(a) D� sign(b), we have indcm(� )(a) C indcm(� )(b) D 0. Thus, the claim is true. Finally, we

suppose that the basic local move is a Reidemeister move of type III. Then, each of the
setsCC(D \ B) andCC(D0 \ B) consists of three crossings. Letc1, c2 andc3 (resp.c01,
c02 andc03) be the crossings ofD \ B (resp.D0 \ B) between the top and the middle arcs,
the top and the bottom arcs, and the middle and the bottom arcsin B, respectively. Since� (eo

ci
) D cm(� )(eo

c0i ), � (eu
ci

) D cm(� )(eu
c0i ) and sign(ci ) D sign(c0i ), 1 � i � 3, we obtain

ind� (ci )D indcm(� )(c0i ) for eachi , and
P

c2CC(D\B) ind� (c)DP
c2CC(D0\B) indcm(� )(c). This

completes the proof.

Lemma 3.7. Let D be a virtual magnetic link diagram and D0 a virtual mag-
netic link diagram obtained from D by applying a basic local move in a local disk
B. Let c be a classical crossing of D outside B and� a weight map of D. Then,
i� (c) D icm(� )(db(c)).

Proof. Considering two diagramsODc and OD0
db(c), we have the following two cases:

One is the case thatODc and OD0
db(c) are identical. The other is the case thatOD0

db(c) is

obtained from ODc by applying the local move. First, we suppose thatODc D OD0
db(c).

Then, for a classical crossingd of ODc, we easily obtain ind� (d) D indcm(d)(db(d)),

which implies i� (c) D icm(� )(db(c)). Next, we suppose thatOD0
db(c) is obtained from ODc

by applying the local move inB. Note thatCC( ODc) D CC( ODc n B) t CC( ODc \ B)
and CC( OD0

db(c)) D CC( OD0
db(c) n B) t CC( OD0

db(c) \ B), whereCC(E n B) denotes the set
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of classical crossings of a diagramE outside B. If a crossingd of ODc is an elem-
ent of CC( ODc n B), then Lemma 3.5 shows that ind� (d) D indcm(� )(db(d)). Thus, we
obtain

P
d2CC( ODcnB) ind� (d) D P

d2CC( OD0
db(c)nB) indcm(� )(d). By Lemma 3.6, we also ob-

tain
P

d2CC( ODc\B) ind� (d) D P
d2CC( OD0

db(c)\B) indcm(� )(d). The above two equalities give

i� (c) D icm(� )(db(c)), completing the proof.

Lemma 3.8. Let D be a virtual magnetic link diagram and D0 a virtual mag-
netic link diagram obtained from D by applying a Reidemeister move of typeII . Then,NPD(t) D NPD0(t).

Proof. We may assume that the number of classical crossings of D is less than
that of D0. Let a and b be the two new crossings ofD0 in a local disk B where
the local move is applied. Letc be a classical crossing ofD and � a weight map
of D. Then, Lemma 3.7 showsi� (c) D icm(� )(db(c)). Since sign(c) D sign(db(c)) and

#( ODc) D #( OD0
db(c)), we have

NPD(t) D X
c2CC(D)

0
�sign(c)

2#( ODc)

X
�2W( ODc)

t i� (c)

1
A

D X
c2CC(D0)

0
�sign(c)

2#( OD0
c)

X
�2W( OD0

c)

t i� (c)

1
A � X

c2{a,b}

0
�sign(c)

2#( OD0
c)

X
�2W( OD0

c)

t i� (c)

1
A

D NPD0 (t) � X
c2{a,b}

0
�sign(c)

2#( OD0
c)

X
�2W( OD0

c)

t i� (c)

1
A.

To prove the lemma, we only have to show that the second term ofthe last ex-
pression in the above equality is equal to zero. Ifa 2 MC(D0), then b 2 MC(D0). In
this case, we obtainOD0

a D OD0
b, and thusi� (a) D i� (b) for any weight map� of D0

a.

Since #(OD0
a) D #( OD0

b) and sign(a) D � sign(b), we have

X
c2{a,b}

0
�sign(c)

2#( OD0
c)

X
�2W( OD0

c)

t i� (c)

1
A D 0.

Suppose thata 2 SC(D0). Then, b 2 SC(D0). We have two cases. First, we consider
the case thatOD0

b is obtained from OD0
a by changing the crossingb. For the local move,

we have the canonical map fromW( OD0
a) to W( OD0

b). Since ind� (b) D indcm(c)(a) for

b 2 CC( OD0
a), a 2 CC( OD0

b) and a weight map� of OD0
a, we obtain i� (a) D icm(� )(b).

Since #(OD0
a) D #( OD0

b) and sign(a) D � sign(b), we have the desired result. Next, we

consider the case thatOD0
a and OD0

b have self crossings which come from local curls

in B. In this case, we also have the canonical map fromW( OD0
a) to W( OD0

b). Since a
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self crossing is composed of two edges with the same weight, we see that ind� (b) D
indcm(� )(a) D 0 for b 2 CC( OD0

a), a 2 CC( OD0
b) and a weight map� of OD0

a. Thus, we

obtain i� (a) D icm(� )(b). Two facts #(OD0
a) D #( OD0

b) and sign(a) D � sign(b) complete
the proof.

Let D be a virtual magnetic link diagram andD0 a virtual magnetic link diagram
obtained fromD by applying a Reidemeister move of type III in a local diskB. Let
d1, d2 and d3 be three crossings ofD in B between the top and the middle arcs, the
top and the bottom arcs, and the middle and the bottom arcs inB, respectively. We
denote three crossings ofD0 in B by d01, d02 andd03, similarly. Suppose that all the signs
of the three crossingsd1, d2 and d3 areC1. Such a Reidemeister move of type III is
called standard. Let E and E0 be virtual magnetic link diagrams obtained fromD and
D0 by smoothingd2 and d02, respectively. Note thatE n B D E0 n B though E and E0
are not related by a sequence of basic local moves inB. Thus, we may suppose that
E0 is obtained fromE by applying a local move inB. Then, we see that there exists
the canonical map fromW(E) to W(E0) and have the following two lemmas.

Lemma 3.9. X
d2CC(E)

ind� (d) D X
d2CC(E0) indcm(� )(d).

Proof. SinceE n B D E0 n B and �jEnB D cm(� )jE0nB, it is easy to see thatP
d2CC(EnB) ind� (d) D P

d2CC(E0nB) indcm(� )(d). Thus, we only have to show thatP
d2CC(E\B) ind� (d) D P

d2CC(E0\B) indcm(� )(d). The setCC(E \ B) consists of two
crossingsa and b. Since� (eo

a) D � (eu
b), � (eu

a) D � (eo
b) and sign(a) D sign(b), we haveP

d2CC(E\B) ind� (d) D ind� (a)C ind� (b) D 0.
Similarly, we obtain

P
d2CC(E0\B) indcm(� )(d) D 0. This completes the proof.

Lemma 3.10. i� (d j ) D icm(� )(d0j ), 1� i � 3.

Proof. First, we consider the case ofj D 1. Then, we have two cases: One is the
case of ODd1 D OD0

d01. The other is the case thatOD0
d01 is obtained from ODd1 by applying

the standard Reidemeister move of type III. IfODd1 D OD0
d01, then it is clear thati� (d1) D

icm(� )(d01). Suppose thatODd1 D OD0
d01 are related by the local move. Then, Lemma 3.5

and 3.6 givei� (d1) D icm(� )(d01). Next, we consider the case ofj D 3. Then, we can
show the claim in the same way as the above case. Finally, we consider the case of
j D 2. Then, we have three cases. Two of them are similar to the above cases. So,
we omit these cases. We deal with the other case thatODd2 and OD0

d02 are identical with

E and E0 respectively. Then, by Lemma 3.5 and 3.9, we obtaini� (d2) D icm(� )(d02),
completing the proof.
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Lemma 3.11. Let D be a virtual magnetic link diagram and D0 a virtual mag-
netic link diagram obtained from D by applying a single Reidemeister move of typeIII .
Then, NPD(t) D NPD0(t).

Proof. Since any Reidemeister move of type III can be realized by a sequence of
a standard Reidemeister move of type III and some Reidemeister moves of type II, by
Lemma 3.8, we only have to show thatNPD(t) is invariant under the standard Reidemeister
move of type III. Letc be a classical crossing ofD andc0 the corresponding crossing of
D0 to c, which means the double ofc if c is a crossing ofD outside the local disk where
the local move is applied. By Lemmas 3.7 and 3.10, for a weightmap� of D, we have
i� (c) D icm(� )(c0). Since sign(c) D sign(c0) and #(ODc) D #( OD0

c0), we obtain

NPD(t) D X
c2CC(D)

0
�sign(c)

2#( ODc)

X
�2W( ODc)

t i� (c)

1
A

D X
c02CC(D0)

0
�sign(c0)

2#( OD0
c0 )

X
cm(� )2W( OD0

c0 )
t icm(� )(c0)

1
A D NPD0 (t).

Lemma 3.12. Let D be a virtual magnetic link diagram and D0 a virtual mag-
netic link diagram obtained from D by applying any of virtualReidemeister moves or
of nodal moves. Then, NPD(t) D NPD0 (t).

Proof. Let c be a classical crossing ofD. Since there are no classical crossings
in a local diskB where the local move is applied,c is a crossing outsideB. We have
two cases. If ODc D OD0

db(c), then it is clear thati� (c) D icm(� )(db(c)) for any weight map

� of D. Since sign(c) D sign(db(c)) and #(ODc) D #( OD0
db(c)), we obtain the claim. IfOD0

db(c) is obtained from ODc by applying the local move, then Lemma 3.7 showsi� (c)D
icm(� )(db(c)) for any weight map� of D. Since sign(c) D sign(db(c)) and #(ODc) D
#( OD0

db(c)), we have the claim.

Lemma 3.13. Let D be a virtual magnetic link diagram and D0 a virtual mag-
netic link diagram obtained from D by applying a semivirtualmove in a local disk B.
Let c and c0 the classical crossings of D and D0 in B, respectively. Then, for a weight
map � of D, i� (c) D icm(� )(c0).

Proof. Considering two diagramsODc and OD0
c0 , we have three cases. First, we sup-

pose that ODc and OD0
c0 are related by two virtual Reidemeister moves of type II. Since

each of the Reidemeister moves can be applied inB and there are no classical crossing
in B, by Lemma 3.5, we obtaini� (c) D icm(� )(db(c)). Next, we consider the remaining

two cases: One is the case ofODc D OD0
c0 . The other is the case thatOD0

c0 is obtained
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from ODc by the semivirtual move, which changesD to D0. The proof of these cases
are similar to that of Lemma 3.7. Hence, we have the claim.

Lemma 3.14. Let D be a virtual magnetic link diagram and D0 a virtual magnetic
link diagram obtained from D by applying a semivirtual move.Then, NPD(t) D NPD0 (t).

Proof. Let c be a classical crossing ofD and � a weight map ofD. If c is
outside the local diskB where the local move is applied, Lemma 3.7 givei� (c) D
icm(� )(db(c)). Then, we see that sign(c) D sign(db(c)) and #(ODc) D #( OD0

db(c)). Sup-
pose thatc is in B. Then, there is the corresponding crossingc0 of D0 in B. By
Lemma 3.13, we obtaini� (c) D icm(� )(c0). We also see that sign(c) D sign(c0) and

#( ODc) D #( OD0
c0). From the definition of NPD(t) and the above facts, we have the result.

Let L be a virtual magnetic link andD a virtual magnetic link diagram represent-
ing L. We define a polynomial forL by PD(t) and denote it byPL (t).

Theorem 3.15. The polynomial PL (t) is an invariant for virtual magnetic links.

Proof. Since the writhe of a virtual magnetic link diagram isan invariant under basic
local moves except Reidemeister moves of type I, by Theorem 3.4 and Remark 3.3, it
suffices to show thatPL (t) is an invariant under a Reidemeister move of type I.

Let D and D0 be virtual magnetic link diagrams. We consider the case thatD0 is
obtained fromD by applying a Reidemeister move of type I. We may assume that the
number of crossings ofD is less than that of crossings ofD0. Then, we add a new
crossingc to D0, and therefore add a new term to the sum of the polynomial ofD.
If we smooth at the new crossingc of D0, we obtain a two component diagramOD0

c

which is a disjoint union of a virtual magnetic link diagram and a trivial loop. Then
i� (c) D 0 for the new crossing and any weight map� . Thus the term corresponding
to the new crossing vanishes. The remaining terms corresponding to the other classi-
cal crossings ofD and D0 are the same since the Reidemeister move of type I does
not affect the intersection indices of virtual magnetic link diagrams arising from other
crossings. Thus,PD(t) D PD0(t).

Corollary 3.16. The polynomial PL (t) is an invariant for virtual links.

Proof. Virtual link diagrams are virtual magnetic link diagrams without nodes.

4. The properties of PL(t) and examples

In this section, we give several various important properties of the polynomial in-
variant PL (t) for virtual magnetic links. First, we mention thatPL (t) is the same as the
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Fig. 10.

polynomial invariantQL (t) defined in [3] for virtual links. Recall the polynomialQL (t).
Let D be a virtual link diagram, andSC(D) (resp., MC(D)) be the set of self

crossings ofD (resp., the set of mixed crossings ofD). If we denote the set of clas-
sical crossings ofD by CC(D), then it is obvious thatCC(D) D SC(D) tMC(D).

Suppose that a classical crossingc of D is a self crossing. Then, there exists a
unique component ofD which constitutesc. We denote it byDc. Let ODc be a virtual
magnetic link diagram obtained fromDc by smoothingc as shown in Fig. 7.

This smoothing gives us a two-component virtual link diagram ODc, which is a part
of the smoothed virtual link. We choose an ordering (1, 2) forthe components of the
virtual link diagram ODc and let 1\ 2 denote the set of virtual crossings between the
two components. For each virtual crossingv 2 1 \ 2, we assign 1 or�1, called the
index numberof v and denoted by ind(v) as shown in Fig. 10. And for each virtual
crossingv in one component ofODc, we assign 0.

If c is a mixed crossing ofD, then we defineODc as the subdiagram ofD which
consists of two components constitutingc.

DEFINITION 4.1 ([3]). Let D be a virtual link diagram andc be a classical cross-
ing of D. The virtual intersection index, denoted byi (c), is given by

i (c) D X
d21\2

ind(d).

DEFINITION 4.2 ([3]). Let D be a virtual link diagram. Then the polynomial
QD(t) 2 Z[t ] for a virtual link diagramD is defined by

QD(t) D X
c2CC(D)

sign(c)(t ji (c)j � 1).

By using the virtual intersection index which is the sum of indices of virtual cross-
ings instead of the intersection index used in the definitionof the polynomial invariant
PL (t) of a virtual magnetic linkL, we can find a new polynomialQQL (t). Then it
is easy to check thatPL (t) D QQL (t) D QL (t) by replacingt ji (c)j � 1 by (1=4)(t i (c) C
t�i (c)�2) for any classical crossingc of a virtual link L via the Jordan curve theorem.
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Fig. 11.

Fig. 12.

However QQL (t) is not preserved under anN1 move so that it is not an invariant of
virtual magnetic links as follows.

EXAMPLE 4.3. Consider the following virtual magnetic linksK1 and K2 as in
Fig. 11. By the quick computation,QQK1(t)D�(1=4)(tCt�1�2) and QQK2(t)D (1=4)(tC
t�1 � 2). However,K1 and K2 are equivalent.

Like some polynomials defined by Sawollek [11], Silver and Williams [12] and by
Kauffman and Radford [9], the polynomialPL (t) is trivial for any classical links.

Proposition 4.4 (cf. [3, Proposition 4.1]). The polynomial PL (t) of any classical
link L is zero. Therefore if PL (t) ¤ 0, then the link L is not a classical link.

Proposition 4.5 (cf. [3, Proposition 4.2]). If K is a virtual knot which is normal,
then PK (t) 2 Q[t�2].

However, the above propositions are not true any more in the case of magnetic links.

EXAMPLE 4.6. Consider a classical magnetic knotK as shown in Fig. 12. Then
K is normal. But, it is easy to computePL (t) D (1=2)(tC t�1�2) that is non-zero and
not in Q[t�2].

As we can see in the following examples, the polynomialPL (t) for virtual magnetic
links provides us the advantage to distinguish whether given virtual magnetic links are
distinct or not via a quick computation.
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Fig. 13.

Fig. 14.

EXAMPLE 4.7. Consider the following virtual knots in Fig. 13.

(1) For the virtual trefoil knotK1, PK1(t) D (1=2)(t C t�1 � 2). Thus, K1 is a virtual
knot which is not normal.
(2) For K2, PK2(t) D �(1=4)(t C t�1 � 2).
(3) For K3, PK3(t) D 0.

Thus, we find thatK1, K2 and K3 are distinct.
For a virtual magnetic link diagramD, we denote byD� the virtual magnetic

link diagram obtained by interchanging the over- and under-information at all classical
crossings ofD while keeping the orientation ofD. If D and D� represent the same
virtual magnetic link diagrams, then the virtual magnetic link is calledamphicheiral.

We have the following result.

Proposition 4.8 (cf. [3, Proposition 4.6]). For any virtual magnetic link diagram
D, PD� (t) D �PD(t) and P�D(t) D PD(t), where �D is the diagram with the
reversed orientation.

Corollary 4.9 (cf. [3, Corollary 4.7]). For any amphicheiral virtual magnetic link
L, PL (t) D 0.

The operation on virtual link diagram depicted in Fig. 14 is called a Kauffman’s
flype. Jones polynomial is preserved under aKauffman’s flype, but our invariant is not
preserved.

EXAMPLE 4.10. For two virtual knotsK1, K2 in Fig. 15, we obtainPK1(t) D�(1=2)(t2 C t�2 � 2) and PK2(t) D 0, so that the polynomial invariantPL (t) is not
preserved under Kauffman’s flypes.
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Fig. 15.

Fig. 16.

Now we introduce an operation which preserves our invariantPL (t). Let us call
the operations shown in Fig. 16double flypes[5].

Theorem 4.11. The polynomial PD(t) of virtual magnetic link diagrams is in-
variant under the double flypes.

Proof. Let D and D0 be virtual magnetic link diagrams which differ by a single
double flype andd1 and d2 (resp.d1

0 and d2
0) be classical crossings ofD (resp. D0)

in a local disk B (resp. B0) where the double flype is applied. Then, we have the
canonical map fromW(D) to W(D0)

For any classical crossingc in DnB and any weight map� of D, we havei� (c)D
icm(� )(db(c)) according to whetherc belongs to the same component ofD (resp., D0)
or c belongs to the different components ofD (resp.,D0) since ind� (d1)C ind� (d2) D
0D indcm(� )(d01)C indcm(� )(d02).

For a classical crossingd1 (resp.,d1
0) in B (resp.,B0), which belongs to the same

component, we can calculate

i� (d1) D X
j¤1,2

d j2SC( ODd1 )

ind� (d j )C ind� (d2),

icm(� )(d1
0) D X

j¤1,2
d j

02SC( OD0
d1
0 )

indcm(� )(d j
0)C indcm(� )(d2

0)

for any weight map� . Since ind� (d2) D indcm(� )(d2
0) D 0 and ind� (d j ) D indcm(� )(d j

0)
for d j 2 SC( ODd1) andd j

0 2 SC( OD0
d01), then i� (d1)D icm(� )(d1

0). By the same reason, for a
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Fig. 17.

Fig. 18.

Fig. 19.

classical crossingd2 (resp.,d2
0) in B (resp.,B0), which belongs to the same component,

we havei� (d2) D icm(� )(d2
0) for any weight map� .

Finally, for classical crossingsd1, d2 (resp., d1
0, d2

0) in B (resp., B0), which be-
long to different components, we geti� (d j ) D icm(� )(d0j ) ( j D 1, 2) because ind� (d1)C
ind� (d2) D 0D indcm(� )(d1

0)C indcm(� )(d2
0).

Therefore, we havePD(t) D PD0(t).
We give an example which explains Theorem 4.11.

EXAMPLE 4.12. For virtual knotsK1 and K2 in Fig. 17 [5], we find thatK2 is
obtained fromK1 by adouble flypeandPK1(t)D PK2(t)D (tC t�1�2) by a computation.

REMARK 4.13. The operations in Fig. 18 are not called double flypes sothat
they may not preserve the polynomialPL (t).

For virtual knotsK1 and K2 in Fig. 19 [5], PK1(t)D (1=2)(tC t�1�2)C (1=2)(t2C
t�2 � 2) and PK2(t) D (1=2)(t C t�1 � 2).
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Fig. 20.

The classical crossing numberof a virtual magnetic linkL, denoted byc(L), is
the minimum number of classical crossings of all virtual magnetic link diagrams rep-
resentingL. Our invariant PL (t) can be used to find a lower bound on the classical
crossing number of a virtual magnetic link as follows.

Theorem 4.14. Let L be a virtual magnetic link. Then, the maximal degree of
PL (t) is less than or equal to c(L).

Proof. Let D be a virtual magnetic link diagram representingL. Suppose that the
number of classical crossings ofD is equal to the classical crossing number ofL. By
the definition of PL (t), the possible maximal degree ofPL (t) is the classical crossing
number ofL. This completes the proof.

Proposition 4.15. Let L be a virtual link. Then the maximal degree of PL (t) is
less than or equal tov(L), wherev(L) is the virtual crossing number of L.

Proof. For a virtual linkL, PL (t) can be regarded asQL (t) which is a poly-
nomial invariant defined in [3]. By [3, Corollary 4.14], the maximal degree ofQL (t)
is less than or equal tov(L).

We give an example which explains Proposition 4.15.

EXAMPLE 4.16. For a virtual linkL in Fig. 20, we havePL (t) D �(1=2)(t2 C
t�2 � 2). Thus, thevirtual crossing numberand classical crossing numberof L is
exactly 2, because the maximal degree ofPL (t) is 2 andv(L), c(L) � 2.

Finally, we give families of virtual knots and their polynomial PK (t).

EXAMPLE 4.17. Consider the following families of virtual knots.
(1) Let Kn be a classical knot withn C 2, n � 0, crossings as in Fig. 21 (1). Then
PKn(t) D 0 by Proposition 4.4.
(2) Let K 0

n be a virtual knot obtained fromKn by replacing a classical crossing with
a virtual one as in Fig. 21 (2). Then,PK 0

2n
(t) D (n=2)(t C t�1 � 2) and PK 0

2nC1
(t) D

((nC1)=2)(tC t�1�2) for any integern. Thus, K 0
2n and K 0

2m (resp.K 0
2nC1 and K 0

2mC1)
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Fig. 21.

are distinct if n ¤ m. Furthermore,K 0
2n and K 0

2mC1 are distinct except the case of
n�mD 1.
(3) Let Jn be a virtual knot withn virtual crossings as in Fig. 22 (1), where the box
Pj , 1 � j � n, meansp j horizontal half twists. For any classical crossingc of the
lower part of the diagram and any weight map� , it is immediate that we havei� (c) D
0 by the smoothing operation.

Let c be a classical crossing of the upper part of the diagram and� be a weight
map. We consider two cases according to the numbermD nC jp1j C jp2j C � � � C jpnj
is odd or even.

If m is odd, then the crossingc has positive sign. By the smoothing operation
at c, we have a virtual link diagram ofL with two components. Note that if the
number of classical crossings between two consecutive virtual crossingsv and v0 is
even (resp., odd), then in the computation ofi� (c), ind� (v) D � indcm(� )(v0) (resp.,
ind� (v) D indcm(� )(v0)). Thus, we havei� (c) D Pn

jD1(�1)N j , where N1 D 0 and N j ,
1� j � n, is the number of boxes with even numbers of classical crossings in the left
of the j -th virtual crossing from the left in the lower part of the diagram. Therefore,
we have

PJn(t) D 1

2

�
t
Pn

jD1(�1)Nj C t�Pn
jD1(�1)Nj � 2

�
.

If m is even, then the crossingc has negative sign. By the smoothing operation
at c, we have a virtual link diagram ofL with two components. By the same way,
we obtain

PJn(t) D �1

2

�
t
Pn

jD1(�1)Nj C t�Pn
jD1(�1)Nj � 2

�
.

(4) Let J 0n be a virtual knot obtained fromJn by replacing a classical crossing with a
virtual one in Fig. 22 (2). For any classical crossingc of the lower part of the diagram and
any weight map� , it is immediate that we haveji� (c)j D 1 by the smoothing operation.
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Fig. 22.

By the same way as (3), we have

PJ 0n(t) D 1

4
(p1 C p2 C � � � C pn)(t C t�1 � 2)

C 1

4

�
t�1CPn

jD1(�1)Nj C t1�Pn
jD1(�1)Nj � 2

�
if m is odd.

And we have

PJ 0n(t) D 1

4
(p1 C p2 C � � � C pn)(t C t�1 � 2)

� 1

4

�
t
Pn

jD1(�1)Nj C t�Pn
jD1(�1)Nj � 2

�
if m is even.
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