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Abstract
We introduce a polynomial invariant of virtual magneticklidiagrams. For vir-
tual links, this polynomial equals the polynomial invatiatefined in [3]. We show
that it gives lower bounds of the classical crossing numbet the virtual cross-
ing number of virtual links. Also we give various propertie$ this polynomial
and examples.

1. Introduction

Virtual knot theory is introduced by L.H. Kauffman as a getieation of classical
knot theory in the sense that if two classical link diagrameseqjuivalent as virtual links,
then they are equivalent as classical links [8]. A virtuakldiagram is a link diagram in
R? possibly with some encircled crossings without over/uridarmation, called virtual
crossings. A virtual link is the equivalence class of suclink fliagram by generalized
Reidemeister moves, which consist of (classical) Reidst@emoves of typdR;, R, and
Rs and virtual Reidemeister moves of typeR;, V Ry, V R; and thesemivirtual move
V R4 as shown in Fig. 1. In [4], A. Ishii, N. Kamada and S. Kamadaodtice avir-
tual magnetic link diagranas an oriented link diagram which may have virtual crossings
and nodes shown in Fig. 2. Two virtual magnetic link diagraans equivalent if they
are related by a finite sequence of the generalized Reide@nmai®ves or nodal moves
which consist ofN;-moves andN,-moves as in Fig. 3. The nine moves, which are gen-
eralized Reidemeister moves and nodal moves, are calledasie localmoves in this
paper. Avirtual magnetic linkis the equivalence class of a virtual magnetic link dia-
gram. Kauffman [7] used such a diagram to give an oriente steodel for the Jones
polynomial of classical links. Note that a virtual magndiik diagram can be regarded
as a generalized virtual link diagram because a virtual rtgrink diagram without
nodes is a virtual link diagram.

Until now, many invariants of virtual links are defined witttoregard to virtual
crossings, for example, the fundamental group, the Alesammblynomial, the Jones
polynomial, the quantum link invariants and the Vassilievariant, see [1, 2, 8, 10].
So, in many cases a classical invariant extends to an imtaofvirtual links that is
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an extension of ideas from classical knot theory. Howeversame cases one has an
invariant of virtual links that vanishes for classical lfnk These are the polynomial
invariants studied by Sawollek [11], Silver and Williams2Jland by Kauffman and
Radford [9], which are eventually the same.

Also, A. Henrich [2] introduces a polynomial invariant ofrizial knots which van-
ishes for classical knots. Later, Im, Lee and Lee [3] exterghri¢h’s polynomial to
virtual links. The purpose of this paper is to introduce aypomial invariant of virtual
magnetic links which is a generalization of the polynomiefided by Im, Lee and Lee,
and give various properties of this polynomial and examphdso this polynomial can
be used to find lower bounds on the classical crossing numizbitiee virtual crossing
number of virtual links.

This paper is organized as follows. Section 2 gives the bdsfinitions and results
of virtual links and virtual magnetic links. In Section 3, vigroduce a polynomial
invariant for virtual magnetic links and give the proof oftimvariance. In Section 4,
we provide various properties of the polynomial invariant aome examples.
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2. Preliminaries

In this section, we give basic definitions and results which rreeded throughout
this paper.

A state of a virtual magnetic link diagranD is a union of immersed loops in
R? with only virtual crossings and nodes, which is obtained piicg all classical
crossings ofD. At each spliced crossing we attach a chord labeleor B to represent
the splicing direction as shown in Fig. 4. A sta®eof a virtual magnetic link diagram
D is normal if for any classical crossing of D, the loops ofS spliced atx are of
type (1) or (2) in Fig. 5. A virtual magnetic link diagraf is normal if every state
of D is normal. A virtual magnetic link_ is normalif L is the equivalence class of a
normal diagram under the equivalence relation generatedemgralized Reidemeister
moves, N; and N, moves. An edge of a virtual magnetic link diagrdin means an
arc of D divided by nodes or a loop oD without nodes. For a virtual magnetic link
diagramD, we denote byD the union of immersed circles iR? obtained by ignoring
nodes and orientations of the edgesf and by replacing all classical crossings of
D with 4-valent vertices and leaving the virtual informationchanged.

DEFINITION 2.1 ([6]). D admits an alternate orientation if all edges (when re-
garding D as a 4-valent planar graph) can be oriented as shown in Fig. 6.

Proposition 2.2 (cf. [6, Proposition 6]). A virtual magnetic link diagram D is nor-
mal if and only ifD admits an alternate orientation.
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Proposition 2.3 (cf. [6, Corollary 7]). Let D = D, U D, U --- U D, be an
n-component virtual magnetic link diagram. If D is norm#éhen the number of all
classical crossings between; Bnd D\ D; is even.

3. The polynomial invariant P (t) of virtual magnetic links

In this section, we define a polynomial of a virtual magnetitk land give the
proof of the invariance.

A classical crossing of a virtual magnetic link diagrdinis said to be aelf cross-
ing if the crossing is composed of two arcs which belong to shme component of
D. We denote the set of self crossings Bfby SO D). A classical crossing oD is
said to bemixed crossing if the crossing is composed of two edges which lgeton
different components oD. We denote the set of mixed crossings Df by MC(D).

If we denote the set of classical crossings @fby CC(D), then it is obvious that
CC(D) = SQD) u MC(D). The writhe of D denoted bywr(D) is the sum of signa-
tures of classical crossings &, that is ZceCC(D) sign().

We introduce a virtual magnetic link diagram derived fr@n Suppose that a clas-
sical crossingc of D is a self crossing. Then, there exists a unique component of
D which constitutesc. We denote it byD.. Let D. be a virtual magnetic link dia-
gram obtained fromD,; by smoothingc as shown in Fig. 7. It is a mixed crossing
of D, then we defineD. as the subdiagram ob which consists of two components
constitutingc. An example is illustrated in Fig. 8. Aveight mapof D is a map
o: e(De) — {+1} such thato(e) # o(€) for adjacent edges and € of D, where
e(D.) is the set of edges oD.. There exist 22 weight maps, where #) is the
number of components db.. Note that #D.) is either one or two. We denote the set
of weight maps ofD. by W(Dy).



POLYNOMIAL OF VIRTUAL MAGNETIC LINK DIAGRAMS 1099

Do— &> Edy-
D, D
(1)
oo~
D D,

(2)

o>

Fig. 8.

‘\\ / ’\// ‘\\ / ‘\/r \\/‘ \ // \\/ //
17 AT 1777 1
ind_(d)=1 ind_(d)=-1 ind_(d)=1 ind_(d)=-1
Otherwise, ind (d)=0
Fig. 9.

A classical crossingl of D, is composed of two arcs. The arc passing oved at
is called the over path at and the other arc is called the under patidat_et €] and
e} be edges including the over path and the under patth, aespectively. Thendex
numberof d with respect to a weight map is given by (%2) sign@)(o (€3) — o (€}))
and is denoted by indd). A diagrammatic description is given in Fig. 9 and note that
ind, (d) € {0, £1} [3].

DerINITION 3.1. Let D be a virtual magnetic link diagram and a classical
crossing of D. Let o be a weight map ofD.. The intersection index of with re-
spect too, denoted hyi,(c), is given byi,(c) = Zdecc(,jc) ind, (d).

We will define polynomialsPp(t) and Pp(t) for a virtual magnetic link diagrand
and show thaPp(t) is an invariant under the basic local moves except the Resiter
move of type | andPp(t) is an invariant for virtual magnetic link diagrams.
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DEFINITION 3.2. Let D be a virtual magnetic link diagram. Then, the poly-
nomials Pp(t) and Pp(t) in Q[t*!] for D are given by

5 sign(c) i (c
Po) = Y (2#(!59 3 t~<>)

ceCC(D) oeW(De)

and

Po(t) = Z (Szig(r;g;) Z (tin(c)_l))_

ceCC(D) ceW(De)
REMARK 3.3. Note thatPp(t) = Pp(t) — Y cecqp) SIGNE) = Po(t) —wr(D).

Theorem 3.4. The polynomialPp(t) is an invariant for virtual magnetic link dia-
grams under the basic local moves except the Reidemeisteg ofotypel.

Let D be a virtual magnetic link diagram arid’ a virtual magnetic link diagram
obtained fromD by applying a local move in a local disB. Then, generally speaking,
we cannot regard a weight map Bf as that of D’ because there exists a local move,
which changes the number of edges of a diagram, likeNpienove. However, we note
that D \ B and D’ \ B are identical. If the numbers of weight maps Bfand D’ are
equal, and, for a weight map of D, there exists a unique weight map of D’ such
that the weight of each edge &f outsideB is equal to that of the corresponding edge
of D, then we can give a bijection froW (D) to W(D’) by sendingo to ¢’. We call
it the canonicalmap fromW(D) to W(D’) denoted bycm: W(D) — W(D’). For ex-
ample, if a local move is a basic one, then we see that thestsetkie canonical map.

Let ¢ be a crossing oD outsideB. SinceD \ B and D'\ B are identical, there
exists a unique crossing of D’ corresponding ta by the identity map fromD \ B
to D'\ B. We call the crossing’ the doubleof ¢ and denote it bydb(c).

Lemma 3.5. Let D be a virtual magnetic link diagram and’x virtual mag-
netic link diagram obtained from D by applying a basic locabve in a local disk
B. Let c be a classical crossing of D outside B anda weight map of D. Then

ind, (¢) = iNdene (AB(C)).

Proof. By definitions of the canonical mapn and the crossinglb(c), we have
o (d?) = cm(o)(€gyy) ando(dy) = cm(o)(egyy)- Since signg) = sign@dhb(c)), we obtain
the claim. O

Lemma 3.6. Let D be a virtual magnetic link diagram and’ @ virtual magnetic
link diagram obtained from D by applying a basic local moveaiocal disk B. Let
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o be a weight map of D. Then

Yo oinde© = Y indeno)(©),

ceCC(DNB) ceCC(D'NB)

where CGE N B) denotes the set of classical crossings of a diagram E in B.

Proof. The proof is divided into five cases. To begin with, wppose that the basic
local move is any of virtual Reidemeister moves. The@(D N B) = CC(D’' N B) = @.
Thus, the claim is true. Next, we suppose that the basic loo&k is a semivirtual move.
Then, each of the se8C(D N B) andCC(D’ N B) consists of one element. Letandc
be the elements c2C(D N B) andCC(D’ N B), respectively. Since (e2) = cm(o)(e?),
o(el) = cm(o)(eY) and sign€) = sign(c’), we have ind(c) = indcm)(C'). Thus, the claim
is true. Next, we suppose that the basic local move is a Raden move of type I. We
may assume that the number of crossing®a$ less than that ob’. Then,CC(DNB) =
¢ and CC(D’ N B) consists of one crossing. Sincecm(c)(e) = cm(o)(eY), we have
iNdeney(@) = 0. Thus, the claim is true. Furthermore, we suppose that disé bocal
move is a Reidemeister move of type Il. We may assume that uh@aer of crossings
of D is less than that oD’. Then,CC(D N B) = ¢ andCC(D’ N B) consists of two
crossingsa andb. Sincecm(o)(€3) = cm(o’)(ep), cm(o)(€}) = cm(o)(ey) and signg) =
—signp), we have inghy)(@) + indenio)(0) = 0. Thus, the claim is true. Finally, we
suppose that the basic local move is a Reidemeister movepeflty Then, each of the
setsCC(D N B) andCC(D’ N B) consists of three crossings. L&t ¢, andcs (resp.c;,
¢, andcj) be the crossings dd N B (resp.D’ N B) between the top and the middle arcs,
the top and the bottom arcs, and the middle and the bottomrasrespectively. Since
o) = crr(cr)(eg,), o(ey) = cn’(cr)(eg,) and sign¢;) = sign), 1 <i < 3, we obtain
ind, (Ci) = indemc) () for eachi, andy . ccpngyinds (€) = > _cccoprng) iNdeme)(€)- This
completes the proof. ]

Lemma 3.7. Let D be a virtual magnetic link diagram and’[& virtual mag-
netic link diagram obtained from D by applying a basic locabve in a local disk
B. Let c be a classical crossing of D outside B atda weight map of D. Then

i0(C) = icme)(db(c)).

Proof. Considering two diagrant3; and Dy, we have the following two cases:
One is the case thdD. and Dy, are identical. The other is the case thaf, is
obtained fromD. by applying the local move. First, we suppose that = D&b(c)-
Then, for a classical crossing of D., we easily obtain ing(d) = indcmq)(db(d)),
which impliesi, () = icme)(db(c)). Next, we suppose thaﬁ)gb(c) is obtained fromD
by applying the local move irB. Note thatCC(D.) = CC(D. \ B) LU CC(D. N B)
and CC(D;,b(C)) = CC(ng(c) \ B) U CC(D(jb(c) N B), where CC(E \ B) denotes the set
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of classical crossings of a diagraf outside B. If a crossingd of D, is an elem-
ent of CC(D. \ B), then Lemma 3.5 shows that in@) = indcn,)(db(d)). Thus, we
obtain 3y ccp,\ gy iNds(d) = Zdecqﬁgw\s) indeo)(d). By Lemma 3.6, we also ob-
tain > 4ccop.np) INds(d) = Zdecq%@ﬂm iNdeney(d). The above two equalities give
i (C) = icmo)(db(C)), completing the proof. ]

Lemma 3.8. Let D be a virtual magnetic link diagram and’[& virtual mag-
netic link diagram obtained from D by applying a Reidemeist@ve of typdl. Then
Po(t) = Po(t).

Proof. We may assume that the number of classical crossihd® i3 less than
that of D’. Let a and b be the two new crossings dd’ in a local disk B where
the local move is applied. Let be a classical crossing dd and o a weight map
of D. Then, Lemma 3.7 showis (C) = icme)(db(c)). Since signg) = sign@db(c)) and
#(Dc) = #(Dyyq), We have

ISD(t) _ Z (Slgn(C) Z t| (c))

ceCC(D) oeW(De)
B S|gn(c) i sign(c) i (©
= 2 ( 2 Y9 -2 e 2!
ceC(D’) oeW(Dy) cefa,b} oeW(Dy)
_ sign(c) i
= Pp(t) — Z e Z tie© |
cela,b) “ oew(dy

To prove the lemma, we only have to show that the second tertheoflast ex-
pression in the above equality is equal to zeroalé MC(D’), thenb € MC(D’). In
this case, we obtai®), = Dj, and thusi,(a) = i,(b) for any weight mapo of DJ.
Since #D ) = #(D ) and sign§) = — sign(), we have

)3 (232@ )3 ) -0

cefa,b} oeW(Dy)

Suppose that € SQD’). Then,b € SQD’). We have two cases. First, we consider
the case thaf);) is obtained fromf)/ by changing the crossing. For the local move,
we have the canonical map froIW(Da) to W(D ). Since ind(b) = indemg)(a) for

b e CC(Da) ace CC(D ) and a weight mapr of D}, we obtaini,(a) = icm(o) (D).
Since #D ) = #(D ) and sign§) = — signp), we have the desired result. Next, we
consider the case tha])’ and D’ have self crossings which come from local curls
in B. In this case, we also have the canonical map fMl(‘Da) to W(D ). Since a
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self crossing is composed of two edges with the same weightsee that ingdb) =
iNdems)(@) = 0 for b € CC(I5;), ae CC(lﬁg) and a weight map of 15;. Thus, we
obtaini, (@) = iemo)(b). Two facts #D}) = #(D},) and sign§) = — signf) complete
the proof. O

Let D be a virtual magnetic link diagram ard’ a virtual magnetic link diagram
obtained fromD by applying a Reidemeister move of type Il in a local diBk Let
d;, d; andd; be three crossings db in B between the top and the middle arcs, the
top and the bottom arcs, and the middle and the bottom ard3, irespectively. We
denote three crossings @' in B by d;, d; anddj, similarly. Suppose that all the signs
of the three crossingd;, d, andd; are +1. Such a Reidemeister move of type lll is
calledstandard Let E and E’ be virtual magnetic link diagrams obtained framand
D’ by smoothingd, and d;, respectively. Note thakE \ B = E’ \ B though E and E’
are not related by a sequence of basic local moveB.inThus, we may suppose that
E’ is obtained fromE by applying a local move irB. Then, we see that there exists
the canonical map fromV(E) to W(E') and have the following two lemmas.

Lemma 3.9.

Y ind,(d) = ) indeno)(d).

deCC(E) deCC(E)

Proof. SinceE \ B = E’\ B and ojg\g = cm(0)e\s, it is easy to see that
> decce\p) INAs(d) = > gccoEn gy iNdemy(d).  Thus, we only have to show that
> deccene) iAo (d) = > _gecoEnp) iNdemo)(d). The setCC(E N B) consists of two
crossingsa andb. Sinceo (€3) = o (€}), o(e)) = o(ef) and sign§) = signp), we have
>_decceng) iNds(d) = ind, (@) + ind, (b) = 0.

Similarly, we obtain}_4.cce ng) iNdemo)(d) = 0. This completes the proof. [

Lemma 3.10. i,(dj) = icn(g)(d]f), 1<i<3

Proof. First, we consider the case pf=1. Then, we have two cases: One is the
case ofDy, = f);,i. The other is the case thﬁ:ji is obtained fromDg, by applying

the standard Reidemeister move of type III.Iflf,1 = Iﬁ’i, then it is clear that,(d;) =

icm(o)(d7). Suppose thaﬁd1 = Iﬁéji are related by the local move. Then, Lemma 3.5
and 3.6 givei,(d1) = icnr)(d;). Next, we consider the case ¢f= 3. Then, we can
show the claim in the same way as the above case. Finally, wsidar the case of

j = 2. Then, we have three cases. Two of them are similar to thgeabases. So,
we omit these cases. We deal with the other case Ehatand If)’é are identical with

E and E’ respectively. Then, by Lemma 3.5 and 3.9, we obigi(t)) = icme)(d5),
completing the proof. O
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Lemma 3.11. Let D be a virtual magnetic link diagram and’ virtual mag-
netic link diagram obtained from D by applying a single Reméster move of typBl .
Then ISD(t) = ISD/(t).

Proof. Since any Reidemeister move of type Ill can be redlizg a sequence of
a standard Reidemeister move of type lll and some Reideenaisbves of type II, by
Lemma 3.8, we only have to show thap (t) is invariant under the standard Reidemeister
move of type lll. Letc be a classical crossing @ andc’ the corresponding crossing of
D’ to ¢, which means the double ofif ¢ is a crossing oD outside the local disk where
the local move is applied. By Lemmas 3.7 and 3.10, for a weigdgpo of D, we have
i, (C) = iemo)(C). Since signg) = sign’) and #0.) = #(D..), we obtain

Po) = > (Szifgf) Y O

ceCC(D) oeW(De)

sign(c . , _
DI L S ) =
c'eCC(D’) 2" cmo)eW(D,)

Lemma 3.12. Let D be a virtual magnetic link diagram and’& virtual mag-
netic link diagram obtained from D by applying any of virtuakidemeister moves or
of nodal moves. TherPp(t) = Pp (t).

Proof. Letc be a classical crossing dd. Since there are no classical crossings
in a local diskB where the local move is applied,is a crossing outsid&. We have
two cases. IfD; = Dy, then it is clear that, (c) = icro)(db(c)) for any weight map
o of D. Since signf) = sign@db(c)) and #0.) = #(Dj), We obtain the claim. If
b&b(c) is obtained fromD, by applying the local move, then Lemma 3.7 show&) =
icme)(db(c)) for any weight mapo of D. Since sign§) = sign@db(c)) and #@C) =
#(Djy): We have the claim. O

Lemma 3.13. Let D be a virtual magnetic link diagram and’[& virtual mag-
netic link diagram obtained from D by applying a semivirtuabve in a local disk B.
Let ¢ and ¢ the classical crossings of D and’[n B, respectively. Therfor a weight
map o of D, i, (C) = icne)(C).

Proof. Considering two diagran‘lﬁc and Dg,, we have three cases. First, we sup-
pose thatD. and f)/c, are related by two virtual Reidemeister moves of type Il.c8in
each of the Reidemeister moves can be applieB iand there are no classical crossing
in B, by Lemma 3.5, we obtaii, (C) = icme)(db(c)). Next, we consider the remaining
two cases: One is the case Bt = D,. The other is the case th&l, is obtained
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from D¢ by the semivirtual move, which chang& to D’. The proof of these cases
are similar to that of Lemma 3.7. Hence, we have the claim. []

Lemma 3.14. Let D be a virtual magnetic link diagram and’ @ virtual magnetic
link diagram obtained from D by applying a semivirtual moVéen Pp(t) = Pp (t).

Proof. Letc be a classical crossing d0 and o a weight map ofD. If c is
outside the local diskB where the local move is applied, Lemma 3.7 giyéc) =
iemo)(db(C). Then, we see that sigr)(= sign@db(c)) and #Oc) = #(Djyy)- Sup-
pose thatc is in B. Then, there is the corresponding crossitigof D’ in B. By
Lemma 3.13, we obtain,(C) = icme)(C). We also see that sigr)(= signc’) and
#(D.) = #(D). From the definition ofPp(t) and the above facts, we have the result.

[

Let L be a virtual magnetic link an® a virtual magnetic link diagram represent-
ing L. We define a polynomial fot. by Pp(t) and denote it byP (t).

Theorem 3.15. The polynomial P(t) is an invariant for virtual magnetic links.

Proof. Since the writhe of a virtual magnetic link diagramaisinvariant under basic
local moves except Reidemeister moves of type I, by Theorghad Remark 3.3, it
suffices to show thalP, (t) is an invariant under a Reidemeister move of type I.

Let D and D’ be virtual magnetic link diagrams. We consider the case Mais
obtained fromD by applying a Reidemeister move of type I. We may assume kwat t
number of crossings oD is less than that of crossings @’. Then, we add a new
crossingc to D’, and therefore add a new term to the sum of the polynomiaD of
If we smooth at the new crossing of D’, we obtain a two component diagralAm’C
which is a disjoint union of a virtual magnetic link diagramdaa trivial loop. Then
i-(c) = 0 for the new crossing and any weight map Thus the term corresponding
to the new crossing vanishes. The remaining terms correlépprio the other classi-
cal crossings ofD and D’ are the same since the Reidemeister move of type | does
not affect the intersection indices of virtual magneticklidiagrams arising from other
crossings. ThusPp(t) = Pp(t). O

Corollary 3.16. The polynomial P(t) is an invariant for virtual links.

Proof. Virtual link diagrams are virtual magnetic link dragns without nodes.
O]

4. The properties of P_(t) and examples

In this section, we give several various important propsrof the polynomial in-
variant P (t) for virtual magnetic links. First, we mention th& (t) is the same as the



1106 Y.H. M, S. Kim AND K.I. PARK
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ind(v)=1 ind(v) =-1
Fig. 10.

polynomial invariantQy (t) defined in [3] for virtual links. Recall the polynomi&d, (t).

Let D be a virtual link diagram, an&QD) (resp., MC(D)) be the set of self
crossings ofD (resp., the set of mixed crossings Df). If we denote the set of clas-
sical crossings oD by CC(D), then it is obvious tha€CC(D) = SO D) U MC(D).

Suppose that a classical crossiogpf D is a self crossing. Then, there exists a
unique component oD which constitutess. We denote it byD.. Let D. be a virtual
magnetic link diagram obtained from. by smoothingc as shown in Fig. 7.

This smoothing gives us a two-component virtual link diagr@., which is a part
of the smoothed virtual link. We choose an ordering (1, 2) tfer components of the
virtual link diagram D, and let 10 2 denote the set of virtual crossings between the
two components. For each virtual crossings 1 N 2, we assign 1 or1, called the
index numberof v and denoted by indj as shown in Fig. 10. And for each virtual
crossingv in one component oD, we assign 0.

If ¢ is a mixed crossing oD, then we defineD. as the subdiagram dd which
consists of two components constituting

DEFINITION 4.1 ([3]). LetD be a virtual link diagram and be a classical cross-
ing of D. Thevirtual intersection indexdenoted byi(c), is given by

i)=Y ind(d).

deln2

DEFINITION 4.2 ([3]). Let D be a virtual link diagram. Then the polynomial
Qp(t) € Z[t] for a virtual link diagramD is defined by

Qo) = ) signE)(t" - 1).

ceCC(D)

By using the virtual intersection index which is the sum ddiges of virtual cross-
ings instead of the intersection index used in the definitbthe polynomial invariant
P_(t) of a virtual magnetic linkL, we can find a new polynomiaQ_(t). Then it
is easy to check thaP_(t) = Q(t) = Q.(t) by replacingt'©l — 1 by (1/4){'© +
t=1© —2) for any classical crossing of a virtual link L via the Jordan curve theorem.
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Fig. 11.

S

K

Fig. 12.

However Q, (t) is not preserved under aN; move so that it is not an invariant of
virtual magnetic links as follows.

ExamMPLE 4.3. Consider the following virtual magnetic link§; and K, as in
Fig. 11. By the quick computatiorQ, (t) = —(1/4)(t +t=*—2) and Q,(t) = (1/4)(t +
t~1 —2). However,K; and K, are equivalent.

Like some polynomials defined by Sawollek [11], Silver andlifins [12] and by
Kauffman and Radford [9], the polynomid®_(t) is trivial for any classical links.

Proposition 4.4 (cf. [3, Proposition 4.1]). The polynomial P(t) of any classical
link L is zero. Therefore if Ht) # 0, then the link L is not a classical link.

Proposition 4.5 (cf. [3, Proposition 4.2]). If K is a virtual knot which is normal
then R (t) € Q[t*?].

However, the above propositions are not true any more indlse of magnetic links.

ExXAMPLE 4.6. Consider a classical magnetic kritas shown in Fig. 12. Then
K is normal. But, it is easy to comput@,_(t) = (1/2)(t +t~*—2) that is non-zero and
not in Q[t*2].

As we can see in the following examples, the polynonia(t) for virtual magnetic
links provides us the advantage to distinguish whetherngiieual magnetic links are
distinct or not via a quick computation.
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Fig. 13.

7/
Q-0
7

Fig. 14.

ExAMPLE 4.7. Consider the following virtual knots in Fig. 13.

(1) For the virtual trefoil knotKy, Py, (t) = (1/2)t +t~1 —2). Thus,K; is a virtual
knot which is not normal.

(2) For Ky, Py,(t) = —(1/4)@t +t~ —2).

(3) For Ks, Pk,(t) =0.

Thus, we find thatK,, K, and K3 are distinct.

For a virtual magnetic link diagranD, we denote byD* the virtual magnetic
link diagram obtained by interchanging the over- and unafermation at all classical
crossings ofD while keeping the orientation oD. If D and D* represent the same
virtual magnetic link diagrams, then the virtual magnetitk lis called amphicheiral

We have the following result.

Proposition 4.8 (cf. [3, Proposition 4.6]). For any virtual magnetic link diagram
D, Pp«(t) = —Pp(t) and Pp(t) = Pp(t), where —D is the diagram with the
reversed orientation.

Corollary 4.9 (cf. [3, Corollary 4.7]). For any amphicheiral virtual magnetic link
L, P.(t)=0.

The operation on virtual link diagram depicted in Fig. 14 aled a Kauffmars
flype Jones polynomial is preserved undeKauffmans flype but our invariant is not
preserved.

EXAMPLE 4.10. For two virtual knotsK;, K, in Fig. 15, we obtainPx,(t) =
—(1/2)(t? + t=2 — 2) and Py, (t) = 0, so that the polynomial invarian®_(t) is not
preserved under Kauffman’s flypes.
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Now we introduce an operation which preserves our invarirt). Let us call
the operations shown in Fig. 1double flyped5].

Theorem 4.11. The polynomial B(t) of virtual magnetic link diagrams is in-
variant under the double flypes.

Proof. LetD and D’ be virtual magnetic link diagrams which differ by a single
double flype andd; andd, (resp.d;’ and d,’) be classical crossings dd (resp.D’)
in a local disk B (resp. B’) where the double flype is applied. Then, we have the
canonical map fromW(D) to W(D")

For any classical crossingin D\ B and any weight map of D, we havei,(c) =
icme)(db(c)) according to whethec belongs to the same component Df (resp., D)
or ¢ belongs to the different components bf (resp., D’) since ind (d;) + ind, (d,) =
0 = indemey (d;) + iNdeye)(d5).

For a classical crossind; (resp.,d;’) in B (resp.,B’), which belongs to the same
component, we can calculate

io(d) = Y indy(dj)+ ind,(dy),
j#1,2
d;eSQDy,)
eme) () = D iNGero)(d;) + iNderre ()

j#1,2
dj'eSqD’y,)

for any weight mapo. Since ind(dz) = indem)(d2") = 0 and ind (d;) = iNdewey(d;”)
for dj € sqbdl) andd;’ € qu/i)’ theni, (d) = icn(o)(di’). By the same reason, for a
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Fig. 18.

Fig. 19.

classical crossing, (resp.,dy’) in B (resp.,B’), which belongs to the same component,
we havei, (d) = icm)(d2’) for any weight mapo.

Finally, for classical crossingd, dy (resp.,d,’, d’) in B (resp., B’), which be-
long to different components, we get(d;) = icn)(dj) (j = 1, 2) because indd:) +
ind,(d2) =0 = incha)(dl/) + indcn(r,)(dz’).

Therefore, we haveéPp(t) = Pp(t). ]

We give an example which explains Theorem 4.11.

ExXAMPLE 4.12. For virtual knotsK; and K5 in Fig. 17 [5], we find thatK is
obtained fromK; by adouble flypeand Py, (t) = Py, (t) = (t +t~1—2) by a computation.

REMARK 4.13. The operations in Fig. 18 are not called double flypeshsb
they may not preserve the polynomigy (t).

For virtual knotskK; and K, in Fig. 19 [5], Pk, (t) = (1/2)t +t~1—2)+(1/2)(t*+
t=2 —2) and Py, (t) = (1/2)t +t™* - 2).
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The classical crossing numbeof a virtual magnetic linkL, denoted byc(L), is
the minimum number of classical crossings of all virtual metic link diagrams rep-
resentingL. Our invariant P_(t) can be used to find a lower bound on the classical
crossing number of a virtual magnetic link as follows.

Theorem 4.14. Let L be a virtual magnetic link. Therthe maximal degree of
PL(t) is less than or equal to(t).

Proof. LetD be a virtual magnetic link diagram representihg Suppose that the
number of classical crossings &f is equal to the classical crossing numberLof By
the definition of P_(t), the possible maximal degree &% (t) is the classical crossing
number ofL. This completes the proof. O

Proposition 4.15. Let L be a virtual link. Then the maximal degree af(} is
less than or equal ta(L), wherewv(L) is the virtual crossing number of L.

Proof. For a virtual linkL, P_(t) can be regarded a®(t) which is a poly-
nomial invariant defined in [3]. By [3, Corollary 4.14], theaximal degree ofQ, (t)
is less than or equal to(L). []

We give an example which explains Proposition 4.15.

EXAMPLE 4.16. For a virtual linkL in Fig. 20, we haveP_(t) = —(1/2)(t? +
t2 — 2). Thus, thevirtual crossing numberand classical crossing numbeof L is
exactly 2, because the maximal degreeRpft) is 2 andv(L), c(L) < 2.

Finally, we give families of virtual knots and their polynah P (t).

ExAMPLE 4.17. Consider the following families of virtual knots.
(1) Let K, be a classical knot withn 4+ 2, n > 0, crossings as in Fig. 21 (1). Then
Pk, (t) = 0 by Proposition 4.4.
(2) Let K/ be a virtual knot obtained fronk,, by replacing a classical crossing with
a virtual one as in Fig. 21 (2). TherR, (t) = (n/2)(t + t~1 - 2) and Py, (1) =

((n+1)/2)(t +t*—2) for any integem. Thus, K}, and K., (resp.Kj,,,; and K} . 1)
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Fig. 21.

are distinct ifn # m. Furthermore,K;, and K5, ., are distinct except the case of
n—m=1.

(3) Let Jy be a virtual knot withn virtual crossings as in Fig. 22 (1), where the box
P;, 1 < j =< n, meansp; horizontal half twists. For any classical crossiogf the
lower part of the diagram and any weight mapit is immediate that we havi (c) =

0 by the smoothing operation.

Let c be a classical crossing of the upper part of the diagrameare a weight
map. We consider two cases according to the numbetr n+ |pg| + |p2| +- - + | pn]
is odd or even.

If m is odd, then the crossing has positive sign. By the smoothing operation
at ¢, we have a virtual link diagram of with two components. Note that if the
number of classical crossings between two consecutiveialitrossingsy and v’ is
even (resp., odd), then in the computation igfc), ind,(v) = —indeme)(v') (resp.,
ind, (v) = iNdero)(v')). Thus, we have,(c) = ZTzl(—l)Ni, where N; = 0 and N;j,
1< j =n, is the number of boxes with even numbers of classical angssin the left
of the j-th virtual crossing from the left in the lower part of the giam. Therefore,
we have

l " j n .
PJn(t) = E(tzj:l(il)NJ +t ijl(*l)NJ _ 2)

If mis even, then the crossing has negative sign. By the smoothing operation
at c, we have a virtual link diagram ofE with two components. By the same way,
we obtain

1 n N; n N;
Py () = =5 (X" - BV ),
(4) Let J. be a virtual knot obtained frond, by replacing a classical crossing with a

virtual one in Fig. 22 (2). For any classical crossigf the lower part of the diagram and
any weight map, it is immediate that we havig, (c)| = 1 by the smoothing operation.
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Fig. 22.

By the same way as (3), we have

1
Py (t) = Z(pl P+ )t +t—2)

n %(t—nz,”zl(fl)“i e )

if mis odd.
And we have

1
Py (t) = Z(pl P2t p)tHtTI=2)
- % (t27:1(—1)N1 4t XY 2)
if mis even.
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