SELF-MAPPING DEGREES OF 3-MANIFOLDS

Hongbin SUN, Shicheng WANG, Jianchun WU and Hao ZHENG

(Received March 3, 2010, revised October 7, 2010)
Abstract
For each closed oriented 3-manifold M in Thurston's picture, the set of degrees of self-maps on M is given.

Contents

1.1. Background. ... 247
1.2. Main results. .. 249
1.3. A brief comment of the topic and organization of the paper. 252
2. Examples of computation, orientation reversing homeomorphisms 253
3. $D(M)$ for connected sums $\ldots \ldots \ldots$
3.1. Relations between $D_{\text {iso }}\left(M_{1} \# M_{2}\right)$ and $\left\{D_{\text {iso }}\left(M_{1}\right), D_{\text {iso }}\left(M_{2}\right)\right\} . \ldots . .255$
3.2. $D(M)$ for connected sums. ...

4.1. Self coverings of Euclidean orbifolds. 260
4.2. $D(M)$ for Nil manifolds. ...

References .. 268

1. Introduction

1.1. Background. Each closed oriented n-manifold M is naturally associated with a set of integers, the degrees of all self-maps on M, denoted as $D(M)=\{\operatorname{deg}(f) \mid$ $f: M \rightarrow M\}$.

Indeed the calculation of $D(M)$ is a classical topic appeared in many literatures. The result is simple and well-known for dimension $n=1,2$. For dimension $n>3$, there are many interesting special results (See [3], [10], [15] for recent ones and references therein), but it is difficult to get general results, since there are no classification results for manifolds of dimension $n>3$.

The case of dimension 3 becomes attractive in the topic and it is possible to calculate $D(M)$ for any closed oriented 3-manifold M. Since Thurston's geometrization conjecture, which seems to be confirmed, implies that closed oriented 3-manifolds can be classified in a reasonable sense.

Thurston's geometrization conjecture claims that the each Jaco-Shalen-Johanson decomposition piece of a prime 3-manifold supports one of the eight geometries, which are $H^{3}, \widetilde{P S L}(2, R), H^{2} \times E^{1}$, Sol, Nil, E^{3}, S^{3} and $S^{2} \times E^{1}$ (for details see [24] and [20]). Call a closed orientable 3-manifold M is geometrizable if each prime factor of M meets Thurston's geometrization conjecture. All 3-manifolds discussed in this paper are geometrizable.

The following result is known in early 1990's:
Theorem 1.0. Suppose M is a geometrizable 3-manifold. Then M admits a selfmap of degree larger than 1 if and only if M is either
(a) covered by a torus bundle over the circle, or
(b) covered by $F \times S^{1}$ for some compact surface F with $\chi(F)<0$, or
(c) each prime factor of M is covered by S^{3} or $S^{2} \times E^{1}$.

Hence for any 3-manifold M not listed in (a)-(c) of Theorem $1.0, D(M)$ is either $\{0,1,-1\}$ or $\{0,1\}$, which depends on whether M admits a self map of degree -1 or not. To determine $D(M)$ for geometrizable 3-manifolds listed in (a)-(c) of Theorem 1.0, let's have a close look of them.

For short, we often call a 3-manifold supporting Nil geometry a Nil 3-manifold, and so on. Among Thurston's eight geometries, six of them belong to the list (a)-(c) in Theorem 1.0. 3-manifolds in (a) are exactly those supporting either E^{3}, or Sol or Nil geometries. E^{3} 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds are torus bundle or semi-bundles; Nil 3-manifolds which are not torus bundles or semibundles are Seifert fibered spaces having Euclidean orbifolds with three singular points. 3-manifolds in (b) are exactly those supporting $H^{2} \times E^{1}$ geometry; 3-manifolds supporting S^{3} or $S^{2} \times E^{1}$ geometries form a proper subset of (3). Now we divide all 3-manifolds in the list (a)-(c) in Theorem 1.0 into the following five classes:
Class 1. M supporting either S^{3} or $S^{2} \times E^{1}$ geometries;
Class 2. each prime factor of M supporting either S^{3} or $S^{2} \times E^{1}$ geometries, but M is not in Class 1;
Class 3. torus bundles and torus semi-bundles;
Class 4. Nil 3-manifolds not in Class 3;
Class 5. M supporting $H^{2} \times E^{1}$ geometry.
$D(M)$ is known recently for M in Class 1 and Class 3. We will calculate $D(M)$ for M in the remaining three classes. For the convenience of the readers, we will present $D(M)$ for M in all those five classes. To do this, we need first to coordinate 3-manifolds in each class, then state the results of $D(M)$ in term of those coordinates. This is carried in the next subsection.

1.2. Main results.

Class 1. According to [13] or [20], the fundamental group of a 3-manifold supporting S^{3}-geometry is among the following eight types: $\mathbb{Z}_{p}, D_{4 n}^{*}, T_{24}^{*}, O_{48}^{*}, I_{120}^{*}, T_{8.39}^{\prime}$, $D_{n^{\prime} 2^{q}}^{\prime}$ and $\mathbb{Z}_{m} \times \pi_{1}(N)$, where N is a 3 -manifold supporting S^{3}-geometry, $\pi_{1}(N)$ belongs to the previous seven ones, and $\left|\pi_{1}(N)\right|$ is coprime to m. The cyclic group Z_{p} is realized by lens space $L(p, q)$, each group in the remaining types is realized by a unique 3 -manifold supporting S^{3}-geometry. Note also the sub-indices of those seven types groups are exactly their orders, and the order of the groups in the last type is $m\left|\pi_{1}(N)\right|$. There are only two closed orientable 3-manifolds supporting $S^{2} \times \mathbb{E}^{1}$ geometry: $S^{2} \times S^{1}$ and $R P^{3} \# R P^{3}$.

Theorem 1.1. (1) $D(M)$ for M supporting S^{3}-geometry are listed below:

$\pi_{1}(M)$	D(M)
\mathbb{Z}_{p}	$\left\{k^{2} \mid k \in \mathbb{Z}\right\}+p \mathbb{Z}$
$D_{4 n}^{*}$	$\left\{h^{2} \mid h \in \mathbb{Z} ; 2 \nmid h\right.$ or $h=$ nor $\left.h=0\right\}+4 n \mathbb{Z}$
T_{24}^{*}	$\{0,1,16\}+24 \mathbb{Z}$
O_{48}^{*}	$\{0,1,25\}+48 \mathbb{Z}$
I_{120}^{*}	$\{0,1,49\}+120 \mathbb{Z}$
$T_{8.39}^{\prime}$	$\left\{\begin{array}{lll} \left\{k^{2} \cdot\left(3^{2 q-2 p}-3^{q}\right) \mid 3 \nmid k, q \geq p>0\right\}+8 \cdot 3^{q} \mathbb{Z} & (2 \mid q), \\ \left\{k^{2} \cdot\left(3^{2 q-2 p}-3^{q+1}\right) \mid 3 \nmid k, q \geq p>0\right\}+8 \cdot 3^{q} \mathbb{Z} & (2 \nmid q) \end{array}\right.$
$D_{n^{\prime} \cdot 29}^{\prime}$	$\begin{aligned} \left\{k^{2} \cdot\left[1-\left(n^{\prime}\right)^{2^{q}-1}\right]^{i} \cdot\left[1-2^{(2 p-q)\left(n^{\prime}-1\right)}\right]^{j} \mid\right. & i, j, k, p \in \mathbb{Z} \\ q & \geq p>0\}+n^{\prime} 2^{q} \mathbb{Z} \end{aligned}$
$\mathbb{Z}_{m} \times \pi_{1}(N)$	

(2) $D\left(S^{2} \times S^{1}\right)=D\left(R P^{3} \# R P^{3}\right)=\mathbb{Z}$.

Class 2. We assume that each 3 -manifold P supporting S^{3}-geometry has the canonical orientation induced from the canonical orientation on S^{3}. When we change the orientation of P, the new oriented 3-manifold is denoted by \bar{P}. Moreover, lens space $L(p, q)$ is orientation reversed homeomorphic to $L(p, p-q)$, so we can write all the lens spaces connected summands as $L(p, q)$. Now we can decompose each 3-manifold in Class 2 as

$$
\begin{aligned}
M= & \left(m S^{2} \times S^{1}\right) \#\left(m_{1} P_{1} \# n_{1} \bar{P}_{1}\right) \# \cdots \#\left(m_{s} P_{s} \# n_{s} \bar{P}_{s}\right) \\
& \#\left(L\left(p_{1}, q_{1,1}\right) \# \cdots \# L\left(p_{1}, q_{1, r_{1}}\right)\right) \# \cdots \#\left(L\left(p_{t}, q_{t, 1}\right) \# \cdots \# L\left(p_{t}, q_{t, r_{t}}\right)\right),
\end{aligned}
$$

where all the P_{i} are 3-manifolds with finite fundamental group different from lens spaces,
all the P_{i} are different from each other, and all the positive integer p_{i} are different from each other. Define

$$
D_{\text {iso }}(M)=\left\{\operatorname{deg}(f) \mid f: M \rightarrow M, f \text { induces an isomorphism on } \pi_{1}(M)\right\} .
$$

Theorem 1.2. (1) $D(M)=D_{\text {iso }}\left(m_{1} P_{1} \# n_{1} \bar{P}_{1}\right) \cap \cdots \cap D_{\mathrm{iso}}\left(m_{s} P_{s} \# n_{s} \bar{P}_{s}\right) \cap$ $D_{\text {iso }}\left(L\left(p_{1}, q_{1,1}\right) \# \cdots \# L\left(p_{1}, q_{1, r_{1}}\right)\right) \cap \cdots \cap D_{\text {iso }}\left(L\left(p_{t}, q_{t, 1}\right) \# \cdots \# L\left(p_{t}, q_{t, r_{t}}\right)\right)$;
(2) $D_{\text {iso }}(m P \# n \bar{P})= \begin{cases}D_{\text {iso }}(P) & \text { if } m \neq n, \\ D_{\text {iso }}(P) \cup\left(-D_{\text {iso }}(P)\right) & \text { if } m=n ;\end{cases}$
(3) $D_{\text {iso }}\left(L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right)\right)=H^{-1}(C)$.

The notions H and C in Theorem 1.2 (3) is defined as below:
Let $U_{p}=\left\{\right.$ all units in ring $\left.\mathbb{Z}_{p}\right\}, U_{p}^{2}=\left\{a^{2} \mid a \in U_{p}\right\}$, which is a subgroup of U_{p}. We consider the quotient $U_{p} / U_{p}^{2}=\left\{a_{1}, \ldots, a_{m}\right\}$, every a_{i} corresponds with a coset A_{i} of U_{p}^{2}. For the structure of U_{p}, see [9] p.44. Define H to be the natural projection from $\{n \in \mathbb{Z} \mid \operatorname{gcd}(n, p)=1\}$ to U_{p} / U_{p}^{2}.

Define $\bar{A}_{s}=\left\{L\left(p, q_{i}\right) \mid q_{i} \in A_{s}\right\}$ (with repetition allowed). In U_{p} / U_{p}^{2}, define $B_{l}=$ $\left\{a_{s} \mid \# \bar{A}_{s}=l\right\}$ for $l=1,2, \ldots$, there are only finitely many l such that $B_{l} \neq \emptyset$. Let $C_{l}=\left\{a \in U_{p} / U_{p}^{2} \mid a_{i} a \in B_{l}, \forall a_{i} \in B_{l}\right\}$ if $B_{l} \neq \emptyset$ and $C_{l}=U_{p} / U_{p}^{2}$ otherwise. Define $C=\bigcap_{l=1}^{\infty} C_{l}$.

Class 3. To simplify notions, for a diffeomorphism ϕ on torus T, we also use ϕ to present its isotopy class and its induced 2 by 2 matrix on $\pi_{1}(T)$ for a given basis.

A torus bundle is $M_{\phi}=T \times I /(x, 1) \sim(\phi(x), 0)$ where ϕ is a diffeomorphism of the torus T and I is the interval $[0,1]$. Then the coordinates of M_{ϕ} is given as below: (1) M_{ϕ} admits E^{3} geometry, ϕ conjugates to a matrix of finite order n, where $n \in$ $\{1,2,3,4,6\}$;
(2) M_{ϕ} admits Nil geometry, ϕ conjugates to $\pm\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$, where $n \neq 0$;
(3) M_{ϕ} admits Sol geometry, ϕ conjugates to $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $|a+d|>2$, $a d-b c=1$.

A torus semi-bundle $N_{\phi}=N \cup_{\phi} N$ is obtained by gluing two copies of N along their torus boundary ∂N via a diffeomorphism ϕ, where N is the twisted I-bundle over the Klein bottle. We have the double covering $p: S^{1} \times S^{1} \times I \rightarrow N=S^{1} \times S^{1} \times I / \tau$, where τ is an involution such that $\tau(x, y, z)=(x+\pi,-y, 1-z)$.

Denote by l_{0} and l_{∞} on ∂N be the images of the second S^{1} factor and first S^{1} factor on $S^{1} \times S^{1} \times\{1\}$. A canonical coordinate is an orientation of l_{0} and l_{∞}, hence there are four choices of canonical coordinate on ∂N. Once canonical coordinates on each ∂N are chosen, ϕ is identified with an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G L_{2}(\mathbb{Z})$ given by $\phi\left(l_{0}, l_{\infty}\right)=$ $\left(l_{0}, l_{\infty}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

With suitable choice of canonical coordinates of $\partial N, N_{\phi}$ has coordinates as below:
(1) N_{ϕ} admits E^{3} geometry, $\phi=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$;
(2) N_{ϕ} admits Nil geometry, $\phi=\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)$ or $\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)$, where $z \neq 0$;
(3) N_{ϕ} admits Sol geometry, $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a b c d \neq 0, a d-b c=1$.

Theorem 1.3. $D\left(M_{\phi}\right)$ is in the table below for torus bundle M_{ϕ}, where $\delta(3)=$ $\delta(6)=1, \delta(4)=0$.

M_{ϕ}	ϕ	$D\left(M_{\phi}\right)$
E^{3}	finite order $k=1,2$	\mathbb{Z}
E^{3}	finite order $k=3,4,6$	$\left\{(k t+1)\left(p^{2}-\delta(k) p q+q^{2}\right) \mid t, p, q \in \mathbb{Z}\right\}$
Nil	$\pm\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right), n \neq 0$	$\left\{l^{2} \mid l \in \mathbb{Z}\right\}$
Sol	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\|a+d\|>2$	$\left\{p^{2}+(d-a) p r / c-b r^{2} / c \mid p, r \in \mathbb{Z}\right.$, either $b r / c,(d-a) r / c \in \mathbb{Z}$ or $(p(d-a)-b r) / c \in \mathbb{Z}\}$

(2) $D\left(N_{\phi}\right)$ is listed in the table below for torus semi-bundle N_{ϕ}, where $\delta(a, d)=$ $a d / \operatorname{gcd}(a, d)^{2}$.

N_{ϕ}	ϕ	$D\left(N_{\phi}\right)$
E^{3}	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	\mathbb{Z}
E^{3}	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\{2 l+1 \mid l \in \mathbb{Z}\}$
Nil	$\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right), z \neq 0$	$\left\{l^{2} \mid l \in \mathbb{Z}\right\}$
Nil	$\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)$ or $\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right), z \neq 0$	$\left\{(2 l+1)^{2} \mid l \in \mathbb{Z}\right\}$
Sol	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, abcd $\neq 0, a d-b c=1$	$\left\{(2 l+1)^{2} \mid l \in \mathbb{Z}\right\}$, if $\delta(a, d)$ is even or $\left\{(2 l+1)^{2} \mid l \in \mathbb{Z}\right\} \cup\left\{(2 l+1)^{2} \cdot \delta(a, d) \mid l \in \mathbb{Z}\right\}$, if $\delta(a, d)$ is odd

To coordinate 3-manifolds in Class 4 and Class 5, we first recall the well known coordinates of Seifert fibered spaces.

Suppose an oriented 3-manifold M^{\prime} is a circle bundle with a given section F, where F is a compact surface with boundary components c_{1}, \ldots, c_{n} with $n>0$. On each boundary component of M^{\prime}, orient c_{i} and the circle fiber h_{i} so that the product of their orientations match with the induced orientation of M^{\prime} (call such pairs $\left\{\left(c_{i}, h_{i}\right)\right\}$ a section-fiber coordinate system). Now attach n solid tori S_{i} to the n boundary tori
of M^{\prime} such that the meridian of S_{i} is identified with slope $r_{i}=c_{i}^{\alpha_{i}} h_{i}^{\beta_{i}}$ where $\alpha_{i}>0$, $\left(\alpha_{i}, \beta_{i}\right)=1$. Denote the resulting manifold by $M\left(\pm g ; \beta_{1} / \alpha_{1}, \ldots, \beta_{s} / \alpha_{s}\right)$ which has the Seifert fiber structure extended from the circle bundle structure of M^{\prime}, where g is the genus of the section F of M, with the sign + if F is orientable and - if F is nonorientable, here 'genus' of nonorientable surfaces means the number of $R P^{2}$ connected summands. Call $e(M)=\sum_{i=1}^{s} \beta_{i} / \alpha_{i} \in \mathbb{Q}$ the Euler number of the Seifert fiberation.

Class 4. If a Nil manifold M is not a torus bundle or torus semi-bundle, then M has one of the following Seifert fibreing structures: $M\left(0 ; \beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 6\right)$, $M\left(0 ; \beta_{1} / 3, \beta_{2} / 3, \beta_{3} / 3\right)$, or $M\left(0 ; \beta_{1} / 2, \beta_{2} / 4, \beta_{3} / 4\right)$, where $e(M) \in \mathbb{Q}-\{0\}$.

Theorem 1.4. For 3-manifold M in Class 4, we have
(1) $D\left(M\left(0 ; \beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 6\right)\right)=\left\{l^{2} \mid l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 6, m, n \in \mathbb{Z}\right\}$;
(2) $D\left(M\left(0 ; \beta_{1} / 3, \beta_{2} / 3, \beta_{3} / 3\right)\right)=\left\{l^{2} \mid l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 3, m, n \in \mathbb{Z}\right\}$;
(3) $D\left(M\left(0 ; \beta_{1} / 2, \beta_{2} / 4, \beta_{3} / 4\right)\right)=\left\{l^{2} \mid l=m^{2}+n^{2}, l \equiv 1 \bmod 4, m, n \in \mathbb{Z}\right\}$.

Class 5. All manifolds supporting $H^{2} \times E^{1}$ geometry are Seifert fibered spaces M such that $e(M)=0$ and the Euler characteristic of the orbifold $\chi\left(O_{M}\right)<0$.

Suppose $M=\left(g ; \beta_{1,1} / \alpha_{1}, \ldots, \beta_{1, m_{1}} / \alpha_{1}, \ldots, \beta_{n, 1} / \alpha_{n}, \ldots, \beta_{n, m_{n}} / \alpha_{n}\right)$, where all the integers $\alpha_{i}>1$ are different from each other, and $\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \beta_{i, j} / \alpha_{i}=0$.

For each α_{i} and each $a \in U_{\alpha_{i}}$, define $\theta_{a}\left(\alpha_{i}\right)=\#\left\{\beta_{i, j} \mid p_{i}\left(\beta_{i, j}\right)=a\right\}$ (with repetition allowed), p_{i} is the natural projection from $\left\{n \mid \operatorname{gcd}\left(n, \alpha_{i}\right)=1\right\}$ to $U_{\alpha_{i}}$. Define $B_{l}\left(\alpha_{i}\right)=$ $\left\{a \mid \theta_{a}\left(\alpha_{i}\right)=l\right\}$ for $l=1,2, \ldots$, there are only finitely many l such that $B_{l}\left(\alpha_{i}\right) \neq \emptyset$. Let $C_{l}\left(\alpha_{i}\right)=\left\{b \in U_{\alpha_{i}} \mid a b \in B_{l}\left(\alpha_{i}\right), \forall a \in B_{l}\left(\alpha_{i}\right)\right\}$ if $B_{l}\left(\alpha_{i}\right) \neq \emptyset$ and $C_{l}\left(\alpha_{i}\right)=U_{\alpha_{i}}$ otherwise. Finally define $C\left(\alpha_{i}\right)=\bigcap_{l=1}^{\infty} C_{l}\left(\alpha_{i}\right)$, and $\bar{C}\left(\alpha_{i}\right)=p_{i}^{-1}\left(C\left(\alpha_{i}\right)\right)$.

Theorem 1.5. $D\left(M\left(g ; \beta_{1,1} / \alpha_{1}, \ldots, \beta_{1, m_{1}} / \alpha_{1}, \ldots, \beta_{n, 1} / \alpha_{n}, \ldots, \beta_{n, m_{n}} / \alpha_{n}\right)\right)=\bigcap_{i=1}^{n} \bar{C}\left(\alpha_{i}\right)$.
1.3. A brief comment of the topic and organization of the paper. Theorem 1.0 was appeared in [25]. The proof of the "only if" part in Theorem 1.0 is based on the results on simplicial volume developed by Gromov, Thurston and Soma (see [21]), and various classical results by others on 3-manifold topology and group theory ([5], [19], [17]). The proof of "if" part in Theorem 1.0 is a sequence elementary constructions, which were essentially known before, for example see [6] and [11] for (3). That graph manifolds admits no self-maps of degrees > 1 also follows from a recent work [2].

The table in Theorem 1.1 is quoted from [1], which generalizes the earlier work [7]. The statement below quoted from [7] will be repeatedly used in this paper.

Proposition 1.6. For 3-manifold M supporting S^{3} geometry,

$$
D_{\text {iso }}(M)=\left\{k^{2}+l\left|\pi_{1}(M)\right| \text {, where } k \text { and }\left|\pi_{1}(M)\right| \text { are co-prime }\right\} .
$$

The topic of mapping degrees between (and to) 3-manifolds covered by S^{3} has been discussed for long times and has many relations with other topics (see [26] for details). We just mention several papers: in very old papers [16] and [14], the degrees of maps between any given pairs of lens spaces are obtained by using equivalent maps between spheres; in [8], $D(M, L(p, q))$ can be computed for any 3 -manifold M; and in a recent one [12], an algorithm (or formula) is given to the degrees of maps between given pairs of 3-manifolds covered by S^{3} in term of their Seifert invariants.

Theorem 1.3 is proved in [23].
Theorems 1.2, 1.4 and 1.5 will be proved in Sections 3, 4 and 5 respectively in this paper. In Section 2 we will compute $D(M)$ for some concrete 3-manifolds using Theorems $1-5$. We will also discuss when $-1 \in D(M)$ and when $-1 \in D(M)$ implies that M admits orientation reversing homeomorphisms.

All terminologies not defined are standard, see [5], [20] and [9].

2. Examples of computation, orientation reversing homeomorphisms

Example 2.1. Let $M=(P \# \bar{P}) \#(L(7,1) \# L(7,2) \# 2 L(7,3))$, where P is the Poincare homology three sphere.

By Theorem 1.2 (2), Proposition 1.6 and the fact $\left|\pi_{1}(P)\right|=120$, we have $D(P$ \# $\bar{P})=D_{\text {iso }}(P) \cup\left(-D_{\text {iso }}(P)\right)=\{120 n+i \mid n \in \mathbb{Z}, i=1,49,71,119\}$.

Now we are going to calculate $D((L(7,1) \# L(7,2) \# 2 L(7,3))$ following the notions of Theorem 1.2 (3). Clearly $U_{7}=\{1,2,3,4,5,6\}$ and $U_{7}^{2}=\{1,2,4\}$. Then $U_{7} / U_{7}^{2}=$ $\left\{a_{1}, a_{2}\right\}$, where $a_{1}=\overline{1}$ and $a_{2}=\overline{3} ; U_{7}=\left\{A_{1} \cup A_{2}\right\}$, where $A_{1}=U_{7}^{2}, A_{2}=3 U_{7}^{2}$; $\# \bar{A}_{1}=2$ and $\# \bar{A}_{2}=2 ; B_{2}=\{\overline{1}, \overline{3}\}, B_{l}=\emptyset$ for $l \neq 2$. Since $U_{7} / U_{7}^{2}=B_{2}$, we have $C_{2}=B_{2}$ and also $C_{l}=U_{7} / U_{7}^{2}$ for $l \neq 2$; then $C=\bigcap_{l=1}^{\infty} C_{l}=U_{7} / U_{7}^{2}$. Then for the natural projection $H:\{n \in \mathbb{Z} \mid \operatorname{gcd}(n, p)=1\} \rightarrow U_{7} / U_{7}^{2}, H^{-1}(C)$ are all number coprime to 7 , hence we have $D_{\text {iso }}((L(7,1) \# L(7,2) \# 2 L(7,3))=\{l \in \mathbb{Z} \mid \operatorname{gcd}(l, 7)=1\}$ by Theorem 1.2 (3).

Finally by Theorem $1.2(1)$, we have $D(M)=\{120 n+i \mid n \in \mathbb{Z}, i=1,49,71,119\} \cap$ $\{l \in \mathbb{Z} \mid \operatorname{gcd}(l, 7)=1\}=\{840 n+i \mid n \in \mathbb{Z}, i=1,71,121,169,191,239,241,289,311,359$, $361,409,431,479,481,529,551,599,601,649,671,719,769,839\}$. Note $-1 \in D(M)$.

Example 2.2. Suppose $M=(2 P \# \bar{P}) \#(L(7,1) \# L(7,2) \# L(7,3))$.
Similarly by Theorem 1.2 (2), Proposition 1.6 and $\left|\pi_{1}(P)\right|=120$, we have $D(2 P \# \bar{P})=D_{\text {iso }}(P)=\{120 n+i \mid n \in \mathbb{Z}, i=1,49\}$.

To calculate $D(L(7,1) \# L(7,2) \# L(7,3))$, we have $U_{7}, U_{7}^{2}, U_{7} / U_{7}^{2}=\left\{a_{1}, a_{2}\right\}$, $U_{7}=\left\{A_{1}, A_{2}\right\}$ exactly as last example. But then $\# \bar{A}_{1}=2$ and $\# \bar{A}_{2}=1 ; B_{1}=\{\overline{3}\}$, $B_{2}=\{\overline{1}\}, B_{l}=\emptyset$ for $l \neq 1,2$. Moreover $C_{1}=C_{2}=\{\overline{1}\}$, and $C_{l}=U_{7} / U_{7}^{2}$ for $l \neq 1,2$; then $C=\bigcap_{l=1}^{\infty} C_{l}=\{\overline{1}\}$, and $H^{-1}(C)=\{7 n+i \mid n \in \mathbb{Z}, i=1,2,4\}$. Hence we have $D_{\text {iso }}(\#(L(7,1) \# L(7,2) \# L(7,3))=\{7 n+i \mid n \in \mathbb{Z}, i=1,2,4\}$ by Theorem 1.2 (3).

By Theorem $1.2(1), D(M)=\{120 n+i \mid n \in \mathbb{Z}, i=1,49\} \cap\{7 n+i \mid n \in \mathbb{Z}, i=$ $1,2,4\}=\{840 n+i \mid n \in \mathbb{Z}, i=1,121,169,289,361,529\}$. Note $-1 \notin D(M)$.

Example 2.3. By Theorem 1.3, for the torus bundle $M_{\phi}, \phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, among the first 20 integers >0, exactly $1,4,5,9,11,16,19,20 \in D\left(M_{\phi}\right)$.

Example 2.4. For Nil 3-manifold $M=M\left(0 ; \beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 6\right), D(M)=\left\{l^{2} \mid\right.$ $\left.l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 6, m, n \in \mathbb{Z}\right\}$. The numbers in $D(M)$ smaller than 10000 are exactly $1,49,169,361,625,961,1369,1849,2401,3721,4489,5329$, 6241, 8291, 9409. Since all $l=6 k+1, k \in \mathbb{N}$ with $l^{2} \leq 10000$ can be presented as $m^{2}+m n+n^{2}$ except $l=55,85$ (if $5 \mid m^{2}+m n+n^{2}$, then $5 \mid(2 m+n)^{2}+3 n^{2}$, therefore $5 \mid 2 m+n$ and $5 \mid n$, it follows that $25 \mid m^{2}+m n+n^{2}$).

Example 2.5. For $H^{2} \times E^{1}$ manifold $M=M(2 ; 1 / 5,1 / 5,-2 / 5,1 / 7,2 / 7,-3 / 7)$, we follow the notions in Theorem 1.5 to calculate $D(M)$.

First we have $U_{5}=\{1,2,3,4\}$ with indices $\theta_{a}(5)$ are $\{2,0,1,0\}$ respectively. Then $B_{1}(5)=\{3\}, B_{2}(5)=\{1\}, B_{l}(5)=\emptyset$ for $l \neq 1,2$ and $C_{1}(5)=C_{2}(5)=\{1\}$. Hence $C(5)=\bigcap_{l=1}^{\infty} C_{l}(5)=\{1\}$. Hence $\bar{C}(5)=\{5 n+1 \mid n \in \mathbb{Z}\}$.

Similarly $U_{7}=\{1,2,3,4,5,6\}$ with indices $\theta_{a}(7)$ are $\{1,1,0,1,0,0\}$ respectively. Then $B_{1}(7)=C_{1}(7)=\{1,2,4\} . B_{l}(7)=\emptyset$ and $C_{l}(7)=U_{7}$ for $l \neq 1$. Hence $C(7)=$ $\bigcap_{l=1}^{\infty} C_{l}(7)=\{1,2,4\} . \bar{C}(7)=\{7 n+i \mid n \in \mathbb{Z}, i=1,2,4\}$.

Finally $D(M)=\{5 n+1 \mid n \in \mathbb{Z}\} \cap\{7 n+i \mid n \in \mathbb{Z}, i=1,2,4\}=\{35 n+i \mid n \in$ $\mathbb{Z}, i=1,11,16\}$.

Example 2.6. Suppose M is a 3 -manifold supporting S^{3} geometry. By Proposition $1.6, M$ admits degree -1 self mapping if and only if there is integer number h, such that $h^{2} \equiv-1 \bmod \pi_{1}(M)$. Then we can prove that if M is not a lens space, $-1 \notin D(M)$, (see proof of Proposition 3.10). With some further topological and number theoretical arguments, the following results were proved in [22].
(1) There is a degree -1 self map on $L(p, q)$, but no orientation reversing homeomorphism on it if and only if (p, q) satisfies: $p \nmid q^{2}+1,4 \nmid p$ and all the odd prime factors of p are the $4 k+1$ type.
(2) Every degree -1 self map on $L(p, q)$ are homotopic to an orientation reversing homeomorphism if and only if (p, q) satisfies: $q^{2} \equiv-1 \bmod p, p=2, p_{1}^{e_{1}}, 2 p_{1}^{e_{1}}$, where p_{1} is a $4 k+1$ type prime number.

Example 2.7. Suppose M is a torus bundle. Then any non-zero degree map is homotopic to a covering ([25] Corollary 0.4). Hence if $-1 \in D(M)$, then M admits an orientation reversing self homeomorphism.
(1) For the torus bundle $M_{\phi}, \phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right),-1 \in D\left(M_{\phi}\right)$. Indeed for $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, if $|a+d|=3$, then $-1 \in D\left(M_{\phi}\right)$. Since $p^{2}+((d-a) / b) p r-c / b r^{2}=-1$ has solution $p=1-d, r=b$ when $a+d=3$, and solution $p=-1-d, r=b$ when $a+d=-3$. (2) For the torus bundle $M_{\phi}, \phi=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right),-1 \notin D\left(M_{\phi}\right)$. Indeed for $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, if $a+d \pm 2$ has prime decomposition $p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ such that $p_{i}=4 l+3$ and $e_{i}=2 m+1$ for
some i, then $-1 \notin D\left(M_{\phi}\right)$. Since if the equation $p^{2}+((d-a) / b) p r-(c / b) r^{2}=-1$ has integer solution, then $\left(\left((a+d)^{2}-4\right) r^{2}-4 b^{2}\right) / b^{2}$ should be a square of rational number. That is $\left((a+d)^{2}-4\right) r^{2}-4 b^{2}=s^{2}$ for some integer s. Therefore $(a+d+2)(a+d-2) r^{2}$ is a sum of two squares. By a fact in elementary number theory, neither $a+d+2$ nor $a+d-2$ has $4 k+3$ type prime factor with odd power (see p.279, [9]).

3. $D(M)$ for connected sums

3.1. Relations between $D_{\text {iso }}\left(M_{1} \# M_{2}\right)$ and $\left\{D_{\text {iso }}\left(M_{1}\right), D_{\text {iso }}\left(M_{2}\right)\right\}$. In this section, we consider the manifolds M in Class 2: M has non-trivial prime decomposition, each connected summand has finite or infinite cyclic fundamental group, and M is not homeomorphic to $R P^{3} \# R P^{3}$. (Note for each geometrizable 3-manifold $P, \pi_{1}(P)$ is finite if and only if P is S^{3} 3-manifold, and $\pi_{1}(P)$ is infinite cyclic if and only if P is $S^{2} \times E^{1}$ 3-manifold.)

Since each S^{3} 3-manifold P is covered by S^{3}, we assume P has the canonical orientation induced by the canonical orientation on S^{3}. When we change the orientation of P, the new oriented 3-manifold is denoted by \bar{P}. Moreover, lens space $L(p, q)$ is orientation reversed homeomorphic to $L(p, p-q)$, so we can write all the lens spaces connected summands as $L(p, q)$. Now we can decompose the manifold as

$$
\begin{aligned}
M= & \left(m S^{2} \times S^{1}\right) \#\left(m_{1} P_{1} \# n_{1} \bar{P}_{1}\right) \# \cdots \#\left(m_{s} P_{s} \# n_{s} \bar{P}_{s}\right) \\
& \#\left(L\left(p_{1}, q_{1,1}\right) \# \cdots \# L\left(p_{1}, q_{1, r_{1}}\right)\right) \# \cdots \#\left(L\left(p_{t}, q_{t, 1}\right) \# \cdots \# L\left(p_{t}, q_{t, r_{t}}\right)\right),
\end{aligned}
$$

where all the P_{i} are 3-manifolds with finite fundamental group different from lens spaces, all the P_{i} are different with each other, and all the positive integer p_{i} are different from each other. We will use this convention in this section.

Suppose F (resp. P) is a properly embedded surface (resp. an embedded 3-manifold) in a 3-manifold M. We use $M \backslash F$ (resp. $M \backslash P$) to denote the resulting manifold obtained by splitting M along F (resp. removing int P, the interior of P).

The definitions below are quoted from [17]:
Definition 3.1. Let M, N be 3-manifolds and $B_{f}=\bigcup_{i}\left(B_{i}^{+} \cup B_{i}^{-}\right)$is a finite collection of disjoint 3-ball pairs in int M. A map $f: M \backslash B_{f} \rightarrow N$ is called an almost defined map from M to N if for each $i,\left.f\right|_{\partial B_{i}^{+}}=\left.f\right|_{\partial B_{i}^{-}} \circ r_{i}$ for some orientation reversing homeomorphism $r_{i}: \partial B_{i}^{+} \rightarrow \partial B_{i}^{-}$. If identifying ∂B_{i}^{+}with ∂B_{i}^{-}via r_{i}, we get a quotient closed manifold $M(f)$, and f induces a map $\tilde{f}: M(f) \rightarrow N$. We define $\operatorname{deg}(f)=\operatorname{deg}(\tilde{f})$.

Definition 3.2. For two almost defined maps f and g, we say that f is B-equivalent to g if there are almost defined maps $f=f_{0}, f_{1}, \ldots, f_{n}=g$ such that either f_{i} is homotopic to $f_{i+1} \operatorname{rel}\left(\partial B_{f_{i}} \cup \partial B_{f_{i+1}}\right)$ or $f_{i}=f_{i+1}$ on $M \backslash B$ for an union of balls B containing $B_{f_{i}} \cup B_{f_{i+1}}$.

Lemma 3.3 ([17] Lemma 3.6, [25] Lemma 1.11). Suppose $f: M \rightarrow M$ is a map of nonzero degree and $\bigcup S_{i}^{2}$ is an union of essential 2 -spheres. Then there is an almost defined map $g: M \backslash B_{g} \rightarrow M$, B-equivalent to f, such that $\operatorname{deg}(g)=\operatorname{deg}(f)$ and $g^{-1}\left(\bigcup S_{i}^{2}\right)$ is a collection of spheres.

Lemma 3.4 ([25] Corollary 0.2). Suppose M is a geometrizable 3-manifold. Then any nonzero degree proper map $f: M \rightarrow M$ induces an isomorphism $f_{*}: \pi_{1}(M) \rightarrow$ $\pi_{1}(M)$ unless M is covered by either a torus bundle over the circle, or $F \times S^{1}$ for some compact surface F, or the S^{3}.

The following lemma is well-known.
Lemma 3.5. Suppose M is a closed orientable 3-manifold, $f: M \rightarrow M$ is of degree $d \neq 0$. Then $f_{*}: H_{2}(M, \mathbb{Q}) \rightarrow H_{2}(M, \mathbb{Q})$ is an isomorphism.

Theorem 3.6. Suppose $M=M_{1} \# \cdots \# M_{n}$ is a non-prime manifold which is not homeomorphic to $R P^{3} \# R P^{3}$. Each $\pi_{1}\left(M_{i}\right)$ is finite or cyclic, and $\pi_{1}\left(M_{i}\right) \neq 0$. If $f: M \rightarrow M$ is a map of degree $d \neq 0$, then there exists a permutation τ of $\{1, \ldots, n\}$, such that there is a map $g_{i}: M_{\tau(i)} \rightarrow M_{i}$ of degree d for each i. Moreover, $g_{i *}$ is an isomorphism on fundamental group.

Proof. Call M^{\prime} is a punctured M, if $M^{\prime}=M \backslash B$, where B is a finitely many disjoint 3-balls in the interior of M. We use \hat{M}_{*} to denote the 3-manifold obtained from M_{*} by capping off the boundary spheres with 3-balls.
M is obtained by gluing the boundary sphere of $M_{i}^{\prime}=M_{i} \backslash \operatorname{int}\left(B_{i}\right)$ to a n-punctured 3-sphere. The image of ∂B_{i} in M, which is denoted by S_{i}, is a separating sphere.

By Lemma 3.3, there is an almost defined map $g: M \backslash B_{g} \rightarrow M, B$-equivalent to f, such that $g^{-1}\left(\cup S_{i}\right)$ is a collection of spheres and $\operatorname{deg}(g)=d$. Let $M_{g}=M \backslash B_{g}$.

Let $U=M_{g} \backslash g^{-1}\left(\bigcup S_{i}\right)=\left\{M_{i}^{j} \mid j=1, \ldots, l_{i}, i=1, \ldots, n\right\}$. The components of $g^{-1}\left(M_{i}^{\prime}\right)$ are denoted by $M_{i}^{1}, \ldots, M_{i}^{l_{i}}$.

By Lemma 3.4, $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}(M)$ is an isomorphism. Since g is differ from f just on the 3-balls B_{g} up to homotopy rel ∂B_{g}, it follows that $g_{*}: \pi_{1}\left(M \backslash B_{g}\right)=$ $\pi_{1}(M) \rightarrow \pi_{1}(M)$ is an isomorphism.

Since the prime decomposition of 3-manifold M is unique, and M_{g} is just a punctured M, each component of U is either a punctured non-trivial prime factor of M, or a punctured 3 -sphere.

By Lemma $3.5, f_{*}$ is an injection on $H_{2}(M, \mathbb{Q})$. If S_{i} is a separating sphere, then $\left[S_{i}\right]=0$ in $H_{2}(M, \mathbb{Q})$. So each component S^{\prime} of $f^{-1}\left(S_{i}\right)$ is homologous to 0 , thus S^{\prime} separates M. By the procession of construction of g (see the proof of Lemma 3.4, [17]), which is B-equivalent to f, each component S of $g^{-1}\left(S_{i}\right)$ is also a separating sphere in M_{g}. So $\pi_{1}\left(M_{g}\right)$ is the free product of the $\pi_{1}\left(M_{i}^{j}\right), i=1, \ldots, n, j=1, \ldots, l_{i}$.

Note $\pi_{1}(M)=\pi_{1}\left(M_{1}\right) * \cdots * \pi_{1}\left(M_{n}\right)$, each $\pi_{1}\left(M_{i}\right)$ is an indecomposable factor of $\pi_{1}(M)$. Since g_{*} is an isomorphism and each punctured 3 -sphere has trivial π_{1}, from the basic fact on free product of groups, it follows that there is at least one punctured prime non-trivial factor in $g^{-1}\left(M_{i}^{\prime}\right)$. Since this is true for each $i=1, \ldots, n$ and there are at most n punctured prime non-trivial factors in U, it follows that there are n punctured prime non-trivial factors in U. Hence there is exactly one punctured prime non-trivial factor in $g^{-1}\left(M_{i}^{\prime}\right)$, denoted as $M_{\tau(i)}$, moreover $g_{*}: \pi_{1}\left(M_{\tau(i)}\right) \rightarrow \pi_{1}\left(M_{i}\right)$ is an isomorphism, where τ is a permutation on $\{1, \ldots, n\}$.

Since $\pi_{1}\left(M_{i}\right)=\mathbb{Z}$ if and only if $M_{i}=S^{2} \times S^{1}$, it follows that if $M_{i}=S^{2} \times S^{1}$, then $M_{\tau(i)}=S^{2} \times S^{1}$. Since $D\left(S^{2} \times S^{1}\right)=Z$, below we assume that $\hat{M}_{i}^{\prime} \neq S^{2} \times S^{1}$, and to show that there is a map $g_{i}: M_{\tau(i)} \rightarrow M_{i}$ of degree d.

Since the map $g: M(g) \rightarrow M$ has degree d (see Definition 3.1), then $g_{i}=$ $g \mid:\left(\bigcup_{j=1}^{l_{i}} M_{i}^{j}\right)(g) \rightarrow M_{i}^{\prime}$ is a proper map of degree d, which can extend to a map $\hat{g}_{i}:\left(\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}\right)(g) \rightarrow \hat{M}_{i}^{\prime}=M_{i}$ of degree d between closed 3-manifolds. The last map is also defined on $\left(\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}\right)(g) \backslash \overline{\partial B_{g}}=\left(\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}\right) \backslash B_{g} \subset\left(\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}\right)$, where $\overline{\partial B_{g}} \subset M(g)$ is the image of $\partial B_{g} \subset M$.

Now consider the map $\hat{g}_{i}:\left(\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}\right) \backslash B_{g} \rightarrow M_{i}$. Since $\pi_{2}\left(M_{i}\right)=0$, we can extend the map \hat{g}_{i} from $\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j} \backslash B_{g}$ to $\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}$. More carefully, for each pair $B_{k}^{+}, B_{k}^{-} \subset \bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}$ we can make the extension with the property $\left.\hat{g}_{i}\right|_{B_{i}^{+}}=\left.\hat{g}_{i}\right|_{B_{i}^{-}} \circ \hat{r}_{i}$, where $\hat{r}_{i}: B_{i}^{+} \rightarrow B_{i}^{-}$is an orientation reversing homeomorphism extending $r_{i}: \partial B_{i}^{+} \rightarrow$ ∂B_{i}^{-}. Now it is easy to see the map $\hat{g}_{i}: \bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j} \rightarrow M_{i}$ is still of degree d.

From the map $\hat{g}_{i}:\left(\bigcup_{j=1}^{l_{i}} \hat{M}_{i}^{j}\right) \rightarrow M_{i}$ one can obviously define a map $g_{i}: \#_{j=1}^{l_{i}} \hat{M}_{i}^{j} \rightarrow$ M_{i} of degree d between connected 3-manifolds. Since all \hat{M}_{i}^{j} are S^{3} except one is $M_{\tau(i)}$, we have map $g_{i}: M_{\tau(i)} \rightarrow M_{i}$.

Definition 3.7. For closed oriented 3-manifold M, M^{\prime}, define $D_{\text {iso }}\left(M, M^{\prime}\right)=\left\{\operatorname{deg}(f) \mid f: M \rightarrow M^{\prime}, f\right.$ induces isomorphism on fundamental group $\}$, $D_{\text {iso }}(M)=\{\operatorname{deg}(f) \mid f: M \rightarrow M, f$ induces isomorphism on fundamental group $\}$.

Under the condition we considered in this section, we have $D(M)=D_{\text {iso }}(M)$ by Lemma 3.4.

Lemma 3.8. Suppose $f_{i}: M_{i} \rightarrow M_{i}^{\prime}$ is a map of degree d between closed n-manifolds, $n \geq 3, f_{i *}$ is surjective on $\pi_{1}, i=1,2$. Then there is a map $f: M_{1} \# M_{2} \rightarrow$ $M_{1}^{\prime} \# M_{2}^{\prime}$ of degree d and f_{*} is surjective on π_{1}. In particular,
(1) $D_{\text {iso }}\left(M_{1} \# M_{2}, M_{1}^{\prime} \# M_{2}^{\prime}\right) \supset D_{\text {iso }}\left(M_{1}, M_{1}^{\prime}\right) \cap D_{\text {iso }}\left(M_{2}, M_{2}^{\prime}\right)$,
(2) $D_{\text {iso }}\left(M_{1} \# M_{2}\right) \supset D_{\text {iso }}\left(M_{1}\right) \cap D_{\text {iso }}\left(M_{2}\right)$.

Proof. Since f_{*} is surjective on π_{1}, it is known (see [18] for example), we can homotope f_{i} such that for some n-ball $D_{i}^{\prime} \subset M_{i}^{\prime}, f_{i}^{-1}\left(D_{i}\right)$ is an n-ball $D_{i} \subset M_{i}$. Thus
we get a proper map $\bar{f}_{i}: M_{i} \backslash D_{i} \rightarrow M_{i}^{\prime} \backslash D_{i}^{\prime}$ of degree d, which also induces a degree d map from ∂D_{i} to ∂D_{i}^{\prime}. Since maps of the same degree between $(n-1)$-spheres are homotopic, so after proper homotopy, we can paste \bar{f}_{1} and \bar{f}_{2} along the boundary to get map $f: M_{1} \# M_{2} \rightarrow M_{1}^{\prime} \# M_{2}^{\prime}$ of degree d and f_{*} is surjective on π_{1}.

3.2. $D(M)$ for connected sums. Suppose

$$
\begin{aligned}
M= & \left(m S^{2} \times S^{1}\right) \#\left(m_{1} P_{1} \# n_{1} \bar{P}_{1}\right) \# \cdots \#\left(m_{s} P_{s} \# n_{s} \bar{P}_{s}\right) \\
& \#\left(L\left(p_{1}, q_{1,1}\right) \# \cdots \# L\left(p_{1}, q_{1, r_{1}}\right)\right) \# \cdots \#\left(L\left(p_{t}, q_{t, 1}\right) \# \cdots \# L\left(p_{t}, q_{t, r_{t}}\right)\right),
\end{aligned}
$$

where all the P_{i} are 3-manifolds with finite fundamental group different from lens spaces, all the P_{i} are different with each other, and all the positive integer p_{i} are different from each other.

To prove Theorem 1.2, we need only to prove the three propositions below.

Proposition 3.9.

$$
\begin{align*}
D(M)= & D_{\mathrm{iso}}\left(m_{1} P_{1} \# n_{1} \bar{P}_{1}\right) \cap \cdots \cap D_{\mathrm{iso}}\left(m_{s} P_{s} \# n_{s} \bar{P}_{s}\right) \cap D_{\mathrm{iso}}\left(L\left(p_{1}, q_{1,1}\right) \# \cdots\right. \\
& \left.\# L\left(p_{1}, q_{1, r_{1}}\right)\right) \cap \cdots \cap D_{\mathrm{iso}}\left(L\left(p_{t}, q_{t, 1}\right) \# \cdots \# L\left(p_{t}, q_{t, r_{t}}\right)\right) . \tag{*}
\end{align*}
$$

Proof. For every self-mapping degree d of M, in Theorem 3.6 we have proved that for every oriented connected summand P of M, it corresponds to an oriented connected summand P^{\prime}, such that there is a degree d mapping $f: P \rightarrow P^{\prime}$, and f induces isomorphism on fundamental group. By the classification of 3-manifolds with finite fundamental group (see [13], 6.2), P and P^{\prime} are homeomorphism (not considering the orientation) unless they are lens spaces with same fundamental group. Now by Lemma 3.8 (1), we have $d \in D_{\text {iso }}\left(m_{i} P_{i} \# n_{i} \bar{P}_{i}\right)$ and $d \in D_{\text {iso }}\left(L\left(p_{j}, q_{j, 1}\right) \# \cdots \# L\left(p_{j}, q_{j, r_{j}}\right)\right)$, for $i=1, \ldots, s$ and $j=1, \ldots, t$. Hence we have proved

$$
\begin{aligned}
D(M) \subset & D_{\text {iso }}\left(m_{1} P_{1} \# n_{1} \bar{P}_{1}\right) \cap \cdots \cap D_{\text {iso }}\left(m_{s} P_{s} \# n_{s} \bar{P}_{s}\right) \cap D_{\text {iso }}\left(L\left(p_{1}, q_{1,1}\right) \# \cdots\right. \\
& \left.\# L\left(p_{1}, q_{1, r_{1}}\right)\right) \cap \cdots \cap D_{\text {iso }}\left(L\left(p_{t}, q_{t, 1}\right) \# \cdots \# L\left(p_{t}, q_{t, r_{t}}\right)\right) .
\end{aligned}
$$

(Since $D\left(m S^{2} \times S^{1}\right)=\mathbb{Z}$, we can just forget it in the discussion.)
Apply Lemma 3.8 once more, we finish the proof.
Proposition 3.10. If P is a 3-manifold with finite fundamental group different from lens space, $D_{\mathrm{iso}}(m P \# n \bar{P})= \begin{cases}D_{\mathrm{iso}}(P) & \text { if } m \neq n, \\ D_{\mathrm{iso}}(P) \cup\left(-D_{\mathrm{iso}}(P)\right) & \text { if } m=n .\end{cases}$

Proof. If P is not a lens space, from the list in [13], we can check that $4\left|\left|\pi_{1}(P)\right|\right.$. By Proposition 1.6, $D_{\text {iso }}(Q)=\left\{k^{2}+l\left|\pi_{1}(Q)\right| \mid \operatorname{gcd}\left(k,\left|\pi_{1}(Q)\right|\right)=1\right\}$, where Q is any 3-manifolds with S^{3} geometry. If $k^{2}+l\left|\pi_{1}(P)\right|=-k^{\prime 2}-l^{\prime}\left|\pi_{1}(P)\right|$, then
$k^{2}+k^{\prime 2}=-\left(l+l^{\prime}\right)\left|\pi_{1}(P)\right|$. Since $4\left|\left|\pi_{1}(P)\right|\right.$ and $\operatorname{gcd}\left(k,\left|\pi_{1}(P)\right|\right)=\operatorname{gcd}\left(k^{\prime},\left|\pi_{1}(P)\right|\right)=1$, k, k^{\prime} are both odd, thus $-\left(l+l^{\prime}\right)\left|\pi_{1}(P)\right|=k^{2}+k^{\prime 2}=4 s+2$, contradicts with $4\left|\left|\pi_{1}(P)\right|\right.$. So $D_{\text {iso }}(P) \cap\left(-D_{\text {iso }}(P)\right)=\emptyset$. (In particular $-1 \neq D(P)$.)

From the definition we have $D_{\text {iso }}(P)=D_{\text {iso }}(\bar{P})$ and $D_{\text {iso }}(P, \bar{P})=D_{\text {iso }}(\bar{P}, P)=$ $-D_{\text {iso }}(\bar{P})$.

If $m \neq n$, we may assume that $m>n$. For the self-map f, if some P corresponds to \bar{P}, there must also be some P corresponds to P, so $\operatorname{deg}(f) \in D_{\text {iso }}(P) \cap\left(-D_{\text {iso }}(P)\right)$, it is impossible by the argument in first paragraph. So all the P correspond to P, and all the \bar{P} correspond to \bar{P}. Since $D_{\text {iso }}(P)=D_{\text {iso }}(\bar{P})$, we have $D_{\text {iso }}(m P \# n \bar{P}) \subset D_{\text {iso }}(P)$. By Lemma 3.8 and the fact $D_{\text {iso }}(P)=D_{\text {iso }}(\bar{P})$, we have $D_{\text {iso }}(m P \# n \bar{P})=D_{\text {iso }}(P)$.

If $m=n$, similarly we have either all the P correspond to P and all the \bar{P} correspond to \bar{P}; or all the P correspond to \bar{P} and all the \bar{P} correspond to P. Since $D_{\text {iso }}(P)=$ $D_{\text {iso }}(\bar{P})$ and $D_{\text {iso }}(P, \bar{P})=D_{\text {iso }}(\bar{P}, P)=-D_{\text {iso }}(\bar{P})$, we have $D_{\text {iso }}(m P \# m \bar{P}) \subset D_{\text {iso }}(P) \cup$ $\left(-D_{\text {iso }}(P)\right)$. On the other hand from the argument above, we have $D_{\text {iso }}(P),-D_{\text {iso }}(P) \subset$ $D_{\text {iso }}(m P \# m \bar{P})$, hence $D_{\text {iso }}(m P \# m \bar{P})=D_{\text {iso }}(P) \cup\left(-D_{\text {iso }}(P)\right)$.

Lemma 3.11. $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)=\left\{k^{2} q^{-1} q^{\prime}+l p \mid \operatorname{gcd}(k, p)=1\right\}$, here q^{-1} is seen as in group $U_{p}=\left\{\right.$ all the units in the ring $\left.\mathbb{Z}_{p}\right\}$.

Proof. $L(p, q)$ is the quotient of S^{3} by the action of $\mathbb{Z}_{p},\left(z_{1}, z_{2}\right) \rightarrow\left(e^{i 2 \pi / p} z_{1}, e^{i 2 q \pi / p} z_{2}\right)$. Let $\tilde{f}_{q, q^{\prime}}: S^{3} \rightarrow S^{3}, \tilde{f}_{q, q^{\prime}}\left(z_{1}, z_{2}\right)=\left(z_{1}^{q} / \sqrt{\left|z_{1}\right|^{2 q}+\left|z_{2}\right|^{2 q^{\prime}}}, z_{2}^{q^{\prime}} / \sqrt{\left|z_{1}\right|^{2 q}+\left|z_{2}\right|^{2 q^{\prime}}}\right)$. We can check that this map induces a map $f_{q, q^{\prime}}: L(p, q) \rightarrow L\left(p, q^{\prime}\right)$ with degree $q q^{\prime}$, moreover since q, q^{\prime} are coprime with $p, f_{q, q^{\prime} *}$ is an isomorphism π_{1}. By Proposition 1.6 $D_{\text {iso }}(L(p, q))=\left\{k^{2}+l p \mid \operatorname{gcd}(k, p)=1\right\}$. Compose each self-map on $L(p, q)$ which induces an isomorphism on π_{1} with $f_{q, q^{\prime}}$, we have $\left\{k^{2} q^{-1} q^{\prime}+l p \mid \operatorname{gcd}(k, p)=1\right\} \subset$ $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)$. On the other hand, for each map $g: L(p, q) \rightarrow L\left(p, q^{\prime}\right)$ of degree d which induces an isomorphism on π_{1}, then $f_{q^{\prime}, q} \circ g$ is a self-map on $L(p, q)$ which induces an isomorphism on π_{1}, where $f_{q^{\prime}, q}: L\left(p, q^{\prime}\right) \rightarrow L(p, q)$ is a degree $q q^{\prime}$ map. Hence the degree of $f_{q^{\prime}, q} \circ g$ is $q q^{\prime} d$ which must be in $\left\{k^{2}+l p \mid \operatorname{gcd}(k, p)=1\right\}$, that is $q q^{\prime} d=$ $k^{2}+l p, \operatorname{gcd}(k, p)=1$, then $d=k^{2} q^{-1} q^{\prime-1}+p l=\left(k / q^{-1}\right)^{2} q^{-1} q^{\prime}+p l \in\left\{k^{2} q^{-1} q^{\prime}+l p \mid\right.$ $\operatorname{gcd}(k, p)=1\}$. Hence $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)=\left\{k^{2} q^{-1} q^{\prime}+l p \mid \operatorname{gcd}(k, p)=1\right\}$.

Let $U_{p}=\left\{\right.$ all units in ring $\left.\mathbb{Z}_{p}\right\}, U_{p}^{2}=\left\{a^{2} \mid a \in U_{p}\right\}$, which is a subgroup of U_{p}. Let H denote the natural projection from $\{n \in \mathbb{Z} \mid \operatorname{gcd}(n, p)=1\}$ to U_{p} / U_{p}^{2}.

Later, we will omit the p, denote them by U and U^{2}. We consider the quotient $U / U^{2}=\left\{a_{1}, \ldots, a_{m}\right\}$, every a_{i} corresponds with a coset A_{i} of U^{2}. For the structure of U, see [9] p. 44, then we can get the structure of U^{2} and U / U^{2} easily.

Define $\bar{A}_{s}=\left\{L\left(p, q_{i}\right) \mid q_{i} \in A_{s}\right\}$ (with repetition allowed). In U / U^{2}, define $B_{l}=$ $\left\{a_{s} \mid \# \bar{A}_{s}=l\right\}$ for $l=1,2, \ldots$, there are only finitely many B_{l} 's are nonempty. Let $C_{l}=$ $\left\{a \in U / U^{2} \mid a_{i} a \in B_{l}, \forall a_{i} \in B_{l}\right\}$ if $B_{l} \neq \emptyset$ and $C_{l}=U / U^{2}$ otherwise, $C=\bigcap_{l=1}^{\infty} C_{l}$.

Proposition 3.12. $D_{\text {iso }}\left(L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right)\right)=H^{-1}(C)$.

Proof. By Lemma 3.11, we have $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)=\left\{k^{2} q^{-1} q^{\prime}+l p \mid\right.$ $\operatorname{gcd}(k, p)=1\}$. Therefore $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)$ will not change if we replace $L(p, q)$ by $L\left(p, s^{2} q\right)$ (resp. $L\left(p, q^{\prime}\right)$ by $\left.L\left(p, s^{2} q^{\prime}\right)\right)$ for any s in U_{p}.

Now we consider the relation between two sets $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)$ and $D_{\text {iso }}\left(L\left(p, q_{*}\right), L\left(p, q_{*}^{\prime}\right)\right)$. It is also easy to see if $\left(q / q^{\prime}\right)\left(q_{*}^{\prime} / q_{*}\right)=s^{2}$ in U_{p}, then $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right)=D_{\text {iso }}\left(L\left(p, q_{*}\right), L\left(p, q_{*}\right)\right)$, and if $(q / q)\left(q_{*}^{\prime} / q_{*}\right) \neq s^{2}$ in U_{p}, then $D_{\text {iso }}\left(L(p, q), L\left(p, q^{\prime}\right)\right) \cap D_{\text {iso }}\left(L\left(p, q_{*}\right), L\left(p, q_{*}^{\prime}\right)\right)=\emptyset$.

Let $f: L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right) \rightarrow L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right)$ be a map of degree $d \neq 0$. Suppose f sends $L\left(p, q_{i}\right)$ to $L\left(p, q_{k}\right)$ and sends $L\left(p, q_{j}\right)$ to $L\left(p, q_{l}\right)$ in the sense of Theorem 3.6. Since $D_{\text {iso }}\left(L\left(p, q_{i}\right), L\left(p, q_{k}\right)\right) \cap D_{\text {iso }}\left(L\left(p, q_{j}\right), L\left(p, q_{l}\right)\right) \neq \emptyset$, by last paragraph, we must have $\left(q_{i} / q_{k}\right)\left(q_{l} / q_{j}\right)=s^{2}$ in U_{p}. Hence q_{i} / q_{j} is in U^{2} if and only if q_{l} / q_{k} is in U^{2}; in other words, $L\left(p, q_{i}\right)$ and $L\left(p, q_{j}\right)$ are in the same \bar{A}_{s} if and only if $L\left(p, q_{k}\right)$ and $L\left(p, q_{l}\right)$ are in the same \bar{A}_{t}. Hence f provides 1-1 selfcorrespondence on $\bar{A}_{1}, \ldots, \bar{A}_{m}$, and if some elements in \bar{A}_{s} corresponds to \bar{A}_{t}, there is $\# \bar{A}_{s}=\# \bar{A}_{t}$.

Let $f: L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right) \rightarrow L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right)$ be a self-map. For each $a_{i} \in U / U^{2}, f$ must send \bar{A}_{i} to some \bar{A}_{j} with $\# \bar{A}_{i}=\# \bar{A}_{j}=l$, and both $a_{i}, a_{j} \in B_{l}$. Assume $L\left(p, q_{i}\right) \in \bar{A}_{i}, L\left(p, q_{j}\right) \in \bar{A}_{j}$, then $\operatorname{deg}(f) \in\left\{k^{2} q_{i}^{-1} q_{j}+l p \mid \operatorname{gcd}(k, p)=1\right\}$ by Lemma 3.11. By consider in U / U^{2}, we have $H(\operatorname{deg}(f))=\bar{q}_{j} / \bar{q}_{i}=a_{j} / a_{i}$, that is $H(\operatorname{deg}(f)) a_{i}=a_{j} \in B_{l}$. Since we choose arbitrary a_{i} in B_{l}, we have $H(\operatorname{deg}(f)) \in$ C_{l}. Also we choose arbitrary l, we have $H(\operatorname{deg}(f)) \in \bigcap_{l=1}^{\infty} C_{l}=C$, hence $\operatorname{deg}(f) \in$ $H^{-1}(C)$.

On the other hand, if $d \in H^{-1}(C)$, then $H(d)=c \in C=\bigcap_{l=1}^{\infty} C_{l}$. For each $B_{l} \neq \emptyset$ and each $a_{i} \in B_{l}$, we have $c a_{i}=a_{j} \in B_{l}$. Then $A_{i} \mapsto A_{j}$ gives 1-1 self-correspondence among $\left\{\bar{A}_{i} \mid \# \bar{A}_{i}=l\right\}$. We can make further 1-1 correspondence from elements in \bar{A}_{i} to elements in \bar{A}_{j}. Since our discussion works for all $B_{l} \neq \emptyset$, we have $1-1$ selfcorrespondence on $\left\{L\left(p, q_{1}\right), \ldots, L\left(p, q_{n}\right)\right\}$ (with repetition allowed). Therefore for each $L\left(p, q_{i}\right) \in \bar{A}_{i}$ and $L\left(p, q_{j}\right) \in \bar{A}_{j}, c=\bar{q}_{j} \bar{q}_{i}^{-1}$. Therefore d have the form $k^{2} q_{j} q_{i}^{-1}$ $\bmod p$ with $(k, p)=1$. By Lemma 3.11, there is a map $f_{i, j}: L\left(p, q_{i}\right) \rightarrow L\left(p, q_{j}\right)$ of degree d which induces an isomorphism on π_{1}.

By Lemma 3.8, we can construct a self-mapping of degree d of $L\left(p, q_{1}\right) \# \cdots \#$ $L\left(p, q_{n}\right)$ which induces an isomorphism on π_{1}. Hence $H^{-1}(C) \subset D_{\text {iso }}\left(L\left(p, q_{1}\right) \# \cdots \#\right.$ $\left.L\left(p, q_{n}\right)\right)$. Thus $D_{\text {iso }}\left(L\left(p, q_{1}\right) \# \cdots \# L\left(p, q_{n}\right)\right)=H^{-1}(C)$.

4. $D(M)$ for Nil manifolds

4.1. Self coverings of Euclidean orbifolds.

Definition 4.1 ([20]). A 2-orbifold is a Hausdorff, paracompact space which is locally homeomorphic to the quotient space of \mathbb{R}^{2} by a finite group action. Suppose \mathcal{O}_{1} and \mathcal{O}_{2} are orbifolds and $f: \mathcal{O}_{1} \rightarrow \mathcal{O}_{2}$ is an map. We say f is an orbifold covering if any point p in \mathcal{O}_{2} has a neighbourhood U such that $f^{-1}(U)$ is the disjoint union of
sets $V_{\lambda}, \lambda \in \Lambda$, such that $f \mid: V_{\lambda} \rightarrow U$ is the natural quotient map between two quotients of \mathbb{R}^{2} by finite groups, one of which is a subgroup of the other.

In this paper, we only consider about orbifold with singular points. Here we say a point x in the orbifold is a singular point of index q if x has a neighborhood U homeomorphic to the quotient space of \mathbb{R}^{2} by rotate action of finite cyclic group \mathbb{Z}_{q}, $q>1$.

An orbifold \mathcal{O} with singular points $\left\{x_{1}, \ldots, x_{s}\right\}$ is homeomorphic to a surface F, but for the sake of the singular points, we would like to distinguish them through denoting \mathcal{O} by $F\left(q_{1}, \ldots, q_{s}\right)$. Here q_{1}, \ldots, q_{s} are indices of singular points. Here the covering map $f: \mathcal{O}_{1} \rightarrow \mathcal{O}_{2}$ is not the same as the covering map from F_{1} to F_{2}.

If $f: \mathcal{O}_{1} \rightarrow \mathcal{O}_{2}$ is an orbifold covering, the singular points of \mathcal{O}_{2} are $\left\{x_{1}, \ldots, x_{s}\right\}$, for any $y \in \mathcal{O}_{2}, y \neq x_{i}$, define $\operatorname{deg}(f)=\# f^{-1}(y)$. For any singular point x, let $f^{-1}(x)=$ $\left\{a_{1}, \ldots, a_{i}\right\}$. At point a_{j}, f is locally equivalent to $z \rightarrow z^{d_{j}}$ on \mathbb{C}, x and a_{j} correspond to 0 . Here we have $\sum d_{j}=d, a_{j}$ is an ordinary point if and only if d_{j} equals to the index of x. Define $D(x)=\left[d_{1}, \cdots, d_{i}\right]$ to be the orbifold covering data at singular point x, and $\mathfrak{D}(f)=\left\{D\left(x_{1}\right), \ldots, D\left(x_{s}\right)\right\}$ (with repetition allowed) to be the orbifold covering data of f.

The following lemma is easy to verify.

Lemma 4.2. If a Nil manifold M is not a torus bundle or a torus semi-bundle, then M has one of the following Seifert fibreing structures: $M\left(0 ; \beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 6\right)$, $M\left(0 ; \beta_{1} / 3, \beta_{2} / 3, \beta_{3} / 3\right)$, or $M\left(0 ; \beta_{1} / 2, \beta_{2} / 4, \beta_{3} / 4\right)$, where $e(M) \in \mathbb{Q}-\{0\}$.

Proof. Consider Nil manifold M as a Seifert fibered space, then its orbifold $\mathcal{O}(M)$ has zero Euler characteristic. So $\mathcal{O}(M)$ must be one of following orbifolds: the torus T^{2}, the Klein bottle $K, P^{2}(2,2), S^{2}(2,3,6), S^{2}(2,4,4), S^{2}(3,3,3)$ and $S^{2}(2,2,2,2)$.

By [4] p. 38 and p. 40, we can see that M has structure of torus bundle if $\mathcal{O}(M)$ is T^{2} or K, and M has structure of torus semi-bundle if $\mathcal{O}(M)$ is $P^{2}(2,2)$ or $S^{2}(2,2,2,2)$.

The remaining three cases $S^{2}(2,3,6), S^{2}(2,4,4)$ and $S^{2}(3,3,3)$ correspond to the three cases claimed in the lemma. Clear $e(M) \in \mathbb{Q}-\{0\}$ since Nil manifolds have non-zero Euler number.

Proposition 4.3. Denote the degrees set of self covering of an orbifold \mathcal{O} by $D(\mathcal{O})$. We have:
(1) For $\mathcal{O}=S^{2}(2,3,6), D(\mathcal{O})=\left\{m^{2}+m n+n^{2} \mid m, n \in \mathbb{Z},(m, n) \neq(0,0)\right\}$.

Moreover, if $d \in D(\mathcal{O})$ is coprime with 6 , then
(i) $d \equiv 1 \bmod 6$;
(ii) this covering map of degree $d=6 k+1$ is realized by an orbifold covering from \mathcal{O} to \mathcal{O} with orbifold covering data

$$
\left\{D\left(x_{1}\right), D\left(x_{2}\right), D\left(x_{3}\right)\right\}=\{[\underbrace{2, \ldots, 2}_{3 k}, 1],[\underbrace{3, \ldots, 3}_{2 k}, 1],[\underbrace{6, \ldots, 6}_{k}, 1]\} \text {, }
$$

Fig. 1.
where x_{1}, x_{2} and x_{3} are singular points of indices 2,3 and 6 respectively.
(2) For $\mathcal{O}=S^{2}(3,3,3), D(\mathcal{O})=\left\{m^{2}+m n+n^{2} \mid m, n \in \mathbb{Z},(m, n) \neq(0,0)\right\}$.

Moreover, if $d \in D(\mathcal{O})$ is coprime with 3 , then
(i) $d \equiv 1 \bmod 3$;
(ii) this covering map of degree $d=6 k+1$ is realized by an orbifold covering from \mathcal{O} to \mathcal{O} with orbifold covering data

$$
\left\{D\left(x_{1}\right), D\left(x_{2}\right), D\left(x_{3}\right)\right\}=\{[\underbrace{3, \ldots, 3}_{k}, 1],[\underbrace{3, \ldots, 3}_{k}, 1],[\underbrace{3, \ldots, 3}_{k}, 1]\},
$$

where x_{1}, x_{2} and x_{3} are singular points of indices 3,3 and 3 respectively.
(3) For $\mathcal{O}=S^{2}(2,4,4), D(\mathcal{O})=\left\{m^{2}+n^{2} \mid m, n \in \mathbb{Z},(m, n) \neq(0,0)\right\}$.

Moreover, if $d \in D(\mathcal{O})$ is coprime with 4 , then
(i) $d \equiv 1 \bmod 4$;
(ii) this covering map of degree $d=4 k+1$ is realized by an orbifold covering from \mathcal{O} to \mathcal{O} with orbifold covering data

$$
\left\{D\left(x_{1}\right), D\left(x_{2}\right), D\left(x_{3}\right)\right\}=\{[\underbrace{2, \ldots, 2}_{2 k}, 1],[\underbrace{4, \ldots, 4}_{k}, 1],[\underbrace{4, \ldots, 4}_{k}, 1]\},
$$

where x_{1}, x_{2} and x_{3} are singular points of indices 2,4 and 4 respectively.
Proof. We only prove case (1). The other two cases can be proved similarly. $S^{2}(2,3,6)$ can be seen as pasting the equilateral triangle as shown in Fig. 1 geometrically.
$\pi_{1}\left(S^{2}(2,3,6)\right)$ can be identified with a discrete subgroup Γ of $\mathrm{Iso}_{+}\left(\mathbb{E}^{2}\right)$, a fundamental domain of Γ is shown in Fig. 2. It is as a lattice in \mathbb{E}^{2} with vertex coordinate $m+n e^{i \pi / 3}, m, n \in \mathbb{Z}$.

Fig. 2.
For the covering $p: T^{2} \rightarrow S^{2}(2,3,6), T^{2}$ can be seen as the quotient of a subgroup $\Gamma^{\prime} \subset \Gamma$ on \mathbb{E}^{2}, with a fundamental domain as Fig. 3. Here Γ^{\prime} is just all the translation elements of Γ, thus Γ^{\prime} is generated by $z \rightarrow z+\sqrt{3} i$ and $z \rightarrow z+(\sqrt{3} / 2) i+3 / 2$.

For every self covering $f: S^{2}(2,3,6) \rightarrow S^{2}(2,3,6), f_{*}: \pi_{1}\left(S^{2}(2,3,6)\right) \rightarrow \pi_{1}\left(S^{2}(2,3,6)\right)$ is injective. Since p is covering, $f_{*} \circ p_{*}: \pi_{1}\left(T^{2}\right) \rightarrow \pi_{1}\left(S^{2}(2,3,6)\right)$ is also injective. So $f_{*}\left(p_{*}\left(\pi_{1}\left(T^{2}\right)\right)\right)$ is a free abelian subgroup of $\pi_{1}\left(S^{2}(2,3,6)\right)$.

For every $\gamma \in \Gamma$, which is not translation, it can be represented by $f: z \rightarrow e^{i 2 k \pi / n} z+$ $z_{0}, \operatorname{gcd}(k, n)=1, n>1$. Then $f^{n}(z)=\left(e^{i 2 k \pi / n}\right)^{n} z+\left(e^{i 2 k(n-1) \pi / n}+\cdots e^{i 2 k \pi / n}+1\right) z_{0}=z$. So γ is a torsion element, thus $\gamma \notin f_{*}\left(p_{*}\left(\pi_{1}\left(T^{2}\right)\right)\right)$ except $\gamma=e$. So $f_{*}\left(p_{*}\left(\pi_{1}\left(T^{2}\right)\right)\right) \subset$ $p_{*}\left(\pi_{1}\left(T^{2}\right)\right)$, thus there exists $\tilde{f}: T^{2} \rightarrow T^{2}$ being the lifting of f.

Here we have
$\operatorname{deg}(f)=\operatorname{deg}(\tilde{f})=\left[\pi_{1}\left(T^{2}\right): \tilde{f}_{*}\left(\pi_{1}\left(T^{2}\right)\right)\right]=\frac{\operatorname{area}\left(\text { fundamental domain of } \tilde{f}_{*}\left(\pi_{1}\left(T^{2}\right)\right)\right)}{\left.\text { area(fundamental domain of } \pi_{1}\left(T^{2}\right)\right)}$,
here $\tilde{f}_{*}\left(\pi_{1}\left(T^{2}\right)\right), \pi_{1}\left(T^{2}\right)$ are all seen as subgroup of $\pi_{1}\left(S^{2}(2,3,6)\right)$.

Fig. 3.
Clearly, we can choose a fundamental domain of $f_{*}\left(\pi_{1}\left(S^{2}(2,3,6)\right)\right)$ to be an equilateral triangle in \mathbb{E}^{2} with vertices as $m+n e^{i \pi / 3}$, then the fundamental domain of $\tilde{f}_{*}\left(\pi_{1}\left(T^{2}\right)\right)$ is an equilateral hexagon with vertices as $m+n e^{i \pi / 3}$. The scale of area is the square of the scale of edge length. The scale of edge length must be $\left|m+n e^{i \pi / 3}\right|=$ $\sqrt{m^{2}+m n+n^{2}}$. So $\operatorname{deg}(f)=m^{2}+m n+n^{2}$.

On the other hand, for every $(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}$, choose $g: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}, g(z)=$ $\left(m+n e^{i \pi / 3}\right) z$. It is routine to check that for any $\gamma \in \Gamma$, there is $\gamma^{\prime} \in \Gamma$, such that $g(\gamma(z))=\gamma^{\prime}(g(z))$. So g induces \bar{g}, which is self covering on $S^{2}(2,3,6)$, and $\operatorname{deg}(\bar{g})=$ $m^{2}+m n+n^{2}$. We have proved the first sentence of Proposition 4.3 (1).

If $m^{2}+m n+n^{2}$ is coprime to $6, m^{2}+m n+n^{2} \equiv 1$ or $5 \bmod 6$. Since $m^{2}+m n+n^{2} \equiv$ $4 m^{2}+4 m n+4 n^{2} \equiv(2 m+n)^{2} \bmod 3$, and any square number must be 0 or $1 \bmod 3$, we must have $m^{2}+m n+n^{2} \equiv 1 \bmod 6$. We have proved Proposition 4.3 (1) (i).

Assume h is a self covering of degree $d=6 k+1, x_{1}, x_{2}, x_{3}$ are the singular points on $S^{2}(2,3,6)$ with indices $2,3,6$. For $x_{1}, h^{-1}\left(x_{1}\right)$ must be ordinary points or singular point of index 2. Since the degree $d=6 k+1, h^{-1}\left(x_{1}\right)$ is $3 k$ ordinary points and x_{1}. Similarly, for $x_{2}, h^{-1}\left(x_{2}\right)$ is $2 k$ ordinary points and x_{2}. Then $x_{1}, x_{2} \notin h^{-1}\left(x_{3}\right)$, so $h^{-1}\left(x_{3}\right)$ is k ordinary points and x_{3}. Thus the covering map of degree $d=6 k+1$ is realized by a self covering of \mathcal{O} with orbifold covering data $\{[2, \ldots, 2,1],[3, \ldots, 3,1]$, $[6, \ldots, 6,1]\}$. We have proved Proposition 4.3 (1) (ii).

4.2. $D(M)$ for Nil manifolds.

Lemma 4.4. For Nil manifold $M, D(M) \subset\left\{l^{2} \mid l \in \mathbb{Z}\right\}$.
Proof. Let f be a self map of M. By [25, Corollary 0.4$], f$ is either homotopic to a covering map $g: M \rightarrow M$, or a homotopy equivalence.

If f is homotopic to a covering, since M has unique Seifert fibering structure up to isomorphism, we can make g to be a fiber preserving map. Denote the orbifold of M by O_{M}. By [20, Lemma 3.5], we have:

$$
\left\{\begin{array}{l}
e(M)=e(M) \cdot \frac{l}{m}, \tag{4.1}\\
\operatorname{deg}(g)=l \cdot m,
\end{array}\right.
$$

where l is the covering degree of $O_{M} \rightarrow O_{M}$ and m is the covering degree on the fiber direction. Since $e(M) \neq 0$, from equation (4.1) we get $l=m$. Thus $\operatorname{deg}(f)=\operatorname{deg}(g)$ is a square number l^{2}.

If f is a homotopy equivalence, then $\operatorname{deg}(f)= \pm 1$. To finish the proof of the lemma, we need only to show that the degree of f is not -1 . Otherwise composing a self covering g of degree $n>1$, then $g \circ f$ is of degree $-n$, which is not a homotopy equivalence, therefore is homotopic to a covering, and must have degree >0 by the last paragraph, a contradiction.

Theorem 4.5. For 3-manifold M in Class 4, we have
(1) For $M=M\left(0 ; \beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 6\right), D(M)=\left\{l^{2} \mid l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 6\right.$, $m, n \in \mathbb{Z}\}$;
(2) For $M=M\left(0 ; \beta_{1} / 3, \beta_{2} / 3, \beta_{3} / 3\right), D(M)=\left\{l^{2} \mid l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 3\right.$, $m, n \in \mathbb{Z}\}$;
(3) For $M=M\left(0 ; \beta_{1} / 2, \beta_{2} / 4, \beta_{3} / 4\right), D(M)=\left\{l^{2} \mid l=m^{2}+n^{2}, l \equiv 1 \bmod 4, m, n \in \mathbb{Z}\right\}$.

Proof. We will just prove Case (1). The proof of Cases (2) and (3) are exactly as that of Case (1). Below $M=M\left(0 ; \beta_{1} / 2, \beta_{2} / 3, \beta_{3} / 6\right)$.

First we show that $D(M) \subset\left\{l^{2} \mid l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 6, m, n \in \mathbb{Z}\right\}$.
Since the orbifold $O_{M}=S^{2}(2,3,6)$, by Proposition 4.3 (1), we have $l=m^{2}+$ $m n+n^{2}$. Below we show that $l=6 k+1$.

Let N be the regular neighborhood of 3 singular fibers. To define the Seifert invariants, a section F of $M \backslash N$ is chosen, and moreover ∂F and fibers on each component of $\partial(M \backslash N)$ are oriented.

Consider the covering $g \mid: M \backslash g^{-1}(N) \rightarrow M \backslash N$. Let \tilde{F} be a component $g^{-1}(F)$. It is easy to verify that \tilde{F} is a section of $M \backslash g^{-1}(N)$. Now we lift the orientations on ∂F and the fibers on $\partial(M \backslash N)$ to those on $\partial\left(M \backslash g^{-1}(N)\right)$, we get a coordinate system on $\partial\left(M \backslash g^{-1}(N)\right)$. Therefore we have a coordinate preserving covering

$$
g:\left(M, M \backslash g^{-1}(N), g^{-1}(N)\right) \rightarrow(M, M \backslash N, N) .
$$

Fig. 4.
Suppose V^{\prime} is a tubular neighborhood of some singular fiber L^{\prime}. The meridian of V^{\prime} can be represented by $\left(c^{\prime}\right)^{\alpha^{\prime}}\left(h^{\prime}\right)^{\beta^{\prime}}\left(\alpha^{\prime}>0\right)$, where $\left(c^{\prime}, h^{\prime}\right)$ is the section- fiber coordinate of ∂V^{\prime}.

Suppose V is a component of $g^{-1}\left(V^{\prime}\right)$ and the meridian of V is represented as $c^{\alpha} h^{\beta}(\alpha>0)$, where (c, h) is the lift of ($\left.c^{\prime}, h^{\prime}\right)$. Since $g \mid: V \rightarrow V^{\prime}$ is a covering of solid torus, so g must send meridian to meridian homeomorphically, thus $g\left(c^{\alpha} h^{\beta}\right)=$ $\left(c^{\prime}\right)^{\alpha^{\prime}}\left(h^{\prime}\right)^{\beta^{\prime}}$. See Fig. 4.

Since g has the fiber direction covering degree $m=l, g(h)=\left(h^{\prime}\right)^{l}$. Since c, c^{\prime} are the boundaries of sections and g send c to c^{\prime}, we have $g(c)=\left(c^{\prime}\right)^{s}$. Then $g\left(c^{\alpha} h^{\beta}\right)=$ $\left(c^{\prime}\right)^{\alpha \cdot s}\left(h^{\prime}\right)^{\beta \cdot l}=\left(c^{\prime}\right)^{\alpha^{\prime}}\left(h^{\prime}\right)^{\beta^{\prime}}$. Hence we get $\beta \cdot l=\beta^{\prime}$.

Let V^{\prime} be a tubular neighborhood of singular fiber whose meridian can be represented as $\left(c^{\prime}\right)^{6}\left(h^{\prime}\right)^{\beta^{\prime}}$. By the arguments above, the meridian of the preimage V can be represent by $c^{\alpha} h^{\beta}$.

Since β^{\prime} is coprime with 6 . By $\beta \cdot l=\beta^{\prime}$, so l is coprime with 6 . Still by Proposition 4.3 (1), we have $l=6 k+1$.

Then we show $\left\{l^{2} \mid l=m^{2}+m n+n^{2}, l \equiv 1 \bmod 6, m, n \in \mathbb{Z}\right\} \subset D(M)$.
Suppose $l=m^{2}+m n+n^{2}$ and $l=6 k+1$, denote the quotient manifold of \mathbb{Z}_{l} free action on M by M_{l}. Then M_{l} has the Seifert fibering structure $M\left(0 ; l \cdot \beta_{1} / 2\right.$, $\left.l \cdot \beta_{2} / 3, l \cdot \beta_{3} / 6\right)$. We have the covering $g_{l}: M \rightarrow M_{l}$ of degree l.

Claim. there exists a map $f_{l}: M_{l} \rightarrow M$ of degree l.
Let $D=D_{1} \cup D_{2} \cup D_{3} \subset S^{2}(2,3,6)$ be the regular neighborhood discs of 3 singular points of indices 2,3 , and 6 respectively. By Proposition 4.3 (1), there exists a branched covering map $\bar{f}_{l}: S^{2}(2,3,6) \rightarrow S^{2}(2,3,6)$ of degree l such that
(1) \bar{f}_{l} induce a covering map $\bar{f}_{l} \mid: S^{2} \backslash \bar{f}_{l}^{-1}(D) \rightarrow S^{2} \backslash D$;
(2) $\bar{f}_{l}^{-1}\left(D_{i}\right)$ consists of $(3 k+1)$ discs with orbifold covering data $[\underbrace{2, \ldots, 2}_{3 k}, 1]$ for $i=1$, and $(2 k+1)$ discs with orbifold covering data $[\underbrace{3, \ldots, 3}_{2 k}, 1]$ for $i=2$, and $(k+1)$ discs with orbifold covering data $[\underbrace{6, \ldots, 6}_{k}, 1]$ for $i=3$.

Clearly $\bar{f}_{l}^{-1}(D)$ consists of $(3 k+1)+(2 k+1)+(k+1)=6 k+3$ disks.
Then we have the covering map $\bar{f}_{l} \times i d:\left(S^{2} \backslash f_{l}^{-1}(D)\right) \times S^{1} \rightarrow\left(S^{2} \backslash D\right) \times S^{1}$ of degree l, which can be extends to a covering map $f_{l}: M^{\prime} \rightarrow M$, where M^{\prime} has the Seifert structure $M(0 ; \underbrace{\beta_{1}, \ldots, \beta_{1}}_{3 k}, \beta_{1} / 2, \underbrace{\beta_{2}, \ldots, \beta_{2}}_{2 k}, \beta_{2} / 3, \underbrace{\beta_{3}, \ldots, \beta_{3}}_{k}, \beta_{3} / 6)$. Clearly M^{\prime} is isomorphic to M_{l}.

Now the covering $f_{l} \circ g_{l}: M \rightarrow M_{l} \rightarrow M$ has degree l^{2}.
We finish the proof of Case (1).

5. $D(M)$ for $H^{2} \times E^{1}$ manifolds

In this case, all the manifolds are Seifert fibered spaces M such that the Euler number $e(M)=0$ and the Euler characteristic of the orbifold $\chi\left(O_{M}\right)<0$.

Suppose $M=\left(g ; \beta_{1,1} / \alpha_{1}, \ldots, \beta_{1, m_{1}} / \alpha_{1}, \ldots, \beta_{n, 1} / \alpha_{n}, \ldots, \beta_{n, m_{n}} / \alpha_{n}\right)$, where all the integers $\alpha_{i}>1$ are different from each other, and $\sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \beta_{i, j} / \alpha_{i}=0$.

For every α_{i}, consider $U_{\alpha_{i}}$. For every $a \in U_{\alpha_{i}}$, define $\theta_{a}\left(\alpha_{i}\right)=\#\left\{\beta_{i, j} \mid p_{i}\left(\beta_{i, j}\right)=a\right\}$ (with repetition allowed), where p_{i} is the natural projection from $\left\{n \mid \operatorname{gcd}\left(n, \alpha_{i}\right)=1\right\}$ to $U_{\alpha_{i}}$. Define $B_{l}\left(\alpha_{i}\right)=\left\{a \mid \theta_{a}\left(\alpha_{i}\right)=l\right\}$ for $l=0,1, \ldots$, there are only finitely many $B_{l}\left(\alpha_{i}\right)$ nonempty. Let $C_{l}\left(\alpha_{i}\right)=\left\{b \in U_{\alpha_{i}} \mid a b \in B_{l}\left(\alpha_{i}\right), \forall a \in B_{l}\left(\alpha_{i}\right)\right\}$ if $B_{l}\left(\alpha_{i}\right) \neq \emptyset$ and $C_{l}\left(\alpha_{i}\right)=U_{\alpha_{i}}$ otherwise. Finally define $C\left(\alpha_{i}\right)=\bigcap_{l=1}^{\infty} C_{l}\left(\alpha_{i}\right)$, and $\bar{C}\left(\alpha_{i}\right)=p_{i}^{-1}\left(C\left(\alpha_{i}\right)\right)$.

Theorem 5.1.

$$
D\left(M\left(g ; \frac{\beta_{1,1}}{\alpha_{1}}, \ldots, \frac{\beta_{1, m_{1}}}{\alpha_{1}}, \ldots, \frac{\beta_{n, 1}}{\alpha_{n}}, \ldots, \frac{\beta_{n, m_{n}}}{\alpha_{n}}\right)\right)=\bigcap_{i=1}^{n} \bar{C}\left(\alpha_{i}\right) .
$$

Proof. Suppose f is a non-zero degree self-mapping of M. By [25, Corollary 0.4], f is homotopic to a covering map $g: M \rightarrow M$. Since M has the unique Seifert structure, we can isotope g to a fiber preserving map. Denote the orbifold of M by O_{M}. Then g induces a self-covering \bar{g} on O_{M}, since $\chi\left(O_{M}\right)<0$, then \bar{g} must be 1 -sheet, thus isomorphism of O_{M}.

So g is a degree d covering on the fiber direction. Or equivalently, by the action of \mathbb{Z}_{d} on each fiber, the quotient of M is also M. Thus $d \in D(M)$ if and only if

$$
M^{\prime}=M\left(g: d \frac{\beta_{1,1}}{\alpha_{1}}, \ldots, d \frac{\beta_{1, m_{1}}}{\alpha_{1}}, \ldots, d \frac{\beta_{n, 1}}{\alpha_{n}}, \ldots, d \frac{\beta_{n, m_{n}}}{\alpha_{n}}\right)
$$

is homeomorphic to M.
By the uniqueness of Seifert structure ([20] Theorem 3.9) and the fact $e(M)=0$, we have that M is homeomorphism to M^{\prime} if and only if $\left(\beta_{i, 1}, \ldots, \beta_{i, m_{i}}\right)=\left(d \beta_{i, 1}, \ldots, d \beta_{i, m_{i}}\right)$ under a permutation, all the numbers are seen as in $U\left(\alpha_{i}\right)$.

For every $a \in U\left(\alpha_{i}\right)$, if $\left(\beta_{i, 1}, \ldots, \beta_{i, m_{i}}\right)=\left(d \beta_{i, 1}, \ldots, d \beta_{i, m_{i}}\right)$ holds, we must have $\theta_{a}\left(\alpha_{i}\right)=\theta_{d a}\left(\alpha_{i}\right)$, thus $p_{i}(d) \in C_{\theta_{a}}\left(\alpha_{i}\right)$. For a is an arbitrary element in $U\left(\alpha_{i}\right)$, we have
$p_{i}(d) \in C\left(\alpha_{i}\right)$, thus $d \in \bar{C}\left(\alpha_{i}\right)$. Since α_{i} is also chosen arbitrarily, $d \in \bigcap_{i=1}^{n} \bar{C}\left(\alpha_{i}\right)$, thus $D(M) \subset \bigcap_{i=1}^{n} \bar{C}\left(\alpha_{i}\right)$.

For any $d \in \bigcap_{i=1}^{n} \bar{C}\left(\alpha_{i}\right), M$ is homeomorphic to M^{\prime}, so $D(M) \supset \bigcap_{i=1}^{n} \bar{C}\left(\alpha_{i}\right)$
Acknowledgement. The authors are partially supported by grant No. 10631060 of the National Natural Science Foundation of China and Ph.D. grant No. 5171042-055 of the Ministry of Education of China.

References

[1] X.M. Du: On self-mapping degrees of S^{3}-geometry manifolds, Acta Math. Sin. (Engl. Ser.) 25 (2009), 1243-1252.
[2] P. Derbez: Topological rigidity and Gromov simplicial volume, Comment. Math. Helv. 85 (2010), 1-37.
[3] H.B. Duan and S.C. Wang: Non-zero degree maps between $2 n$-manifolds, Acta Math. Sin. (Engl. Ser.) 20 (2004), 1-14.
[4] A. Hatcher: Notes on basic 3-manifold topology, http://www.math.cornell.edu/ ~hatcher/.
[5] J. Hempel: 3-Manifolds, Princeton Univ. Press, Princeton, NJ, 1976.
[6] H. Hendriks and F. Laudenbach: Scindement d'une équivalence d'homotopie en dimension 3, Ann. Sci. École Norm. Sup. (4) 7 (1974), 203-217.
[7] C. Hayat-Legrand, E. Kudryavtseva, S.C. Wang and H. Zieschang: Degrees of self-mappings of Seifert manifolds with finite fundamental groups, Rend. Istit. Mat. Univ. Trieste 32 (2001), 131-147.
[8] C. Hayat-Legrand, S.C. Wang and H. Zieschang: Degree-one maps onto lens spaces, Pacific J. Math. 176 (1996), 19-32.
[9] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics 84, Springer, New York, 1990.
[10] D. Kotschick and C. Löh: Fundamental classes not representable by products, J. Lond. Math. Soc. (2) 79 (2009), 545-561.
[11] J. Kalliongis and D. McCullough: π_{1}-injective mappings of compact 3-manifolds, Proc. London Math. Soc. (3) 52 (1986), 173-192.
[12] S.V. Matveev and A.A. Perfil'ev: Periodicity of degrees of mappings between Seifert manifolds, Dokl. Akad. Nauk 395 (2004), 449-451, (Russian).
[13] P. Orlik: Seifert Manifolds, Lecture Notes in Mathematics 291, Springer, Berlin, 1972.
[14] P. Olum: Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 (1953), 458-480.
[15] T. Püttmann: Cohomogeneity one manifolds and self-maps of nontrivial degree, Transform. Groups 14 (2009), 225-247.
[16] G. de Rham: Sur l'analysis situs des variétés á n dimensions, J. Math. 10 (1931), 115-200.
[17] Y.W. Rong: Degree one maps between geometric 3-manifolds, Trans. Amer. Math. Soc. 332 (1992), 411-436.
[18] Y.W. Rong and S.C. Wang: The preimages of submanifolds, Math. Proc. Cambridge Philos. Soc. 112 (1992), 271-279.
[19] P. Scott and C.T.C. Wall: Topological methods in group theory; in Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press, Cambridge, 137-203, 1979.
[20] P. Scott: The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
[21] T. Soma: The Gromov invariant of links, Invent. Math. 64 (1981), 445-454.
[22] H.B. Sun: Degree ± 1 self-maps and self-homeomorphisms on prime 3-manifolds, Algebr. Geom. Topol. 10 (2010), 867-890.
[23] H. Sun, S. Wang and J. Wu: Self-mapping degrees of torus bundles and torus semi-bundles, Osaka J. Math. 47 (2010), 131-155.
[24] W.P. Thurston: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381.
[25] S.C. Wang: The π_{1}-injectivity of self-maps of nonzero degree on 3-manifolds, Math. Ann. 297 (1993), 171-189.
[26] S.C. Wang: Non-zero degree maps between 3-manifolds; in Proceedings of the International Congress of Mathematicians, II, (Beijing, 2002), Higher Ed. Press, Beijing, 457-468, 2002.

Hongbin Sun
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: hongbin.sun2331@gmail.com
Shicheng Wang
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: wangsc@ math.pku.edu.cn
Jianchun Wu
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: wujianchun@math.pku.edu.cn
Hao Zheng
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: zhenghao@mail.sysu.edu.cn

