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Abstract
For normal two dimensional hypersurface singularities of Brieskorn type, con-

crete descriptions are given to both the fundamental cycle and the maximal ideal
cycle on a star-shaped good resolution space. It is determined when these two cycles
coincide.

Introduction

Let (V, o) be a germ of a normal surface singularity and� W (X, E) ! (V, o) a
resolution, where ED ��1(o) denotes the exceptional set. Let ED Sr

iD1 Ei be the
irreducible decomposition of E. A formal sumY D Pr

iD1 �i Ei (�i 2 Z) is called a
cycle on E. For a cycleY, �Y is said to be nef on E ifY Ei � 0 for all i . Since the
intersection form is negative definite on E, the set{Y � 0 j �Y is nef on E} is non-
empty and has the smallest elementZE, the fundamental cycleon E. The arithmetic
genus ofZE is called the fundamental genus of (V, o) and we denote it byp f (V, o).
Let m be the maximal ideal ofOV,o. For any non-zerof 2 m, the zero divisor off Æ�
can be written as (f Æ�) D ( f Æ�)X C D, where (f Æ�)X is a cycle on E andD is an
effective divisor which does not involve any ofEi ’s. We call (f Æ �)X the cycle on E
led by f 2 m. The divisorial partME of the scheme theoretic fiber��o is said to be
the maximal ideal cycleon E. If f1,:::, f� 2 m generatem, then ME D inf1�i�� ( fi Æ�)X

by [14, Proposition 2.12]. Since�ME is nef, we always have 0� ZE � ME.
It sometimes happens thatME D ZE, as one can observe for rational singular points,

Kodaira singular points and singularities of type{zn D f (x, y)} (n � 2, f 2 C{x, y})
whenn � 0. As for the last type, Tomaru proved in [10, Theorem 4.1] that two cycles
coincide on any resolution whenn divides ord(f ), extending the well-known result for
nD 2 due to Dixon [2, Theorem 1]. However, even for a particular class of singularities,
a more systematic study will be required in order to clarify when such a coincidence of
important cycles occurs.
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Fig. 1.

In this paper, we consider the normal 2-dimensional hypersurface singularities of
Brieskorn type,

(Va0,a1,a2, o) D {(x0, x1, x2) 2 U j xa0
0 C xa1

1 D xa2
2 },

where U � C3 is a small neighborhood of the origino D (0, 0, 0) and theai ’s are
integers with 2� a0 � a1 � a2, and give a necessary and sufficient condition for the
coincidence of the maximal ideal cycle and the fundamental cycle.

Before stating the results, let us introduce some notation which will be used through-
out the paper. We putdxe WD min{n 2 Z j n � x} for x 2 R. For integersd1, d2, : : : , dr

(di � 2 for all i ), we denote by [[d1, d2, : : : , dr ]] the continued fraction:

[[d1, d2, : : : , dr ]] WD d1 � 1

d2 � 1

d3 � 1

...

� 1

dr .

Let n and � be positive integers that are relatively prime and 0< � < n. The
singularity

Cn,� WD C2

��� �n 0
0 ��n

��
,

where�n WD exp(2�p�1=n) denotes the primitiven-th root of unity, is called a cyclic
quotient singularity. It is well-known (e.g., [4]) that, ifEDSr

iD1 Ei is the exceptional
set for the minimal resolution ofCn,�, then Ei ' P1 and the weighted dual graph of
E is chain-shaped as in Fig. 1, wheren=� D [[d1, d2, : : : , dr ]].

To the singularity (Va0,a1,a2, o) D {xa0
0 C xa1

1 D xa2
2 }, 2� a0 � a1 � a2, we associate

the integers

l WD gcd(a0, a1, a2), l i WD gcd(a j , ak)

l
, �i WD ai

l j lkl
({i , j , k} D {0, 1, 2}).

Furthermore, we letp0, p1, p2 be the integers determined by

pi� j�kl i C 1� 0 (mod �i ), 0� pi < �i ,
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Fig. 2. Weighted dual graph of E� .

where{i , j , k} D {0, 1, 2}. When�w > 1, we also put

�w=pw D [[dw,1, dw,2, : : : , dw,rw ]]

andew,� WD [[dw,� ,dw,�C1,:::,dw,rw ]] (1 � � � rw; w D 0,1,2). With this notation, by [7],
there exists a resolution� W (X, E� ) ! (Va0,a1,a2, o) such that the weighted dual graph
of E� is as in Fig. 2. It is star-shaped withlwl branches of typeC�w , pw (w D 0, 1, 2)
starting from a unique vertex. The non-singular curveE0 corresponding to that vertex
will be referred to as the central curve. We shall mainly workon the resolution� .
Note that, when�w D 1, the corresponding branches do not appear and we understand
C1,0 as a non-singular point onE0.

Now, we are going to state our results in this paper. First, weconcretely describe
the fundamental cycle over (Va0,a1,a2, o). We remark here that an algorithm comput-
ing the fundamental cycle from the exponentsa0, a1, a2 was established by Tomari
(cf. [8, (3.3)]).
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Theorem 1.4. Let

Z D �0E0 C 2X
wD0

rwX
�D1

lw lX
�D1

�w,�,� Ew,�,�
be the fundamental cycle for resolution� . Then the sequence{�w,�,� }rw�D0 (w D 0, 1, 2)
is defined by the following recurrence formula:

(1) �w,0,� WD �0 D
��0�1�2 if �2 � l2,�0�1l2 if �2 � l2,

(2) �w,�,� D d�w,��1,�=ew,�e, 1� � � rw.

To show it, we first study the chain-shaped configuration obtained by plugging one ex-
tra vertex to the configuration of typeCn,�. We consider the condition which should
be satisfied by the smallest cycleY � 0 such that�Y is nef on theCn,� part, when
the multiplicity at the extra vertex is given. Then we apply it to branches of the star-
shaped configuration as in Fig. 2. To determine the multiplicity of the central curve
is our final task. Our method is so simple that it may apply alsoto the other singu-
larities with C�-action in determining their fundamental cycles. As a by-product, we
can reprove in Theorem 1.7 the formula computing the fundamental genus which was
originally obtained in [8] and [9] by an entirely different method.

Next, we turn our attention to the maximal ideal cycle. With the help of Tomaru’s
result in [12], we can determine the multiplicity of each component and give a formula
similar to Theorem 1.4 also for (xwÆ�)X (w D 0,1,2). See, Theorem 2.1 for the precise
statement. This enables us to show in Theorem 3.1 that (x2 Æ�)X is the maximal ideal
cycle for resolution� (here, the assumptiona0 � a1 � a2 is essential).

Using the concrete descriptions thus obtained, we compare the fundamental cycle
and the maximal ideal cycle on E� and get the following:

Theorem 3.2. The maximal ideal cycle coincides with the fundamental cycle for
resolution� if and only if �2 � l2.

In particular, this implies that both cycles coincide on theminimal resolution, when
a0 is a prime number. Similarly, we obtain the following:

Theorem 3.11. The maximal ideal cycle coincides with the fundamental cycle
for any resolution of(Va0,a1,a2, o), 2 � a0 � a1 � a2, if and only if �2 � l2 and 1 <
a1=a2 C gcd(a0, a1)=a0. Furthermore, if this is the case, then the fundamental cycle is
led by the holomorphic function x2.

As an application, we give in Proposition 4.4 the necessary and sufficient condition
for (Va0,a1,a2, o) to be a Kodaira singularity ([5], [6]), in order to supplement a result
in [10]. We also describe the canonical cycle for� in Proposition 4.6.
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Fig. 3.

The paper grew out of the second named author’s master thesisat Osaka Uni-
versity. The authors would like to express their deep gratitude to Professor Tadashi
Tomaru for many helpful suggestions in the course of the study. Thanks are also due
to Professors Masataka Tomari, Tomohiro Okuma and Tadashi Ashikaga for offering
the second named author an opportunity to give a talk at theirexciting seminar and
for their precious comments.

1. The fundamental cycle

1.1. Minimal anti-nef cycle on a chain. Let n and� be integers that are rela-
tively prime and 0< � < n, and putn=� D [[d1, d2, : : : , dr ]]. We consider a con-
nected bunch

Sr
iD0 Ei of irreducible curvesEi on a smooth surface whose weighted

dual graph is chain-shaped andE1C � � � C Er forms the configuration of typeCn,� as
in Fig. 3. We putei WD [[di , diC1, : : : , dr ]] for 1 � i � r . Then di D ei C 1=eiC1 for
1� i < r , and dr D er . For a positive integer�0, consider the set

D(�0) WD
(

Y: cycle on
r[

iD0

Ei �Y is nef on
r[

iD1

Ei , multE0(Y) D �0

)
.

Lemma 1.1. Take a positive integer�0 and define the sequence{�i }
r
iD0 by the

recurrence formula�i D d�i�1=ei e for 1 � i � r . Then the cycle Y0 WDPr
iD0 �i Ei is

the smallest element of D(�0).

Proof. Let �i (0 � i � r ) be positive integers and putY DPr
iD0 �i Ei . We first

claim that d�i�1=ei e � �i holds for 1� i � r , if �Y is nef on
Sr

iD1 Ei . This can be
seen by induction as follows. Fori D r , we have 0� Y Er D �r�1��r dr . Sincedr D er ,
we get �r�1=er � �r which implies d�r�1=er e � �r . Take an indexi with 1 � i < r
and assume thatd�i =eiC1e � �iC1 holds. We have 0� Y Ei D �i�1� �i di C �iC1. Then�i�1=�i � di � �iC1=�i � di � 1=eiC1 D ei , since�i =eiC1 � �iC1 by the hypothesis. It
follows �i�1=ei � �i and, hence,d�i�1=ei e � �i .

We next consider the cycleY0. We haveY0Er D �r�1 � dr�r D �r�1 � er�r � 0,
because�r D d�r�1=er e � �r�1=er . Take any indexi with 1 � i < r . Since �i Dd�i�1=ei e � �i�1=ei , we get�i�1=�i � ei D di � 1=eiC1, i.e., �i�1 � di�i � �i =eiC1. It
follows �i�1 � di�i � d�i =eiC1e D di�i � �iC1, which showsY0Ei � 0. HenceY0 2
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D(�0). Then, from the first half of the proof, it is clear thatY0 is the smallest element
of D(�0).

Note that we did not specify the self-intersection number ofE0. As the proof
shows, if Y0 and Y0

0 are the smallest elements inD(�0) and D(�00), respectively, then
we haveY0 � Y0

0 if and only if �0 � �00.
Since the proof of the following lemma is elementary, we leave it to the reader.

Lemma 1.2. Let the sequence{�i }
r
iD0 be as in the previous lemma and, for 1�

i � r , take relatively prime positive integers ni and �i satisfying ni =�i D ei . Put�rC1 WD �r dr � �r�1.
(1) If �i�1 D �i di � �iC1 holds for 1� i � r , then �1 D (��0 C �rC1)=n.
(2) If �0 � 0 (mod n), then �i D �i�i�1=ni for 1 � i � r . If ��0 C 1 � 0 (mod n),
then �i D (�i�i�1 C 1)=ni for 1� i � r .
(3) If either �0 � 0 (mod n) or ��0 C 1� 0 (mod n), then �i�1 D �i di � �iC1 holds
for 1 � i � r . Furthermore, �rC1 D 0 when �0 � 0 (mod n), and �rC1 D 1 when��0 C 1� 0 (mod n).
(4) If �0 � 0 (mod n), then �r D �0=n. If ��0 C 1� 0 (mod n), then �r D d�0=ne.

1.2. The fundamental cycle. We keep the notation in Introduction.

Proposition 1.3. There exists a resolution� W (X, E� ) ! (Va0,a1,a2, o) such that
the weighted dual graph ofE� is as in Fig. 2. Furthermore, the genus g and the self-
intersection number�d0 of the central curve E0 are given respectively by

2g� 2D l (l0l1l2l � l0 � l1 � l2),

d0 D l

 
2X

wD0

pwlw�w C 1�0�1�2

!
.

Proof. See [7, Proposition (3.5.1) and Theorem (3.6.1)]. Weshall prove it in the
course of the proof of Theorem 2.1 below.

In the sequel, we will work on the resolution spaceX in Proposition 1.3, unless
otherwise stated explicitly.

Theorem 1.4. Let

Z D �0E0 C 2X
wD0

rwX
�D1

lw lX
�D1

�w,�,� Ew,�,�
be the fundamental cycle for resolution� . Then the sequence{�w,�,� }rw�D0 (w D 0, 1, 2)
is defined by the following recurrence formula:



MAXIMAL IDEAL CYCLES 231

(1) �w,0,� WD �0 D
��0�1�2 if �2 � l2,�0�1l2 if �2 � l2,

(2) �w,�,� D d�w,��1,�=ew,�e (1� � � rw).

Proof. By Lemma 1.1 applied to each branch of typeC�w , pw plugged toE0, we
obtain (2) once�0 is given. So, it suffices to show (1). Letuw (w D 0,1,2) be the inte-
ger determined bypw�0Cuw � 0 (mod�w), ] 0� uw < �w. Then�w,1,� D d�0=ew,1e D
(pw�0 C uw)=�w by (2). By substituting the formula ford0 in Proposition 1.3, the in-
equality �0d0 �P2wD0

Plw l�D1 �w,1,� coming from�Z E0 � 0 becomes

�0l

 
2X

wD0

pwlw�w C 1�0�1�2

!
� 2X

wD0

lwl
pw�0 C uw�w .

It follows �0 � �1�2l0u0 C �0�2l1u1 C �0�1l2u2. Put

3 WD �� � 1
� � �1�2l0u0 C �0�2l1u1 C �0�1l2u2,
pw�C uw � 0 (mod �w), 0� uw < �w (w D 0, 1, 2)

�
.

Then, sinceZ is the fundamental cycle,�0 D min3. Since�0, �1 and�2 are mutually
coprime, we have min{� 2 3 j u0 D u1 D u2 D 0} D �0�1�2. Also, since�0�1l2 ��0�2l1 � �1�2l0 by a0 � a1 � a2, we get min{� 2 3 j (u0, u1, u2) ¤ (0, 0, 0)} D �0�1l2.
Therefore,

�0 D
��0�1�2 if �2 � l2,�0�1l2 if �2 � l2.

This shows (1).

We put�w,� WD �w,�,� , because it does not depend on� , and�w,rwC1 WD �w,rwdw,rw ��w,rw�1. Furthermore, we sometimes writeEw,� for Ew,�,� , when the index� is not
important. By Lemma 1.2, we get the following:

Lemma 1.5. Let the situation be as above. Then

�w,��1 D �w,�dw,� � �w,�C1 (w D 0, 1, 2I 1� � � rw).

Furthermore, the following hold:
(1) If �2 � l2, then �i ,r i D � j�k ({i , j , k} D {0, 1, 2}) and �w,rwC1 D 0 (w D 0, 1, 2).
(2) If �2 � l2, then �0,r0 D �1l2, �1,r1 D �0l2, �2,r2 D d�0�1l2=�2e, �0,r0C1 D �1,r1C1 D 0
and �2,r2C1 D 1.
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Proposition 1.6. The self-intersection number of the fundamental cycle is given by

�Z2 D �
l�0�1�2 if �2 � l2,
l2ld�0�1l2=�2e if �2 � l2.

Proof. By Lemma 1.5, we haveZ Ew,� D 0 for w D 0, 1, 2, 1� � � rw � 1.
We first consider the case where�2 � l2. We already know thatZ Ew,rw D �w,rwC1 D

0 (w D 0, 1, 2). Since

�Z E0 D �0d0 � 2X
wD0

lwl�w,1

D l (p0�1�2l0 C p1�0�2l1 C p2�0�1l2 C 1)� l0l p0�1�2 � l1l p1�0�2 � l2l p2�0�1

D l ,

we obtain�Z2 D l�0 D l�0�1�2.
Next, we consider the case where�2 � l2. We haveZ E0,r0 D �0.r0C1 D 0, Z E1,r1 D�1.r1C1 D 0 and Z E2,r2 D �2.r2C1 D 1. Furthermore,

�Z E0 D �0d0 � 2X
wD0

lwl�w,1

D �0�1l2l

 
2X

wD0

pwlw�w C 1�0�1�2

!
� l0l p0�1l2 � l1l p1�0l2 � l2l

p2�0�1l2 C 1�2

D 0.

Therefore,�Z2 D l2l�2,r2 D l2ld�0�1l2=�2e.
Theorem 1.7 ([9, Theorem 2]). The fundamental genus pf of (Va0,a1,a2, o), 2 �

a0 � a1 � a2, is given as follows.
(1) If �2 � l2, then

p f D 1

2
l{lcm(a0, a1, a2) � �1�2l0 � �0�2l1 � �0�1l2 � �0�1�2 C 1} C 1.

(2) If �2 � l2, then

p f D 1

2

�
(a0 � 1)(a1 � 1)� �2

��0�1l2�2

� � 1

�
gcd(a0, a1)C 1

�
.

Proof. We consider the case where�0,�1,�2 � 2. The other cases can be treated
similarly. Let K be the canonical line bundle onX. Since Ew,� ' P1 for � ¤ 0, we
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have K Ew,� D �(Ew,�)2 C 2 � 0 � 2 D dw,� � 2. Similarly, sinceE0 is of genusg,
K E0 D �E2

0 C 2g� 2D d0 C 2g� 2. It follows

K Z D �0(d0 C 2g� 2)C 2X
wD0

lwl
rwX
�D1

�w,�(dw,� � 2)

D �0{d0 C l (l0l1l2l � l0 � l1 � l2)} C 2X
wD0

lwl

 
rwX
�D1

(�w,��1 C �w,�C1) � rwX
�D1

2�w,�
!

D �0{d0 C l (l0l1l2l � l0 � l1 � l2)} C 2X
wD0

lwl (�0 � �w,1� �w,rw C �w,rwC1)

D �0l0l1l2l
2 C

 
�0d0 � 2X

wD0

lwl�w,1

!
� 2X

wD0

lwl�w,rw C l2l�2,r2

D �0l0l1l2l
2 � Z E0 � 2X

wD0

lwl�w,rw C l2l�2,r2.

(1) If �2 � l2, then �0 D �0�1�2, �Z E0 D l , �0,r0 D �1�2, �1,r1 D �0�2, �2,r2 D�0�1, �2,r2C1 D 0 andZ2 D�l�0�1�2 by Lemma 1.5 and Proposition 1.6. The assertion
follows from the formula 2p f � 2D K Z C Z2.

(2) If �2 � l2, then �0 D �0�1l2, Z E0 D 0, �0,r0 D �1l2, �1,r1 D �0l2, �2,r2 Dd�0�1l2=�2e, �2,r2C1 D 1 and Z2 D �l2ld�0�1l2=�2e by Lemma 1.5 and Proposition 1.6.
Therefore, we obtain the assertion.

REMARK 1.8. An algorithm computingZ from the exponentsa0, a1, a2 was first
obtained by Masataka Tomari (cf. [8, (3.3)]). Based on it, theformula for p f was
shown by Tomaru in [8, Theorem 4.3] in the special case: lcm(a0, a1) � a2, and later
completed in [9, Theorem 2]. However, the hypothesis of [9, Theorem 2 (1)] needs
a small correction from “m D l2” to “ m D l2 � 2”. Indeed, when�2 D l2 D 1, [9,
Theorem 2 (1)] yields 2p f � 2D (a0 � 1)(a1 � 1)� (2�0�1 C 1)l � 1, while it should
be 2p f � 2D (a0 � 1)(a1 � 1)� (2�0�1 � 1)l � 1 according to Theorem 1.7.

2. Cycles led by coordinate functions

The purpose of the section is to show the following:

Theorem 2.1. Let Z(k) WD (xk Æ �)X be the cycle onE� led by xk (k D 0, 1, 2),
and put

Z(k) D �(k)
0 E0 C 2X

wD0

rwX
�D1

lw lX
�D1

�(k)w,�,� Ew,�,� .
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Then the sequence{�(k)w,�,� } (k D 0, 1, 2) is determined by the following recurrence
formula.

�(k)w,��1,� D �(k)w,�,�dw,� � �(k)w,�C1,� ,
�(k)w,0,� WD �(k)

0 D �i� j lk ({i , j , k} D {0, 1, 2}),

�(k)w,rwC1,� D
�

1 if w D k,
0 if w ¤ k.

In particular, for {i , j , k} D {0, 1, 2},

8��<
��:
�(k)

i ,1,� D pi� j lk, �(k)
k,1,� D pk�i� j lk C 1�k

,

�(k)
i ,r i ,� D � j lk, �(k)

k,rk,� D
��i� j lk�k

�
.

We divide the proof into three steps. During the proof, we will construct the reso-
lution � and show Proposition 1.3. Put{i , j , k} D {0, 1, 2} and denote the primitive
n-th root of unity by�n.

Step 1. The resolution of the branch locus. We putC WD {xai
i C x

a j

j D 0} � C2.
First, we compute the minimal embedded resolution ofC. Though there are sev-

eral methods for computing such resolutions (see [1]), we use a result in [11] here.
Put d WD lcm(ai , a j ), n1 WD ai =gcd(ai , a j ), n2 WD a j =gcd(ai , a j ). Furthermore we putNC WD {Nxd

i C Nxd
j D 0} � C2, and let9 W C2

( Nxi , Nx j )
! C2

(xi ,x j )
be the holomorphic map

defined byxi D Nxn2
i , x j D Nxn1

j . Since d D ai a j =gcd(ai , a j ) D ai n2 D a j n1, we have

9( NC) D C. The map9 can be regarded as the quotient map by the natural action toC2 of the group

G D �� �n2 0
0 1

�
,

�
1 0
0 �n1

��
.

Let N8 W NN ! C2 be the blowing-up at the origin of the (Nxi , Nx j )-plane. We denote byNE the exceptional (�1)-curve for N8. Then NN is covered by two open setsU0 and U1

each of which is isomorphic toC2. The action ofG is lifted onto NN through N8. Let�1, �2 be non-negative integers defined by

n2�1 C 1� 0 (mod n1), 0� �1 < n1,

n1�2 C 1� 0 (mod n2), 0� �2 < n2.

Then, from [11, Theorem 2.3], we can easily see that the quotient spaceNN=G is cov-
ered by two cyclic quotient singularity spacesU0=G and U1=G whose respective types
are Cn1,�1 and Cn2,�2; also those singular points are located on ( NE) ' P1, where W NN ! NN=G is the quotient map. Let� W N ! NN=G be the minimal resolution
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Fig. 4. Weighted dual graph of��C.

of those two cyclic quotient singularities and8 W NN=G ! C2 the natural map to the
(xi , x j )-plane. Then the composite� D 8Æ�W N ! C2 gives us the minimal embedded
resolution ofC.

Second, we describe��C. The strict transformN8�1� NC of NC by N8 consists of dis-
joint d branches each of which intersectsNE transversally at a point. Then ( N8�1� NC)
consists of gcd(ai , a j ) irreducible components each of which intersects ( NE) transver-
sally at a point. For Nf WD Nxd

i C Nxd
j , the multiplicity of Nf Æ N8 along NE is d. If f denotes

the holomorphic function onNN=G induced by Nf , then the multiplicity of f along ( NE)
is alsod. Furthermore, the multiplicity off along each component of ( N8�1� NC) is one.
Since f D (xai

i C x
a j

j ) Æ8, the dual graph of the divisor��C becomes as in Fig. 4. In

that figure,F0 is the strict transform of ( NE) by � and Fm,�m (mD 1,2I1� �m � sm) is
the exceptional curve arising fromCnm,�m with self-intersection number�cm,�m, where
nm=�m D [[cm,1, cm,2, : : : , cm,sm]]. For mD 1, 2, we denote by�m,�m the multiplicity of��C along Fm,�m. Since Fm,�m��C D 0, we have

(2.1) �m,�m�1 D �m,�mcm,�m � �m,�mC1, 1� �m � sm,

with �m,0 D d and �m,smC1 D 0. Then, by Lemma 1.2 (1), we get�m,1 D �md=nm,
that is,

(2.2) �1,1 D �1a j , �2,1 D �2ai .

We also have�1,1 C �2,1 C gcd(ai , a j ) D d by F0��C D 0, since�F2
0 D F0F1,1 D

F0F2,1D 1 and F0��1� C D gcd(ai , a j ).
Step 2. The resolution of the cyclic covering. We consider the resolution of

{xai
i Cx

a j

j D xak
k } regardingVa0,a1,a2 as anak-fold cyclic covering ofC2. Let �W N ! C2

be the holomorphic map constructed in Step 1. We consider thenormalizationW of
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Fig. 5.

the fiber productVa0,a1,a2 �C2 N. For this purpose, we use the following result due to
Tomaru [12].

Theorem 2.2 ([12]). Let (U, o) be the cyclic quotient singularity of type Cn,�,
and m the maximal ideal ofOU,o. Assume that the zero divisor of the pull-back of
h 2 m on the minimal resolution of(U, o) has the weighted dual graph as inFig. 5,
where n=� D [[c1, : : : , cs]] and the�i ’s denote multiplicities. For a positive integer
a, put

Na D a

gcd(a, lcm(�0, �sC1))
, Nn D gcd(a, �0, �1, : : : , �sC1)n

gcd(a, �0, �sC1)

and � D NaNn. Furthermore, let p be the integer defined by

p � a

gcd(a, �sC1)
�� C �sC1

gcd(a, �sC1)
 (mod �), 0� p < �,

where� and  are integers determined by

a

gcd(a, �0)
� � 1 (mod �0=gcd(a, �0)), 0� � < �0

gcd(a, �0)
,

�0

gcd(a, �0)
 D a

gcd(a, �0)
� � 1.

Then the normalization of the a-fold covering of U defined by za D h has exactly
gcd(a, �0, : : : , �sC1) cyclic quotient singularities of type C�, p.

In our application, we always havea D ak and�0 D d D lcm(ai , a j ). So,� and 
are determined by

(2.3) �k� � 1 (mod �i� j lk), 0� � < �i� j lkI �i� j lk D �k� � 1.

CASE 1. We studyW over a neighborhood ofF0 \ ��1� C on N. Let u D 0 andv D 0 be local analytic equations ofF0, ��1� C in a small neighborhood of each inter-
section point ofF0 and��1� C. Recall that there are gcd(ai ,a j )D lkl such points in total.
The ak-fold cyclic covering is locally isomorphic to the singularity {udv D xak

k }. Then,
by Theorem 2.2 applied to (n,�) D (1, 0), sD 0 andh D udv (�0 D d, �1 D 1), we see
that W has one cyclic quotient singularity of typeC�k, pk for each point ofF0 \ ��1� C,



MAXIMAL IDEAL CYCLES 237

where pk is the integer defined bypk �  (mod�k) (see also [10, Lemma 2.5]). Hence
it is determined by the propertypk�i� j lk C 1 � 0 (mod �k), 0 � pk < �k by (2.3).
By resolving theselkl singular points according to [3], we easily see that the central
curve E0, which is nothing more than the proper inverse image ofF0, has a simple
intersection with the curveEk,1,� (1 � � � lkl ) of self-intersection number�dk,1 as in
Fig. 2, where we put�k=pk D [[dk,1, : : : , dk,rk ]] as before. Similarly, the proper inverse
image of��1� C has a simple intersection with eachEk,rk,� .

CASE 2. We studyW over a neighborhood ofCn1,�1 and Cn2,�2 on N. We con-
sider W over a neighborhood ofCn1,�1 by applying Theorem 2.2 toF0C F1,1C � � � C
F1,s1, that is, the curve? on the left side in Fig. 5 isF0 and �s1C1 D 0. We take the
pull-back to N of the equationxai

i C x
a j

j of C as the functionh. Then �0 D d, �i D�1,i (1 � i � s1). By (2.1) and (2.2), we have gcd(ak, d, �1,1, : : : , �1,s1, �1,s1C1) D
gcd(ak, d, �1,1) D l i l . Then, sinceNn1 D �i and Nak D 1, Theorem 2.2 implies thatW
has l i l cyclic quotient singularities of typeC�i , pi , where pi is the integer defined by
pi � �1� (mod �i ), 0 � pi < �i . Note that pi satisfiespi� j�kl i C 1 � 0 (mod �i )
by the choice of�1 and (2.3). Similarly, by consideringCn2,�2, we see thatW also
has l j l cyclic quotient singularities of typeC� j , p j , where p j is the integer defined by
p j � �2� (mod � j ), 0� p j < � j . Then, p j satisfiesp j�i�kl j C 1� 0 (mod � j ).

From Cases 1 and 2, we know thatW hasl (l0Cl1Cl2) cyclic quotient singularities
in total. Then we obtain the desired resolution� W X ! Va0,a1,a2 by performing the
minimal resolutions of all such cyclic quotient singularities of W. Now, it is clear that
the resolution dual graph is just as in Fig. 2.

Step 3. The cycleZ(k) and the central curve E0. In this final step, we deter-
mine Z(k). We also calculate the genusg and the self-intersection number�d0 of the
central curveE0, and complete Proposition 1.3.

As in Step 2, we regardVa0,a1,a2 as anak-fold cyclic covering of the (xi , x j )-plane.
We saw in Step 1 that��1� C meets the (�1)-curveF0 at gcd(ai ,a j )D lkl distinct points,
and the multiplicity of��C along F0 is d D lcm(ai ,a j ). Then we obtainE0 as anl i l j l -
fold cyclic covering ofF0, because gcd(ak, lcm(ai ,a j ))D gcd(�kl i l j l ,�i� j l0l1l2l )D l i l j l .
Moreover, the vanishing order ofxk Æ � along E0, i.e., the multiplicity of Z(k) along
E0, is given by d=l i l j l D �i� j lk DW �(k)

0 . With this, we can determine the sequence

{�(k)w,�,� } (w D 0, 1, 2; � D 1, : : : , rw; � D 1, : : : , lwl ). In fact, since the intersection
number ofEw,�,� with (xk Æ �) is zero, we obtain

�(k)w,��1,� D �(k)w,�,�dw,� � �(k)w,�C1,� ,
with �(k)w,0,� WD �(k)

0 D �i� j lk and�(k)
i ,r iC1,� D �(k)

j ,r jC1,� D 0,�(k)
k,rkC1,� D 1 (recall thatEk,rk,�

meets the proper inverse image of��1� C at a point). Note that one can compute all�(k)w,�,� from these data. In particular,�(k)w,1,� and �(k)w,rw ,� are determined by Lemma 1.2
(1) and (4).
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Let us calculateg and d0. In order to computeg, we observe how ramifies the
l i l j l sheeted covering mapE0 ! F0 ' P1. Since there arel i l branches of typeC�i , pi ,
there existl i l points on E0 of ramification indexl j . Similarly, consideringCa j , p j , we
have l j l points of ramification indexl i . Also, consideringCak, pk , there existlkl points
of ramification indexl i l j l over F0 \ ��1� C. Hence, by the Riemann–Hurwitz formula,
we get

2g� 2D l i l j l (2� 0� 2)C l i l (l j � 1)C l j l (l i � 1)C lkl (l i l j l � 1)

D l (l0l1l2l � l0 � l1 � l2).

Since the intersection number ofE0 with (xk Æ �) is zero, we get

�0d0 D 2X
wD0

lw lX
�D1

�w,1,� .
Hence,

d0 D 1�i� j lk

�
pi� j lkl i l C p j�i lkl j l C pk�i� j lk C 1�k

lkl

�

D l

 
2X

wD0

pwlw�w C 1�0�1�2

!
.

In sum, we have shown Theorem 2.1 and Proposition 1.3.

3. The maximal ideal cycle

We keep the notation in the previous section, but put�(k)w,� WD �(k)w,�,� for simplicity,
because it does not depend on� .

Theorem 3.1. Z(2) � Z(1) � Z(0). In particular, Z(2) is the maximal ideal cycle
for resolution� .

Proof. {�(k)w,�}rw�D0 satisfies�(k)w,� D d�(k)w,��1=ew,�e. Since�(2)
0 � �(1)

0 � �(0)
0 by a0 �

a1 � a2, we obtain inductivelyZ(2) � Z(1) � Z(0). Needless to say, the maximal ideal
m of OVa0,a1,a2 ,o is generated byx0, x1, x2. It follows from [14, Proposition 2.12] that

Z(2) is the maximal ideal cycle.

Theorem 3.2. The maximal ideal cycle coincides with the fundamental cycle for
resolution� if and only if �2 � l2.

Proof. By Theorems 1.4, 2.1 and Lemma 1.5, we see thatZ(2) is the fundamental
cycle if and only if�2 � l2. SinceZ(2) is the maximal ideal cycle by Theorem 3.1, we
obtain the assertion.
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Fig. 6. Weighted dual graph ofZ(2); (a0, a1, a2) D (6, 15, 20).

EXAMPLE 3.3 (�2 � l2). If (a0, a1, a2) D (2, 3, 4), thenl D l0 D l2 D 1, l1 D 2,�0 D 1, �1 D 3, �2 D 2, p0 D 0, p1 D 2, p2 D 1. The maximal ideal cycleZ(2) is
nothing more than the fundamental cycle of a rational doublepoint of type E6.

EXAMPLE 3.4 (�2 < l2). If (a0, a1, a2) D (6, 15, 20), thenl D 1, l0 D 5, l1 D
2, l2 D 3, �0 D �1 D 1, �2 D 2, p0 D p1 D 0, p2 D 1. Hence the weighted dual
graph of the maximal ideal cycleZ(2) is as in Fig. 6. It is clear thatZ(2) is not the
fundamental cycle.

Lemma 3.5. If � is not the minimal resolution, then lD 1, {l0, l1, l2} D {1, 1,n}

for some n� 1.

Proof. Assume that� is not the minimal resolution. Since, in E� , the self-
intersection number of any component exceptE0 is less than or equal to�2, we see
that E0 must be a (�1)-curve: g D 0 andd0 D 1. By the formula in Proposition 1.3,
we haveg D 0 if and only if (l0, l1, l2, l ) D (1, 1, 1, 2) orl D 1, {l0, l1, l2} D {1, 1,n}.

Assume that (l0, l1, l2, l ) D (1, 1, 1, 2). We have 2(p0�1�2 C p1�0�2 C p2�0�1 C
1)D �0�1�2 by d0 D 1. Note that�0�1�2 divides p0�1�2 C p1�0�2 C p2�0�1 C 1 by
the choice of thepw ’s. Hence one hasp0�1�2 C p1�0�2 C p2�0�1 C 1 � �0�1�2 D
2(p0�1�2C p1�0�2C p2�0�1C1), which is absurd. Therefore, (l0, l1, l2, l ) ¤ (1, 1, 1, 2)
and we are left the case:l D 1, {l0, l1, l2} D {1, 1,n}.

Theorem 3.6. The maximal ideal cycle coincides with the fundamental cycle for
the minimal resolution of(Va0,a1,a2, o), 2� a0 � a1 � a2, if and only if �2 � l2.

Proof. Assume that�2 � l2. It is obvious that the fundamental cycle coincides
with the maximal ideal cycle also on the minimal resolution by the assumption and
Theorem 3.2.

Assume that�2 < l2. If � is not the minimal resolution, then, by Lemma 3.5,
l0 D l1 D l D 1, l2 � 2, becausel2 > �2 � 1. Then we would havea2 D �2 < l2 � a0,
which is absurd. Hence� is minimal. By Theorems 1.4, 2.1 and 3.2, the maximal
ideal cycleZ(2) cannot be the fundamental cycle.
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Corollary 3.7. If a0 is a prime number, then the maximal ideal cycle coincides
with the fundamental cycle for the minimal resolution of(Va0,a1,a2,o), 2� a0 � a1 � a2.

Proof. It can be checked directly that�2 � l2 holds, whena0 is prime.

Lemma 3.8. �(Z(k))2 D lkld�i� j lk=�ke, where {i , j , k} D {0, 1, 2}. In partic-
ular, �(Z(2))2 D a0 D mult(OVa0,a1,a2 ,o) holds if and only ifd�0�1l2=�2e D �0l1, i.e.,
1< a1=a2 C gcd(a0, a1)=a0.

Proof. By Lemma 1.2 (4) and Theorem 2.1, we have�(k)
k,rk,� D d�i� j lk=�ke. Then

the self-intersection number ofZ(k) can be computed similarly as in the proof of Prop-
osition 1.6. Hence we omit the detail. Note that

�(Z(2))2 D l2l

��0�1l2�2

�D a0 ,
��0�1l2�2

�D �0l1

, �0�1l2�2
� �0l1 < �0�1l2�2

C 1.

In the last inequalities, we need not care the left hand side one, because it always holds
true by a1 � a2. As to the right hand side inequality, we have

�0l1 < �0�1l2�2
C 1, 1< �1l2l0l�2l1l0l

C l2l�0l1l2l
D a1

a2
C gcd(a0, a1)

a0

from which the assertion follows.

Proposition 3.9. Put Æ WD �0l1 � d�0�1l2=�2e � 0. The base points onE� of the
linear systemjOX(�Z(2))j can be resolved by a succession ofÆl2l simple blowing-ups.
In particular, the linear systemjOX(�Z(2))j has no base points onE� if and only ifÆ D 0.

Proof. The second assertion is clear from Lemma 3.8, becauseZ(2) is the max-
imal ideal cycle and one hasmOX ' OX(�Z(2)). See, e.g., [13, Theorem 2.7].

Now, we prove the first assertion. Note that we have�(1)
2,r2

D �0l1 and �(2)
2,r2

Dd�0�1l2=�2e by Theorem 2.1. Hence,Æ is nothing but the difference of the multiplici-
ties of Z(1) and Z(2) along E2,r2,� . Assume thatÆ > 0 and putD D (x2 Æ�)� (x2 Æ�)X .
It is clear that the base points ofjOX(�Z(2))j on E� are l2l intersection pointsP� D
E2,r2,� \ D, 1� � � l2l . Let � W QX ! X be the composite of blowing-ups (performedÆ times for each� ) at P� and theÆ � 1 points infinitely near to it on the proper trans-
form of D (see, Fig. 7). Thus,� blows up Æl2l points in total. PutA WD K QX � ��KX

and let A� be the (�1)-curve overP� lastly appeared in�. Then the multiplicity of

A along A� is Æ, and the cycle onQX led by x2 is QZ(2) WD ��Z(2) C A. We have

multA� ( QZ(2)) D �(2)
2,r2
C Æ D d�0�1l2=�2eC Æ D �0l1 for each� . Then,x1 Æ� Æ� gives us
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Fig. 7. A branch of the cycle led byx2 on QX.

a section ofO QX(� QZ(2)) that is a non-zero constant on eachA� , becauseQZ(2) � ��Z(1),
multA� (��Z(1)) D �0l1 and (x1 Æ � Æ �) D ��Z(1) in a neighborhood of thel2l branches

containing theA� ’s. Therefore,jO QX(� QZ(2))j has no base points on E�Æ� . Needless to

say, QZ(2) is the maximal ideal cycle onQX and�( QZ(2))2 D a0.

EXAMPLE 3.10. If (a0,a1,a2)D (6,10,15), thenl D 1, l0 D 5, l1 D 3, l2 D 2, �0 D�1 D �2 D 1, p0 D p1 D p2 D 0. The exceptional set is a non-singular curveE0 of genus
11, andd0 D 1, �0 D 2. Then Z D E0 and Z(2) D 2E0. We have�(Z(2))2 D 4, while
mult(OV6,10,15,o) D 6. Two intersection pointsE0\D, whereD D (x2Æ�)� (x2 Æ�)X , are
base points ofjOX(�2E0)j. Indeed, since the vanishing order ofx2 Æ � along E0 is ex-
actly 2, it induces a non-zero element ofH0(X, �2E0)=H0(X, �3E0) � H0(E0, �2E0).
On the other hand, dimH0(E0, �2E0) � 1, becauseE0 is a non-hyperelliptic curve.
Therefore,H0(E0, �2E0) is generated by the image ofx2 Æ � which vanishes at two
intersection pointsP1, P2 mentioned above. Let� be the blowing-up atP1, P2, and put
AD A1C A2, whereAi D ��1(Pi ) for i D 1, 2. Then 2��E0C A is the cycle led byx2

and we obtain (2��E0 C A)2 D �6.

Theorem 3.11. The maximal ideal cycle coincides with the fundamental cycle for
any resolution of(Va0,a1,a2, o), 2� a0 � a1 � a2, if and only if �2 � l2 and 1< a1=a2C
gcd(a0,a1)=a0. If this is the case, then the fundamental cycle is led by the holomorphic
function x2.

Proof. The fundamental cycle on a resolution is obtained as the pull-back of that
on the minimal resolution. The same holds for the maximal ideal cycle, if the minus of
it defines a free linear system on the minimal resolution. Therefore, the first assertion
follows from Theorem 3.6, Lemma 3.8 and Proposition 3.9. Thesecond assertion is
clear, becauseZ(2) is led by x2.

EXAMPLE 3.12. For (V2,3,2nC1,o), the above implies that the maximal ideal cycle
coincides with the fundamental cycle for any resolution when n D 1, 2, while it holds
not for all but for the minimal resolution whenn � 3.
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4. Further remarks

4.1. Kodaira singularities. Let S be a non-singular complex surface andD �C a small open disc around the origin. A surjective holomorphic map8 W S! D is
said to be a pencil of curves of genusg, if it is proper and connected, and fibersSt WD8�1(t) (t ¤ 0) are smooth curves of genusg.

DEFINITION 4.1 ([5]). A normal surface singularity (V,o) is said to be a Kodaira
singularity, if there exists a pencil of curves8W S! D such that, after a finite number
of blowing-ups at non-singular points in non-multiple components of the central fiber
S0, 9 W S0 ! S, there is a holomorphic map' W M ! V from an open neighborhood
M of the proper transform of Supp(S0) in S0 which defines a resolution of (V, o).

Proposition 4.2 ([5, p. 46], [6]). Let �W (X, E)! (V,o) be the minimal good reso-
lution of a normal surface singularity andm the maximal ideal ofOV,o. Then(V,o) is a
Kodaira singularity if and only ifmultE j (ZE) D 1 holds for every component Ej satisfy-
ing ZEE j < 0 and there exists an element f2 m such that the divisor( f Æ�) is normal
crossing and( f Æ �)X D ZE.

Now, we return to the situation we are interested in. Consider the singularity of
Brieskorn type and let� W (X, E� ) ! (Va0,a1,a2, o) be the resolution as before.

Lemma 4.3. � is not the minimal good resolution if and only if a0 D a1 D 2,
a2 D 2mC 1 for a positive integer m(the rational double point of typeA2m).

Proof. Clearly,� is not the minimal good resolution if and only ifE0 is a (�1)-
curve and the number of branches plugged to it is at most two.

Assume that� is not the minimal good resolution. Then, sinceE0 is a (�1)-curve,
we havel D 1, (l i , l j , lk) D (1, 1,n) (n � 1, {i , j , k} D {0, 1, 2}) by Lemma 3.5. First,
assume thatn D 1. Then�0, �1, �2 � 2, because 2� a0 � a1 � a2. But, this implies
that there are three branches, a contradiction. Second, assume thatn � 3. Then�k � 2
and, we obtain a contradiction, because the number of branches is at leastlkl D n � 3.
Finally assume thatnD 2. Then�k � 2. Furthermore,�k is odd, because it is coprime
to lk D 2. We have�i D � j D 1, becauselkl D 2 and the number of branches must be
at most two. Therefore, by 2� a0 � a1 � a2, we seea0 D a1 D 2 and a2 is an odd
integer not less than three. Then it is a rational double point of type A2m (m� 1).

Conversely, assume thata0 D a1 D 2 and a2 D 2mC 1 for some positive integer
m. Then l D l0 D l1 D 1, l2 D 2, �0 D �1 D 1, �2 D 2mC 1, p0 D p1 D 0, p2 D m.
Henceg D 0, d0 D 1 by Proposition 1.3, and exactly two branches are plugged toE0.
So, we obtain the minimal good resolution by contractingE0.

The following shows that the sufficient condition given in [10, Corollary 4.6] is
also necessary.
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Proposition 4.4. (Va0,a1,a2, o), 2 � a0 � a1 � a2, is a Kodaira singularity if and
only if �0�1l2 � �2, i.e., lcm(a0,a1) � a2. If this is the case, it is associated to a pencil
of curves of genus(1=2){(a0 � 1)(a1 � 1)� gcd(a0, a1)C 1}.

Proof. (i) We first assume that (Va0,a1,a2,o) is not a rational double point of type
A2m (m � 1). Then� is the minimal good resolution by Lemma 4.3. LetZ denote
the fundamental cycle for� . Assume that�2 < l2. Let m be the maximal ideal of
OVa0,a1,a2 ,o. We have no f 2 m such that (f Æ �)X D Z, becauseZ is not the maximal
ideal cycle by Theorem 3.2. Hence (Va0,a1,a2, o) is not a Kodaira singularity by Prop-
osition 4.2. Assume that�2 � l2. We already know that (x2 Æ �) is a normal crossing
divisor, andZ(2) D (x2 Æ �)X D Z by Theorem 3.2. Furthermore, we have

Z Ew,�,� D
��1 if w D 2, � D r2,

0 otherwise.

Hence, by Proposition 4.2, (Va0,a1,a2, o) is a Kodaira singularity if and only if
multE2,r2,� (Z) D d�0�1l2=�2e D 1, i.e., �0�1l2 � �2.

(ii) Next, we consider (V2,2,2mC1, o). Then �0�1l2 D 2 < �2 D 2mC 1. Let Z0
be the fundamental cycle on the minimal good resolution� 0 W X0 ! V2,2,2mC1. By The-
orem 3.11,Z0 is led by x2 and it is clear that (x2 Æ � 0) is normal crossing. Hence
(V2,2,2mC1, o) is a Kodaira singularity, by Proposition 4.2.

The last assertion for the genus follows from [8, Theorem 4.3] or Theorem 1.7 (2).

4.2. Canonical cycle.

DEFINITION 4.5. Let� W (X, E)! (V, o) be a resolution of a normal surface sin-
gularity. A Q divisor ZK with support in ED Sr

iD1 Ei is said to be the canonical
cycle, if �ZK Ei D K Ei holds for any irreducible componentEi .

For the singularity of Brieskorn type, we can expressZK in terms of some previ-
ously known cycles.

Proposition 4.6. Let ZK be the canonical cycle for the resolution� W (X, E� ) !
(Va0,a1,a2, o) in Proposition 1.3. Then

ZK D E C l0l1l2l Z0 � Z(0) � Z(1) � Z(2),

where E is the reduced exceptional divisor,

E D E0 C 2X
wD0

rwX
�D1

lw lX
�D1

Ew,�,� ,



244 K. KONNO AND D. NAGASHIMA

and Z0 is the cycle withmultE0(Z0) D �0�1�2 appeared inTheorem 1.4as the funda-
mental cycle for the case�2 � l2.

Proof. We only consider the case where�0, �1, �2 � 2, because the other cases
can be carried out similarly. For short, we putEw,� WD Ew,�,� , and Ew,0 WD E0. By
Proposition 1.3 and the fact thatEw,� ' P1 when � ¤ 0, we have

K Ew,� D
�

d0 C l (l0l1l2l � l0 � l1 � l2) if � D 0,
dw,� � 2 otherwise.

On the other hand, as in the proof of Theorem 1.6, we have

� E Ew,� D
8<
:

d0 � l0l � l1l � l2l if � D 0,
dw,� � 1 if � D rw,
dw,� � 2 otherwise,

� Z0Ew,� D
�

l if � D 0,
0 otherwise,

� Z(k) Ew,� D
�

1 if w D k, � D rw,
0 otherwise

in view of Theorems 1.4 and 2.1. Hence, for ourZK , it can be checked directly that�ZK Ew,� D K Ew,� holds for allw and �.
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