MAXIMAL IDEAL CYCLES OVER NORMAL SURFACE SINGULARITIES OF BRIESKORN TYPE

Kazuhiro KONNO and DAisuke NAGASHIMA

(Received May 12, 2010, revised October 5, 2010)

Abstract

For normal two dimensional hypersurface singularities of Brieskorn type, concrete descriptions are given to both the fundamental cycle and the maximal ideal cycle on a star-shaped good resolution space. It is determined when these two cycles coincide.

Introduction

Let (V, o) be a germ of a normal surface singularity and $\phi:(X, \mathrm{E}) \rightarrow(V, o)$ a resolution, where $\mathrm{E}=\phi^{-1}(o)$ denotes the exceptional set. Let $\mathrm{E}=\bigcup_{i=1}^{r} E_{i}$ be the irreducible decomposition of E . A formal sum $Y=\sum_{i=1}^{r} \lambda_{i} E_{i}\left(\lambda_{i} \in \mathbb{Z}\right)$ is called a cycle on E . For a cycle $Y,-Y$ is said to be nef on E if $Y E_{i} \leq 0$ for all i. Since the intersection form is negative definite on E , the set $\{Y \succ 0 \mid-Y$ is nef on E$\}$ is nonempty and has the smallest element Z_{E}, the fundamental cycle on E . The arithmetic genus of Z_{E} is called the fundamental genus of (V, o) and we denote it by $p_{f}(V, o)$. Let \mathfrak{m} be the maximal ideal of $\mathcal{O}_{V, o}$. For any non-zero $f \in \mathfrak{m}$, the zero divisor of $f \circ \phi$ can be written as $(f \circ \phi)=(f \circ \phi)_{X}+D$, where $(f \circ \phi)_{X}$ is a cycle on E and D is an effective divisor which does not involve any of E_{i} 's. We call $(f \circ \phi)_{X}$ the cycle on E led by $f \in \mathfrak{m}$. The divisorial part M_{E} of the scheme theoretic fiber $\phi^{*} o$ is said to be the maximal ideal cycle on E. If $f_{1}, \ldots, f_{\sigma} \in \mathfrak{m}$ generate \mathfrak{m}, then $M_{\mathrm{E}}=\inf _{1 \leq i \leq \sigma}\left(f_{i} \circ \phi\right)_{X}$ by [14, Proposition 2.12]. Since $-M_{\mathrm{E}}$ is nef, we always have $0 \prec Z_{\mathrm{E}} \preceq M_{\mathrm{E}}$.

It sometimes happens that $M_{\mathrm{E}}=Z_{\mathrm{E}}$, as one can observe for rational singular points, Kodaira singular points and singularities of type $\left\{z^{n}=f(x, y)\right\}(n \geq 2, f \in \mathbb{C}\{x, y\})$ when $n \gg 0$. As for the last type, Tomaru proved in [10, Theorem 4.1] that two cycles coincide on any resolution when n divides ord (f), extending the well-known result for $n=2$ due to Dixon [2, Theorem 1]. However, even for a particular class of singularities, a more systematic study will be required in order to clarify when such a coincidence of important cycles occurs.

[^0]

Fig. 1.
In this paper, we consider the normal 2-dimensional hypersurface singularities of Brieskorn type,

$$
\left(V_{a_{0}, a_{1}, a_{2}}, o\right)=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in U \mid x_{0}^{a_{0}}+x_{1}^{a_{1}}=x_{2}^{a_{2}}\right\},
$$

where $U \subset \mathbb{C}^{3}$ is a small neighborhood of the origin $o=(0,0,0)$ and the a_{i} 's are integers with $2 \leq a_{0} \leq a_{1} \leq a_{2}$, and give a necessary and sufficient condition for the coincidence of the maximal ideal cycle and the fundamental cycle.

Before stating the results, let us introduce some notation which will be used throughout the paper. We put $\lceil x\rceil:=\min \{n \in \mathbb{Z} \mid n \geq x\}$ for $x \in \mathbb{R}$. For integers $d_{1}, d_{2}, \ldots, d_{r}$ ($d_{i} \geq 2$ for all i), we denote by $\left[\left[d_{1}, d_{2}, \ldots, d_{r}\right]\right]$ the continued fraction:

$$
\left[\left[d_{1}, d_{2}, \ldots, d_{r}\right]\right]:=d_{1}-\frac{1}{d_{2}-\frac{1}{d_{3}-\frac{1}{\vdots}}}
$$

Let n and μ be positive integers that are relatively prime and $0<\mu<n$. The singularity

$$
C_{n, \mu}:=\mathbb{C}^{2} /\left\langle\left(\begin{array}{cc}
\epsilon_{n} & 0 \\
0 & \epsilon_{n}^{\mu}
\end{array}\right)\right\rangle,
$$

where $\epsilon_{n}:=\exp (2 \pi \sqrt{-1} / n)$ denotes the primitive n-th root of unity, is called a cyclic quotient singularity. It is well-known (e.g., [4]) that, if $\mathrm{E}=\bigcup_{i=1}^{r} E_{i}$ is the exceptional set for the minimal resolution of $C_{n, \mu}$, then $E_{i} \simeq \mathbb{P}^{1}$ and the weighted dual graph of E is chain-shaped as in Fig. 1 , where $n / \mu=\left[\left[d_{1}, d_{2}, \ldots, d_{r}\right]\right]$.

To the singularity $\left(V_{a_{0}, a_{1}, a_{2}}, o\right)=\left\{x_{0}^{a_{0}}+x_{1}^{a_{1}}=x_{2}^{a_{2}}\right\}, 2 \leq a_{0} \leq a_{1} \leq a_{2}$, we associate the integers

$$
l:=\operatorname{gcd}\left(a_{0}, a_{1}, a_{2}\right), \quad l_{i}:=\frac{\operatorname{gcd}\left(a_{j}, a_{k}\right)}{l}, \quad \alpha_{i}:=\frac{a_{i}}{l_{j} l_{k} l} \quad(\{i, j, k\}=\{0,1,2\}) .
$$

Furthermore, we let p_{0}, p_{1}, p_{2} be the integers determined by

$$
p_{i} \alpha_{j} \alpha_{k} l_{i}+1 \equiv 0 \quad\left(\bmod \alpha_{i}\right), \quad 0 \leq p_{i}<\alpha_{i}
$$

Fig. 2. Weighted dual graph of E_{π}.
where $\{i, j, k\}=\{0,1,2\}$. When $\alpha_{w}>1$, we also put

$$
\alpha_{w} / p_{w}=\left[\left[d_{w, 1}, d_{w, 2}, \ldots, d_{w, r_{w}}\right]\right]
$$

and $e_{w, v}:=\left[\left[d_{w, v}, d_{w, v+1}, \ldots, d_{w, r_{w}}\right]\right]\left(1 \leq v \leq r_{w} ; w=0,1,2\right)$. With this notation, by [7], there exists a resolution $\pi:\left(X, \mathrm{E}_{\pi}\right) \rightarrow\left(V_{a_{0}, a_{1}, a_{2}}, o\right)$ such that the weighted dual graph of E_{π} is as in Fig. 2. It is star-shaped with $l_{w} l$ branches of type $C_{\alpha_{w}, p_{w}}(w=0,1,2)$ starting from a unique vertex. The non-singular curve E_{0} corresponding to that vertex will be referred to as the central curve. We shall mainly work on the resolution π. Note that, when $\alpha_{w}=1$, the corresponding branches do not appear and we understand $C_{1,0}$ as a non-singular point on E_{0}.

Now, we are going to state our results in this paper. First, we concretely describe the fundamental cycle over ($V_{a_{0}, a_{1}, a_{2}}, o$). We remark here that an algorithm computing the fundamental cycle from the exponents a_{0}, a_{1}, a_{2} was established by Tomari (cf. [8, (3.3)]).

Theorem 1.4. Let

$$
Z=\theta_{0} E_{0}+\sum_{w=0}^{2} \sum_{v=1}^{r_{w}} \sum_{\xi=1}^{l_{w} l} \theta_{w, v, \xi} E_{w, v, \xi}
$$

be the fundamental cycle for resolution π. Then the sequence $\left\{\theta_{w, v, \xi}\right\}_{v=0}^{r_{w}}(w=0,1,2)$ is defined by the following recurrence formula:
(1) $\theta_{w, 0, \xi}:=\theta_{0}=\left\{\begin{array}{lll}\alpha_{0} \alpha_{1} \alpha_{2} & \text { if } \quad \alpha_{2} \leq l_{2}, \\ \alpha_{0} \alpha_{1} l_{2} & \text { if } \alpha_{2} \geq l_{2},\end{array}\right.$
(2) $\theta_{w, v, \xi}=\left\lceil\theta_{w, v-1, \xi} / e_{w, v}\right\rceil, 1 \leq v \leq r_{w}$.

To show it, we first study the chain-shaped configuration obtained by plugging one extra vertex to the configuration of type $C_{n, \mu}$. We consider the condition which should be satisfied by the smallest cycle $Y \succ 0$ such that $-Y$ is nef on the $C_{n, \mu}$ part, when the multiplicity at the extra vertex is given. Then we apply it to branches of the starshaped configuration as in Fig. 2. To determine the multiplicity of the central curve is our final task. Our method is so simple that it may apply also to the other singularities with \mathbb{C}^{*}-action in determining their fundamental cycles. As a by-product, we can reprove in Theorem 1.7 the formula computing the fundamental genus which was originally obtained in [8] and [9] by an entirely different method.

Next, we turn our attention to the maximal ideal cycle. With the help of Tomaru's result in [12], we can determine the multiplicity of each component and give a formula similar to Theorem 1.4 also for $\left(x_{w} \circ \pi\right)_{X}(w=0,1,2)$. See, Theorem 2.1 for the precise statement. This enables us to show in Theorem 3.1 that $\left(x_{2} \circ \pi\right)_{X}$ is the maximal ideal cycle for resolution π (here, the assumption $a_{0} \leq a_{1} \leq a_{2}$ is essential).

Using the concrete descriptions thus obtained, we compare the fundamental cycle and the maximal ideal cycle on E_{π} and get the following:

Theorem 3.2. The maximal ideal cycle coincides with the fundamental cycle for resolution π if and only if $\alpha_{2} \geq l_{2}$.

In particular, this implies that both cycles coincide on the minimal resolution, when a_{0} is a prime number. Similarly, we obtain the following:

Theorem 3.11. The maximal ideal cycle coincides with the fundamental cycle for any resolution of $\left(V_{a_{0}, a_{1}, a_{2}}, o\right), 2 \leq a_{0} \leq a_{1} \leq a_{2}$, if and only if $\alpha_{2} \geq l_{2}$ and $1<$ $a_{1} / a_{2}+\operatorname{gcd}\left(a_{0}, a_{1}\right) / a_{0}$. Furthermore, if this is the case, then the fundamental cycle is led by the holomorphic function x_{2}.

As an application, we give in Proposition 4.4 the necessary and sufficient condition for ($V_{a_{0}, a_{1}, a_{2}}, o$) to be a Kodaira singularity ([5], [6]), in order to supplement a result in [10]. We also describe the canonical cycle for π in Proposition 4.6.

Fig. 3.
The paper grew out of the second named author's master thesis at Osaka University. The authors would like to express their deep gratitude to Professor Tadashi Tomaru for many helpful suggestions in the course of the study. Thanks are also due to Professors Masataka Tomari, Tomohiro Okuma and Tadashi Ashikaga for offering the second named author an opportunity to give a talk at their exciting seminar and for their precious comments.

1. The fundamental cycle

1.1. Minimal anti-nef cycle on a chain. Let n and μ be integers that are relatively prime and $0<\mu<n$, and put $n / \mu=\left[\left[d_{1}, d_{2}, \ldots, d_{r}\right]\right]$. We consider a connected bunch $\bigcup_{i=0}^{r} E_{i}$ of irreducible curves E_{i} on a smooth surface whose weighted dual graph is chain-shaped and $E_{1}+\cdots+E_{r}$ forms the configuration of type $C_{n, \mu}$ as in Fig. 3. We put $e_{i}:=\left[\left[d_{i}, d_{i+1}, \ldots, d_{r}\right]\right]$ for $1 \leq i \leq r$. Then $d_{i}=e_{i}+1 / e_{i+1}$ for $1 \leq i<r$, and $d_{r}=e_{r}$. For a positive integer λ_{0}, consider the set

$$
D\left(\lambda_{0}\right):=\left\{Y: \text { cycle on } \bigcup_{i=0}^{r} E_{i} \mid-Y \text { is nef on } \bigcup_{i=1}^{r} E_{i}, \operatorname{mult}_{E_{0}}(Y)=\lambda_{0}\right\} .
$$

Lemma 1.1. Take a positive integer λ_{0} and define the sequence $\left\{\lambda_{i}\right\}_{i=0}^{r}$ by the recurrence formula $\lambda_{i}=\left\lceil\lambda_{i-1} / e_{i}\right\rceil$ for $1 \leq i \leq r$. Then the cycle $Y_{0}:=\sum_{i=0}^{r} \lambda_{i} E_{i}$ is the smallest element of $D\left(\lambda_{0}\right)$.

Proof. Let $\rho_{i}(0 \leq i \leq r)$ be positive integers and put $Y=\sum_{i=0}^{r} \rho_{i} E_{i}$. We first claim that $\left\lceil\rho_{i-1} / e_{i}\right\rceil \leq \rho_{i}$ holds for $1 \leq i \leq r$, if $-Y$ is nef on $\bigcup_{i=1}^{r} E_{i}$. This can be seen by induction as follows. For $i=r$, we have $0 \geq Y E_{r}=\rho_{r-1}-\rho_{r} d_{r}$. Since $d_{r}=e_{r}$, we get $\rho_{r-1} / e_{r} \leq \rho_{r}$ which implies $\left\lceil\rho_{r-1} / e_{r}\right\rceil \leq \rho_{r}$. Take an index i with $1 \leq i<r$ and assume that $\left\lceil\rho_{i} / e_{i+1}\right\rceil \leq \rho_{i+1}$ holds. We have $0 \geq Y E_{i}=\rho_{i-1}-\rho_{i} d_{i}+\rho_{i+1}$. Then $\rho_{i-1} / \rho_{i} \leq d_{i}-\rho_{i+1} / \rho_{i} \leq d_{i}-1 / e_{i+1}=e_{i}$, since $\rho_{i} / e_{i+1} \leq \rho_{i+1}$ by the hypothesis. It follows $\rho_{i-1} / e_{i} \leq \rho_{i}$ and, hence, $\left\lceil\rho_{i-1} / e_{i}\right\rceil \leq \rho_{i}$.

We next consider the cycle Y_{0}. We have $Y_{0} E_{r}=\lambda_{r-1}-d_{r} \lambda_{r}=\lambda_{r-1}-e_{r} \lambda_{r} \leq 0$, because $\lambda_{r}=\left\lceil\lambda_{r-1} / e_{r}\right\rceil \geq \lambda_{r-1} / e_{r}$. Take any index i with $1 \leq i<r$. Since $\lambda_{i}=$ $\left\lceil\lambda_{i-1} / e_{i}\right\rceil \geq \lambda_{i-1} / e_{i}$, we get $\lambda_{i-1} / \lambda_{i} \leq e_{i}=d_{i}-1 / e_{i+1}$, i.e., $\lambda_{i-1} \leq d_{i} \lambda_{i}-\lambda_{i} / e_{i+1}$. It follows $\lambda_{i-1} \leq d_{i} \lambda_{i}-\left\lceil\lambda_{i} / e_{i+1}\right\rceil=d_{i} \lambda_{i}-\lambda_{i+1}$, which shows $Y_{0} E_{i} \leq 0$. Hence $Y_{0} \in$
$D\left(\lambda_{0}\right)$. Then, from the first half of the proof, it is clear that Y_{0} is the smallest element of $D\left(\lambda_{0}\right)$.

Note that we did not specify the self-intersection number of E_{0}. As the proof shows, if Y_{0} and Y_{0}^{\prime} are the smallest elements in $D\left(\lambda_{0}\right)$ and $D\left(\lambda_{0}^{\prime}\right)$, respectively, then we have $Y_{0} \preceq Y_{0}^{\prime}$ if and only if $\lambda_{0} \leq \lambda_{0}^{\prime}$.

Since the proof of the following lemma is elementary, we leave it to the reader.
Lemma 1.2. Let the sequence $\left\{\lambda_{i}\right\}_{i=0}^{r}$ be as in the previous lemma and, for $1 \leq$ $i \leq r$, take relatively prime positive integers n_{i} and μ_{i} satisfying $n_{i} / \mu_{i}=e_{i}$. Put $\lambda_{r+1}:=\lambda_{r} d_{r}-\lambda_{r-1}$.
(1) If $\lambda_{i-1}=\lambda_{i} d_{i}-\lambda_{i+1}$ holds for $1 \leq i \leq r$, then $\lambda_{1}=\left(\mu \lambda_{0}+\lambda_{r+1}\right) / n$.
(2) If $\lambda_{0} \equiv 0(\bmod n)$, then $\lambda_{i}=\mu_{i} \lambda_{i-1} / n_{i}$ for $1 \leq i \leq r$. If $\mu \lambda_{0}+1 \equiv 0(\bmod n)$, then $\lambda_{i}=\left(\mu_{i} \lambda_{i-1}+1\right) / n_{i}$ for $1 \leq i \leq r$.
(3) If either $\lambda_{0} \equiv 0(\bmod n)$ or $\mu \lambda_{0}+1 \equiv 0(\bmod n)$, then $\lambda_{i-1}=\lambda_{i} d_{i}-\lambda_{i+1}$ holds for $1 \leq i \leq r$. Furthermore, $\lambda_{r+1}=0$ when $\lambda_{0} \equiv 0(\bmod n)$, and $\lambda_{r+1}=1$ when $\mu \lambda_{0}+1 \equiv 0(\bmod n)$.
(4) If $\lambda_{0} \equiv 0(\bmod n)$, then $\lambda_{r}=\lambda_{0} / n$. If $\mu \lambda_{0}+1 \equiv 0(\bmod n)$, then $\lambda_{r}=\left\lceil\lambda_{0} / n\right\rceil$.
1.2. The fundamental cycle. We keep the notation in Introduction.

Proposition 1.3. There exists a resolution $\pi:\left(X, \mathrm{E}_{\pi}\right) \rightarrow\left(V_{a_{0}, a_{1}, a_{2}}, o\right)$ such that the weighted dual graph of E_{π} is as in Fig. 2. Furthermore, the genus g and the selfintersection number $-d_{0}$ of the central curve E_{0} are given respectively by

$$
\begin{aligned}
& 2 g-2=l\left(l_{0} l_{1} l_{2} l-l_{0}-l_{1}-l_{2}\right), \\
& d_{0}=l\left(\sum_{w=0}^{2} \frac{p_{w} l_{w}}{\alpha_{w}}+\frac{1}{\alpha_{0} \alpha_{1} \alpha_{2}}\right)
\end{aligned}
$$

Proof. See [7, Proposition (3.5.1) and Theorem (3.6.1)]. We shall prove it in the course of the proof of Theorem 2.1 below.

In the sequel, we will work on the resolution space X in Proposition 1.3, unless otherwise stated explicitly.

Theorem 1.4. Let

$$
Z=\theta_{0} E_{0}+\sum_{w=0}^{2} \sum_{v=1}^{r_{w}} \sum_{\xi=1}^{l_{w} l} \theta_{w, v, \xi} E_{w, v, \xi}
$$

be the fundamental cycle for resolution π. Then the sequence $\left\{\theta_{w, v, \xi}\right\}_{v=0}^{\gamma_{w}}(w=0,1,2)$ is defined by the following recurrence formula:
(1) $\theta_{w, 0, \xi}:=\theta_{0}=\left\{\begin{array}{lll}\alpha_{0} \alpha_{1} \alpha_{2} & \text { if } & \alpha_{2} \leq l_{2}, \\ \alpha_{0} \alpha_{1} l_{2} & \text { if } & \alpha_{2} \geq l_{2},\end{array}\right.$
(2) $\theta_{w, v, \xi}\left\lceil\left\lceil\theta_{w, v-1, \xi} / e_{w, v}\right\rceil\left(1 \leq v \leq r_{w}\right)\right.$.

Proof. By Lemma 1.1 applied to each branch of type $C_{\alpha_{w}, p_{w}}$ plugged to E_{0}, we obtain (2) once θ_{0} is given. So, it suffices to show (1). Let $u_{w}(w=0,1,2)$ be the integer determined by $\left.p_{w} \theta_{0}+u_{w} \equiv 0\left(\bmod \alpha_{w}\right),\right] 0 \leq u_{w}<\alpha_{w}$. Then $\theta_{w, 1, \xi}=\left\lceil\theta_{0} / e_{w, 1}\right\rceil=$ ($p_{w} \theta_{0}+u_{w}$)/ α_{w} by (2). By substituting the formula for d_{0} in Proposition 1.3, the inequality $\theta_{0} d_{0} \geq \sum_{w=0}^{2} \sum_{\xi=1}^{l_{w} l} \theta_{w, 1, \xi}$ coming from $-Z E_{0} \geq 0$ becomes

$$
\theta_{0} l\left(\sum_{w=0}^{2} \frac{p_{w} l_{w}}{\alpha_{w}}+\frac{1}{\alpha_{0} \alpha_{1} \alpha_{2}}\right) \geq \sum_{w=0}^{2} l_{w} l \frac{p_{w} \theta_{0}+u_{w}}{\alpha_{w}}
$$

It follows $\theta_{0} \geq \alpha_{1} \alpha_{2} l_{0} u_{0}+\alpha_{0} \alpha_{2} l_{1} u_{1}+\alpha_{0} \alpha_{1} l_{2} u_{2}$. Put

$$
\Lambda:=\left\{\begin{array}{l|l}
\lambda \geq 1 & \begin{array}{l}
\lambda \geq \alpha_{1} \alpha_{2} l_{0} u_{0}+\alpha_{0} \alpha_{2} l_{1} u_{1}+\alpha_{0} \alpha_{1} l_{2} u_{2} \\
p_{w} \lambda+u_{w} \equiv 0\left(\bmod \alpha_{w}\right), 0 \leq u_{w}<\alpha_{w}
\end{array}(w=0,1,2)
\end{array}\right\}
$$

Then, since Z is the fundamental cycle, $\theta_{0}=\min \Lambda$. Since α_{0}, α_{1} and α_{2} are mutually coprime, we have $\min \left\{\lambda \in \Lambda \mid u_{0}=u_{1}=u_{2}=0\right\}=\alpha_{0} \alpha_{1} \alpha_{2}$. Also, since $\alpha_{0} \alpha_{1} l_{2} \leq$ $\alpha_{0} \alpha_{2} l_{1} \leq \alpha_{1} \alpha_{2} l_{0}$ by $a_{0} \leq a_{1} \leq a_{2}$, we get $\min \left\{\lambda \in \Lambda \mid\left(u_{0}, u_{1}, u_{2}\right) \neq(0,0,0)\right\}=\alpha_{0} \alpha_{1} l_{2}$. Therefore,

$$
\theta_{0}=\left\{\begin{array}{lll}
\alpha_{0} \alpha_{1} \alpha_{2} & \text { if } & \alpha_{2} \leq l_{2}, \\
\alpha_{0} \alpha_{1} l_{2} & \text { if } & \alpha_{2} \geq l_{2} .
\end{array}\right.
$$

This shows (1).
We put $\theta_{w, v}:=\theta_{w, v, \xi}$, because it does not depend on ξ, and $\theta_{w, r_{w}+1}:=\theta_{w, r_{w}} d_{w, r_{w}}-$ $\theta_{w, r_{w}-1}$. Furthermore, we sometimes write $E_{w, v}$ for $E_{w, v, \xi}$, when the index ξ is not important. By Lemma 1.2, we get the following:

Lemma 1.5. Let the situation be as above. Then

$$
\theta_{w, v-1}=\theta_{w, v} d_{w, v}-\theta_{w, v+1} \quad\left(w=0,1,2 ; 1 \leq v \leq r_{w}\right) .
$$

Furthermore, the following hold:
(1) If $\alpha_{2} \leq l_{2}$, then $\theta_{i, r_{i}}=\alpha_{j} \alpha_{k}(\{i, j, k\}=\{0,1,2\})$ and $\theta_{w, r_{w}+1}=0(w=0,1,2)$.
(2) If $\alpha_{2} \geq l_{2}$, then $\theta_{0, r_{0}}=\alpha_{1} l_{2}, \theta_{1, r_{1}}=\alpha_{0} l_{2}, \theta_{2, r_{2}}=\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil, \theta_{0, r_{0}+1}=\theta_{1, r_{1}+1}=0$ and $\theta_{2, r_{2}+1}=1$.

Proposition 1.6. The self-intersection number of the fundamental cycle is given by

$$
-Z^{2}= \begin{cases}l \alpha_{0} \alpha_{1} \alpha_{2} & \text { if } \alpha_{2} \leq l_{2} \\ l_{2} l\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil & \text { if } \alpha_{2} \geq l_{2}\end{cases}
$$

Proof. By Lemma 1.5, we have $Z E_{w, v}=0$ for $w=0,1,2,1 \leq v \leq r_{w}-1$.
We first consider the case where $\alpha_{2} \leq l_{2}$. We already know that $Z E_{w, r_{w}}=\theta_{w, r_{w}+1}=$ $0(w=0,1,2)$. Since

$$
\begin{aligned}
-Z E_{0} & =\theta_{0} d_{0}-\sum_{w=0}^{2} l_{w} l \theta_{w, 1} \\
& =l\left(p_{0} \alpha_{1} \alpha_{2} l_{0}+p_{1} \alpha_{0} \alpha_{2} l_{1}+p_{2} \alpha_{0} \alpha_{1} l_{2}+1\right)-l_{0} l p_{0} \alpha_{1} \alpha_{2}-l_{1} l p_{1} \alpha_{0} \alpha_{2}-l_{2} l p_{2} \alpha_{0} \alpha_{1} \\
& =l
\end{aligned}
$$

we obtain $-Z^{2}=l \theta_{0}=l \alpha_{0} \alpha_{1} \alpha_{2}$.
Next, we consider the case where $\alpha_{2} \geq l_{2}$. We have $Z E_{0, r_{0}}=\theta_{0 . r_{0}+1}=0, Z E_{1, r_{1}}=$ $\theta_{1 . r_{1}+1}=0$ and $Z E_{2, r_{2}}=\theta_{2 \cdot r_{2}+1}=1$. Furthermore,

$$
\begin{aligned}
-Z E_{0} & =\theta_{0} d_{0}-\sum_{w=0}^{2} l_{w} l \theta_{w, 1} \\
& =\alpha_{0} \alpha_{1} l_{2} l\left(\sum_{w=0}^{2} \frac{p_{w} l_{w}}{\alpha_{w}}+\frac{1}{\alpha_{0} \alpha_{1} \alpha_{2}}\right)-l_{0} l p_{0} \alpha_{1} l_{2}-l_{1} l p_{1} \alpha_{0} l_{2}-l_{2} l \frac{p_{2} \alpha_{0} \alpha_{1} l_{2}+1}{\alpha_{2}} \\
& =0
\end{aligned}
$$

Therefore, $-Z^{2}=l_{2} l \theta_{2, r_{2}}=l_{2} l\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil$.
Theorem 1.7 ([9, Theorem 2]). The fundamental genus p_{f} of $\left(V_{a_{0}, a_{1}, a_{2}}, o\right), 2 \leq$ $a_{0} \leq a_{1} \leq a_{2}$, is given as follows.
(1) If $\alpha_{2} \leq l_{2}$, then

$$
p_{f}=\frac{1}{2} l\left\{\operatorname{lcm}\left(a_{0}, a_{1}, a_{2}\right)-\alpha_{1} \alpha_{2} l_{0}-\alpha_{0} \alpha_{2} l_{1}-\alpha_{0} \alpha_{1} l_{2}-\alpha_{0} \alpha_{1} \alpha_{2}+1\right\}+1 .
$$

(2) If $\alpha_{2} \geq l_{2}$, then

$$
p_{f}=\frac{1}{2}\left\{\left(a_{0}-1\right)\left(a_{1}-1\right)-\left(2\left\lceil\frac{\alpha_{0} \alpha_{1} l_{2}}{\alpha_{2}}\right\rceil-1\right) \operatorname{gcd}\left(a_{0}, a_{1}\right)+1\right\} .
$$

Proof. We consider the case where $\alpha_{0}, \alpha_{1}, \alpha_{2} \geq 2$. The other cases can be treated similarly. Let K be the canonical line bundle on X. Since $E_{w, v} \simeq \mathbb{P}^{1}$ for $v \neq 0$, we
have $K E_{w, \nu}=-\left(E_{w, \nu}\right)^{2}+2 \times 0-2=d_{w, \nu}-2$. Similarly, since E_{0} is of genus g, $K E_{0}=-E_{0}^{2}+2 g-2=d_{0}+2 g-2$. It follows

$$
\begin{aligned}
K Z & =\theta_{0}\left(d_{0}+2 g-2\right)+\sum_{w=0}^{2} l_{w} l \sum_{v=1}^{r_{w}} \theta_{w, v}\left(d_{w, v}-2\right) \\
& =\theta_{0}\left\{d_{0}+l\left(l_{0} l_{1} l_{2} l-l_{0}-l_{1}-l_{2}\right)\right\}+\sum_{w=0}^{2} l_{w} l\left(\sum_{v=1}^{r_{w}}\left(\theta_{w, v-1}+\theta_{w, v+1}\right)-\sum_{v=1}^{r_{w}} 2 \theta_{w, v}\right) \\
& =\theta_{0}\left\{d_{0}+l\left(l_{0} l_{1} l_{2} l-l_{0}-l_{1}-l_{2}\right)\right\}+\sum_{w=0}^{2} l_{w} l\left(\theta_{0}-\theta_{w, 1}-\theta_{w, r_{w}}+\theta_{w, r_{w}+1}\right) \\
& =\theta_{0} l_{0} l_{1} l_{2} l^{2}+\left(\theta_{0} d_{0}-\sum_{w=0}^{2} l_{w} l \theta_{w, 1}\right)-\sum_{w=0}^{2} l_{w} l \theta_{w, r_{w}}+l_{2} l \theta_{2, r_{2}} \\
& =\theta_{0} l_{0} l_{1} l_{2} l^{2}-Z E_{0}-\sum_{w=0}^{2} l_{w} l \theta_{w, r_{w}}+l_{2} l \theta_{2, r_{2}} .
\end{aligned}
$$

(1) If $\alpha_{2} \leq l_{2}$, then $\theta_{0}=\alpha_{0} \alpha_{1} \alpha_{2},-Z E_{0}=l, \theta_{0, r_{0}}=\alpha_{1} \alpha_{2}, \theta_{1, r_{1}}=\alpha_{0} \alpha_{2}, \theta_{2, r_{2}}=$ $\alpha_{0} \alpha_{1}, \theta_{2, r_{2}+1}=0$ and $Z^{2}=-l \alpha_{0} \alpha_{1} \alpha_{2}$ by Lemma 1.5 and Proposition 1.6. The assertion follows from the formula $2 p_{f}-2=K Z+Z^{2}$.
(2) If $\alpha_{2} \geq l_{2}$, then $\theta_{0}=\alpha_{0} \alpha_{1} l_{2}, Z E_{0}=0, \theta_{0, r_{0}}=\alpha_{1} l_{2}, \theta_{1, r_{1}}=\alpha_{0} l_{2}, \theta_{2, r_{2}}=$ $\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil, \theta_{2, r_{2}+1}=1$ and $Z^{2}=-l_{2} l\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil$ by Lemma 1.5 and Proposition 1.6. Therefore, we obtain the assertion.

REMARK 1.8. An algorithm computing Z from the exponents a_{0}, a_{1}, a_{2} was first obtained by Masataka Tomari (cf. [8, (3.3)]). Based on it, the formula for p_{f} was shown by Tomaru in [8, Theorem 4.3] in the special case: $\operatorname{lcm}\left(a_{0}, a_{1}\right) \leq a_{2}$, and later completed in [9, Theorem 2]. However, the hypothesis of [9, Theorem 2 (1)] needs a small correction from " $m=l_{2}$ " to " $m=l_{2} \geq 2$ ". Indeed, when $\alpha_{2}=l_{2}=1$, [9, Theorem $2(1)$] yields $2 p_{f}-2=\left(a_{0}-1\right)\left(a_{1}-1\right)-\left(2 \alpha_{0} \alpha_{1}+1\right) l-1$, while it should be $2 p_{f}-2=\left(a_{0}-1\right)\left(a_{1}-1\right)-\left(2 \alpha_{0} \alpha_{1}-1\right) l-1$ according to Theorem 1.7.

2. Cycles led by coordinate functions

The purpose of the section is to show the following:
Theorem 2.1. Let $Z^{(k)}:=\left(x_{k} \circ \pi\right)_{X}$ be the cycle on E_{π} led by $x_{k}(k=0,1,2)$, and put

$$
Z^{(k)}=\lambda_{0}^{(k)} E_{0}+\sum_{w=0}^{2} \sum_{v=1}^{r_{w}} \sum_{\xi=1}^{l_{w} l} \lambda_{w, v, \xi}^{(k)} E_{w, v, \xi} .
$$

Then the sequence $\left\{\lambda_{w, v, \xi}^{(k)}\right\}(k=0,1,2)$ is determined by the following recurrence formula.

$$
\begin{aligned}
& \lambda_{w, v-1, \xi}^{(k)}=\lambda_{w, v, \xi}^{(k)} d_{w, v}-\lambda_{w, v+1, \xi}^{(k)}, \\
& \lambda_{w, 0, \xi}^{(k)}:=\lambda_{0}^{(k)}=\alpha_{i} \alpha_{j} l_{k} \quad(\{i, j, k\}=\{0,1,2\}), \\
& \lambda_{w, r_{w}+1, \xi}^{(k)}=\left\{\begin{array}{lll}
1 & \text { if } & w=k \\
0 & \text { if } & w \neq k
\end{array}\right.
\end{aligned}
$$

In particular, for $\{i, j, k\}=\{0,1,2\}$,

$$
\begin{cases}\lambda_{i, 1, \xi}^{(k)}=p_{i} \alpha_{j} l_{k}, & \lambda_{k, 1, \xi}^{(k)}=\frac{p_{k} \alpha_{i} \alpha_{j} l_{k}+1}{\alpha_{k}} \\ \lambda_{i, r_{i}, \xi}^{(k)}=\alpha_{j} l_{k}, & \lambda_{k, r_{k}, \xi}^{(k)}=\left\lceil\frac{\alpha_{i} \alpha_{j} l_{k}}{\alpha_{k}}\right\rceil\end{cases}
$$

We divide the proof into three steps. During the proof, we will construct the resolution π and show Proposition 1.3. Put $\{i, j, k\}=\{0,1,2\}$ and denote the primitive n-th root of unity by ϵ_{n}.

Step 1. The resolution of the branch locus. We put $C:=\left\{x_{i}^{a_{i}}+x_{j}^{a_{j}}=0\right\} \subset \mathbb{C}^{2}$.
First, we compute the minimal embedded resolution of C. Though there are several methods for computing such resolutions (see [1]), we use a result in [11] here. Put $d:=\operatorname{lcm}\left(a_{i}, a_{j}\right), n_{1}:=a_{i} / \operatorname{gcd}\left(a_{i}, a_{j}\right), n_{2}:=a_{j} / \operatorname{gcd}\left(a_{i}, a_{j}\right)$. Furthermore we put $\bar{C}:=\left\{\bar{x}_{i}^{d}+\bar{x}_{j}^{d}=0\right\} \subset \mathbb{C}^{2}$, and let $\Psi: \mathbb{C}_{\left(\bar{x}_{i}, \bar{x}_{j}\right)}^{2} \rightarrow \mathbb{C}_{\left(x_{i}, x_{j}\right)}^{2}$ be the holomorphic map defined by $x_{i}=\bar{x}_{i}^{n_{2}}, x_{j}=\bar{x}_{j}^{n_{1}}$. Since $d=a_{i} a_{j} / \operatorname{gcd}\left(a_{i}, a_{j}\right)=a_{i} n_{2}=a_{j} n_{1}$, we have $\Psi(\bar{C})=C$. The map Ψ can be regarded as the quotient map by the natural action to \mathbb{C}^{2} of the group

$$
G=\left\langle\left(\begin{array}{cc}
\epsilon_{n_{2}} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & \epsilon_{n_{1}}
\end{array}\right)\right\rangle .
$$

Let $\bar{\Phi}: \bar{N} \rightarrow \mathbb{C}^{2}$ be the blowing-up at the origin of the $\left(\bar{x}_{i}, \bar{x}_{j}\right)$-plane. We denote by \bar{E} the exceptional (-1)-curve for $\bar{\Phi}$. Then \bar{N} is covered by two open sets U_{0} and U_{1} each of which is isomorphic to \mathbb{C}^{2}. The action of G is lifted onto \bar{N} through $\bar{\Phi}$. Let μ_{1}, μ_{2} be non-negative integers defined by

$$
\begin{array}{ll}
n_{2} \mu_{1}+1 \equiv 0\left(\bmod n_{1}\right), & 0 \leq \mu_{1}<n_{1}, \\
n_{1} \mu_{2}+1 \equiv 0\left(\bmod n_{2}\right), & 0 \leq \mu_{2}<n_{2} .
\end{array}
$$

Then, from [11, Theorem 2.3], we can easily see that the quotient space \bar{N} / G is covered by two cyclic quotient singularity spaces U_{0} / G and U_{1} / G whose respective types are $C_{n_{1}, \mu_{1}}$ and $C_{n_{2}, \mu_{2}}$; also those singular points are located on $\psi(\bar{E}) \simeq \mathbb{P}^{1}$, where $\psi: \bar{N} \rightarrow \bar{N} / G$ is the quotient map. Let $\eta: N \rightarrow \bar{N} / G$ be the minimal resolution

Fig. 4. Weighted dual graph of $\phi^{*} C$.
of those two cyclic quotient singularities and $\Phi: \bar{N} / G \rightarrow \mathbb{C}^{2}$ the natural map to the $\left(x_{i}, x_{j}\right)$-plane. Then the composite $\phi=\Phi \circ \eta: N \rightarrow \mathbb{C}^{2}$ gives us the minimal embedded resolution of C.

Second, we describe $\phi^{*} C$. The strict transform $\bar{\Phi}_{*}^{-1} \bar{C}$ of \bar{C} by $\bar{\Phi}$ consists of disjoint d branches each of which intersects \bar{E} transversally at a point. Then $\psi\left(\bar{\Phi}_{*}^{-1} \bar{C}\right)$ consists of $\operatorname{gcd}\left(a_{i}, a_{j}\right)$ irreducible components each of which intersects $\psi(\bar{E})$ transversally at a point. For $\bar{f}:=\bar{x}_{i}^{d}+\bar{x}_{j}^{d}$, the multiplicity of $\bar{f} \circ \bar{\Phi}$ along \bar{E} is d. If f denotes the holomorphic function on \bar{N} / G induced by \bar{f}, then the multiplicity of f along $\psi(\bar{E})$ is also d. Furthermore, the multiplicity of f along each component of $\psi\left(\bar{\Phi}_{*}^{-1} \bar{C}\right)$ is one. Since $f=\left(x_{i}^{a_{i}}+x_{j}^{a_{j}}\right) \circ \Phi$, the dual graph of the divisor $\phi^{*} C$ becomes as in Fig. 4. In that figure, F_{0} is the strict transform of $\psi(\bar{E})$ by η and $F_{m, v_{m}}\left(m=1,2 ; 1 \leq v_{m} \leq s_{m}\right)$ is the exceptional curve arising from $C_{n_{m}, \mu_{m}}$ with self-intersection number $-c_{m, v_{m}}$, where $n_{m} / \mu_{m}=\left[\left[c_{m, 1}, c_{m, 2}, \ldots, c_{m, s_{m}}\right]\right]$. For $m=1,2$, we denote by $\rho_{m, v_{m}}$ the multiplicity of $\phi^{*} C$ along $F_{m, v_{m}}$. Since $F_{m, v_{m}} \phi^{*} C=0$, we have

$$
\begin{equation*}
\rho_{m, v_{m}-1}=\rho_{m, v_{m}} c_{m, v_{m}}-\rho_{m, v_{m}+1}, \quad 1 \leq v_{m} \leq s_{m}, \tag{2.1}
\end{equation*}
$$

with $\rho_{m, 0}=d$ and $\rho_{m, s_{m}+1}=0$. Then, by Lemma 1.2 (1), we get $\rho_{m, 1}=\mu_{m} d / n_{m}$, that is,

$$
\begin{equation*}
\rho_{1,1}=\mu_{1} a_{j}, \quad \rho_{2,1}=\mu_{2} a_{i} . \tag{2.2}
\end{equation*}
$$

We also have $\rho_{1,1}+\rho_{2,1}+\operatorname{gcd}\left(a_{i}, a_{j}\right)=d$ by $F_{0} \phi^{*} C=0$, since $-F_{0}^{2}=F_{0} F_{1,1}=$ $F_{0} F_{2,1}=1$ and $F_{0} \phi_{*}^{-1} C=\operatorname{gcd}\left(a_{i}, a_{j}\right)$.

Step 2. The resolution of the cyclic covering. We consider the resolution of $\left\{x_{i}^{a_{i}}+x_{j}^{a_{j}}=x_{k}^{a_{k}}\right\}$ regarding $V_{a_{0}, a_{1}, a_{2}}$ as an a_{k}-fold cyclic covering of \mathbb{C}^{2}. Let $\phi: N \rightarrow \mathbb{C}^{2}$ be the holomorphic map constructed in Step 1. We consider the normalization W of

Fig. 5.
the fiber product $V_{a_{0}, a_{1}, a_{2}} \times \times_{\mathbb{C}^{2}} N$. For this purpose, we use the following result due to Tomaru [12].

Theorem 2.2 ([12]). Let (U, o) be the cyclic quotient singularity of type $C_{n, \mu}$, and \mathfrak{m} the maximal ideal of $\mathcal{O}_{U, o}$. Assume that the zero divisor of the pull-back of $h \in \mathfrak{m}$ on the minimal resolution of (U, o) has the weighted dual graph as in Fig. 5, where $n / \mu=\left[\left[c_{1}, \ldots, c_{s}\right]\right]$ and the ρ_{i} 's denote multiplicities. For a positive integer a, put

$$
\bar{a}=\frac{a}{\operatorname{gcd}\left(a, \operatorname{lcm}\left(\rho_{0}, \rho_{s+1}\right)\right)}, \quad \bar{n}=\frac{\operatorname{gcd}\left(a, \rho_{0}, \rho_{1}, \ldots, \rho_{s+1}\right) n}{\operatorname{gcd}\left(a, \rho_{0}, \rho_{s+1}\right)}
$$

and $\alpha=\bar{a} \bar{n}$. Furthermore, let p be the integer defined by

$$
p \equiv \frac{a}{\operatorname{gcd}\left(a, \rho_{s+1}\right)} \mu \beta+\frac{\rho_{s+1}}{\operatorname{gcd}\left(a, \rho_{s+1}\right)} \gamma(\bmod \alpha), \quad 0 \leq p<\alpha,
$$

where β and γ are integers determined by

$$
\begin{aligned}
\frac{a}{\operatorname{gcd}\left(a, \rho_{0}\right)} \beta & \equiv 1\left(\bmod \rho_{0} / \operatorname{gcd}\left(a, \rho_{0}\right)\right), \quad 0 \leq \beta<\frac{\rho_{0}}{\operatorname{gcd}\left(a, \rho_{0}\right)} \\
\frac{\rho_{0}}{\operatorname{gcd}\left(a, \rho_{0}\right)} \gamma & =\frac{a}{\operatorname{gcd}\left(a, \rho_{0}\right)} \beta-1
\end{aligned}
$$

Then the normalization of the a-fold covering of U defined by $z^{a}=h$ has exactly $\operatorname{gcd}\left(a, \rho_{0}, \ldots, \rho_{s+1}\right)$ cyclic quotient singularities of type $C_{\alpha, p}$.

In our application, we always have $a=a_{k}$ and $\rho_{0}=d=\operatorname{lcm}\left(a_{i}, a_{j}\right)$. So, β and γ are determined by

$$
\begin{equation*}
\alpha_{k} \beta \equiv 1\left(\bmod \alpha_{i} \alpha_{j} l_{k}\right), 0 \leq \beta<\alpha_{i} \alpha_{j} l_{k} ; \quad \alpha_{i} \alpha_{j} l_{k} \gamma=\alpha_{k} \beta-1 \tag{2.3}
\end{equation*}
$$

CASE 1. We study W over a neighborhood of $F_{0} \cap \phi_{*}^{-1} C$ on N. Let $u=0$ and $v=0$ be local analytic equations of $F_{0}, \phi_{*}^{-1} C$ in a small neighborhood of each intersection point of F_{0} and $\phi_{*}^{-1} C$. Recall that there are $\operatorname{gcd}\left(a_{i}, a_{j}\right)=l_{k} l$ such points in total. The a_{k}-fold cyclic covering is locally isomorphic to the singularity $\left\{u^{d} v=x_{k}^{a_{k}}\right\}$. Then, by Theorem 2.2 applied to $(n, \mu)=(1,0), s=0$ and $h=u^{d} v\left(\rho_{0}=d, \rho_{1}=1\right)$, we see that W has one cyclic quotient singularity of type $C_{\alpha_{k}, p_{k}}$ for each point of $F_{0} \cap \phi_{*}^{-1} C$,
where p_{k} is the integer defined by $p_{k} \equiv \gamma\left(\bmod \alpha_{k}\right)$ (see also [10, Lemma 2.5]). Hence it is determined by the property $p_{k} \alpha_{i} \alpha_{j} l_{k}+1 \equiv 0\left(\bmod \alpha_{k}\right), 0 \leq p_{k}<\alpha_{k}$ by (2.3). By resolving these $l_{k} l$ singular points according to [3], we easily see that the central curve E_{0}, which is nothing more than the proper inverse image of F_{0}, has a simple intersection with the curve $E_{k, 1, \xi}\left(1 \leq \xi \leq l_{k} l\right)$ of self-intersection number $-d_{k, 1}$ as in Fig. 2, where we put $\alpha_{k} / p_{k}=\left[\left[d_{k, 1}, \ldots, d_{k, r_{k}}\right]\right]$ as before. Similarly, the proper inverse image of $\phi_{*}^{-1} C$ has a simple intersection with each $E_{k, r_{k}, \xi}$.

CASE 2. We study W over a neighborhood of $C_{n_{1}, \mu_{1}}$ and $C_{n_{2}, \mu_{2}}$ on N. We consider W over a neighborhood of $C_{n_{1}, \mu_{1}}$ by applying Theorem 2.2 to $F_{0}+F_{1,1}+\cdots+$ $F_{1, s_{1}}$, that is, the curve \star on the left side in Fig. 5 is F_{0} and $\rho_{s_{1}+1}=0$. We take the pull-back to N of the equation $x_{i}^{a_{i}}+x_{j}^{a_{j}}$ of C as the function h. Then $\rho_{0}=d, \rho_{i}=$ $\rho_{1, i}\left(1 \leq i \leq s_{1}\right)$. By (2.1) and (2.2), we have $\operatorname{gcd}\left(a_{k}, d, \rho_{1,1}, \ldots, \rho_{1, s_{1}}, \rho_{1, s_{1}+1}\right)=$ $\operatorname{gcd}\left(a_{k}, d, \rho_{1,1}\right)=l_{i} l$. Then, since $\bar{n}_{1}=\alpha_{i}$ and $\bar{a}_{k}=1$, Theorem 2.2 implies that W has $l_{i} l$ cyclic quotient singularities of type $C_{\alpha_{i}, p_{i}}$, where p_{i} is the integer defined by $p_{i} \equiv \mu_{1} \beta\left(\bmod \alpha_{i}\right), 0 \leq p_{i}<\alpha_{i}$. Note that p_{i} satisfies $p_{i} \alpha_{j} \alpha_{k} l_{i}+1 \equiv 0\left(\bmod \alpha_{i}\right)$ by the choice of μ_{1} and (2.3). Similarly, by considering $C_{n_{2}, \mu_{2}}$, we see that W also has $l_{j} l$ cyclic quotient singularities of type $C_{\alpha_{j}, p_{j}}$, where p_{j} is the integer defined by $p_{j} \equiv \mu_{2} \beta\left(\bmod \alpha_{j}\right), 0 \leq p_{j}<\alpha_{j}$. Then, p_{j} satisfies $p_{j} \alpha_{i} \alpha_{k} l_{j}+1 \equiv 0\left(\bmod \alpha_{j}\right)$.

From Cases 1 and 2, we know that W has $l\left(l_{0}+l_{1}+l_{2}\right)$ cyclic quotient singularities in total. Then we obtain the desired resolution $\pi: X \rightarrow V_{a_{0}, a_{1}, a_{2}}$ by performing the minimal resolutions of all such cyclic quotient singularities of W. Now, it is clear that the resolution dual graph is just as in Fig. 2.

Step 3. The cycle $\boldsymbol{Z}^{(k)}$ and the central curve \boldsymbol{E}_{0}. In this final step, we determine $Z^{(k)}$. We also calculate the genus g and the self-intersection number $-d_{0}$ of the central curve E_{0}, and complete Proposition 1.3.

As in Step 2, we regard $V_{a_{0}, a_{1}, a_{2}}$ as an a_{k}-fold cyclic covering of the (x_{i}, x_{j})-plane. We saw in Step 1 that $\phi_{*}^{-1} C$ meets the (-1)-curve F_{0} at $\operatorname{gcd}\left(a_{i}, a_{j}\right)=l_{k} l$ distinct points, and the multiplicity of $\phi^{*} C$ along F_{0} is $d=\operatorname{lcm}\left(a_{i}, a_{j}\right)$. Then we obtain E_{0} as an $l_{i} l_{j} l$ fold cyclic covering of F_{0}, because $\operatorname{gcd}\left(a_{k}, \operatorname{lcm}\left(a_{i}, a_{j}\right)\right)=\operatorname{gcd}\left(\alpha_{k} l_{i} l_{j} l, \alpha_{i} \alpha_{j} l_{0} l_{1} l_{2} l\right)=l_{i} l_{j} l$. Moreover, the vanishing order of $x_{k} \circ \pi$ along E_{0}, i.e., the multiplicity of $Z^{(k)}$ along E_{0}, is given by $d / l_{i} l_{j} l=\alpha_{i} \alpha_{j} l_{k}=: \lambda_{0}^{(k)}$. With this, we can determine the sequence $\left\{\lambda_{w, v, \xi}^{(k)}\right\}\left(w=0,1,2 ; v=1, \ldots, r_{w} ; \xi=1, \ldots, l_{w} l\right)$. In fact, since the intersection number of $E_{w, \nu, \xi}$ with ($x_{k} \circ \pi$) is zero, we obtain

$$
\lambda_{w, v-1, \xi}^{(k)}=\lambda_{w, v, \xi}^{(k)} d_{w, v}-\lambda_{w, v+1, \xi}^{(k)},
$$

with $\lambda_{w, 0, \xi}^{(k)}:=\lambda_{0}^{(k)}=\alpha_{i} \alpha_{j} l_{k}$ and $\lambda_{i, r_{i}+1, \xi}^{(k)}=\lambda_{j, r_{j}+1, \xi}^{(k)}=0, \lambda_{k, r_{k}+1, \xi}^{(k)}=1$ (recall that $E_{k, r_{k}, \xi}$ meets the proper inverse image of $\phi_{*}^{-1} C$ at a point). Note that one can compute all $\lambda_{w, \nu, \xi}^{(k)}$ from these data. In particular, $\lambda_{w, 1, \xi}^{(k)}$ and $\lambda_{w, r_{w}, \xi}^{(k)}$ are determined by Lemma 1.2 (1) and (4).

Let us calculate g and d_{0}. In order to compute g, we observe how ramifies the $l_{i} l_{j} l$ sheeted covering map $E_{0} \rightarrow F_{0} \simeq \mathbb{P}^{1}$. Since there are $l_{i} l$ branches of type $C_{\alpha_{i}, p_{i}}$, there exist $l_{i} l$ points on E_{0} of ramification index l_{j}. Similarly, considering $C_{a_{j}, p_{j}}$, we have $l_{j} l$ points of ramification index l_{i}. Also, considering $C_{a_{k}, p_{k}}$, there exist $l_{k} l$ points of ramification index $l_{i} l_{j} l$ over $F_{0} \cap \phi_{*}^{-1} C$. Hence, by the Riemann-Hurwitz formula, we get

$$
\begin{aligned}
2 g-2 & =l_{i} l_{j} l(2 \times 0-2)+l_{i} l\left(l_{j}-1\right)+l_{j} l\left(l_{i}-1\right)+l_{k} l\left(l_{i} l_{j} l-1\right) \\
& =l\left(l_{0} l_{1} l_{2} l-l_{0}-l_{1}-l_{2}\right) .
\end{aligned}
$$

Since the intersection number of E_{0} with $\left(x_{k} \circ \pi\right)$ is zero, we get

$$
\lambda_{0} d_{0}=\sum_{w=0}^{2} \sum_{\xi=1}^{l_{w} l} \lambda_{w, 1, \xi}
$$

Hence,

$$
\begin{aligned}
d_{0} & =\frac{1}{\alpha_{i} \alpha_{j} l_{k}}\left(p_{i} \alpha_{j} l_{k} l_{i} l+p_{j} \alpha_{i} l_{k} l_{j} l+\frac{p_{k} \alpha_{i} \alpha_{j} l_{k}+1}{\alpha_{k}} l_{k} l\right) \\
& =l\left(\sum_{w=0}^{2} \frac{p_{w} l_{w}}{\alpha_{w}}+\frac{1}{\alpha_{0} \alpha_{1} \alpha_{2}}\right) .
\end{aligned}
$$

In sum, we have shown Theorem 2.1 and Proposition 1.3.

3. The maximal ideal cycle

We keep the notation in the previous section, but put $\lambda_{w, v}^{(k)}:=\lambda_{w, v, \xi}^{(k)}$ for simplicity, because it does not depend on ξ.

Theorem 3.1. $Z^{(2)} \preceq Z^{(1)} \preceq Z^{(0)}$. In particular, $Z^{(2)}$ is the maximal ideal cycle for resolution π.

Proof. $\left\{\lambda_{w, \nu}^{(k)}\right\}_{v=0}^{r_{w}}$ satisfies $\lambda_{w, \nu}^{(k)}=\left\lceil\lambda_{w, v-1}^{(k)} / e_{w, \nu}\right\rceil$. Since $\lambda_{0}^{(2)} \leq \lambda_{0}^{(1)} \leq \lambda_{0}^{(0)}$ by $a_{0} \leq$ $a_{1} \leq a_{2}$, we obtain inductively $Z^{(2)} \preceq Z^{(1)} \preceq Z^{(0)}$. Needless to say, the maximal ideal \mathfrak{m} of $\mathcal{O}_{V_{a_{0}, a_{1}, a_{2}}, o}$ is generated by x_{0}, x_{1}, x_{2}. It follows from [14, Proposition 2.12] that $Z^{(2)}$ is the maximal ideal cycle.

Theorem 3.2. The maximal ideal cycle coincides with the fundamental cycle for resolution π if and only if $\alpha_{2} \geq l_{2}$.

Proof. By Theorems 1.4, 2.1 and Lemma 1.5, we see that $Z^{(2)}$ is the fundamental cycle if and only if $\alpha_{2} \geq l_{2}$. Since $Z^{(2)}$ is the maximal ideal cycle by Theorem 3.1, we obtain the assertion.

Fig. 6. Weighted dual graph of $Z^{(2)} ;\left(a_{0}, a_{1}, a_{2}\right)=(6,15,20)$.
Example $3.3\left(\alpha_{2} \geq l_{2}\right)$. If $\left(a_{0}, a_{1}, a_{2}\right)=(2,3,4)$, then $l=l_{0}=l_{2}=1, l_{1}=2$, $\alpha_{0}=1, \alpha_{1}=3, \alpha_{2}=2, p_{0}=0, p_{1}=2, p_{2}=1$. The maximal ideal cycle $Z^{(2)}$ is nothing more than the fundamental cycle of a rational double point of type E_{6}.

Example $3.4\left(\alpha_{2}<l_{2}\right)$. If $\left(a_{0}, a_{1}, a_{2}\right)=(6,15,20)$, then $l=1, l_{0}=5, l_{1}=$ $2, l_{2}=3, \alpha_{0}=\alpha_{1}=1, \alpha_{2}=2, p_{0}=p_{1}=0, p_{2}=1$. Hence the weighted dual graph of the maximal ideal cycle $Z^{(2)}$ is as in Fig. 6. It is clear that $Z^{(2)}$ is not the fundamental cycle.

Lemma 3.5. If π is not the minimal resolution, then $l=1,\left\{l_{0}, l_{1}, l_{2}\right\}=\{1,1, n\}$ for some $n \geq 1$.

Proof. Assume that π is not the minimal resolution. Since, in E_{π}, the selfintersection number of any component except E_{0} is less than or equal to -2 , we see that E_{0} must be a (-1)-curve: $g=0$ and $d_{0}=1$. By the formula in Proposition 1.3, we have $g=0$ if and only if $\left(l_{0}, l_{1}, l_{2}, l\right)=(1,1,1,2)$ or $l=1,\left\{l_{0}, l_{1}, l_{2}\right\}=\{1,1, n\}$.

Assume that $\left(l_{0}, l_{1}, l_{2}, l\right)=(1,1,1,2)$. We have $2\left(p_{0} \alpha_{1} \alpha_{2}+p_{1} \alpha_{0} \alpha_{2}+p_{2} \alpha_{0} \alpha_{1}+\right.$ 1) $=\alpha_{0} \alpha_{1} \alpha_{2}$ by $d_{0}=1$. Note that $\alpha_{0} \alpha_{1} \alpha_{2}$ divides $p_{0} \alpha_{1} \alpha_{2}+p_{1} \alpha_{0} \alpha_{2}+p_{2} \alpha_{0} \alpha_{1}+1$ by the choice of the p_{w} 's. Hence one has $p_{0} \alpha_{1} \alpha_{2}+p_{1} \alpha_{0} \alpha_{2}+p_{2} \alpha_{0} \alpha_{1}+1 \geq \alpha_{0} \alpha_{1} \alpha_{2}=$ $2\left(p_{0} \alpha_{1} \alpha_{2}+p_{1} \alpha_{0} \alpha_{2}+p_{2} \alpha_{0} \alpha_{1}+1\right)$, which is absurd. Therefore, $\left(l_{0}, l_{1}, l_{2}, l\right) \neq(1,1,1,2)$ and we are left the case: $l=1,\left\{l_{0}, l_{1}, l_{2}\right\}=\{1,1, n\}$.

Theorem 3.6. The maximal ideal cycle coincides with the fundamental cycle for the minimal resolution of $\left(V_{a_{0}, a_{1}, a_{2}}, o\right), 2 \leq a_{0} \leq a_{1} \leq a_{2}$, if and only if $\alpha_{2} \geq l_{2}$.

Proof. Assume that $\alpha_{2} \geq l_{2}$. It is obvious that the fundamental cycle coincides with the maximal ideal cycle also on the minimal resolution by the assumption and Theorem 3.2.

Assume that $\alpha_{2}<l_{2}$. If π is not the minimal resolution, then, by Lemma 3.5, $l_{0}=l_{1}=l=1, l_{2} \geq 2$, because $l_{2}>\alpha_{2} \geq 1$. Then we would have $a_{2}=\alpha_{2}<l_{2} \leq a_{0}$, which is absurd. Hence π is minimal. By Theorems 1.4, 2.1 and 3.2, the maximal ideal cycle $Z^{(2)}$ cannot be the fundamental cycle.

Corollary 3.7. If a_{0} is a prime number, then the maximal ideal cycle coincides with the fundamental cycle for the minimal resolution of ($\left.V_{a_{0}, a_{1}, a_{2}}, o\right), 2 \leq a_{0} \leq a_{1} \leq a_{2}$.

Proof. It can be checked directly that $\alpha_{2} \geq l_{2}$ holds, when a_{0} is prime.
Lemma 3.8. $-\left(Z^{(k)}\right)^{2}=l_{k} l\left\lceil\alpha_{i} \alpha_{j} l_{k} / \alpha_{k}\right\rceil$, where $\{i, j, k\}=\{0,1,2\}$. In particular, $-\left(Z^{(2)}\right)^{2}=a_{0}=\operatorname{mult}\left(\mathcal{O}_{\left.V_{a_{0}, a_{1}, a_{2}, o}\right)}\right)$ holds if and only if $\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil=\alpha_{0} l_{1}$, i.e., $1<a_{1} / a_{2}+\operatorname{gcd}\left(a_{0}, a_{1}\right) / a_{0}$.

Proof. By Lemma 1.2 (4) and Theorem 2.1, we have $\lambda_{k, r_{k}, \xi}^{(k)}=\left\lceil\alpha_{i} \alpha_{j} l_{k} / \alpha_{k}\right\rceil$. Then the self-intersection number of $Z^{(k)}$ can be computed similarly as in the proof of Proposition 1.6. Hence we omit the detail. Note that

$$
\begin{aligned}
-\left(Z^{(2)}\right)^{2}=l_{2} l\left\lceil\frac{\alpha_{0} \alpha_{1} l_{2}}{\alpha_{2}}\right\rceil=a_{0} & \Leftrightarrow\left\lceil\frac{\alpha_{0} \alpha_{1} l_{2}}{\alpha_{2}}\right\rceil=\alpha_{0} l_{1} \\
& \Leftrightarrow \frac{\alpha_{0} \alpha_{1} l_{2}}{\alpha_{2}} \leq \alpha_{0} l_{1}<\frac{\alpha_{0} \alpha_{1} l_{2}}{\alpha_{2}}+1 .
\end{aligned}
$$

In the last inequalities, we need not care the left hand side one, because it always holds true by $a_{1} \leq a_{2}$. As to the right hand side inequality, we have

$$
\alpha_{0} l_{1}<\frac{\alpha_{0} \alpha_{1} l_{2}}{\alpha_{2}}+1 \Leftrightarrow 1<\frac{\alpha_{1} l_{2} l_{0} l}{\alpha_{2} l_{1} l_{0} l}+\frac{l_{2} l}{\alpha_{0} l_{1} l_{2} l}=\frac{a_{1}}{a_{2}}+\frac{\operatorname{gcd}\left(a_{0}, a_{1}\right)}{a_{0}}
$$

from which the assertion follows.
Proposition 3.9. Put $\delta:=\alpha_{0} l_{1}-\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil \geq 0$. The base points on E_{π} of the linear system $\left|\mathcal{O}_{X}\left(-Z^{(2)}\right)\right|$ can be resolved by a succession of $\delta l_{2} l$ simple blowing-ups. In particular, the linear system $\left|\mathcal{O}_{X}\left(-Z^{(2)}\right)\right|$ has no base points on E_{π} if and only if $\delta=0$.

Proof. The second assertion is clear from Lemma 3.8, because $Z^{(2)}$ is the maximal ideal cycle and one has $\mathfrak{m} \mathcal{O}_{X} \simeq \mathcal{O}_{X}\left(-Z^{(2)}\right)$. See, e.g., [13, Theorem 2.7].

Now, we prove the first assertion. Note that we have $\lambda_{2, r_{2}}^{(1)}=\alpha_{0} l_{1}$ and $\lambda_{2, r_{2}}^{(2)}=$ $\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil$ by Theorem 2.1. Hence, δ is nothing but the difference of the multiplicities of $Z^{(1)}$ and $Z^{(2)}$ along $E_{2, r_{2}, \xi}$. Assume that $\delta>0$ and put $D=\left(x_{2} \circ \pi\right)-\left(x_{2} \circ \pi\right)_{X}$. It is clear that the base points of $\left|\mathcal{O}_{X}\left(-Z^{(2)}\right)\right|$ on E_{π} are $l_{2} l$ intersection points $P_{\xi}=$ $E_{2, r_{2}, \xi} \cap D, 1 \leq \xi \leq l_{2} l$. Let $\phi: \tilde{X} \rightarrow X$ be the composite of blowing-ups (performed δ times for each ξ) at P_{ξ} and the $\delta-1$ points infinitely near to it on the proper transform of D (see, Fig. 7). Thus, ϕ blows up $\delta l_{2} l$ points in total. Put $A:=K_{\tilde{X}}-\phi^{*} K_{X}$ and let A_{ξ} be the (-1)-curve over P_{ξ} lastly appeared in ϕ. Then the multiplicity of A along A_{ξ} is δ, and the cycle on \tilde{X} led by x_{2} is $\tilde{Z}^{(2)}:=\phi^{*} Z^{(2)}+A$. We have $\operatorname{mult}_{A_{\xi}}\left(\tilde{Z}^{(2)}\right)=\lambda_{2, r_{2}}^{(2)}+\delta=\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil+\delta=\alpha_{0} l_{1}$ for each ξ. Then, $x_{1} \circ \pi \circ \phi$ gives us

Fig. 7. A branch of the cycle led by x_{2} on \tilde{X}.
a section of $\mathcal{O}_{\tilde{X}}\left(-\tilde{Z}^{(2)}\right)$ that is a non-zero constant on each A_{ξ}, because $\tilde{Z}^{(2)} \preceq \phi^{*} Z^{(1)}$, $\operatorname{mult}_{A_{5}}\left(\phi^{*} Z^{(1)}\right)=\alpha_{0} l_{1}$ and $\left(x_{1} \circ \pi \circ \phi\right)=\phi^{*} Z^{(1)}$ in a neighborhood of the $l_{2} l$ branches containing the A_{ξ} 's. Therefore, $\left|\mathcal{O}_{\tilde{X}}\left(-\tilde{Z}^{(2)}\right)\right|$ has no base points on $\mathrm{E}_{\text {roф }}$. Needless to say, $\tilde{Z}^{(2)}$ is the maximal ideal cycle on \tilde{X} and $-\left(\tilde{Z}^{(2)}\right)^{2}=a_{0}$.

EXAMPLE 3.10. If $\left(a_{0}, a_{1}, a_{2}\right)=(6,10,15)$, then $l=1, l_{0}=5, l_{1}=3, l_{2}=2, \alpha_{0}=$ $\alpha_{1}=\alpha_{2}=1, p_{0}=p_{1}=p_{2}=0$. The exceptional set is a non-singular curve E_{0} of genus 11 , and $d_{0}=1, \lambda_{0}=2$. Then $Z=E_{0}$ and $Z^{(2)}=2 E_{0}$. We have $-\left(Z^{(2)}\right)^{2}=4$, while $\operatorname{mult}\left(\mathcal{O}_{V_{6,10,15}, o}\right)=6$. Two intersection points $E_{0} \cap D$, where $D=\left(x_{2} \circ \pi\right)-\left(x_{2} \circ \pi\right)_{X}$, are base points of $\left|\mathcal{O}_{X}\left(-2 E_{0}\right)\right|$. Indeed, since the vanishing order of $x_{2} \circ \pi$ along E_{0} is exactly 2 , it induces a non-zero element of $H^{0}\left(X,-2 E_{0}\right) / H^{0}\left(X,-3 E_{0}\right) \subset H^{0}\left(E_{0},-2 E_{0}\right)$. On the other hand, $\operatorname{dim} H^{0}\left(E_{0},-2 E_{0}\right) \leq 1$, because E_{0} is a non-hyperelliptic curve. Therefore, $H^{0}\left(E_{0},-2 E_{0}\right)$ is generated by the image of $x_{2} \circ \pi$ which vanishes at two intersection points P_{1}, P_{2} mentioned above. Let ϕ be the blowing-up at P_{1}, P_{2}, and put $A=A_{1}+A_{2}$, where $A_{i}=\phi^{-1}\left(P_{i}\right)$ for $i=1,2$. Then $2 \phi^{*} E_{0}+A$ is the cycle led by x_{2} and we obtain $\left(2 \phi^{*} E_{0}+A\right)^{2}=-6$.

Theorem 3.11. The maximal ideal cycle coincides with the fundamental cycle for any resolution of $\left(V_{a_{0}, a_{1}, a_{2}}, o\right), 2 \leq a_{0} \leq a_{1} \leq a_{2}$, if and only if $\alpha_{2} \geq l_{2}$ and $1<a_{1} / a_{2}+$ $\operatorname{gcd}\left(a_{0}, a_{1}\right) / a_{0}$. If this is the case, then the fundamental cycle is led by the holomorphic function x_{2}.

Proof. The fundamental cycle on a resolution is obtained as the pull-back of that on the minimal resolution. The same holds for the maximal ideal cycle, if the minus of it defines a free linear system on the minimal resolution. Therefore, the first assertion follows from Theorem 3.6, Lemma 3.8 and Proposition 3.9. The second assertion is clear, because $Z^{(2)}$ is led by x_{2}.

Example 3.12. For $\left(V_{2,3,2 n+1}, o\right)$, the above implies that the maximal ideal cycle coincides with the fundamental cycle for any resolution when $n=1,2$, while it holds not for all but for the minimal resolution when $n \geq 3$.

4. Further remarks

4.1. Kodaira singularities. Let S be a non-singular complex surface and $D \subset$ \mathbb{C} a small open disc around the origin. A surjective holomorphic map $\Phi: S \rightarrow D$ is said to be a pencil of curves of genus g, if it is proper and connected, and fibers $S_{t}:=$ $\Phi^{-1}(t)(t \neq 0)$ are smooth curves of genus g.

Definition 4.1 ([5]). A normal surface singularity (V, o) is said to be a Kodaira singularity, if there exists a pencil of curves $\Phi: S \rightarrow D$ such that, after a finite number of blowing-ups at non-singular points in non-multiple components of the central fiber $S_{0}, \Psi: S^{\prime} \rightarrow S$, there is a holomorphic map $\varphi: M \rightarrow V$ from an open neighborhood M of the proper transform of $\operatorname{Supp}\left(S_{0}\right)$ in S^{\prime} which defines a resolution of (V, o).

Proposition 4.2 ([5, p. 46], [6]). Let $\phi:(X, \mathrm{E}) \rightarrow(V, o)$ be the minimal good resolution of a normal surface singularity and \mathfrak{m} the maximal ideal of $\mathcal{O}_{V, o}$. Then (V, o) is a Kodaira singularity if and only if $\operatorname{mult}_{E_{j}}\left(Z_{\mathrm{E}}\right)=1$ holds for every component E_{j} satisfying $Z_{\mathrm{E}} E_{j}<0$ and there exists an element $f \in \mathfrak{m}$ such that the divisor $(f \circ \phi)$ is normal crossing and $(f \circ \phi)_{X}=Z_{\mathrm{E}}$.

Now, we return to the situation we are interested in. Consider the singularity of Brieskorn type and let $\pi:\left(X, \mathrm{E}_{\pi}\right) \rightarrow\left(V_{a_{0}, a_{1}, a_{2}}, o\right)$ be the resolution as before.

Lemma 4.3. π is not the minimal good resolution if and only if $a_{0}=a_{1}=2$, $a_{2}=2 m+1$ for a positive integer m (the rational double point of type $\mathrm{A}_{2 m}$).

Proof. Clearly, π is not the minimal good resolution if and only if E_{0} is a (-1)curve and the number of branches plugged to it is at most two.

Assume that π is not the minimal good resolution. Then, since E_{0} is a (-1)-curve, we have $l=1,\left(l_{i}, l_{j}, l_{k}\right)=(1,1, n)(n \geq 1,\{i, j, k\}=\{0,1,2\})$ by Lemma 3.5. First, assume that $n=1$. Then $\alpha_{0}, \alpha_{1}, \alpha_{2} \geq 2$, because $2 \leq a_{0} \leq a_{1} \leq a_{2}$. But, this implies that there are three branches, a contradiction. Second, assume that $n \geq 3$. Then $\alpha_{k} \geq 2$ and, we obtain a contradiction, because the number of branches is at least $l_{k} l=n \geq 3$. Finally assume that $n=2$. Then $\alpha_{k} \geq 2$. Furthermore, α_{k} is odd, because it is coprime to $l_{k}=2$. We have $\alpha_{i}=\alpha_{j}=1$, because $l_{k} l=2$ and the number of branches must be at most two. Therefore, by $2 \leq a_{0} \leq a_{1} \leq a_{2}$, we see $a_{0}=a_{1}=2$ and a_{2} is an odd integer not less than three. Then it is a rational double point of type $\mathrm{A}_{2 m}(m \geq 1)$.

Conversely, assume that $a_{0}=a_{1}=2$ and $a_{2}=2 m+1$ for some positive integer m. Then $l=l_{0}=l_{1}=1, l_{2}=2, \alpha_{0}=\alpha_{1}=1, \alpha_{2}=2 m+1, p_{0}=p_{1}=0, p_{2}=m$. Hence $g=0, d_{0}=1$ by Proposition 1.3, and exactly two branches are plugged to E_{0}. So, we obtain the minimal good resolution by contracting E_{0}.

The following shows that the sufficient condition given in [10, Corollary 4.6] is also necessary.

Proposition 4.4. $\left(V_{a_{0}, a_{1}, a_{2}}, o\right), 2 \leq a_{0} \leq a_{1} \leq a_{2}$, is a Kodaira singularity if and only if $\alpha_{0} \alpha_{1} l_{2} \leq \alpha_{2}$, i.e., $\operatorname{lcm}\left(a_{0}, a_{1}\right) \leq a_{2}$. If this is the case, it is associated to a pencil of curves of genus $(1 / 2)\left\{\left(a_{0}-1\right)\left(a_{1}-1\right)-\operatorname{gcd}\left(a_{0}, a_{1}\right)+1\right\}$.

Proof. (i) We first assume that $\left(V_{a_{0}, a_{1}, a_{2}}, o\right)$ is not a rational double point of type $\mathrm{A}_{2 m}(m \geq 1)$. Then π is the minimal good resolution by Lemma 4.3. Let Z denote the fundamental cycle for π. Assume that $\alpha_{2}<l_{2}$. Let \mathfrak{m} be the maximal ideal of $\mathcal{O}_{V_{a_{0}, a_{1}, a_{2}}, o}$. We have no $f \in \mathfrak{m}$ such that $(f \circ \pi)_{X}=Z$, because Z is not the maximal ideal cycle by Theorem 3.2. Hence ($V_{a_{0}, a_{1}, a_{2}}, o$) is not a Kodaira singularity by Proposition 4.2. Assume that $\alpha_{2} \geq l_{2}$. We already know that $\left(x_{2} \circ \pi\right)$ is a normal crossing divisor, and $Z^{(2)}=\left(x_{2} \circ \pi\right)_{X}=Z$ by Theorem 3.2. Furthermore, we have

$$
Z E_{w, v, \xi}= \begin{cases}-1 & \text { if } w=2, v=r_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Hence, by Proposition 4.2, $\left(V_{a_{0}, a_{1}, a_{2}}, o\right)$ is a Kodaira singularity if and only if $\operatorname{mult}_{E_{2, r_{2}, \xi}}(Z)=\left\lceil\alpha_{0} \alpha_{1} l_{2} / \alpha_{2}\right\rceil=1$, i.e., $\alpha_{0} \alpha_{1} l_{2} \leq \alpha_{2}$.
(ii) Next, we consider $\left(V_{2,2,2 m+1}, o\right)$. Then $\alpha_{0} \alpha_{1} l_{2}=2<\alpha_{2}=2 m+1$. Let Z^{\prime} be the fundamental cycle on the minimal good resolution $\pi^{\prime}: X^{\prime} \rightarrow V_{2,2,2 m+1}$. By Theorem 3.11, Z^{\prime} is led by x_{2} and it is clear that ($x_{2} \circ \pi^{\prime}$) is normal crossing. Hence $\left(V_{2,2,2 m+1}, o\right)$ is a Kodaira singularity, by Proposition 4.2.

The last assertion for the genus follows from [8, Theorem 4.3] or Theorem 1.7 (2).

4.2. Canonical cycle.

Definition 4.5. Let $\phi:(X, \mathrm{E}) \rightarrow(V, o)$ be a resolution of a normal surface singularity. A \mathbb{Q} divisor Z_{K} with support in $\mathrm{E}=\bigcup_{i=1}^{r} E_{i}$ is said to be the canonical cycle, if $-Z_{K} E_{i}=K E_{i}$ holds for any irreducible component E_{i}.

For the singularity of Brieskorn type, we can express Z_{K} in terms of some previously known cycles.

Proposition 4.6. Let Z_{K} be the canonical cycle for the resolution $\pi:\left(X, \mathrm{E}_{\pi}\right) \rightarrow$ $\left(V_{a_{0}, a_{1}, a_{2}}, o\right)$ in Proposition 1.3. Then

$$
Z_{K}=E+l_{0} l_{1} l_{2} l Z_{0}-Z^{(0)}-Z^{(1)}-Z^{(2)}
$$

where E is the reduced exceptional divisor,

$$
E=E_{0}+\sum_{w=0}^{2} \sum_{v=1}^{r_{w}} \sum_{\xi=1}^{l_{w} l} E_{w, v, \xi}
$$

and Z_{0} is the cycle with mult $_{E_{0}}\left(Z_{0}\right)=\alpha_{0} \alpha_{1} \alpha_{2}$ appeared in Theorem 1.4 as the fundamental cycle for the case $\alpha_{2} \leq l_{2}$.

Proof. We only consider the case where $\alpha_{0}, \alpha_{1}, \alpha_{2} \geq 2$, because the other cases can be carried out similarly. For short, we put $E_{w, v}:=E_{w, \nu, \xi}$, and $E_{w, 0}:=E_{0}$. By Proposition 1.3 and the fact that $E_{w, \nu} \simeq \mathbb{P}^{1}$ when $\nu \neq 0$, we have

$$
K E_{w, v}= \begin{cases}d_{0}+l\left(l_{0} l_{1} l_{2} l-l_{0}-l_{1}-l_{2}\right) & \text { if } v=0 \\ d_{w, v}-2 & \text { otherwise }\end{cases}
$$

On the other hand, as in the proof of Theorem 1.6, we have

$$
\begin{aligned}
& -E E_{w, v}= \begin{cases}d_{0}-l_{0} l-l_{1} l-l_{2} l & \text { if } v=0, \\
d_{w, v}-1 & \text { if } v=r_{w}, \\
d_{w, v}-2 & \text { otherwise }\end{cases} \\
& -Z_{0} E_{w, v}= \begin{cases}l & \text { if } v=0, \\
0 & \text { otherwise }\end{cases} \\
& -Z^{(k)} E_{w, v}= \begin{cases}1 & \text { if } w=k, v=r_{w} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

in view of Theorems 1.4 and 2.1. Hence, for our Z_{K}, it can be checked directly that $-Z_{K} E_{w, \nu}=K E_{w, \nu}$ holds for all w and ν.

References

[1] E. Brieskorn and H. Knörrer: Plane Algebraic Curves, Birkhäuser, Basel, 1986.
[2] D.J. Dixon: The fundamental divisor of normal double points of surfaces, Pacific J. Math. 80 (1979), 105-115.
[3] A. Fujiki: On resolutions of cyclic quotient singularities, Publ. Res. Inst. Math. Sci. 10 (1974), 293-328.
[4] F. Hirzebruch: Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlichen, Math. Ann. 126 (1953), 1-22.
[5] U. Karras: On pencils of curves and deformations of minimally elliptic singularities, Math. Ann. 247 (1980), 43-65.
[6] U. Karras: Methoden zur Berechnung von Albebraischen Invarianten und zur Konstruktion von Deformationen Normaler Flachensingularitaten, Habilitationschrift, Dortmund, 1981
[7] P. Orlik and P. Wagreich: Isolated singularities of algebraic surfaces with C^{*} action, Ann. of Math. (2) 93 (1971), 205-228.
[8] T. Tomaru: On Gorenstein surface singularities with fundamental genus $p_{f} \geq 2$ which satisfy some minimality conditions, Pacific J. Math. 170 (1995), 271-295.
[9] T. Tomaru: A formula of the fundamental genus for hypersurface singularities of Brieskorn type, Ann. Rep. Coll. Med. Care Technol. Gunma Univ. 17 (1996), 145-150.
[10] T. Tomaru: On Kodaira singularities defined by $z^{n}=f(x, y)$, Math. Z. 236 (2001), 133-149.
[11] T. Tomaru: Pinkham-Demazure construction for two dimensional cyclic quotient singularities, Tsukuba J. Math. 25 (2001), 75-83.
[12] T. Tomaru: \mathbb{C}^{*}-equivariant degenerations of curves and normal surface singularities with \mathbb{C}^{*} action, preprint.
[13] P. Wagreich: Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419-454.
[14] S.S.T. Yau: On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), 269-329.

Kazuhiro Konno
Department of Mathematics
Graduate School of Science
Osaka University
Machikaneyama, Toyonaka
Osaka 560-0043
Japan
e-mail: konno@math.sci.osaka-u.ac.jp
Daisuke Nagashima
Meiji Yasuda Life Insurance Company
2-1-1 Marunouchi, Chiyoda-ku
Tokyo 100-0005
Japan
e-mail: sm4032nd@yahoo.co.jp

[^0]: 2010 Mathematics Subject Classification. Primary 14J17; Secondary 32S25.

