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Abstract
In this paper, we consider type-changing equations for orleawn function of
two variables by using the theory of differential systems give fundamental prop-
erties and provide a notion of geometric solutions from avpigint of contact geom-
etry of second order. Moreover, we study the structure of@atenl overdetermined
systems and obtain an existence condition of solutions giemial class which are
called parabolic solutions of type-changing equations.

1. Introduction

Let J2(R?, R) be the 2-jet space:

(1) Jz(RZ! R) = {(X! Y.Z,p,Q, 1, S, t)}

This space has the canonical differential system (or higihéer contact systeng? =
{wo = w1 = wp = 0} given by the following 1-forms:

wo:=dz— pdx—qdy,

w1 :=dp—rdx—sdy,

wy :=dg—sdx—tdy.
In general, by a differential systenM(, D), we mean a distributioD on a manifold
M, that is, D is a subbundle of the tangent bundleM of M. Under the canonical
systemC?, we have the identificatiop = z,, q = Zy, I = Zyx, S = Zyy, t = zyy With

respect to the one unknown functian= z(x, y) of two independent variables, y. On
the 2-jet space, we consider PDEs (i.e. partial differémtgpations) of the form:

(2) F(X1 Y.z, pP,Q,T1,S, t) = 01

2010 Mathematics Subject Classification. Primary 58A15,08dary 58A17.
First author supported by Research Fellowships of the J8parety for the Promotion of Science
for Young Scientists.



102 T. NODA AND K. SHIBUYA

where F is a smooth function orl?(R?, R). We set
¥ ={F =0} c J(R?% R)

and restrict the canonical differential systé®d to . We denote it byD (:= C?|y).
We consider a PDEE = {F = 0} with the condition

(3) (Fr: FS: Ft) 7é (0! 0! 0):

which we will call the regularity condition. Thert, is a smooth hypersurface, and also
the restrictionr|s: © — J'(R?,R) of the natural projectionr: J?(R?,R) — J'(R?, R)

is a submersion. Due to the property, restricted 1-foum$s on T are linearly in-
dependent. Hence, we have the induced differential sydlem {woly = wilx =
wy|s = 0} on X. Then, D is a vector bundle of rank 4 oXx. For brevity, we de-
note each restricted generator 1-form|y of D by @; in the following. For such an
equationF = 0, we consider the following discriminant:

1
4) A:=FF— Z,FSZ'

DEFINITION 1.1. LetX = {F = 0} be a smooth hypersurface df(R?, R). For
the discriminantA = F, F; — (1/4)Fs? of F, a pointw € ¥ is said to be hyperbolic or
elliptic if A(w) < 0 or A(w) > 0, respectively. Moreover, a point € X is said to be
parabolic if (, Fs, Ft), # (0, 0, 0) andA(w) = 0.

We take the subseX, := X N{A =0} of X. Then, the conditiorz, = X means
that X is locally parabolic, and also the conditian, = @ means thatx is locally
hyperbolic or locally elliptic. Then, we define a notion ofpgrchanging equations
as follows.

DEFINITION 1.2. LetX be a second order regular PDE.3I, is a proper subset
of X, we call X type-changing equation.

In this paper, we consider the following problem.

PrOBLEM 1.3. For type-changing equations (2), investigate a loedualsior (or
degeneration) of associated differential systems arowarebplic points.

The notion of these type-changing equations has been glmetadduced by Clelland,
Kossowski and Wilkens in [3]. They considered a specialsctEsvionge—Ampere equa-
tions which is called symplectic Monge—Ampére equationsl studied type-changing
equations belonging to these Monge—Ampére equations by asimotion of intermedi-
ate integrals. Compared with their work, we will study thegetric structure of type-
changing equations from a viewpoint of contact geometryeobsd order. More precisely,
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our purpose is to formulate geometry of type-changing eégnats a theory of submanifold
in the second jet spac¥(R?, R).

This paper is organized as follows. In Section 2, we give &mental results and
provide a notion of solutions from a viewpoint of second orde Section 3, we study
regular overdetermined systems associated with typegihgrequations to construct
solutions of a special class which are called parabolictmris. Consequently, we ob-
tain a classification of the structure equation of induceylile overdetermined systems
(Theorem 3.3). This result involves the involutiveness diton of associated regu-
lar overdetermined systems. Hence, we can discuss sa@utiboriginal type-changing
equations by using this condition. In Section 4, we consigpe-changing equations
of some special forms, and clarify properties of these spemjuations (Theorem 4.1,
Theorem 4.5, Theorem 4.6).

In the rest of this section, we explain the position of typestging equations in
the category of second order PDEs of single type for two irddpnt one dependent
variables. See the above figure. In this figure, categoriagghf hand side from type-
changing equation are still precisely unknown. Howevernamsubmersion category,
there exists a result [6] on a characterization of such émpmtvia differential systems.
There are uncharted territories for second order PDEs aflesitype. Our aim is to
clarify this figure from a viewpoint of contact geometry ofcead order.

2. Examples and fundamental properties

In this section, we mention fundamental properties, ane gindel examples. We
first introduce an invariant of a second order PRE= {F = 0} which is defined in
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the paper [6] to discuss fundamental properties of typewging equations. Lek =
{F = 0} be a smooth hypersurface df(R?, R) with the conditiondF # 0. We fix
a base pointw € . For any open neighborhood of w in ¥, U is decomposed
as follows:

(5) U =UnUUeUUpUUsgjng (disjoint union),
where the components are given by
Un := {v € U | v is hyperbolig: hyperbolic type,
Ue := {v € U | v is elliptic}: elliptic type,
Up :={v e U | v is paraboli¢: parabolic type,
Using 1= U \ (Un U U U Uy).

For each componend; (i = h, e, p, sing), the equivalence relatiom; ~ w, (w1, w, €
U;) is defined as follows:

(6) There exist a continuous curee [0, 1] - U; s.t. ¢(0) = wq, c(1) = wo.

We denote the number of elements of the quotient splage consists of path-connected
components by #( /~).

Now, we fix a diffeomorphismJ?(R?, R) =~ R Then, the standard metric on
R® induce a metric onJ?(R?, R) by using the diffeomorphism. By a diffeomorphism
¢: J’(R? R) — R8 we define the following induced norm |:

lp—al == llg(p) —¢@)ll, p,q eI
where || - || is the Euclidean norm. We choose the following neighborhood
U:=B(w)={veX||v—w|< e}

where | - | is the restriction of the norm od?(R?, R) to . We decompos&) similar
to (5):

7 U = B"(w) U BE(w) U BP(w) U BS"(w) (disjoint union).
Then, we consider the numbers:

Hy(w) := lim #(B" (w)/~),

Ep(w) 1= lim #(B (w)/~),

PL(w) == lim #(B] (w)/~),

§.1(w) = lim #(BS"Y(w)/~).
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We remark that if a limit does not exist, then we set that thenlmer isoco. These

numbers do not depend on the contact isomorphismsxoflY), but depend on the
metric on J2(R?, R) under the identification)?(R?, R) =~ R® Hence, we define the
following invariant of (£, D) at w.

DEFINITION 2.1. We set

H(w) = Jr;lilgs(lin"no #(B" (w)/~ )
E(w) := min (1im #BF(w)/~)),
P(w) := min,(1im #(B7 (w)/~)),

S(w) := min (Lﬁ}) #(Bfmg(w)/w))'

J2=R8
where the minimum is taken over all diffeomorphisighs Moreover, we set
(Ha E! P! S)w = (H(w)l E(w)! P(w)l S(w))-

The value H, E, P, S),, does not depend on the identificatigf(R?, R) = RE.
Thus, it is an invariant of X, D) at w.

REMARK 2.2. For regular PDEZ treated in this paper, values & are zero.

We start to discuss type-changing equations. The equatien0 is a normal
form of locally parabolic equations. Now, if we consider alefied equations =
f(x,v¥,z p,q,st), then there exist examples of type-changing equations.eMair,
in fact, all of second order regular PDEs can be written irs thurm by using the
implicit function theorem and contact transformations.ughit is sufficient to research
the equations of the form = f(x,y,z,p,q,s,t). In this case, the discriminant i& =
—(fi+ fs2/4), and we have the expressialp = { f2+4f =0} C . We assume the
following essential condition to study type-changing dopres via differential systems.

ASSUMPTION 2.3. A subsetX, of a type-changing equatiolX is a smooth
submanifold.

In general, there are two cases for type-changing equations

(A) dA#0 on X,
(B) dA=0 on X,

We have the following result with respect to the case (A).
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Theorem 2.4. For a second order regular PDE: = {F = 0}, if 1-forms dF, dA
are linearly independent oix,, then X is a type-changing PDEand X, is a smooth
hypersurface of. Moreovey for each pointv € X, type-changing of around v is
given by using our invarian(H, E, P, S), as follows

(H,E,P,9),=(1,1,1,0) for vex,

Proof. Since 1-formslF, dA are linearly independentZ, is a smooth hyper-
surface ofZ, and ¥ \ X, has two connected componentls, U, around a pointv.
Now, signatures ofA on these components are one of the followings:

(i) Both of U, U, are hyperbolic.

(i) Both of Ug, U, are elliptic.

(iii) One of the components is hyperbolic, and another ig&dl.

We assume that conditions (i) or (ii) are satisfied thr, U,. We fix any pointv € Xy,
Moreover, we take any curve: [—1, 1] — T satisfying the following condition. This
curve is transverse ta, and satisfiexc(0) = v. If we regard A as a function over
this curvec(t), then we havelA = 0 at a pointv = ¢(0) from the condition (i) or (ii).
However, this fact contradicted the linearly independeote F and dA. ]

Now, we introduce regular overdetermined systems whicheiy ¥mportant class
in overdetermined systems.

DEFINITION 2.5. For smooth function§, G on J2(R?, R), the system of PDE:
F(X,y,z, p,q,rst)=06(Xvy,zpq,rst)=0,

is called overdetermined system. Moreover, an overdeteshsgsten® = {F = G = 0}
is regular if the following condition is satisfied:

Two vectors &, Fs, ) and Gy, Gs, Gt) are linearly independent.

Under this definition, for the case of (A), if vectorB;(Fs, Ft) and (Ar, Ag, Ay) are
linearly independent, thel, becomes a second order regular overdetermined system.

REMARK 2.6. A geometric theory of second order regular overdetezthisys-
tems is developed by E. Cartan, K. Yamaguchi, etc. ([2], )i14Therefore, we can
appropriate their results whes, is a regular overdetermined system. Indeed, we will
study regular overdetermined systerBg associated with type-changing equatioBs
to construct solutions ok which are called parabolic solutions in Section 3.

On the other hand, the case of (B) gives large degeneratiodeet, there is a
possibility that dimX, =i for 0 <i < 6. A submanifoldX, is a base poinwg when



TYPE-CHANGING EQUATIONS 107

dimX, = 0. For the case of (B), type-changing equations are dividéa the follow-
ing subclasses:
(B-) dmX, =6
(B-i-i) X\ X, is hyperbolic, (i.e. H, E, P, S, = (2,0, 1, 0)).
(B-i-ii) X\ X, is elliptic, (i.,e. H, E, P, S),, = (0, 2, 1, 0)).
(B-i-iii) X \ X has hyperbolic and elliptic components, (i.¢d,(E, P, S), =
1, 1,1, 0).
(B-ii) dim £, <5
(B-ii-i) X\ X is hyperbolic, (i.e. d, E, P, §),, = (1,0, 1, 0)).
(B-ii-il)y x \ X, is elliptic, (i.e. H, E, P, S, = (0,1, 1, 0)).

Proposition 2.7. For the above described each class (&), typical examples are
the followings. In particulgrall classes are not empty.

ExAMPLE 2.8 (Case A). We consider the equatiin= {F := xt+r = 0}. This
equation is a regular PDE, becaus$®, s, Ft) = (1,0,x). Hence, E,D) is a differential
system. Note thatA = x, and X, = {x = 0}. Forv € X,

v is hyperbolic for x < 0,
v is parabolic for x =0,

v is elliptic for x > 0.

EXAMPLE 2.9 (Case B-i-i). Take an integer > 1. We consider := {F :=
x"s +r = 0}. From a calculation, K, Fs, Ft) = (1, x", 0) is satisfied. HenceX is a
regular PDE, and¥, D) is a differential system. The discriminant & = —x?"/4 and
¥p = {x = 0}. Moreover we havelA =0 on X, and X \ X, is a hyperbolic part.

ExXAMPLE 2.10 (Case B-i-ii). Take an integer> 1. We considers := {F :=
x"t +r = 0}. Since &, Fs, Ft) = (1, 0,x?") is satisfied, £, D) is a differential
system. We also hava = x?" and £, = {x = 0}. Moreover we havelA =0 on £,
and X\ ¥, is an elliptic part.

ExXAMPLE 2.11 (Case B-i-iii). Take an integer > 1. We considers := {F :=
x2"*tt 4 r = 0}. Since &, Fs, Fy) = (1, 0,x>"1) is satisfied, E, D) is a differential
system. We also hava = x*"*! and £, = {x = 0}. Moreover we havelA = 0 on
Y. By the form of discriminant, type-changing happens astedi with a signature
of x.

For the case of dint, < 5, we give examples which contain examples for the
cases of (B-ii-i) and (B-ii-ii).
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EXAMPLE 2.12 (Case B-ii-). Consider the equatidh:= {F := t(a;x?+ apy? +
agz? + asp? + asq? + (1/3)ast?) + azs2 —r = 0}, where &, ..., a7) # (0, ..., 0) and
a > 0. This is also a regular PDE. We have = —(a;x? + apy? + asz? + ayp® +
asq? + apt? + a7°s?) and Tp = {aX = &y = &z = ayp = asq = agt = a;s = 0}.
We define a numbej satisfying 0< j < 6 as follows. Letj be the number of O in
coefficientsa;. Then, we have dint, = j. For example, if all of; are not zero, then
¥, = {0 € J?} is an only one point. The complemeRt\ X, is a hyperbolic part, and
we also havedA =0 on Xp.

EXAMPLE 2.13 (Case B-ii-ii). Consider the equatiah:= {F := t(ayx?>+axy?>+
agZ?+asp?+asq?+ (1/3)agt?+a7) +r + 2. /arsins = 0}, where @y,...,a7) # (0,...,0)
anda > 0. This is also a regular PDE. Moreover, we have= (a;x? + ayy? + azz> +
asp? + asg” + ast?) —az(cos s— 1). For example, if all ofg; are not zero, thert, =
{0 € J?} is an origin and the complement is an elliptic part. We alseeha relation
dA =0 on Xp.

Now, we provide a notion of solutions (i.e. integral marif®) of second order
PDEs in the sense of contact geometry of second order. Inrglemategral manifolds
L of differential systemsX, D) are defined as 2-dimensional submanifoldsuch that
TL C D, that is, pull-back of generator 1-forms @f to L vanish.

DEFINITION 2.14. Let &,D) be a second order regular PDE. For a 2-dimensional
integral manifoldL of %, if a restriction of a natural projection: J2 — J' to L is
an immersion on an open dense subset jnthen we callL a geometric solution of
(2,D). If all points of geometric solutionk are immersion point, then we call regular
solutions. On the other hand, geometric solutibnkave a nonimmersion point, then we
call L singular solutions. In particular, when we consider typasging equation, if
solutionsL of X are subsets oE,, then we callL parabolic solutions.

REMARK 2.15. From the definition, images(L) of geometric solutiond. by
the projectionz are Legendrian inJ}(R?, R), (wo|.() = dwol() = 0).

ExAMPLE 2.16 (regular solution). Consider the regular PRE= {yt — 2q +
(1/3)r +2xy = 0}. From the discriminanh = (1/3)y, we haveX, = {y = 0}. A 1-form
dA = (1/3)dy does not vanish o ,. Hence this equation is a type-changing equation of
the case of (A). Then, we consider a submanifole: {(X,Y,Zz,zy, Zy, Zxx, Zxy, Zyy)} defined
by a function of two variableg(x, y) = x®+ y* + xy? + xy. This submanifold satisfies an
equalityF = yt—2q+(1/3)r +2xy = y(6y + 2x) — 2(3y? + 2xy+ X) + 6x/3+2xy = 0.
Moreover, the projection of to J* is an immersion. Hence this solution is a regular so-
lution which is transverse t& . Thus, this is not a parabolic solution.
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EXAMPLE 2.17 (singular solution). Consider the regular PRE= {r —2st = 0}.
From the discriminantA = —(2s + t?), this is a type-changing equation of the case
of (A). Then, we consider a submanifold given by

27

9 3
X=X, y=t3—3xt, z=—t'— —xt°+ =xt’,
y 280 "20° T3

9 3 3 3
= —t°— Zxt3, q=>t*— Zxt?
P=710" 2 9=7" 73

3
r=3t53 s=>t3 t=t.
2

This submanifoldL is an integral manifold of X, D), and (L) has a singular point
at 0e J2. Thus, this solution which is called cuspidal edge is a dengsolution. This
is also not a parabolic solution.

3. Submanifolds X, as regular overdetermined systems

In the previous section, we introduced a notion of solutiohsecond order regu-
lar PDEs. In particular, we defined a notion of parabolic 8ohs for type-changing
equations. Parabolic solutions of type-changing equateme obtained by solutions of
associated regular overdetermined systems. Thus, we stgdjar overdetermined sys-
tems associated with type-changing equations in this @ectBy Theorem 2.4, for a
type-changing equatiok = {F = 0}, if 1-forms dF, dA are linearly independent, then
¥p ={F =0,A =0} is a smooth hypersurface ai. Moreover, if we assume that
given F = 0 is of the formr = f(x,y,z p,q,s,t) and the functionA = —(f; + fs2/4)
on X satisfies s, A¢) # (0, 0), thenX, is a regular overdetermined system. Recall
that results given by Cartan, and we clarify relations betwthese results and regular
overdetermined systens, associated with type-changing equations.

According to the result given by E. Cartan ([2], [14]), if anka3 differential sys-
tem Dy := D|x, on a regular overdetermined systéiy does not have torsion, then the
structure equation of the systeB, is one of the following three types at each point.
(i) There exists a coframéwy, w1, w2, w1, w2, 22} such that

dwg = w1 A w1+ wr A  mod oy,
(8) dw1 =0 mod wy, w1, @,

dw'z = W N T2 mod wo, W1, W2.

(i) There exists a coframéwy, w1, w2, w1, wy, w12} such that

dwo = w1 A1+ wr Ay mod wy,
9 doy = w2 A2 mod @y, w1, @,
dlD'z = w1 N\ 21 mod wo, W1, W2,

where 1o = mo1.
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(iii) There exists a coframéwy, w1, @2, w1, wy, 11} such that

dwo = w1 A w1+ wr Ay  mod oy,
(10) do = w1 A1 mod @y, w1, wo,

dZZTz = w2 N\ T2 mod wo, W1, W2,
where i, = moo.

REMARK 3.1. In the above structure equations, if a tefm; A w, = gdxA dy
for functions f, g appears, then we call the term torsion. The torsion is anrwbst
tion of the existence of solutions. More precisely, the exise of torsions means that
there does not exist an integral element®f. Here, the integral element is defined
as follows:

Let (R, D) be a differential system expressed by

D={wy=---=ws=0}.

For x € R, E C T¢R is called n-dimensional integral element db, if E is an
n-dimensional subspace ifiy R such that

wilg =+ = wslg = doi|g =+ = dws|g = 0.

Namely, integral elements are candidates for tangent spaicetegral manifolds oD.
Hence, if a torsion appears, then there does not exist ai@olut

Then, it is natural to consider the following problem.

ProBLEM 3.2. Examine when regular overdetermined systebis, D) associ-
ated with type-changing equatio’s correspond to which structure equations.

From now on, we consider this problem. Let
Yp={r=1fXy,20p0q,st), A=0}

be a regular overdetermined system associated with a tyaeging equation. We div-
ide a differential systenk, into the following two cases:
(N As#0,
(I As=0.
We first study the case of (I). By exterior derivation &f we have
d

1 d
dSE—A—S(&AdX—F @A dy + Ay dt), mod wy, w1, w>.
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Here,

4.8, 08,08, 8 8._3 .0, 9,9
= P Cody Ty 4 ap " ag

In terms of this expression, the structure equatiorDgfis given by

dwg = w1 A @1+ w2 A o, mod wy,

d fs d 1d
=—f- 22— ——A
dwy (dyf A dy A+ A dx )dX/\dy

1 A
+ = (fsA¢ — fiA)dt Adx + — dt Ady, mod wo, w1, @2,
AS AS

1d A
dwzz—(xaAdx+dt)/\dy+K;dt/\dx, mod @y, w1, @2,

S
wherew; := dx, w, := dy. If we set

df deA+id_A
dy Asdy Agdx’

then the structure equation is written as follows:

do; =adxAady+ bdtAadx+ cdtAdy,

doy =edxandy—dt Ady+cdtAdx, modmy, @1, @o.

This equation is also expressed by using matrices:

(12) dwo = (w1 a)z)/\(wl),

w2

(Gm) =100 5)e (0 S8 (&)
={(c 5o (75 eaf (&)

Now, we consider the following real symmetric matrix:

<=(2 5)

(12)
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For signatures of eigenvalues of this matix there are three cases.

(I-1) (+, +) or (-, =) type, (i.e. both of eigenvalues are positive or negative).
(I-11) (+, =) type, (i.e. two eigenvalues have distinct signatures).

(I-111) Degenerated type, (i.e. either of eigenvalues isoze

For these cases, we consider corresponding normal foreng(ifi. (i), or (iii)) of struc-
ture equations. By solving detE — X) = 0, we have the description,

_b-1+ /(b-1P +4b+ D)

A
2

Since eigenvalues of real symmetric matrices are all realbmus, b—1)>+4(b+c?) is
not negative. Corresponding to the above signatures ofieddiges, we have the follow-
ing classification result.

Theorem 3.3. Let (X, D) be a type-changing equation arfél, D) be the regu-
lar overdetermined system. TheB, has torsion if and only if b= —c?, a + ce # 0,
where

b fsAr — ftAs,
As
A
ci= —t,
As
_ 1da
~ Agdy’

Moreover the following correspondences hold

D, has normal form(i) if and only if b= —c?, a+ce=0.
D, has normal form(ii) if and only if b> —c?, or Ag = 0.

D, has normal form(iii) if and only if b< —c2.

Proof. First of all, we can check easily the following copesdences with re-
spect to signatures of eigenvalues for the case of (I).
(1) Eigenvalues are type of (I-1) if and only ifs # 0, b < —c2.
(2) Eigenvalues are type of (I-1l) if and only ks # 0 andb > —c?.
(3) Eigenvalues are type of (I-1ll) if and only iAs # 0, b = —c?.
We consider the case of (I-). It is sufficient to consider, (+)-type. We have the
following lemma.
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Lemma 3.4. For any Pe GL(2,R), we changel-forms

& () =7(5) (2)-+(2)

w2 dy [op) w2
Then the structure equatior{12) is transformed in terms of appropriate functions
B as follows

dwoz(a)l a)z)/\(?l),

(14)
d(f)'l =tP dwl
d(f)‘z - dZUZ
b ¢ aw 0 1))
— )t 2 1 ~ ~
_{P(C _1)Pdt+( 0 ,36()1)}/\((02)' modwo,wl,wz.

We omit the proof of this lemma. We continue to prove the statet of Theorem 3.3.
For any real symmetric matriX, there exists an orthogonal matii such that

b C XM O
tP P =
(C _1) _(0 )»2)' Ao = 0.

If we change 1-forms by using this matriR, we have the following structure equation
from the equation (14):

dwo=(a)1 wg)/\(ajl),

w2

doi | a0 awy 0 ol
(15) (dfﬁz):{(o A2)dt+( 0 ﬂwl)}A(wZ)'

Moreover, if we transform similarly by using a matrRR given by

1
— 0
p=| v} ,
0 -
VA2

then, by taking appropriate 1-forms, we have

dw():(a)l a)z)/\(?l),

(o) = {00 )er (5" )}~ (22)
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Here, if we setr := dt + cw;, + Bw;, then we have the normal form (iii):

dwo = (1 wz)/\(él),

op)
darg _(7™ O N
d(f)‘z - 0 x w2 '

For the case of (I-1l), we can take a matrix satisfying

b c A O
t 1
P(C _1)P—(0 )\2), )\.1>0,)\.2<0.

Then, we have the following structure equation which canraesformed to the normal
form (ii):

A

dzzroz(a)l a)z)/\(?l), mod wy,
@

de_l T 0 w1 ~ A
. = AN ,  mod wp, W1, W2.
dws 0 —m w2

For the case of (I-1ll), we use the conditidn= —c?. Then, the structure equation is
written as

dwy = dX A @y + dy A @y, mod wy,

do1\ _ [(-¢* ¢ —ady O dx
(am) =10 S) e (757 i () moemomumn

Here, if we take a 1-formwy := @y + cw>y, then we have

dwg = dxA @+ (dy—cdx) Aw,, mod wy,

da 0 0 (-a-cedy 0 dx .
(dw2) {(c _1)dt+( 0 edx)}/\(dy)’ mod @y, @1, @?.

If we setn := —dt + edx w; :=dX, wy :=dy—cdx, then we have the following:

dwoz(wl a)g)/\(wl), mod @y,
w2

deoy _ 0 0 0 (a+ce)dx w1 ~
(8213 Den(3 (3] e

Thus, ifa+ ce# 0, thenD, has torsion. On the other hand,af+ ce = 0, we have
the normal form (i).
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Finally, we consider the case of (II). From the condition, have As = 0 and
A¢ # 0. We have the following relation.

d d
th——(d—XA dX+ d_yA dy), mOd wo, Wy, W2.

By using this relation, the structure equation Df is given by

df fi dA

do = {(d—y— Ed_y) dx—ds} A (fsdx +dy),

1dA
dwy = _(Ea dy+ dS) AdXx, mod wy, wq, ws.

If we set,
df fi dA
a=————,
dy Agdy
b:= f,
1dA
Ap dx’

dwy _ —bds adx—ds A dx

dwo, )~ \ —ds cdx dy )’
Moreover, we rewrite as follows:

doi | -b -1 —ady O dx
(am) =A(2 0 )e= (57 ca)in (&)
We consider the real symmetric matri given by
-b -1
X = (_1 5 )

Eigenvalues of this matriXX are given by

—b+ Vb2 +4
5 :

then we have

Signatures of these eigenvalues are distinct. Thus, we tievenormal form (ii) by
using the similar argument. []

In fact, Cartan proved that differential systen,(D,) satisfying (i) locally are in-
volutive in general [2]. On the other hand, differential tgyss satisfying (ii) or (iii) are
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not involutive. These are equations of finite type [14]. Now, give examples of associ-
ated regular overdetermined systeBs which have the normal forms (ii) or (iii) locally.

EXAMPLE 3.5. Consider the equatiok = {r = t?}. From the discriminant
A = 2t, this equation is type-changing and we have the correspgnadigular over-
determined systent, = {r =t = 0}. This is a model example which has the normal
form (ii).

EXAMPLE 3.6. Consider the equatioR = {r = s? + t}. From the discriminant
A = 1-—s?/4, this equation is type-changing, and we have the correpgrregular
overdetermined systerB, = {r = s?+t, s=+2} = {r =t+4, s= +£2}. This system
has the normal form (iii) locally.

In the rest of this section, we discuss associated regulardetermined systems
which have the normal form (i). From the involutiveness aégh systems, it is well-
known that there exist locally real-analytic solutions farch a system by using the
Cartan—Kahler theorem. However, in this case, we have th@adeof construction of
solutions given by Cartan or Yamaguchi in té°-category which is stronger method
than the Cartan—Kahler theorem as follows ([2], [14]). &iis fact, Cartan character-
ized regular overdetermined involutive systeni§ Dgr) by the condition that R, DR)
admits a 1-dimensional Cauchy characteristic sys@m®Dgr). Here, the Cauchy char-
acteristic systenCh(D) of a differential systemR, D) is defined by

ChD)(X) ={XeDX) | X | dwj =0 (modwy, ...,ws) fori =1,...,5s},

where D = {w; = --- = ws = 0} is defined locally by defining 1-forméw;, .. ., ws}.
For these involutive systemR, when we consider corresponding leaf spac¢ées=
R/Ch(DR), we have differential systemBy of rank 2 onX. Moreover, for the pro-
jection p: R— X, the relationDg = p;}(Dy) is satisfied. Under this relation, we can
take an integral curve oDy, and the lift of the integral curve is a surface & By
the construction, this surface is required solution (morecigely, see Example 3.7).
Regular overdetermined systems treated in this paper aheced by type-changing
equations. Hence, solutions of these systems are alsogbaraolutions of original
type-changing equations. We give such an example, thahis|utive associated regu-
lar overdetermined system. First, an overdetermined systescribed byX, = {r =
f(x,y,z p,q,s,t), A =0} associated with a type-changing equatibnis regular if
and only if the following condition is satisfied

1 1
(As' At) = (_E fs fss_ fS'[! _E fs fst - ftt) 7é 0.

Next, ¥, is involutive if and only ifAs #0, b= —c?, anda+ce= 0 by Theorem 3.3.
Here, if type-changing equations are given by the farm f(s,t), then we havea =
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e = 0. Hence, we study only two conditionss # 0, b = —c? for this case. From
now on, we consider the construction of involutive examptesequations of this form.
Then, we write explicitly the above two conditions:

1
(16) > fsfss+ fst # 0,
(17) As(fsAp — fiAg) = —AZ.

By using the conditiorA = 0, the later condition (17) is rewritten as follows:
1 2
(18) ftt + 1:s 1Est + Z fs fss = 0.

We consider the existence problem of functiofigs, t) satisfying the conditions (16)
and (18). We give a very interesting example which satisfiese conditions.

ExAMPLE 3.7. Consider the equatioR = {r = 2st — (2/3)t%}. From the dis-
criminant A = —2s+t2, ¥ is type-changing. The corresponding regular overdetegchin
system is given byE, = {r = 2st— (2/3)t3, s =1t%/2} = {r =13/3, s =1%/2}. It is
well-known that this systenx, has infinitesimal symmetrg, which is 14-dimensional
exceptional simple Lie algebra [2]. We calculate the strretequation of the system
(X, Dp) of rank 3. A differential systenD, = {wo = w1 = w» = 0} is given by

wo=dz— pdx—qdy,
3 t2

wlzdp—gdx—ady,

t2
wgqu—de—tdy.

The structure equation is given by

dwg=dxAdp+ dyAdaq, mod wy,
(19) dop = —t2dt Adx —t dt A dy, mod wy, w1, @y,

doy = —tdxAdx—dt Ady, mod wy, @1, w>.
We take a new coframe:
{wo, @1 := @1 —twy, wy,m :=dt, w; :=dX, wy :=tdx+dy}.
On this coframe, the above structure equation is writtenodews:

dwg = w1 A @1 + w2 A @y, mod wy,
(20) de'l =0, mod wo, Zf)’l, wo,

dZD'2 = w2 N\ T, mod w0, UA)'l, w?.
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Thus, &y, Dp) is involutive type. Hence, there exists a solution Bfy,(D,) (i.e. para-
bolic solution of &, D)). In fact, this solution is constructed explicitly by E. i@m

[2]. Hence, we also describe this solution followed by Qarte Yamaguchi (refer to
[7], [14]). First, the Cauchy characteristic syst&@h(Dp) of (X, Dy) is given by

Ch(Dp) ={mo =1 =2 =w2 =7 =0}
= spa 0 t8+( t)8 o 29
=Sp ” y p—1q .

Since this system has constant raiiy(D,) gives a 1-dimensional foliation oix .
Hence a leaf spacB := X,/Ch(D;) is a 5-dimensional manifold locally. On this quo-
tient space, We have a local coordinakg, {2, X3, X4, Xs) given by

1 243 1 2 13
x1:=z—xp—|—xqt—|—éxt, x2:=p—qt+§yt +ét X,

1
X3:=—Q+§yt, X4 =Y+ Xt, X5:=—t.

Conversely,Z, is aR-bundle onB locally. If we take a coordinate functionof R, then
the coordinateX, vy, z, p, g, t) is expressed by using the coordinate, ko, X3, X4, X5, 1):

X=X Y =X+ AXs,

1 1
Z= X1+ Ao — E/\X4(X5)2 — 6’\2()(5)3‘

1) )

1
Xs — = A(X5)?,
5 XaXs 2(5)

1 3
P = X2 + X3Xs + ék(xs) y 0 =—X3—

t = —Xs.

On the base spacB, we consider a rank 2 differential systeBg = {01 = ap =
az = 0} given by

1
o =dxg + (x3 + §x4x5) dxs,
1
az =dx + (Xs - §x4x5) dxs,
1
o3 = dX3 + E(X4 dX5 — Xg5 dX4)

It is well-known that this systenDg is a flat model of (2, 3, 5)-distributions [14].
Indeed, we can check this fact by calculating derived systeience,Dg has also
infinitesimal automorphisnG,. For a projectionp: £, — B, generator 1-forms oD,
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and Dg are related as follows:
wo 1= Prag + Xpray,
w1 = piaz — Xpas,
wy = —pPras.
Thus, B, Dg) is a retracting space oy, Dp), that is, &€, D) = p*(B, Dg). By us-

ing this correspondence, solutions &ff D) are constructed by solutions oB(Dg).
We consider integral curvexr) of Dg given by

1 1
X1 = p(r), %o = —w”(r)(w’(r) - Ew”(f)) 3 / (@"V(x) dr,
X =90+ 57", K=, %= ()

where r is a parameter of curves, angt) is an arbitrary smooth function of. By
using these integral curves, we construct integral susfade(x,, D). Projections of
integral surfacesS of D, correspond to integral curvex{z). Thus, integral surfaces
S:= Y(x, 7) of (X, Dp) are given by the coordinate function= A of the fiber:

X=X, y=r1—xt¢"(1),

2= o(0) = x¢ (D)9 () + AP + 5% [ (0P dr.

Here, we omit the explicit description gd, g, t. By eliminating A, we can obtain so-
lutions z = z(x, y) of (X,, Dp). From these discussions, we have regular parabolic
solutions S of the type-changing equatian= 2st — (2/3)t°.

On the other hand, we give a singular parabolic solution dews. We first take
integral curvest(r) of Dg which are different fronc(z) given by

1
Xp = 5{/(¢—w’)dr—<p¢)’r},

1 , 1
o= 3{ [0 wordr+ 5orl,

1 ,
xS=‘§/(<ﬂ—w)dr, X =¢(1), Xs=r1.

Surfaces inX, obtained from these integral curvé&) by the correspondence (21) are
singular solutions if and only if

rank(x’\ Yo Zn P q’\)zl
XT yf ZT pf q'[
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If we put x4 := f(r) = 0, then we have a singular solution of special type:

1
X=2x Yy=At, z=—6A2t3,

1 1
p= 6“3' q= —Extz, t=t.

This is a singular parabolic solution of the original tygeanging equation.

In the above discussions, we treated examples of type-aimeguations: whose
corresponding regular overdetermined systémshave the normal forms (i), (i), (iii).
On the other hand, there exist type-changing equations tegular overdetermined
system have torsions. Such an example is obtained by modiipvolutive systems (i).
We give a typical example by modifying Example 3.7.

EXAMPLE 3.8. Consider the equatiofl = {r = 2st—(2/3)t®+y}. From the dis-
criminantA = —2s+t2, ¥ is type-changing. The corresponding regular overdeteschin
system is given byE, = {r = 2st—(2/3)t3+y, s=1t%/2} = {r =13/3+y, s=1%/2}.

A differential system Ep, Dp) has torsion. Indeed, the structure equation can be writ-
ten in the form:

dwo = w1 A @1 + wo A @y, mod wy,

da, = !
@2) NiEs:

dor, = —(t> + 1) dt Awy +

w1 A w3, mod wo, @1, @2,

w1 A wp, mod o, @1, @,

t
V241

where 1-formszi, w; (i = 1,2) are given by the transformations (13) for the mafix

p_ 1L (1t)
Viye\lt 1)

REMARK 3.9. Summarizing these discussions, we showedalhatasseqi.e. tor-
sion (i), (ii), (iii)) of regular overdetermined systems Tineorem 3.3can be realized
from type-changing equations.

4. Type-changing equations of special types

In this section, we consider type-changing equations ofiap&/pes. We first con-
sider equations of the following form:

(23) Y= {r = f(Xv Y. %, p,q, t)}

For these equations, we state as follows.
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Theorem 4.1. LetX ={r = f(X,y,2 p,q,t)} be a second order regular PDE.
Then X is a type-changing PDE around a point if and only if

ff(w)=0 and f#0 around we X,
and the corresponding overdetermined system
Sp={r=1 fi=0}

is regular if and only if f # 0. Moreovey regular overdetermined systen(E,, D)
have always the normal forrii).

Proof. The discriminant is given by = — f;. Hence,X is a type-changing equa-
tion if there is a pointw such that

filw)=0 and f,#0 around w € X.

Moreover, an overdetermined system, induced by X is regular if and only if
(As, At) = (0,—fy) # (0,0). SinceAs =0, A; # 0 is satisfied onz. Thus, €y, Dy)
has the normal form (ii) by Theorem 3.3. O

Corollary 4.2. Type-changing equations of the form= f(x,y, z, p,q,t) do not
induce involutive regular overdetermined systems.

EXAMPLE 4.3. Consider the equatiof = {r = cit?+ct +¢3| G € R, ¢; # 0}.
Since the discriminant is given b = —(2cit + ¢), this is a type-changing equation.
Moreover,X, = {r = a, t =b|a, b e R} is a regular overdetermined system which
has the normal form (ii).

We next consider equations of the following form:

(24) Ti={r=f(x,y,2 p, q,9)}.

These equations satisfy the regularity condition, and fkerighinant is given byA :=
—fs2/4. HenceX is a type-changing equation if and only if there exists a paire ©
such that

fs(w)=0 and fs#0 around w.
For equations satisfying this condition, when we consillgr= {r = f, A =0}, then
we havedA =0 on X, by usingdA = —fsdfs/2. Hence,X, is belong to the case
of (B). Now, we study induced overdetermined systems givwen b

(25) Sp={r=f fs=0}.
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REMARK 4.4. This equation is locally isomorphic t8, as a manifold. How-
ever,we need to distinguisfi]p and X, as regular overdetermined systems associated
with type-changing equations.

From the description of two vectors (Is, 0), (0, fss, 0), induced equation§:p
are regular overdetermined systems if and onlyfd§ % 0 on 2,). From now on, we
consider these regular overdetermined systems. Ii,etbe the differential system on
ip. By exterior derivation offs = 0, we have

1/d d A

By using this expression, the structure equatioriﬁq,f is given by

d. f.d 1 d
dop=(Lro29¢ o 2 Dt Yaxndy,
P (dy fedy T foodx S) xnay

1 d
dep = _(__ o dx + dt) Ady.

fSde
If we set
d fs d 1 d 1d
ai=—Ff—-——=—f ——fs, b= ——f,
dy  Tedy ® ' feedx ° foady °

then this structure equation can be written as follows:

do; = adxady,

doy = —(b dx + dt) Ady.
If a = 0, then this structure equation is of involutive type (i),daalso if a # 0,
then this structure equation has torsion. Summarizingetliscussions, we obtain the

following statements.

Theorem 4.5. LetX ={r = f(X,y,2 p,q,S)} be a second order regular PDE.
Then X is a type-changing PDE around a point if and only if

fs(w)=0 and £#0 around we X.
Moreover the corresponding type-changing equati@nis belong to the case ofB).

Hence, we can not tred, as a regular overdetermined system, but we have the
following theorem.
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Theorem 4.6. Let X ={r = f(X,V,z p,q,sS)} be a type-changing PDE. Then
we can associate an induced regular overdetermined system

Sp={r=f fs=0},

when fs# 0. Moreover the regular overdetermined syste@ﬁp, Iﬁp) are of involutive
type (i) if and only if a= 0, where
d fs d 1d

S SN S L
Ty T Teedy T Teedx ®

Corollary 4.7. Letx ={r = f(x,Y,2 p,q,S)} be a type-changing equation sat-

isfying the assumption ofheorem 4.6 If the corresponding overdetermined syst@gn
satisfies a= 0 locally, then there exists locally parabolic solution &f.

ExAMPLE 4.8. Consider the equatioB = {r = s" | n > 2}. Since the discrimi-
nant is given byA = —n?s?™-1/4, this equation is a type-changing, abg = {r = 0,
s = 0} is an involutive regular overdetermined system.
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