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Abstract
In this paper, we consider type-changing equations for one unknown function of

two variables by using the theory of differential systems. We give fundamental prop-
erties and provide a notion of geometric solutions from a viewpoint of contact geom-
etry of second order. Moreover, we study the structure of associated overdetermined
systems and obtain an existence condition of solutions of a special class which are
called parabolic solutions of type-changing equations.

1. Introduction

Let J2(R2, R) be the 2-jet space:

(1) J2(R2, R) WD {(x, y, z, p, q, r, s, t)}.

This space has the canonical differential system (or higherorder contact system)C2 D
{$0 D $1 D $2 D 0} given by the following 1-forms:

$0 WD dz� p dx� q dy,

$1 WD dp� r dx � s dy,

$2 WD dq� s dx� t dy.

In general, by a differential system (M, D), we mean a distributionD on a manifold
M, that is, D is a subbundle of the tangent bundleT M of M. Under the canonical
systemC2, we have the identificationp D zx, q D zy, r D zxx, sD zxy, t D zyy with
respect to the one unknown functionzD z(x, y) of two independent variablesx, y. On
the 2-jet space, we consider PDEs (i.e. partial differential equations) of the form:

(2) F(x, y, z, p, q, r, s, t) D 0,
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where F is a smooth function onJ2(R2, R). We set

6 D {F D 0} � J2(R2, R)

and restrict the canonical differential systemC2 to 6. We denote it byD (WD C2j6).
We consider a PDE6 D {F D 0} with the condition

(3) (Fr , Fs, Ft ) ¤ (0, 0, 0),

which we will call the regularity condition. Then,6 is a smooth hypersurface, and also
the restriction� j6 W 6! J1(R2,R) of the natural projection� W J2(R2,R) ! J1(R2,R)
is a submersion. Due to the property, restricted 1-forms$i j6 on 6 are linearly in-
dependent. Hence, we have the induced differential systemD D {$0j6 D $1j6 D$2j6 D 0} on 6. Then, D is a vector bundle of rank 4 on6. For brevity, we de-
note each restricted generator 1-form$i j6 of D by $i in the following. For such an
equationF D 0, we consider the following discriminant:

(4) 1 WD Fr Ft � 1

4
Fs

2.

DEFINITION 1.1. Let6 D {F D 0} be a smooth hypersurface ofJ2(R2,R). For
the discriminant1 D Fr Ft � (1=4)Fs

2 of F , a pointw 2 6 is said to be hyperbolic or
elliptic if 1(w) < 0 or 1(w) > 0, respectively. Moreover, a pointw 2 6 is said to be
parabolic if (Fr , Fs, Ft )w ¤ (0, 0, 0) and1(w) D 0.

We take the subset6p WD 6 \ {1 D 0} of 6. Then, the condition6p D 6 means
that 6 is locally parabolic, and also the condition6p D ; means that6 is locally
hyperbolic or locally elliptic. Then, we define a notion of type-changing equations
as follows.

DEFINITION 1.2. Let6 be a second order regular PDE. If6p is a proper subset
of 6, we call6 type-changing equation.

In this paper, we consider the following problem.

PROBLEM 1.3. For type-changing equations (2), investigate a local behavior (or
degeneration) of associated differential systems around parabolic points.

The notion of these type-changing equations has been already introduced by Clelland,
Kossowski and Wilkens in [3]. They considered a special class of Monge–Ampère equa-
tions which is called symplectic Monge–Ampère equations, and studied type-changing
equations belonging to these Monge–Ampère equations by using a notion of intermedi-
ate integrals. Compared with their work, we will study the geometric structure of type-
changing equations from a viewpoint of contact geometry of second order. More precisely,
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our purpose is to formulate geometry of type-changing equations as a theory of submanifold
in the second jet spaceJ2(R2, R).

This paper is organized as follows. In Section 2, we give fundamental results and
provide a notion of solutions from a viewpoint of second order. In Section 3, we study
regular overdetermined systems associated with type-changing equations to construct
solutions of a special class which are called parabolic solutions. Consequently, we ob-
tain a classification of the structure equation of induced regular overdetermined systems
(Theorem 3.3). This result involves the involutiveness condition of associated regu-
lar overdetermined systems. Hence, we can discuss solutions of original type-changing
equations by using this condition. In Section 4, we considertype-changing equations
of some special forms, and clarify properties of these special equations (Theorem 4.1,
Theorem 4.5, Theorem 4.6).

In the rest of this section, we explain the position of type-changing equations in
the category of second order PDEs of single type for two independent one dependent
variables. See the above figure. In this figure, categories ofright hand side from type-
changing equation are still precisely unknown. However, innonsubmersion category,
there exists a result [6] on a characterization of such equations via differential systems.
There are uncharted territories for second order PDEs of single type. Our aim is to
clarify this figure from a viewpoint of contact geometry of second order.

2. Examples and fundamental properties

In this section, we mention fundamental properties, and give model examples. We
first introduce an invariant of a second order PDE6 D {F D 0} which is defined in
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the paper [6] to discuss fundamental properties of type-changing equations. Let6 D
{F D 0} be a smooth hypersurface ofJ2(R2, R) with the conditiond F ¤ 0. We fix
a base pointw 2 6. For any open neighborhoodU of w in 6, U is decomposed
as follows:

(5) U D Uh [Ue[Up [Using (disjoint union),

where the components are given by

Uh WD {v 2 U j v is hyperbolic}: hyperbolic type,

Ue WD {v 2 U j v is elliptic}: elliptic type,

Up WD {v 2 U j v is parabolic}: parabolic type,

Using WD U n (Uh [Ue[Up).

For each componentUi (i D h, e, p, sing), the equivalence relationw1 � w2 (w1,w2 2
Ui ) is defined as follows:

(6) There exist a continuous curvecW [0, 1] ! Ui s.t. c(0)D w1, c(1)D w2.

We denote the number of elements of the quotient spaceUi =� consists of path-connected
components by #(Ui =�).

Now, we fix a diffeomorphismJ2(R2, R) � R8. Then, the standard metric onR8 induce a metric onJ2(R2, R) by using the diffeomorphism. By a diffeomorphism� W J2(R2, R) ! R8, we define the following induced normj � j:
jp� qj WD k�(p) � �(q)k, p, q 2 J2,

wherek � k is the Euclidean norm. We choose the following neighborhood.

U WD B"(w) D {v 2 6 j jv � wj < "},
where j � j is the restriction of the norm onJ2(R2, R) to 6. We decomposeU similar
to (5):

(7) U D BH" (w) [ BE" (w) [ BP" (w) [ BSing" (w) (disjoint union).

Then, we consider the numbers:

Hj�j(w) WD lim"!0
#(BH" (w)=�),

Ej�j(w) WD lim"!0
#(BE" (w)=�),

Pj�j(w) WD lim"!0
#(BP" (w)=�),

Sj�j(w) WD lim"!0
#(BSing" (w)=�).



TYPE-CHANGING EQUATIONS 105

We remark that if a limit does not exist, then we set that the number is1. These
numbers do not depend on the contact isomorphisms of (6, D), but depend on the
metric on J2(R2, R) under the identificationJ2(R2, R) � R8. Hence, we define the
following invariant of (6, D) at w.

DEFINITION 2.1. We set

H (w) WD min
J2�R8

�
lim"!0

#(BH" (w)=�)
�
,

E(w) WD min
J2�R8

�
lim"!0

#(BE" (w)=�)
�
,

P(w) WD min
J2�R8

�
lim"!0

#(BP" (w)=�)
�
,

S(w) WD min
J2�R8

�
lim"!0

#(BSing" (w)=�)
�
,

where the minimum is taken over all diffeomorphisms�. Moreover, we set

(H, E, P, S)w WD (H (w), E(w), P(w), S(w)).

The value (H, E, P, S)w does not depend on the identificationJ2(R2, R) � R8.
Thus, it is an invariant of (6, D) at w.

REMARK 2.2. For regular PDEs6 treated in this paper, values ofS are zero.

We start to discuss type-changing equations. The equationr D 0 is a normal
form of locally parabolic equations. Now, if we consider deformed equationsr D
f (x, y, z, p, q, s, t), then there exist examples of type-changing equations. Moreover,
in fact, all of second order regular PDEs can be written in this form by using the
implicit function theorem and contact transformations. Thus, it is sufficient to research
the equations of the formr D f (x, y,z, p,q,s, t). In this case, the discriminant is1D�( ftC fs

2=4), and we have the expression6p D { fs
2C4 ft D 0} � 6. We assume the

following essential condition to study type-changing equations via differential systems.

ASSUMPTION 2.3. A subset6p of a type-changing equation6 is a smooth
submanifold.

In general, there are two cases for type-changing equations.

d1 ¤ 0 on 6p,(A)

d1 D 0 on 6p.(B)

We have the following result with respect to the case (A).
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Theorem 2.4. For a second order regular PDE6 D {F D 0}, if 1-forms d F, d1
are linearly independent on6p, then6 is a type-changing PDE, and 6p is a smooth
hypersurface of6. Moreover, for each pointv 2 6p, type-changing of6 around v is
given by using our invariant(H, E, P, S)v as follows:

(H, E, P, S)v D (1, 1, 1, 0) for v 2 6p.

Proof. Since 1-formsd F, d1 are linearly independent,6p is a smooth hyper-
surface of6, and6 n 6p has two connected componentsU1, U2 around a pointv.
Now, signatures of1 on these components are one of the followings:
(i) Both of U1, U2 are hyperbolic.
(ii) Both of U1, U2 are elliptic.
(iii) One of the components is hyperbolic, and another is elliptic.
We assume that conditions (i) or (ii) are satisfied forU1, U2. We fix any pointv 2 6p.
Moreover, we take any curvecW [�1, 1]! 6 satisfying the following condition. This
curve is transverse to6p and satisfiesc(0) D v. If we regard1 as a function over
this curvec(t), then we haved1 D 0 at a pointv D c(0) from the condition (i) or (ii).
However, this fact contradicted the linearly independenceof d F and d1.

Now, we introduce regular overdetermined systems which is very important class
in overdetermined systems.

DEFINITION 2.5. For smooth functionsF, G on J2(R2, R), the system of PDE:

F(x, y, z, p, q, r, s, t) D G(x, y, z, p, q, r, s, t) D 0,

is called overdetermined system. Moreover, an overdetermined system6 D {F D G D 0}

is regular if the following condition is satisfied:

Two vectors (Fr , Fs, Ft ) and (Gr , Gs, Gt ) are linearly independent.

Under this definition, for the case of (A), if vectors (Fr , Fs, Ft ) and (1r ,1s,1t ) are
linearly independent, then6p becomes a second order regular overdetermined system.

REMARK 2.6. A geometric theory of second order regular overdetermined sys-
tems is developed by E. Cartan, K. Yamaguchi, etc. ([2], [14]). Therefore, we can
appropriate their results when6p is a regular overdetermined system. Indeed, we will
study regular overdetermined systems6p associated with type-changing equations6
to construct solutions of6 which are called parabolic solutions in Section 3.

On the other hand, the case of (B) gives large degeneration. Indeed, there is a
possibility that dim6p D i for 0� i � 6. A submanifold6p is a base pointw0 when
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dim6p D 0. For the case of (B), type-changing equations are divided into the follow-
ing subclasses:
(B-i) dim6p D 6

(B-i-i) 6 n6p is hyperbolic, (i.e. (H, E, P, S)w D (2, 0, 1, 0)).
(B-i-ii) 6 n6p is elliptic, (i.e. (H, E, P, S)w D (0, 2, 1, 0)).
(B-i-iii) 6 n 6p has hyperbolic and elliptic components, (i.e. (H, E, P, S)w D
(1, 1, 1, 0)).

(B-ii) dim 6p � 5
(B-ii-i) 6 n6p is hyperbolic, (i.e. (H, E, P, S)w D (1, 0, 1, 0)).
(B-ii-ii) 6 n6p is elliptic, (i.e. (H, E, P, S)w D (0, 1, 1, 0)).

Proposition 2.7. For the above described each class of(B), typical examples are
the followings. In particular, all classes are not empty.

EXAMPLE 2.8 (Case A). We consider the equation6 WD {F WD xtCr D 0}. This
equation is a regular PDE, because (Fr ,Fs,Ft )D (1,0,x). Hence, (6,D) is a differential
system. Note that,1 D x, and6p D {x D 0}. For v 2 6,

v is hyperbolic for x < 0,

v is parabolic for x D 0,

v is elliptic for x > 0.

EXAMPLE 2.9 (Case B-i-i). Take an integern � 1. We consider6 WD {F WD
xnsC r D 0}. From a calculation, (Fr , Fs, Ft ) D (1, xn, 0) is satisfied. Hence,6 is a
regular PDE, and (6, D) is a differential system. The discriminant is1 D �x2n=4 and6p D {x D 0}. Moreover we haved1 D 0 on 6p and6 n6p is a hyperbolic part.

EXAMPLE 2.10 (Case B-i-ii). Take an integern � 1. We consider6 WD {F WD
x2nt C r D 0}. Since (Fr , Fs, Ft ) D (1, 0, x2n) is satisfied, (6, D) is a differential
system. We also have1 D x2n and6p D {x D 0}. Moreover we haved1 D 0 on6p

and6 n6p is an elliptic part.

EXAMPLE 2.11 (Case B-i-iii). Take an integern � 1. We consider6 WD {F WD
x2nC1t C r D 0}. Since (Fr , Fs, Ft ) D (1, 0, x2nC1) is satisfied, (6, D) is a differential
system. We also have1 D x2nC1 and6p D {x D 0}. Moreover we haved1 D 0 on6p. By the form of discriminant, type-changing happens associated with a signature
of x.

For the case of dim6p � 5, we give examples which contain examples for the
cases of (B-ii-i) and (B-ii-ii).
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EXAMPLE 2.12 (Case B-ii-i). Consider the equation6 WD {F WD t(a1x2Ca2y2C
a3z2C a4 p2C a5q2C (1=3)a6t2)C a7s2 � r D 0}, where (a1, : : : , a7) ¤ (0, : : : , 0) and
ai � 0. This is also a regular PDE. We have1 D �(a1x2 C a2y2 C a3z2 C a4 p2 C
a5q2 C a6t2 C a7

2s2) and 6p D {a1x D a2y D a3z D a4 p D a5q D a6t D a7s D 0}.
We define a numberj satisfying 0� j � 6 as follows. Let j be the number of 0 in
coefficientsai . Then, we have dim6p D j . For example, if all ofai are not zero, then6p D {0 2 J2} is an only one point. The complement6 n6p is a hyperbolic part, and
we also haved1 D 0 on 6p.

EXAMPLE 2.13 (Case B-ii-ii). Consider the equation6 WD {F WD t(a1x2Ca2y2C
a3z2Ca4 p2Ca5q2C(1=3)a6t2Ca7)Cr C2

p
a7sinsD 0}, where (a1, : : : ,a7)¤ (0,: : : ,0)

and ai � 0. This is also a regular PDE. Moreover, we have1 D (a1x2Ca2y2Ca3z2C
a4 p2C a5q2C a6t2)� a7(cos2 s� 1). For example, if all ofai are not zero, then6p D
{0 2 J2} is an origin and the complement is an elliptic part. We also have a relation
d1 D 0 on 6p.

Now, we provide a notion of solutions (i.e. integral manifolds) of second order
PDEs in the sense of contact geometry of second order. In general, integral manifolds
L of differential systems (6, D) are defined as 2-dimensional submanifoldsL such that
T L � D, that is, pull-back of generator 1-forms ofD to L vanish.

DEFINITION 2.14. Let (6,D) be a second order regular PDE. For a 2-dimensional
integral manifoldL of 6, if a restriction of a natural projection� W J2 ! J1 to L is
an immersion on an open dense subset inL, then we callL a geometric solution of
(6,D). If all points of geometric solutionsL are immersion point, then we callL regular
solutions. On the other hand, geometric solutionsL have a nonimmersion point, then we
call L singular solutions. In particular, when we consider type-changing equations6, if
solutionsL of 6 are subsets of6p, then we callL parabolic solutions.

REMARK 2.15. From the definition, images�(L) of geometric solutionsL by
the projection� are Legendrian inJ1(R2, R), ($0j�(L) D d$0j�(L) D 0).

EXAMPLE 2.16 (regular solution). Consider the regular PDE6 D {yt � 2q C
(1=3)r C2xyD 0}. From the discriminant1D (1=3)y, we have6p D {yD 0}. A 1-form
d1D (1=3)dy does not vanish on6p. Hence this equation is a type-changing equation of
the case of (A). Then, we consider a submanifoldL D {(x,y,z,zx,zy,zxx,zxy,zyy)} defined
by a function of two variablesz(x, y)D x3C y3Cxy2Cxy. This submanifold satisfies an
equalityF D yt�2qC (1=3)r C2xyD y(6yC2x)�2(3y2C2xyCx)C6x=3C2xyD 0.
Moreover, the projection ofL to J1 is an immersion. Hence this solution is a regular so-
lution which is transverse to6p. Thus, this is not a parabolic solution.
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EXAMPLE 2.17 (singular solution). Consider the regular PDE6 D {r �2stD 0}.
From the discriminant1 D �(2sC t2), this is a type-changing equation of the case
of (A). Then, we consider a submanifoldL given by

x D x, y D t3 � 3xt, zD 9

28
t7 � 27

20
xt5 C 3

2
x2t7,

p D 9

10
t5 � 3

2
xt3, q D 3

4
t4 � 3

2
xt2,

r D 3t3, sD 3

2
t3, t D t .

This submanifoldL is an integral manifold of (6, D), and�(L) has a singular point
at 02 J2. Thus, this solution which is called cuspidal edge is a singular solution. This
is also not a parabolic solution.

3. Submanifolds�p as regular overdetermined systems

In the previous section, we introduced a notion of solutionsof second order regu-
lar PDEs. In particular, we defined a notion of parabolic solutions for type-changing
equations. Parabolic solutions of type-changing equations are obtained by solutions of
associated regular overdetermined systems. Thus, we studyregular overdetermined sys-
tems associated with type-changing equations in this section. By Theorem 2.4, for a
type-changing equation6 D {F D 0}, if 1-forms d F, d1 are linearly independent, then6p D {F D 0,1 D 0} is a smooth hypersurface of6. Moreover, if we assume that
given F D 0 is of the formr D f (x, y, z, p,q, s, t) and the function1D �( ft C fs

2=4)
on 6 satisfies (1s, 1t ) ¤ (0, 0), then6p is a regular overdetermined system. Recall
that results given by Cartan, and we clarify relations between these results and regular
overdetermined systems6p associated with type-changing equations.

According to the result given by E. Cartan ([2], [14]), if a rank 3 differential sys-
tem Dp WD Dj6p on a regular overdetermined system6p does not have torsion, then the
structure equation of the systemDp is one of the following three types at each point.
(i) There exists a coframe{$0, $1, $2, !1, !2, �22} such that

(8)

d$0 � !1 ^$1 C !2 ^$2 mod$0,

d$1 � 0 mod$0, $1, $2,

d$2 � !2 ^ �22 mod$0, $1, $2.

(ii) There exists a coframe{$0, $1, $2, !1, !2, �12} such that

(9)

d$0 � !1 ^$1 C !2 ^$2 mod$0,

d$1 � !2 ^ �12 mod$0, $1, $2,

d$2 � !1 ^ �21 mod$0, $1, $2,

where�12 D �21.
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(iii) There exists a coframe{$0, $1, $2, !1, !2, �11} such that

(10)

d$0 � !1 ^$1 C !2 ^$2 mod$0,

d$1 � !1 ^ �11 mod$0, $1, $2,

d$2 � !2 ^ �22 mod$0, $1, $2,

where�11 D �22.

REMARK 3.1. In the above structure equations, if a termf !1^ !2 D g dx^ dy
for functions f, g appears, then we call the term torsion. The torsion is an obstruc-
tion of the existence of solutions. More precisely, the existence of torsions means that
there does not exist an integral element ofDp. Here, the integral element is defined
as follows:

Let (R, D) be a differential system expressed by

D D {$1 D � � � D $s D 0}.

For x 2 R, E � Tx R is called n-dimensional integral element ofD, if E is an
n-dimensional subspace inTx R such that

$1jE D � � � D $sjE D d$1jE D � � � D d$sjE D 0.

Namely, integral elements are candidates for tangent spaces of integral manifolds ofD.
Hence, if a torsion appears, then there does not exist a solution.

Then, it is natural to consider the following problem.

PROBLEM 3.2. Examine when regular overdetermined systems (6p, Dp) associ-
ated with type-changing equations6 correspond to which structure equations.

From now on, we consider this problem. Let

6p D {r D f (x, y, z, p, q, s, t), 1 D 0}

be a regular overdetermined system associated with a type-changing equation. We div-
ide a differential system6p into the following two cases:
(I) 1s ¤ 0,
(II) 1s D 0.
We first study the case of (I). By exterior derivation of1, we have

ds� � 11s

�
d

dx
1 dxC d

dy
1 dyC1t dt

�
, mod$0, $1, $2.
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Here,

d

dx
WD ��x

C p
��z
C r

�� p
C s

��q
,

d

dy
WD ��y

C q
��z
C s

�� p
C t

��q
.

In terms of this expression, the structure equation ofDp is given by

d$0 � !1 ^$1 C !2 ^$2, mod$0,

d$1 �
�

d

dy
f � fs1s

d

dy
1C 11s

d

dx
1� dx^ dy

C 11s
( fs1t � ft1s) dt ^ dxC 1t1s

dt ^ dy, mod$0, $1, $2,

d$2 � �� 11s

d

dy
1 dxC dt

� ^ dyC 1t1s
dt ^ dx, mod$0, $1, $2,

where!1 WD dx, !2 WD dy. If we set

a WD d f

dy
� fs1s

d1
dy

C 11s

d1
dx

,

b WD fs1t � ft1s1s
,

c WD 1t1s
,

e WD � 11s

d1
dy

,

then the structure equation is written as follows:

d$1 � a dx^ dyC b dt^ dxC c dt^ dy,

d$2 � e dx^ dy� dt ^ dyC c dt^ dx, mod$0, $1, $2.

This equation is also expressed by using matrices:

d$0 D � !1 !2
� ^ � $1$2

�
,(11)

�
d$1

d$2

� � ��
b c
c �1

�
dt C �

0 a dx
0 e dx

�� ^ � dx
dy

�

D ��
b c
c �1

�
dt C � �a dy 0

0 e dx

�� ^ � dx
dy

�
.

(12)

Now, we consider the following real symmetric matrix:

X WD �
b c
c �1

�
.
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For signatures of eigenvalues of this matrixX, there are three cases.
(I-I) (C, C) or (�, �) type, (i.e. both of eigenvalues are positive or negative).
(I-II) (C, �) type, (i.e. two eigenvalues have distinct signatures).
(I-III) Degenerated type, (i.e. either of eigenvalues is zero).
For these cases, we consider corresponding normal forms (i.e. (i), (ii), or (iii)) of struc-
ture equations. By solving det(�E � X) D 0, we have the description,

� D b� 1�p
(b� 1)2 C 4(bC c2)

2
.

Since eigenvalues of real symmetric matrices are all real numbers, (b�1)2C4(bCc2) is
not negative. Corresponding to the above signatures of eigenvalues, we have the follow-
ing classification result.

Theorem 3.3. Let (6, D) be a type-changing equation and(6p, Dp) be the regu-
lar overdetermined system. Then, Dp has torsion if and only if bD �c2, aC ce¤ 0,
where

a WD d f

dy
� fs1s

d1
dy

C 11s

d1
dx

,

b WD fs1t � ft1s1s
,

c WD 1t1s
,

e WD � 11s

d1
dy

.

Moreover, the following correspondences hold:

Dp has normal form(i) if and only if bD �c2, aC ceD 0.

Dp has normal form(ii) if and only if b> �c2, or 1s D 0.

Dp has normal form(iii) if and only if b< �c2.

Proof. First of all, we can check easily the following correspondences with re-
spect to signatures of eigenvalues for the case of (I).
(1) Eigenvalues are type of (I-I) if and only if1s ¤ 0, b < �c2.
(2) Eigenvalues are type of (I-II) if and only if1s ¤ 0 andb > �c2.
(3) Eigenvalues are type of (I-III) if and only if1s ¤ 0, bD �c2.
We consider the case of (I-I). It is sufficient to consider (C, C)-type. We have the
following lemma.
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Lemma 3.4. For any P2 GL(2,R), we change1-forms:

(13)

� !1!2

� D P�1

�
dx
dy

�
,

� O$1O$2

� D tP

� $1$2

�
.

Then, the structure equation(12) is transformed in terms of appropriate functions�,� as follows:

d$0 D � !1 !2
� ^ � O$1O$2

�
,

�
d O$1

d O$2

� � tP

�
d$1

d$2

�

� �
tP

�
b c
c �1

�
P dtC � �!2 0

0 �!1

�� ^ � !1!2

�
, mod$0, O$1, O$2.

(14)

We omit the proof of this lemma. We continue to prove the statement of Theorem 3.3.
For any real symmetric matrixX, there exists an orthogonal matrixP such that

tP

�
b c
c �1

�
P D � �1 0

0 �2

�
, �1, �2 > 0.

If we change 1-forms by using this matrixP, we have the following structure equation
from the equation (14):

d$0 D � !1 !2
� ^ � O$1O$2

�
,

�
d O$1

d O$2

� � �� �1 0
0 �2

�
dt C � �!2 0

0 �!1

�� ^ � !1!2

�
.(15)

Moreover, if we transform similarly by using a matrixP given by

P D
0
BB�

1p�1
0

0
1p�2

1
CCA,

then, by taking appropriate 1-forms, we have

d$0 D � !1 !2
� ^ � O$1O$2

�
,

�
d O$1

d O$2

� � ��
1 0
0 1

�
dt C � �!2 0

0 �!1

�� ^ � !1!2

�
.
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Here, if we set� WD dt C �!2 C �!1, then we have the normal form (iii):

d$0 D � !1 !2
� ^ � O$1O$2

�
,

�
d O$1

d O$2

� � � � 0
0 �

� ^ � !1!2

�
.

For the case of (I-II), we can take a matrixP satisfying

tP

�
b c
c �1

�
P D � �1 0

0 �2

�
, �1 > 0, �2 < 0.

Then, we have the following structure equation which can be transformed to the normal
form (ii):

d$0 D � !1 !2
� ^ � O$1O$2

�
, mod$0,

�
d O$1

d O$2

� � � � 0
0 ��

� ^ � !1!2

�
, mod$0, O$1, O$2.

For the case of (I-III), we use the conditionb D �c2. Then, the structure equation is
written as

d$0 � dx^$1 C dy^$2, mod$0,�
d$1

d$2

� � �� �c2 c
c �1

�
dt C � �a dy 0

0 e dx

�� ^ � dx
dy

�
, mod$0, $1, $2.

Here, if we take a 1-formO$1 WD $1 C c$2, then we have

d$0 � dx^ O$1C (dy� c dx)^$2, mod$0,�
d O$1

d$2

� � ��
0 0
c �1

�
dtC� (�a� ce) dy 0

0 e dx

��^� dx
dy

�
, mod$0, O$1, $2.

If we set� WD �dt C e dx, !1 WD dx, !2 WD dy� c dx, then we have the following:

d$0 � � !1 !2
� ^ � O$1$2

�
, mod$0,

�
d O$1

d$2

� � ��
0 0
0 1

�� C �
0 (aC ce) dx
0 0

�� ^ � !1!2

�
, mod$0, O$1, $2.

Thus, if aC ce¤ 0, then Dp has torsion. On the other hand, ifaC ceD 0, we have
the normal form (i).
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Finally, we consider the case of (II). From the condition, wehave1s D 0 and1t ¤ 0. We have the following relation.

dt � � 11t

�
d

dx
1 dxC d

dy
1 dy

�
, mod$0, $1, $2.

By using this relation, the structure equation ofDp is given by

d$1 �
��

d f

dy
� ft1t

d1
dy

�
dx� ds

� ^ ( fs dxC dy),

d$2 � �� 11t

d1
dx

dyC ds

� ^ dx, mod$0, $1, $2.

If we set,

a WD d f

dy
� ft1t

d1
dy

,

b WD fs,

c WD 11t

d1
dx

,

then we have �
d$1

d$2

� � � �b ds a dx� ds�ds c dx

� ^ � dx
dy

�
.

Moreover, we rewrite as follows:�
d$1

d$2

� D �� �b �1�1 0

�
dsC � �a dy 0

0 c dx

�� ^ � dx
dy

�
.

We consider the real symmetric matrixX given by

X D � �b �1�1 0

�
.

Eigenvalues of this matrixX are given by

�b�pb2 C 4

2
.

Signatures of these eigenvalues are distinct. Thus, we havethe normal form (ii) by
using the similar argument.

In fact, Cartan proved that differential systems (6p, Dp) satisfying (i) locally are in-
volutive in general [2]. On the other hand, differential systems satisfying (ii) or (iii) are
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not involutive. These are equations of finite type [14]. Now,we give examples of associ-
ated regular overdetermined systems6p which have the normal forms (ii) or (iii) locally.

EXAMPLE 3.5. Consider the equation6 D {r D t2}. From the discriminant1 D 2t , this equation is type-changing and we have the corresponding regular over-
determined system6p D {r D t D 0}. This is a model example which has the normal
form (ii).

EXAMPLE 3.6. Consider the equation6 D {r D s2 C t}. From the discriminant1 D 1� s2=4, this equation is type-changing, and we have the corresponding regular
overdetermined system6p D {r D s2C t , sD�2} D {r D tC4, sD�2}. This system
has the normal form (iii) locally.

In the rest of this section, we discuss associated regular overdetermined systems
which have the normal form (i). From the involutiveness of these systems, it is well-
known that there exist locally real-analytic solutions forsuch a system by using the
Cartan–Kähler theorem. However, in this case, we have the method of construction of
solutions given by Cartan or Yamaguchi in theC1-category which is stronger method
than the Cartan–Kähler theorem as follows ([2], [14]). First, in fact, Cartan character-
ized regular overdetermined involutive systems (R, DR) by the condition that (R, DR)
admits a 1-dimensional Cauchy characteristic systemCh(DR). Here, the Cauchy char-
acteristic systemCh(D) of a differential system (R, D) is defined by

Ch(D)(x) D {X 2 D(x) j X 
 d!i � 0 (mod!1, : : : , !s) for i D 1, : : : , s},

where D D {!1 D � � � D !s D 0} is defined locally by defining 1-forms{!1, : : : , !s}.
For these involutive systemsR, when we consider corresponding leaf spacesX WD
R=Ch(DR), we have differential systemsDX of rank 2 on X. Moreover, for the pro-
jection �W R! X, the relationDR D ��1� (DX) is satisfied. Under this relation, we can
take an integral curve ofDX , and the lift of the integral curve is a surface onR. By
the construction, this surface is required solution (more precisely, see Example 3.7).
Regular overdetermined systems treated in this paper are induced by type-changing
equations. Hence, solutions of these systems are also parabolic solutions of original
type-changing equations. We give such an example, that is, involutive associated regu-
lar overdetermined system. First, an overdetermined system described by6p D {r D
f (x, y, z, p, q, s, t), 1 D 0} associated with a type-changing equation6 is regular if
and only if the following condition is satisfied

(1s, 1t ) D
��1

2
fs fss� fst, �1

2
fs fst � ft t

� ¤ 0.

Next,6p is involutive if and only if1s ¤ 0, bD �c2, andaCceD 0 by Theorem 3.3.
Here, if type-changing equations are given by the formr D f (s, t), then we havea D
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e D 0. Hence, we study only two conditions1s ¤ 0, b D �c2 for this case. From
now on, we consider the construction of involutive examplesfor equations of this form.
Then, we write explicitly the above two conditions:

1

2
fs fssC fst ¤ 0,(16)

1s( fs1t � ft1s) D �1t
2.(17)

By using the condition1 D 0, the later condition (17) is rewritten as follows:

(18) ft t C fs fst C 1

4
fs

2 fssD 0.

We consider the existence problem of functionsf (s, t) satisfying the conditions (16)
and (18). We give a very interesting example which satisfies these conditions.

EXAMPLE 3.7. Consider the equation6 D {r D 2st � (2=3)t3}. From the dis-
criminant1D �2sC t2, 6 is type-changing. The corresponding regular overdetermined
system is given by6p D {r D 2st � (2=3)t3, s D t2=2} D {r D t3=3, s D t2=2}. It is
well-known that this system6p has infinitesimal symmetryG2 which is 14-dimensional
exceptional simple Lie algebra [2]. We calculate the structure equation of the system
(6p, Dp) of rank 3. A differential systemDp D {$0 D $1 D $2 D 0} is given by

$0 D dz� p dx� q dy,

$1 D dp� t3

3
dx� t2

2
dy,

$2 D dq� t2

2
dx� t dy.

The structure equation is given by

(19)

d$0 � dx^ dpC dy^ dq, mod$0,

d$1 � �t2dt ^ dx� t dt ^ dy, mod$0, $1, $2,

d$2 � �t dx^ dx� dt ^ dy, mod$0, $1, $2.

We take a new coframe:

{$0, O$1 WD $1 � t$2, $2,� WD dt, !1 WD dx, !2 WD t dxC dy}.

On this coframe, the above structure equation is written as follows:

(20)

d$0 � !1 ^ O$1 C !2 ^$2, mod$0,

d O$1 � 0, mod$0, O$1, $2,

d$2 � !2 ^ � , mod$0, O$1, $2.
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Thus, (6p, Dp) is involutive type. Hence, there exists a solution of (6p, Dp) (i.e. para-
bolic solution of (6, D)). In fact, this solution is constructed explicitly by E. Cartan
[2]. Hence, we also describe this solution followed by Cartan or Yamaguchi (refer to
[7], [14]). First, the Cauchy characteristic systemCh(Dp) of (6p, Dp) is given by

Ch(Dp) D {$0 D O$1 D $2 D !2 D � D 0}

D span

� ��x
� t

��y
C (p� tq)

��z
� t3

6

�� p
� t2

2

��q

�
.

Since this system has constant rank,Ch(Dp) gives a 1-dimensional foliation on6p.
Hence a leaf spaceB WD 6p=Ch(Dp) is a 5-dimensional manifold locally. On this quo-
tient space, We have a local coordinate (x1, x2, x3, x4, x5) given by

x1 WD z� xpC xqtC 1

6
x2t3, x2 WD p� qt C 1

2
yt2 C 1

6
t3x,

x3 WD �qC 1

2
yt, x4 WD yC xt, x5 WD �t .

Conversely,6p is aR-bundle onB locally. If we take a coordinate function� of R, then
the coordinate (x, y, z, p, q, t) is expressed by using the coordinate (x1, x2, x3, x4, x5, �):

(21)

x D �, y D x4 C �x5,

zD x1 C �x2 � 1

2
�x4(x5)2 � 1

6
�2(x5)3,

p D x2 C x3x5 C 1

6
�(x5)3, q D �x3 � 1

2
x4x5 � 1

2
�(x5)2,

t D �x5.

On the base spaceB, we consider a rank 2 differential systemDB D {�1 D �2 D�3 D 0} given by

�1 D dx1 C
�

x3 C 1

2
x4x5

�
dx4,

�2 D dx2 C
�

x3 � 1

2
x4x5

�
dx5,

�3 D dx3 C 1

2
(x4 dx5 � x5 dx4).

It is well-known that this systemDB is a flat model of (2, 3, 5)-distributions [14].
Indeed, we can check this fact by calculating derived systems. Hence,DB has also
infinitesimal automorphismG2. For a projectionpW 6p ! B, generator 1-forms ofDp
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and DB are related as follows:

$0 WD p��1 C xp��2,

$1 WD p��2 � xp��3,

$2 WD �p��3.

Thus, (B, DB) is a retracting space of (6p, Dp), that is, (6p, Dp) D p�(B, DB). By us-
ing this correspondence, solutions of (6p, Dp) are constructed by solutions of (B, DB).
We consider integral curvesc(� ) of DB given by

x1 D '(� ), x2 D �'00(� )

�'0(� ) � 1

2
�'00(� )

�C 1

2

Z
('00)2(� ) d� ,

x3 D �'0(� )C 1

2
�'00(� ), x4 D � , x5 D �'00(� ),

where � is a parameter of curves, and'(� ) is an arbitrary smooth function of� . By
using these integral curves, we construct integral surfaces of (6p, Dp). Projections of
integral surfacesS of Dp correspond to integral curvesc(� ). Thus, integral surfaces
S WD S(x, � ) of (6p, Dp) are given by the coordinate functionx D � of the fiber:

x WD x, y D � � x�'00(� ),

zD '(� ) � x'0(� )'00(� )C 1

6
x2('00)3(� )C 1

2
x
Z

('00)2(� ) d� .

Here, we omit the explicit description ofp, q, t . By eliminating�, we can obtain so-
lutions z D z(x, y) of (6p, Dp). From these discussions, we have regular parabolic
solutionsS of the type-changing equationr D 2st� (2=3)t3.

On the other hand, we give a singular parabolic solution as follows. We first take
integral curvesOc(� ) of DB which are different fromc(� ) given by

x1 D 1

2

�Z
(' � �'0) d� � ''0��,

x2 D 1

2

�Z
(' � �'0) d� C 1

2
'��,

x3 D �1

2

Z
(' � �'0) d� , x4 D '(� ), x5 D � .

Surfaces in6p obtained from these integral curvesOc(� ) by the correspondence (21) are
singular solutions if and only if

rank

�
x� y� z� p� q�
x� y� z� p� q�

� D 1.
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If we put x4 WD f (� ) D 0, then we have a singular solution of special type:

x D �, y D �t , zD �1

6
�2t3,

p D 1

6
�t3, q D �1

2
�t2, t D t .

This is a singular parabolic solution of the original type-changing equation.

In the above discussions, we treated examples of type-changing equations6 whose
corresponding regular overdetermined systems6p have the normal forms (i), (ii), (iii).
On the other hand, there exist type-changing equations their regular overdetermined
system have torsions. Such an example is obtained by modifying involutive systems (i).
We give a typical example by modifying Example 3.7.

EXAMPLE 3.8. Consider the equation6 D {r D 2st�(2=3)t3C y}. From the dis-
criminant1D�2sCt2, 6 is type-changing. The corresponding regular overdetermined
system is given by6p D {r D 2st� (2=3)t3C y, sD t2=2} D {r D t3=3C y, sD t2=2}.
A differential system (6p, Dp) has torsion. Indeed, the structure equation can be writ-
ten in the form:

(22)

d$0 � !1 ^ O$1 C !2 ^ O$2, mod$0,

d O$1 � 1p
t2 C 1

!1 ^ !2, mod$0, O$1, O$2,

d O$2 � �(t2 C 1) dt ^ !2 C tp
t2 C 1

!1 ^ !2, mod$0, O$1, O$2,

where 1-forms O$i ,!i (i D 1, 2) are given by the transformations (13) for the matrixP:

P D 1p
1C t2

�
1 t
t 1

�
.

REMARK 3.9. Summarizing these discussions, we showed thatall classes(i.e. tor-
sion, (i), (ii), (iii)) of regular overdetermined systems inTheorem 3.3can be realized
from type-changing equations.

4. Type-changing equations of special types

In this section, we consider type-changing equations of special types. We first con-
sider equations of the following form:

(23) 6 WD {r D f (x, y, z, p, q, t)}.

For these equations, we state as follows.
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Theorem 4.1. Let 6 D {r D f (x, y, z, p, q, t)} be a second order regular PDE.
Then, 6 is a type-changing PDE around a pointw if and only if

ft (w) D 0 and ft ¥ 0 around w 2 6,

and the corresponding overdetermined system

6p D {r D f, ft D 0}

is regular if and only if ft t ¤ 0. Moreover, regular overdetermined systems(6p, Dp)
have always the normal form(ii) .

Proof. The discriminant is given by1D� ft . Hence,6 is a type-changing equa-
tion if there is a pointw such that

ft (w) D 0 and ft ¥ 0 around w 2 6.

Moreover, an overdetermined system6p induced by6 is regular if and only if
(1s,1t )D (0,� ft t )¤ (0,0). Since1s D 0, 1t ¤ 0 is satisfied on6p. Thus, (6p, Dp)
has the normal form (ii) by Theorem 3.3.

Corollary 4.2. Type-changing equations of the form rD f (x, y, z, p, q, t) do not
induce involutive regular overdetermined systems.

EXAMPLE 4.3. Consider the equation6 D {r D c1t2Cc2tCc3 j ci 2 R, c1 ¤ 0}.
Since the discriminant is given by1 D �(2c1t C c2), this is a type-changing equation.
Moreover,6p D {r D a, t D b j a, b 2 R} is a regular overdetermined system which
has the normal form (ii).

We next consider equations of the following form:

(24) 6 WD {r D f (x, y, z, p, q, s)}.

These equations satisfy the regularity condition, and the discriminant is given by1 WD� fs
2=4. Hence6 is a type-changing equation if and only if there exists a point w 2 6

such that

fs(w) D 0 and fs ¥ 0 around w.

For equations satisfying this condition, when we consider6p D {r D f , 1 D 0}, then
we haved1 D 0 on 6p by using d1 D � fs d fs=2. Hence,6p is belong to the case
of (B). Now, we study induced overdetermined systems given by

(25) O6p D {r D f, fs D 0}.
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REMARK 4.4. This equation is locally isomorphic to6p as a manifold. How-

ever, we need to distinguishO6p and 6p as regular overdetermined systems associated
with type-changing equations6.

From the description of two vectors (1,fs, 0), (0, fss, 0), induced equationsO6p

are regular overdetermined systems if and only iffss ¤ 0 on O6p. From now on, we

consider these regular overdetermined systems. LetODp be the differential system onO6p. By exterior derivation of fs D 0, we have

ds� � 1

fss

�
d

dx
fs dxC d

dy
fs dy

�
, mod ODp.

By using this expression, the structure equation ofODp is given by

d$1 �
�

d

dy
f � fs

fss

d

dy
fs C 1

fss

d

dx
fs

�
dx^ dy,

d$2 � �� 1

fss

d

dy
fs dxC dt

� ^ dy.

If we set

a WD d

dy
f � fs

fss

d

dy
fs C 1

fss

d

dx
fs, b WD 1

fss

d

dy
fs,

then this structure equation can be written as follows:

d$1 � a dx^ dy,

d$2 � �(b dxC dt) ^ dy.

If a D 0, then this structure equation is of involutive type (i), and also if a ¤ 0,
then this structure equation has torsion. Summarizing these discussions, we obtain the
following statements.

Theorem 4.5. Let 6 D {r D f (x, y, z, p, q, s)} be a second order regular PDE.
Then, 6 is a type-changing PDE around a pointw if and only if

fs(w) D 0 and fs ¥ 0 around w 2 6.

Moreover, the corresponding type-changing equation6 is belong to the case of(B).

Hence, we can not treat6p as a regular overdetermined system, but we have the
following theorem.
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Theorem 4.6. Let 6 D {r D f (x, y, z, p, q, s)} be a type-changing PDE. Then,
we can associate an induced regular overdetermined system

O6p D {r D f, fs D 0},

when fss¤ 0. Moreover, the regular overdetermined system( O6p, ODp) are of involutive
type (i) if and only if aD 0, where

a WD d

dy
f � fs

fss

d

dy
fs C 1

fss

d

dx
fs.

Corollary 4.7. Let 6 D {r D f (x, y, z, p, q, s)} be a type-changing equation sat-
isfying the assumption ofTheorem 4.6. If the corresponding overdetermined systemO6p

satisfies aD 0 locally, then there exists locally parabolic solution of6.

EXAMPLE 4.8. Consider the equation6 D {r D sn j n � 2}. Since the discrimi-
nant is given by1 D �n2s2(n�1)=4, this equation is a type-changing, andO6p D {r D 0,
sD 0} is an involutive regular overdetermined system.
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