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Abstract
Let R be a left and right Noetherian ring. We introduce the notion of the torsion-

free dimension of finitely generatedR-modules. For anyn � 0, we prove thatR is
a Gorenstein ring with self-injective dimension at mostn if and only if every finitely
generated leftR-module and every finitely generated rightR-module have torsionfree
dimension at mostn, if and only if every finitely generated left (or right)R-module
has Gorenstein dimension at mostn. For anyn � 1, we study the properties of the
finitely generatedR-modulesM with ExtiR(M, R) D 0 for any 1� i � n. Then we
investigate the relation between these properties and the self-injective dimension ofR.

1. Introduction

Throughout this paper,R is a left and right Noetherian ring (unless stated other-
wise) and modR is the category of finitely generated leftR-modules. For a mod-
ule M 2 modR, we use pdR M, fdR M, idR M to denote the projective, flat, injective
dimension ofM, respectively.

For any n � 1, we denote?n
RRD {M 2 modR j ExtiR(RM, RR) D 0 for any 1�

i � n} (resp.?nRR D {N 2 mod Rop j ExtiRop(NR, RR) D 0 for any 1� i � n}), and?
RRDT

n�1
?n

RR (resp.?RR DT
n�1

?nRR).
For any M 2 mod R, there exists an exact sequence:

P1
f�! P0 ! M ! 0

in mod R with P0 and P1 projective. Then we get an exact sequence:

0! M� ! P�
0

f ��! P�
1 ! Tr M ! 0

in modRop, where (�)� D Hom(�,R) and TrM D Cokerf � is the transposeof M ([1]).

2000 Mathematics Subject Classification. 16E10, 16E05.
This research was partially supported by the Specialized Research Fund for the Doctoral Pro-

gram of Higher Education (Grant No. 20100091110034), NSFC (Grant Nos. 11171142, 11126169,
11101217), NSF of Jiangsu Province of China (Grant Nos. BK2010047, BK2010007), the Scientific
Research Fund of Hunan Provincial Education Department (Grant No. 10C1143) and a Project Funded
by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Osaka City University Repository

https://core.ac.uk/display/35268802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


22 C. HUANG AND Z.Y. HUANG

Auslander and Bridger generalized the notions of finitely generated projective modules
and the projective dimension of finitely generated modules as follows.

DEFINITION 1.1 ([1]). Let M 2 mod R.
(1) M is said to haveGorenstein dimension zeroif M 2 ?

RR and TrM 2 ?RR.
(2) For a non-negative integern, theGorenstein dimensionof M, denoted by G-dimR M,
is defined as inf{n � 0 j there exists an exact sequence 0! Mn ! � � � ! M1 ! M0 !
M ! 0 in modR with all Mi having Gorenstein dimension zero}. We set G-dimR M
infinity if no such integer exists.

Huang introduced in [7] the notion of the left orthogonal dimension of modules as
follows, which is “simpler” than that of the Gorenstein dimension of modules.

DEFINITION 1.2 ([7]). For a moduleM 2 mod R, the left orthogonal dimension
of a moduleM 2modR, denoted by?RR-dimR M, is defined as inf{n � 0 j there exists
an exact sequence 0! Xn ! � � � ! X1 ! X0 ! M ! 0 in modR with all Xi 2 ?

RR}.
We set?RR-dimR M infinity if no such integer exists.

Let M 2 modR. It is trivial that ?RR-dimR M � G-dimR M. On the other hand,
by [14], we have that?RR-dimR M ¤ G-dimR M in general.

Recall thatR is called aGorenstein ringif id R RD idRop R<1. The following re-
sult was proved by Auslander and Bridger in [1, Theorem 4.20]when R is a commuta-
tive Noetherian local ring. Hoshino developed in [4] Auslander and Bridger’s arguments
and applied obtained the obtained results to Artinian algebras. Then Huang generalized
in [7, Corollary 3] Hoshino’s result with the left orthogonal dimension replacing the
Gorenstein dimension of modules.

Theorem 1.3 ([4, Theorem] and [7, Corollary 3]). The following statements are
equivalent for an Artinian algebra R.
(1) R is Gorenstein.
(2) Every module inmod R has finite Gorenstein dimension.
(3) Every module inmodR and every module inmodRop have finite left orthogonal
dimension.

One aim of this paper is to generalize this result to left and right Noetherian rings.
On the other hand, note that the left orthogonal dimension ofmodules is defined by the
least length of the resolution composed of the modules in?

RR, which are the modules
satisfying one of the two conditions in the definition of modules having Gorenstein di-
mension zero. So, a natural question is: If a new dimension ofmodules is defined by
the least length of the resolution composed of the modules satisfying the other condi-
tion in the definition of modules having Gorenstein dimension zero, then can one give
an equivalent characterization of Gorenstein rings similar to the above result in terms
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of the new dimension of modules? The other aim of this paper isto give a positive
answer to this question. This paper is organized as follows.

In Section 2, we give the definition ofn-torsionfree modules, and investigate the
properties of such modules. We prove that a module in modR is n-torsionfree if and
only if it is an n-syzygy of a module in?n

RR.
In Section 3, we introduce the notion of the torsionfree dimension of modules.

Then we give some equivalent characterizations of Gorenstein rings in terms of the
properties of the torsionfree dimension of modules. The following is the main result
in this paper.

Theorem 1.4. For any n� 0, the following statements are equivalent.
(1) R is a Gorenstein ring withidR RD idRop R� n.
(2) Every module inmodR has Gorenstein dimension at most n.
(3) Every module inmodRop has Gorenstein dimension at most n.
(4) Every module inmodR and every module inmodRop have torsionfree dimension
at most n.
(5) Every module inmodR and every module inmodRop have left orthogonal dimen-
sion at most n.

In Section 4, for anyn � 1, we first prove that every module in?n
RR is torsion-

less (in this case,?n
RR is said to have thetorsionless property) if and only if every

module in ?n
RR is 1-torsionfree, if and only if every module in?n

RR has torsion-
free dimension at mostn, if and only if everyn-torsionfree module in modR is 1-
torsionfree, if and only if everyn-torsionfree module in modRop is in ?RR, if and
only if ?nRR D ?RR. Note that if idRop R � n, then ?n

RR has the torsionless prop-
erty. As some applications of the obtained results, we investigate when the converse of
this assertion holds true. Assume thatn and k are positive integers and?n

RR has the
torsionless property. IfR is gn(k) or gn(k)op (see Section 4 for the definitions), then
idRop R� nCk�1. As a corollary, we have that if idR R� n, then idR RD idRop R� n
if and only if ?n

RR has the torsionless property.
In view of the results obtained in this paper, we pose in Section 5 the following

two questions: (1) Is the subcategory of modR consisting of modules with torsionfree
dimension at mostn closed under extensions or under kernels of epimorphisms? (2) If
idRop R� n, does then every moduleM 2 modR has torsionfree dimension at mostn?

2. Preliminaries

Let M 2 mod R and n � 1. Recall from [1] thatM is called n-torsionfree if
Tr M 2 ?nRR; and M is called 1-torsionfree if M is n-torsionfree for all n. We
use Tn(modR) (resp. T (mod R)) to denote the subcategory of modR consisting of
all n-torsionfree modules (resp.1-torsionfree modules). It is well-known thatM is
1-torsionfree (resp. 2-torsionfree) if and only ifM is torsionless (resp. reflexive)
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(see [1]). Also recall from [1] thatM is called ann-syzygy module (ofA), denoted by�n(A), if there exists an exact sequence 0! M ! Pn�1 ! � � � ! P1 ! P0 ! A! 0
in mod R with all Pi projective. In particular, set�0(M) D M. We use�n(modR)
to denote the subcategory of modR consisting of alln-syzygy modules. It is easy to
see thatTn(mod R) � �n(modR), and in general, this inclusion is strict whenn � 2
(see [1]).

Jans proved in [13, Corollary 1.3] that a module in modR is 1-torsionfree if and
only if it is an 1-syzygy of a module in?1

RR. We generalize this result as follows.

Proposition 2.1. For any n� 1, a module inmodR is n-torsionfree if and only
if it is an n-syzygy of a module in?n

RR.

Proof. Assume thatM 2 mod R is an n-syzygy of a moduleA in ?n
RR. Then

there exists an exact sequence:

0! M ! Pn�1 ! � � � ! P1
f�! P0 ! A! 0

in modR with all Pi projective. Let

PnC1 ! Pn ! M ! 0

be a projective presentation ofM in modR. Then the above two exact sequences yield
the following exact sequence:

0! A� ! P�
0

f ��! � � � ! P�
n ! P�

nC1 ! Tr M ! 0.

By the exactness ofPnC1 ! Pn ! � � � ! P1
f�! P0, we get that TrM 2 ?nRR. Thus M

is n-torsionfree.
Conversely, assume thatM 2 mod R is n-torsionfree and

P1
g�! P0

��! M ! 0

is a projective presentation ofM 2 mod R. Then we get an exact sequence:

0! M� ���! P�
0

g��! P�
1 ! Tr M ! 0

in modRop. Let

� � � hnC1��! Qn
hn�! � � � h1�! Q0

h0�! M� ! 0

be a projective resolution ofM� in modRop. Then we get a projective resolution
of Tr M:

� � � hnC1��! Qn
hn�! � � � h1�! Q0

��h0���! P�
0

g��! P�
1 ! Tr M ! 0.
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BecauseM is n-torsionfree, TrM 2 ?nRR and we get the following exact sequence:

0! (Tr M)� ! P��
1

g����! P��
0

h�0������! Q�
0

h�1�! � � � h�n�1��! Q�
n�1 ! Cokerh�n�1 ! 0.

It is easy to see thatM � Cokerg��. By the exactness ofQn�1
hn�1��! � � � h1�! Q0

��h0���!
P�

0

g��! P�
1 , we get that Cokerh�n�1 2 ?n

RR. The proof is finished.

As an immediate consequence, we have the following

Corollary 2.2. For any n� 1, an n-torsionfree module inmodR is a 1-syzygy
of an (n � 1)-torsionfree module A inmod R with A2 ?1

RR. In particular, an 1-
torsionfree module inmod R is a 1-syzygy of an1-torsionfree module T inmodR
with T 2 ?1

RR.

We also need the following easy observation.

Lemma 2.3. For any n� 1, both Tn(modR) and T (mod R) are closed under
direct summands and finite direct sums.

3. Torsionfree dimension of modules

In this section, we will introduce the notion of the torsionfree dimension of mod-
ules in modR. Then we will give some equivalent characterizations of Gorenstein rings
in terms of the properties of this dimension of modules.

We begin with the following well-known observation.

Lemma 3.1 ([1, Lemma 3.9]). Let 0! A
f�! B ! C ! 0 be an exact sequence

in mod R. Then we have exact sequences0! C� ! B� ! A� ! Coker f � ! 0 and
0! Coker f � ! Tr C ! Tr B ! Tr A! 0 in mod Rop.

The following result is useful in this section.

Proposition 3.2. Let

0! M ! T1
f�! T0 ! A! 0

be an exact sequence inmod R with both T0 and T1 in T (mod R). Then there exists
an exact sequence:

0! M ! P ! T ! A! 0

in mod R with P projective and T2 T (mod R).
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Proof. Let

0! M ! T1
f�! T0 ! A! 0

be an exact sequence in modR with both T0 and T1 in T (mod R). By Corollary 2.2,
there exists an exact sequence 0! T1 ! P ! W ! 0 in modR with P projective
and W 2 ?1

RR\ T (mod R). Then we have the following push-out diagram:

0

K
0

K
0 KM K T1

K
K Im f

K
K 0

0 KM K P

K
K B

K
K 0

W

K
W

K
0 0

Now, consider the following push-out diagram:

0

K
0

K
0 K Im f

K
K T0

K
K A K 0

0 K B

K
K T

K
K A K 0

W

K
W

K
0 0

BecauseW 2 ?1
RR, we get an exact sequence:

0! Tr W ! Tr T ! Tr T0 ! 0

by Lemma 3.1 and the exactness of the middle column in the above diagram. Because
both W and T0 are in T (modR), both TrW and TrT0 are in ?RR. So TrT is also in?RR and henceT 2 T (modR). Connecting the middle rows in the above two diagrams,
then we get the desired exact sequence.

Now we introduce the notion of the torsionfree dimension of modules as follows.
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DEFINITION 3.3. For a moduleM 2 modR, the torsionfree dimensionof M, de-
noted byT -dimR M, is defined as inf{n� 0 j there exists an exact sequence 0! Xn !� � � ! X1 ! X0 ! M ! 0 in modR with all Xi 2 T (mod R)}. We setT -dimR M
infinity if no such integer exists.

Let M 2 mod R. It is trivial that T -dimR M � G-dimR M. On the other hand, by
[14], we have thatT -dimR M ¤ G-dimR M in general.

Proposition 3.4. Let M 2modR and n� 0. If T -dimR M � n, then there exists an
exact sequence0! H ! T ! M ! 0 in modR withpdR H � n�1 and T2 T (modR).

Proof. We proceed by induction onn. If n D 0, then H D 0 and T D M give
the desired exact sequence. Ifn D 1, then there exists an exact sequence:

0! T1 ! T0 ! M ! 0

in modR with both T0 andT1 in T 2 T (modR). Applying Proposition 3.2, withAD 0,
we get an exact sequence:

0! P ! T 0
0 ! M ! 0

in mod R with P projective andT 0
0 2 T (mod R).

Now supposen � 2. Then there exists an exact sequence:

0! Tn ! Tn�1 ! � � � ! T0 ! M ! 0

in modR with all Ti 2 T (modR). Set K D Im(T1 ! T0). By the induction hypothesis,
we get the following exact sequence:

0! Pn ! Pn�1 ! Pn�2 ! � � � ! P2 ! T 0
1 ! K ! 0

in modR with all Pi projective andT 0
1 2 T (modR). Set N D Im(P2 ! T 0

1). By Prop-
osition 3.2, we get an exact sequence:

0! N ! P1 ! T ! M ! 0

in modR with P1 projective andT 2 T (modR). Thus we get the desired exact sequence:

0! Pn ! Pn�1 ! Pn�2 ! � � � ! P1 ! T ! M ! 0

and the assertion follows.

Christensen, Frankild and Holm proved in [2, Lemma 2.17] that a module with
Gorenstein dimension at mostn can be embedded into a module with projective di-
mension at mostn, such that the cokernel is a module with Gorenstein dimension zero.
The following result extends this result.
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Corollary 3.5. Let M 2 mod R and n� 0. If T -dimR M � n, then there exists
an exact sequences0 ! M ! N ! T ! 0 in mod R with pdR N � n and T 2?1

RR\ T (mod R).

Proof. Let M 2 mod R with T -dimR M � n. By Proposition 3.4, there exists an
exact sequence 0! H ! T 0 ! M ! 0 in modR with pdR H � n � 1 and T 0 2
T (modR). By Corollary 2.2, there exists an exact sequence 0! T 0 ! P ! T ! 0
in mod R with P projective andT 2 ?1

RR\ T (modR). Consider the following push-
out diagram:

0

K
0

K
0 K H K T 0

K
KM

K
K 0

0 K H K P

K
K N

K
K 0

T

K
T

K
0 0

Then the third column in the above diagram is as desired.

The following result plays a crucial role in proving the mainresult in this paper.

Theorem 3.6. For any n� 0, if every module inmodR has torsionfree dimension
at most n, then idRop R� n.

To prove this theorem, we need some lemmas. We use ModR to denote the cat-
egory of left R-modules.

Lemma 3.7 ([11, Proposition 1]). idRop RD sup{fdR E j E is an injective module
in Mod R} D fdR Q for any injective cogenerator Q forMod R.

Lemma 3.8. For any n� 0, idRop R � n if and only if every module inmod R
can be embedded into a module inMod R with flat dimension at most n.

Proof. Assume that idRop R � n. Then the injective envelope of any module in
modR has flat dimension at mostn by Lemma 3.7, and the necessity follows.

Conversely, letE be any injective module in ModR. Then by [15, Exercise 2.32],
E D lim�!i2I

Mi , where{Mi j i 2 I } is the set of all finitely generated submodules of

E and I is a directed index set (in which the quasi-order is defined byi � j if and
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only if Mi � M j , the homomorphism�i
j W Mi ! M j is the canonical embedding). By

assumption, for anyi 2 I and Mi 2 modR, we have an exact sequence 0! Mi
�i�! Ni

with Ni 2 Mod R and fdR Ni � n.
Put K D Q

i2I
Ni and I i ={ j 2 I j Mi � M j } for any i 2 I . SinceR is a left and right

Noetherian ring, any direct product of flat modules is still flat. So fdR K � n. Define�i D Q
k2I

f i
k with

f i
k D

��k�i
k, if k 2 I i ,

0, if k � I i

for any i , k 2 I . Then 0! Mi
�i! K is exact for anyi 2 I . For any i � j (determined

by Mi � M j ), we have the following commutative and exact diagram:

0

K
0 KMi�i

jK
�i K K

'i
jK

0 KM j
� j K K

where'i
j DQ

k2I hk with

hk D
�

1Nk , if k 2 I j ,
0, if k � I j

for anyk 2 I . It is clear that{K ,'i
j } is a direct system of the constant moduleK . It follows

from [15, Theorem 2.18] that we get a monomorphism 0! E(D lim�!i2I
Mi ) ! lim�!i2I

K .

Because the functor Tor commutes with lim�!i2I
by [15, Theorem 8.11], fdR lim�!i2I

K � n.

So fdR E � n and hence idRop R� n by Lemma 3.7.

Proof of Theorem 3.6. By assumption and Corollary 3.5, we have that every mod-
ule in modR can be embedded into a module in modR with projective dimension at most
n. Then by Lemma 3.8, we get the assertion.

Lemma 3.9. For any M 2 mod R and n� 0, ?
RR-dimR M � n if and only if

ExtnCi
R (M, R) D 0 for any i � 1.

Proof. For anyM 2 modR, consider the following exact sequence:

� � � ! Wn ! Wn�1 ! � � � ! W0 ! M ! 0
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in mod R with all Wi in ?
RR. Then we have that Exti

R(Im(Wn ! Wn�1), R) �
ExtnCi

R (M, R) for any i � 1. So Im(Wn ! Wn�1) 2 ?
RR if and only if ExtnCi

R (M, R)D
0 for any i � 1, and hence the assertion follows.

Proposition 3.10. For any n� 0, every module inmodR has left orthogonal di-
mension at most n if and only ifidR R� n.

Proof. By Lemma 3.9, we have that idR R � n if and only if ExtnCi
R (M, R) D 0

for any M 2modR and i � 1, if and only if ?RR-dimR M � n for any M 2modR.

Proof of Theorem 1.4. (1)) (2)C (3) follows from [10, Theorem 3.5].
(2) ) (1) Let M be any module in modR. Then by assumption, we have that

G-dimR M � n and T -dimR M � n. So idRop R � n by Theorem 3.6. On the other
hand, because?RR-dimR M � G-dimR M, idR R� n by Proposition 3.10.

Symmetrically, we get (3)) (1).
(4)) (1) By Theorem 3.6 and its symmetric version.
(2)C (3)) (4) BecauseT -dimR M � G-dimR M and T -dimRop N � G-dimRop N

for any M 2 mod R and N 2 mod Rop, the assertion follows.
(1), (5) By Proposition 3.10 and its symmetric version.

4. The torsionless property and self-injective dimension

The following result plays a crucial role in this section, which generalizes [4,
Lemma 4], [8, Lemma 2.1] and [13, Theorem 5.1].

Proposition 4.1. For any n� 1, the following statements are equivalent.
(1) ?n

RR� T1(mod R). In this case, ?n
RR is said to have the torsionless property.

(2) ?n
RR� T (mod R).

(3) Every module in?n
RR has torsionfree dimension at most n.

(4) Tn(modR) D T (mod R).
(5) Tn(modRop) � ?RR.
(6) ?nRR D ?RR.

Proof. (2)) (1) and (2)) (3) are trivial, and (1), (6) follows from [8,
Lemma 2.1]. Note thatM and Tr TrM are projectively equivalent for anyM 2
modR or modRop. Then it is not difficult to verify (2), (5) and (4), (6). So it
suffices to prove (1)) (2) and (3)) (2).

(1) ) (2) Assume thatM 2 ?n
RR. Then M is torsionless by (1). So, by Prop-

osition 2.1, we have an exact sequence 0! M ! P0 ! M1 ! 0 in modR with P0

projective andM1 2 ?1
RR, which yields thatM1 2 ?nC1

RR. Then M1 is torsionless by
(1), and again by Proposition 2.1, we have an exact sequence 0! M1 ! P1 ! M2 ! 0
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in modR with P1 projective andM2 2 ?1
RR, which yields thatM1 2 ?nC2

RR. Repeating
this procedure, we get an exact sequence:

0! M ! P0 ! P1 ! � � � ! Pi ! � � �
in modR with all Pi projective and Im(Pi ! PiC1) 2 ?nCiC1

RR� ?iC1
RR, which implies

that M is 1-torsionfree by Proposition 2.1.
(3)) (2) Assume thatM 2 ?n

RR. ThenT -dimR M � n by assumption. By Prop-
osition 3.4, there exists an exact sequence:

(1) 0! H ! T ! M ! 0

in modR with pdR H � n�1 andT 2 T (modR). BecauseM 2 ?n
RR, the sequence (1)

splits, which implies thatM 2 T (mod R) by Lemma 2.3.

Similarly, we have the following result.

Proposition 4.2. The following statements are equivalent.
(1) ?

RR� T1(mod R). In this case, ?
RR is said to have the torsionless property.

(2) ?
RR� T (mod R).

(3) Every module in?RR has finite torsionfree dimension.
(4) T (mod Rop) � ?RR.

Let N 2 modRop and

0! N
Æ0�! E0

Æ1�! E1
Æ2�! � � � Æi�! Ei

ÆiC1��! � � �
be an injective resolution ofN. For a positive integern, recall from [3] that an in-
jective resolution as above is calledultimately closedat n if Im Æn DLm

jD0 Wj , where
eachWj is a direct summand of ImÆi j with i j < n. By [8, Corollary 2.3], if RR has a
ultimately closed injective resolution atn or idRop R � n, then?n

RR (and hence?RR)
has the torsionless property.

The following result generalizes [16, Lemma A], which states that idRop RD idR R
if both of them are finite.

Corollary 4.3. If n Dmin{t j ?t
RR has the torsionless property} and mDmin{s j?sRR has the torsionless property}, then nD m.

Proof. We may assume thatn � m. Let N 2 ?nRR. Then N 2 ?RR (� ?mRR)
by Proposition 4.1. SoN 2 T (modRop) and ?nRR has the torsionless property by the
symmetric version of Proposition 4.1. Thusn � m by the minimality ofm. The proof
is finished.
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In the following, we will investigate the relation between the torsionless property
and the self-injective dimension ofR. We have seen that if idRop R � n, then ?n

RR
has the torsionless property. In the rest of this section, wewill investigate when the
converse of this assertion holds true.

Proposition 4.4. Assume that m and n be positive integers and�m(modRop) �
Tn(mod Rop). If ?n

RR has the torsionless property, then idRop R� m.

Proof. Let M 2 �m(mod Rop). Then M 2 Tn(mod Rop) by assumption. Because?n
RR has the torsionless property by assumption,M 2 ?RR by Proposition 4.1. Then

it is easy to verify that idRop R� m.

Assume that

0! RR! I 0(R) ! I 1(R) ! � � � ! I i (R) ! � � �
is a minimal injective resolution ofRR.

Lemma 4.5. If ?n
RR has the torsionless property,

Ln
iD0 I i (R) is an injective co-

generator forMod R.

Proof. For anyS2 modR, we claim that HomR
�
S,
Ln

iD0 I i (R)
� ¤ 0. Otherwise,

we have that Exti
R(S, R) � HomR(S, I i (R)) D 0 for any 0� i � n. So S2 ?n

RR and
henceS is reflexive by assumption and Proposition 4.1, which yieldsthat S� S�� D 0.
This is a contradiction. Thus we conclude that

Ln
iD0 I i (R) is an injective cogenerator

for Mod R.

Proposition 4.6. idRop R<1 if and only if ?n
RR has the torsionless property for

some n� 1 and fdR
L

i�0 I i (R) <1.

Proof. The sufficiency follows from Lemmas 4.5 and 3.7, and the necessity fol-
lows from Proposition 4.1 and Lemma 3.7.

For anyn,k�1, recall from [9] thatR is said to begn(k) if Ext j
Rop(ExtiCk

R (M, R), R)D
0 for any M 2 modR and 1� i � n and 0� j � i � 1; and R is said to begn(k)op

if Rop is gn(k). It follows from [12, 6.1] thatR is gn(k) (resp.gn(k)op) if fd Rop I i (Rop)
(resp. fdR I i (R))� i C k for any 0� i �n� 1.

Theorem 4.7. Assume that n and k are positive integers and?n
RR has the tor-

sionless property. If R is gn(k) or gn(k)op, then idRop R� nC k � 1.

Proof. Assume that?n
RR has the torsionless property.
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If R is gn(k), then�nCk�1(modR) � Tn(modR) D T (modR) by [9, Theorem 3.4]
and Proposition 4.1, which implies that the torsionfree dimension of every module in
mod R is at mostnC k � 1. So idRop R� nC k � 1 by Theorem 3.6.

If R is gn(k)op, then�nCk�1(modRop) � Tn(modRop) by the symmetric version of
[9, Theorem 3.4], which implies idRop R� nC k � 1 by Proposition 4.4.

By Proposition 4.1 and Proposition 4.6 or Theorem 4.7, we immediately get the
following

Corollary 4.8. If fdR
Ln

iD0 I i (R) � n, then idRop R � n if and only if ?n
RR has

the torsionless property.

Recall that the Gorenstein symmetric conjecture states that idR RD idRop R for any
Artinian algebraR, which remains still open. Hoshino proved in [5, Proposition 2.2]
that if idR R� 2, then idR RD idRop R� 2 if and only if ?2

RR has the torsionless prop-
erty. As an immediate consequence of Theorem 4.7, the following corollary generalizes
this result.

Corollary 4.9. For any n� 1, if idR R� n, then idR RD idRop R� n if and only
if ?n

RR has the torsionless property.

Proof. The necessity follows from Proposition 4.1. We next prove the sufficiency.
If id R R� n, then fdRop

Ln
iD0 I i (Rop) � n by Lemma 3.7, which implies thatR is gn(n)

by [12, 6.1]. Thus idRop � 2n�1 by Theorem 4.7. It follows from [16, Lemma A] that
idRop R� n.

5. Questions

In view of the results obtained above, the following two questions are worth being
studied.

Note that both the subcategory of modR consisting of modules with Gorenstein
dimension at mostn and that consisting of modules with left orthogonal dimension at
mostn are closed under extensions and under kernels of epimorphisms. So, it is natural
to ask the following

QUESTION 5.1. Is the subcategory of modR consisting of modules with torsion-
free dimension at mostn closed under extensions or under kernels of epimorphisms? In
particular, IsT (mod R) closed under extensions or under kernels of epimorphisms?

For anyn � 1, Tn(modR) is not closed under extensions by [6, Theorem 3.3]. On
the other hand, we have the following
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Claim. If ?RR has the torsionless property, then the answer toQuestion 5.1is
positive.

In fact, if ?RR has the torsionless property, then, by the symmetric version of
Proposition 4.2, we have thatT (modR) � ?

RR and every module inT (mod R) has
Gorenstein dimension zero. So the torsionfree dimension and the Gorenstein dimension
of any module in modR coincide, and the claim follows.

By the symmetric version of [8, Corollary 2.3], ifRR has a ultimately closed in-
jective resolution atn or idR R� n, then the condition in the above claim is satisfied.
This fact also means that the above claim extends [6, Corollary 2.5].

It is also interesting to know whether the converse of Theorem 3.6 holds true. That
is, we have the following

QUESTION 5.2. Does idRop R� n imply that every moduleM 2 modR has tor-
sionfree dimension at mostn?

Claim. When nD 1, the answer toQuestion 5.2is positive.

Assume that idRop R � 1 and 0! K ! P ! M ! 0 is an exact sequence in
modR with P projective. Then Exti

Rop(Tr K , R) D 0 for any i � 2. Notice thatK is
torsionless, so Ext1

Rop(Tr K , R) D 0 and K 2 T (modR), which impliesT -dimR M � 1.
Consequently the claim is proved.
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