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Abstract
In this article, we show that some semi-rigidstable sheaves on a projective K3
surfaceX with Picard number 1 are stable under Bridgeland’s stghiliindition. As
a consequence of our work, we show that the special¢&t) C Stab(X) introduced
by Bridgeland reconstructX itself. This gives a sharp contrast to the case of an
abelian surface.

1. Introduction and statement of results

In the paper [2], Bridgeland constructed the theory of $itgbconditions on tri-
angulated categorie®. Roughly speaking a stability conditiotmn = (A, Z) is a pair
consisting of the heartd of a bounded t-structure o and a group homomorphism
Z: K(A) — C where K(A) is the Grothendieck group afl. For o, we can define
the notion ofo-stability for objectsE € D. Very roughly, E is said to beo-stable
if arg Z(A) < argZ(E) for any non-trivial “subobject”A of E. However, there is no
notion of subobjects irD. Thus the heart is necessary for us to define it.

Let us consider the cask is the bounded derived categoBy(X) of a projective
manifold X. Namely D(X) is the bounded derived category of C¥l)( where CohX)
is the abelian category of coherent sheavesXon

One of the big problems is the non-emptiness of the space(IBtatf stability
conditions for an arbitrary triangulated categdPy However, whenX is a projective
K3 surface or an abelian surface, Bridgeland found a coedecbmponent StabX)
of the space Stab) of stability conditions onD(X). Stali(X) can be described by
using the special locusU(X)” given by (see also Sections 2 and 3)

U(X) := {o € StabX) | Yx € X, Ox is o-stable with the same phase

and o is good, locally finite and numerical

SinceU(X) is connected by [3], we can define SteX) by the connected component
which containsU (X). We also remark thal) (X) is a proper subset of StiX) if X
is a projective K3 surface by [3].
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Broadly speaking, the topic of our research is an analysithefrelation between
U(X) and Fourier—Mukai partners of. Originally stability conditions are defined on
D(X) independently ofX. Let us recall that for some K3 surfacg, there is another
K3 surfaceY such thatY is not isomorphic toX but D(Y) is equivalent toD(X).
Let @: D(Y) — D(X) be an equivalence. The@ naturally induces an isomorphism
@, : Stably) — Stab(X). We shall treat the following problem:

PROBLEM. Suppose thalY is not isomorphic toX. Then does there exist an
equivalenced: D(Y) — D(X) so that®,(U(Y)) = U(X)?

We can see that the answer of this problem is negative by thewfog first
main theorem.

Theorem 1.1 (Corollary 6.7). Let X and Y be projective Xsurfaces with Picard
numberl. Suppose thatb: D(Y) — D(X) is an equivalence withd, (U (Y)) = U(X).
Then® can be written as

o(?)=M® f.(?)n],
where M is a line bundle on Xf is an isomorphism fY — X and ne Z.

Recall that if X is a projective K3 surface of Picard number 1 ands a project-
ive manifold such thaD(X) ~ D(Y) thenY is also a projective K3 surface of Picard
number 1. Suitable reference is, for instance, [1] or [9]rtiermore in Corollary 6.8,
we give the interpretation of Theorem 1.1 from the viewpahtthe autoequivalence
group AutD(X)) of D(X).

Theorem 1.1 implies that the special locUgX) is determined byX although
Stab(X) is defined on the categorip(X). It is interesting to observe that, whex
andY are abelian surface®.(U(Y)) = U(X) for any equivalenceb: D(Y) — D(X)
(cf. Remark 6.9). At first, we expected that there exists amivetgnce®: D(Y) —
D(X) preservingU (X) althoughY is not isomorphic toX.

It is well known that any Fourier—Mukai partners of a projeetK3 surfaceX are
given by moduli spaces of Gieseker-stable sheaves. Hencéirstuapproach was the
investigation ofo-stability of u-stable (or Gieseker stable) sheaves.

Before we state the second main theorem Theorem 1.2, we estidlin two nota-
tions which we use in the theorem (the details appear in &e@&). There is a subset
V(X) of U(X) which is (roughly) parametrized bR-divisors g and R-ample divisors
w. SO we write asi ) € V(X). The setV(X) contains the locu® (X)., defined by

V(X)-2 := {0(s,) € V(X) | 0? > 2}.
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Theorem 1.2. Let X be a projective K surface withNS(X) = Z - L. We put
d = L?/2. Let E be a torsion free sheaf with(E)?> = 0 (see Section 3.1for the
definition ofv(E)) and rankE < +/d, and leto = (Z, P) be in V(X)-».
(1) If E is Gieseker-stable and E P((0, 1]) (see Section 2for the definition of
P((0, 1])), then E iso-stable.
(2) If E is u-stable locally free and Ee P((—1, 0]) (seeSection 2for the definition
of P((—1, 0])), then E iso-stable.
(3) Let S be a spherical sheaf witankS < +/d. Then S isr-stable.

The assertions (1) and (2) are proved in Theorem 4.6, and gkerteoon (3) is
Proposition 5.4. The assumption “raBk< +/d is the best possible in some sense
(see Example 5.5), and we can not remove the assumption affleeness in (2) (see
Corollary 5.7). We prove Theorem 1.1 applying Theorem 1.2.

Finally we explain the contents of this paper. Section 2 isiwvey of the general
theory of stability conditions on triangulated categaribs Section 3, we study the case
whenD = D(X) where X is a projective K3 surface. In the last half of Section 3, we
shall recall the results on Gieseker stable sheaves and orieFeMukai partners on
K3 surfaces with Picard number 1.

In Section 4, we shall prove (1) and (2) of Theorem 1=2Ttheorem 4.6). Hence
the main part of this section is the comparison between trsability (or Gieseker-
stability) and theo -stability. We remark that the -stability of E € D(X) depends on
the argument of the complex numb&(E). Hence we need an appropriate description
of Z(E) to compare the argument &f(E) and the slopex,(E). There are two keys
for the comparison. One is the following expression of tlabiity function Z . (the
definition of Z ., is in Section 3):

Z(.0)(E) = W(EY + 2( +\/_(——ﬂ))

2re

The other is the assumption that the Picard numbeiXois one. If X satisfies the
assumption, the right hand side of the above formula is josapiex number. Thus
we can compare the slope,(E) and the argument oEZ(E).

In Section 5, we prove Theorem 1.2 (3 Proposition 5.4). The strategy of the
proof is essentially the same as that of Theorem 4.6. We haweapplications of
Proposition 5.4. One is to prove that we cannot drop the assomon rank and the
condition of local-freeness in Theorem 4.6. The other isdbatermination of Harder—
Narasimhan filtrations of some special obje@gOy) (cf. Corollary 5.7 and 5.8). In
general, it is very difficult to determine Harder—NarasimHdtrations. So, these ex-
amples are valuable.

In Section 6, we shall treat two applications of Theorem TRe first application
is to find some pairsK, o) such that an objecE € D(X) is a true complex andE is
o-stable for somer € U(X). The second application is to prove Theorem 1.1.
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2. Bridgeland’s stability condition

This section is a survey of the general theory of Bridgelsrstability conditions
on triangulated categories. L& be aC linear triangulated category. The symbol [1]
means the shift o® and |n] means then-times composition of [1].

DEFINITION 2.1. Leto = (Z,P) be a pair consisting of a group homomorphism
Z: K(D) — C from the Grothendieck group dP to C, and a collectiorP = {P(¢)}
of additive full subcategorie®(¢) of D parametrized by the real numbefs This pair
o is a stability condition orD if it is satisfied the following condition:
(1) If 0 # E € P(¢), then Z(E) = m(E) exp(v—1r¢) wherem(E) > 0.
(2) If ¢ > o, then Homp(E, F) = 0 for all E € P(¢) and F € P(¥).
() P(¢ + 1) =P(#)[1].
(4) For all 0# E € D, there is a sequence of distinguished triangles satisfjleg
following condition:

0 E1 Ex e En1 En=E,

N
(2.1) N / N N / N o /
(EVIEAN o~ (BN

Aq As An

where eachd; is in P(¢i) (i =1,...,n) with ¢1 > --- > ¢n.

REMARK 2.2. (1) EachP(¢) is an abelian category.
(2) By definition, for each G4 E € D, there is at most ong € R such thatE € P(¢).
When E € P(¢), we define argZ(E) := ¢ and call¢ the phaseof E.
(3) E € D is said to beo-semistablewhen E € P(¢) for some¢ € R. In particular,
if E is minimal inP(¢) (that is, E has no non-trivial subobjects) thdh is said to be
o-stable
(4) The sequence (2.1) is unique up to isomorphism. We caily edseck this by
using the property Definition 2.1 (2). Hence we defifje(E) := ¢1, and ¢, (E) := ¢n.
We call the sequence thdarder—Narasimhan filtrationfor short HN filtration) of E,
and eachA; a semistable factoof E.
(5) Let 1 C R be an interval. For, we defineP(l) as the extension closed addi-
tive full subcategory ofD generated byP(¢) (¢ € 1). If E € P(l), then¢™(E) and
¢~ (E) el.
(6) A stability conditiono is said to belocally finite if for all ¢ € R, there is a posi-
tive numbere such that the quasi-abelian categd?(¢ — ¢, ¢ + €)) is finite length,
that is both increasing and decreasing sequences of sab®lojeA will terminate (see
also 84 of [2]). The property of local-finiteness guarantdes existence of Jordan—
Holder filtrations (for short JH filtrations), that is, forya® # A € P(¢), there exists
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a sequence of distinguished triangles

0 Ad Az o An-1 A=A

N\ / LN / LN
W (TN W /

S S S

such that eaclf is o-stable with phase. We call eachS a stable factorof A. We
remark that JH filtrations may not be unique.

In general it is difficult to construct stability conditiorm D. However, by using
Proposition 2.4 (below), we can explicitly construct themsome cases. Before we state
the proposition, we introduce the notion of a stability citiod on abelian categories.

DEFINITION 2.3. LetA be an abelian category, axd K (A4) — C a group homo-
morphism from the Grothendieck grouf(A) of A to C, satisfying

Z(E) = mg exp(vV—1rgg) for 0# E e A, where ¢g €(0,1] and mg > 0.

We call Z a stability functionon A. An objectE € A is called a §emjstable object
for Z when, for any non-trivial subobjects of E, the following inequality holds:

or < PE, (PF = ¢E).

If Z has the following property, we call a stability function equipped with thidarder—
Narasimhan(for short HN) property.

0# VE € A, Hafiltration 0CE; CE,C---C Eyn1 C E,=E such that
A = Ei/E_1 is semistable and¢a, > - > ¢a,.

Proposition 2.4 ([2, Proposition 5.3]). Let D be a triangulated category. Then
the following are equivalent
(1) To give a stability conditionrr = (Z, P) on D.
(2) To give a pair(A, Z4) consisting of the heartd of a bounded t-structure o®
and a stability function Z on A which has the HN property.

For the convenience of readers, we give a sketch of the proof.

From (1) to (2). For the paiv = (Z, P), P((0, 1]) is the heartd of a bounded
t-structure onD. We define a stability functiorZ 4 as Z. Then the pair P((0, 1]), Z)
is what we need.

From (2) to (1). For a real numbefr € (0, 1] we defineP(¢) by

P(p) .= {Aec A| Ais semistable forZ with ¢a = ¢} U {0}.
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If ¥ € R\(0, 1], we defineP(y) by P(v¥o)[k] where v = ¥ + k with v € (0, 1] and
k € Z. SinceK(A) = K(D), we can defineZ by Z4. Then the pair Z, P) gives a
stability condition onD. ]

In the following lemma, we introduce two actions of groups Stab(X).

Lemma 2.5([2, Lemma 8.2]). Let Stab(D) be the space of stability condition on
D, GI?(Z, R) the universal covering space of G(2,R), and Aut(D) the autoequiv-
alence group ofD. Stab(D) carries a right action oféVIf(Z,R), and a left action of
Aut(D). In addition these two actions commute.

REMARK 2.6. By the definition of the action (ﬁBTf(Z, R), we can easily see

that for anyo € Stab(D) and anyg € éTf(Z,R), E € D is o-(semi)stable if and only
if E is o -§-(semi)stable.

3. Stability conditions on K3 surfaces

In this sectionX is a projective K3 surface ovet, Coh(X) is the abelian category
of coherent sheaves o, and D(X) is the bounded derived category of Cf)( The
purpose of this section is to give a description of Skb(

We first introduce some notations. Lé&t and B be in D(X). If the i-th co-
homology H'(A) is concentrated only at degrée= 0, we call A a sheaf We put
Homt (A, B) := Hompx)(A, B[n]). If both A and B are sheaves, then HgrgA, B) is
just Exg, (A, B). We also put hofi(A, B) := dimc Homi (A, B) and ex§(A, B) :=
dim Ext,, (A, B). Sometimes we omiX of Homj (A, B) and so on. We remark that

Homi (A, B) = Honmi "(B, A)*

by the Serre duality.

We secondly recall the notion of the-stability. For a torsion free shed and
an ample divisor, the slope u,(F) is defined by ¢ (F) - w)/rankF wherecy(F) is
the first Chern class oF. If the inequality u,(A) < u,(F) holds for any non-trivial
subsheafA of F, thenF is said to beu-semistable Moreover if the strict inequality
1o(A) < ne(F) holds for any non-trivial subshea with rank A < rankF, then F
is said to beu-stable The notion of theu-stability admits the Harder—Narasimhan
filtration of F (details in [6]). We definew} (F) by the maximal slope of semistable
factors of F, and u_(F) by the minimal slope of semistable factors I6f

3.1. On numerical stability conditions onD(X). Let K(X) be the Grothendieck
group of D(X). K(X) has the naturaZ bilinear form y:

x: K(X)x K(X) = Z, x(E,F):= Z(—l)‘ horr, (E, F).
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Let NV(X) be the quotient oK (X) by numerical equivalent classes with respectyto
Then NV(X) is HO(X, Z) ® NS(X) @ H*(X, Z), where NSK) is the Néron-Severi lattice
of X. A stability conditiono = (Z, P) on D(X) is said to benumericalif Z factors

through V/(X):

K(X) —> N(X)

N

C.

Let xn be the descent of. Since xn is non-degenerate aV'(X) ®z C, Z is ca-
nonically in /(X) ® C:

Homc (M (X) @ C,C) > N(X)®C, Zy+ ZY,
where Z(E) = xa(ZY, E). Thus we define Stal() by
StabX) := {o € StabD(X)) | o is locally finite and numericél
Then we have the following natural map:
7 StabX) > N(X)® C, =n((Z,P)) =2Z".

We remark thatr is a locally homeomorphism (The details are in [2, Corollarg]).
Hence the mapr gives a complex structure on Stad)( In particular StabX) is a
complex manifold.

Let (—, —) be the Mukai pairing onV(X):

roAdsreANeds)=AA—rs' —r's,
where bothr @ A@sand r' @ A’ @ s are inHO(X, Z) @ NS(X) ® H*(X, Z). For an
objectsE € D(X), we putv(E) = ch(E)+/tdx € N(X) and call it theMukai vectorof
E. Then we havey (E,F) = —(v(E),v(F)) for E and F € D(X) by the Riemann-Roch

theorem. We have the following famous consequence:

Lemma 3.1. Let X be a projective K surface and Ee D(X). Assume that
hond (E, E) = 1. Then we have

(v(E))? + 2 = homk (E, E).
Thus we havdv(E))2 > —2 and the equality holds if and only Hom'(E, E) = 0.

If, for E € D(X), hom}(E, E) = 2, E is said to besemi-rigid Assume that
honfP(E, E) = 1. Then by the above lemmé(E))2 = 0 if and only if E is semi-rigid.
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3.2. Construction of U(X). Next, following Bridgeland, we define a special sub-
setU (X) of StabX) and give two descriptions df (X). Put

NS(X)r := NS(X) ®zR and AmpX)g := {w € NS(X)r | ® is amplg.
We first define the subsét(X) of NS(X)gr x Amp(X)g by
V(X) 1= {(B, w) € NS(X)r x AMp(X)R |
V8 € A*(X), (exp(B + vV—1w), 8) ¢ Ro},

where AT(X) = r @ A@se N(X) | {r ® A ®s)?=-2 andr > 0}. If w? > 2 then
(B, w) € V(X) for all B € NS(X)g. HenceV(X) # 9. Thus we define

V(X)=2 = {(B, ) € V(X) | 0* > 2}.

We can define a torsion paiff .., Fs..)) (See below) of ColX) by using a pair
(B, ®) € NS(X)r x AMp(X)r. As a consequence we have a new heart of the bounded
t-structure which comes from the torsion paiis(.), F(s,))-

Lemma 3.2 ([3, Lemma 6.1]). Let 8 € NS(X)r and w € Amp(X)g. We define
respectively7..), F(p.o) and As.) by
T« := {E € Coh(X) | E is a torsion sheaf oy (E/torsion)> Bw},
F.e) = {E € Coh(X) | E is torsion free andu}(E) < Bw},

and
€ Tpw (i =0), }

Ap.w) = {E° € D(X) Hi(E°){e Fpo (=-1),
=0  (#0-1)

(1) The pair (7(g,), F(s,w)) iS @ torsion pair ofCoh(X).
(2) A, is the heart of the bounded t-structure determined by theidar pair
(Tg.0)» Fp.))-

The condition that £, w) € V(X) is necessary when we construct a stability func-
tion Z(‘g’w) on A(ﬁ,w)-

Proposition 3.3 ([3]). For (8, w) € V(X), we define the group homomorphism
Z(‘g’w)i K(X) — C by

Z(p)(E) 1= (exp( + v=1w), v(E)).



STABILITY CONDITIONS AND j-STABLE SHEAVES 1013

Then Zg ) is a stability function onAg,) with the HN-property. Hence the pair
(A.0), Z(s,)) defines a stability conditiow s, on D(X). In particular o(s, ) iS Nu-
merical and locally finite.

Here we put
V(X):={opw | (B, @) € V(X)} and V(X).2:= {0p.w) | (B, @) € V(X).2}.

The most important property ef € V(X) is theo-stability of the structure sheaves
Oy of closed pointsx of X.

Proposition 3.4 ([3, Lemma 6.3]). Let xe X. ThenOy is minimal in A, for
any (8, w) € V(X). NamelyO, does not have non-trivial subobjects iys ). In par-
ticular Oy is o-stable with phasd for any o € V(X).

REMARK 3.5. Letog.w) = (Z, P) € V(X).
(1) By Proposition 3.4 and [3, Lemma 10.1], any sh&€& Coh(X) is in P((-1, 1]).
In addition to Proposition 3.4, iE € D(X) is o .)-Stable with phase 1 thek is
Oy for somex € X or £[1] where £ is a locally free sheaf. In particular, there is no
torsion frees-semistable sheaf of phase 1.
(2) As we stated, ColX) is a full subcategory ofP((—1, 1]). Moreover by Propos-
ition 3.4, we have

(31) Ty =P(0. 1)NCohX), and Fy,y = P((~1, 0)) N Coh(X).

This fact is proved in Step 2 of the proof of [3, Proposition3]0 Now, assume that
a torsion free sheak is u-semistable forw. Then by (3.1):

Ec {ﬁﬁ,w) (if 11,(E) > pw),
Fpw) (f uo(E) < po).

We define
U(X):=V(X)-GL"(2,R) and U(X)-2:=V(X)-2-GL (2,R).

We remark that the action a%T.*(z, R) on U(X) is transitive. SinceV(X) is con-
nected,U(X) is also connected. This is the concrete definitionUgfX). Conversely
we shall give an abstract definition &f(X). To do this, we define the notion of good
stability conditions.

For 8 e N(X)®C, we havels = g+ v/—18, whereUg and 3, are in N (X) ®
R. Let P(X) be the set of vector® € A(X) ® C such that Mukai pairing is positive
definite on the real 2-plane spanned By and U,. Let A(X) be the subset afV(X)
defined by

A(X) := {8 e N(X) | (8)2 = —2}.
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We define Py(X) by
Po(X) == P(X)— | o,

SeA(X)
wherest = {8 e N(X) ® C | (T, §) = 0}.

DEFINITION 3.6. A stability conditiono € Stab(X) is said to begood if
(o) € Po(X).

Proposition 3.7 ([3, Proposition 10.3]). We have
U(X) = {o € StabX) | o is good andVOy is o-stable in a common phase

In [3], U(X) is defined by the right hand side of Proposition 3.7. Defireb$X)
by the unique connected component containih@gX).

3.3. Gieseker stability and Fourier—Mukai partners. The last topic of Sec-
tion 3 is a review of Gieseker stability. The details are if. [Get E be a torsion
free sheaf on a K3 surfackE and p(E) the reduced Hilbert polynomial for an ample
divisor L:

_ x(Ox, E®nL)  x(-nL, E)

P(E) rank E " rankE

€ Q[n].
Using the Mukai vectow(E) =rg & Ag @ sg of E, we write down p(E):

{v(=nL), v(E))

p(E) = —
re
(3.2) ,
L 2 AL S
=—nN“"4+—n+ — + 1.
2 e e

A torsion free sheak is called aGieseker semistablsheaf if, for any non-trivial
subsheafA, p(A) < p(E) as polynomial. In particularE is called aGieseker stable
sheaf when the strict inequalitp(A) < p(E) holds. For a torsion free she&, we
can easily check the following well known fact by the formy&?2):

u-stabke = Gieseker stable> Gieseker semistable> -semistable.

Let M (v) be the moduli space of Gieseker stable torsion free shesitedViukai
vectorv =r & A @ s. If v is primitive in A(X), then M (v) is projective.

By the result of [5] or [11], we have a beautiful descriptidhFourier—Mukai part-
ners of X when the Picard number of is 1. Let us recall it.
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Theorem 3.8([5, Theorem 2.1], [11]). Let X be a projective K surface with
NS(X) = Z - L where L is an ample line bundle on,>and let FM(X) be the set
of isomorphic classes of Fourier—Mukai partners of X

FM(X) ={Y | Y is a projective B surface and DY) ~ D(X)}/~isom-
ThenFM(X) is given by
FM(X) = (M (r ®L@®s)|2rs=L2? gcdf,s)=1,r <s}.
We remark thatM | (r @ L @ s) is the fine moduli space gf-stable sheaves.

4. o-stability of u-stable semi-rigid sheaves

From this section we mainly consider projective K3 surfaegth Picard number
1. In this article, a pair X, L) is said to be ageneric K3, if X is a projective K3
surface andL is an ample line bundle which generates Xp( We define deX by
L2 and call itdegree of X We also write the Mukai vecton(E) of E € D(X) by
re ® Ag @ sg. Then we haveg = rankE, Ag = ¢i(E) andsg = x(Ox, E) —rankE.
Since NSK) = Z - L, we can writeAg = ngL for some integeng € Z. So we also
write v(E) = rg @& ngL & Sg.

Our research and results are based on another expressidre déiriction Zg,.),
where o(g,.) = (Z(g,0), Ps,0)) € V(X). For E € D(X), assume thatg # 0. Then we
can rewrite the stability functioZ,.,) in the following way-

2
(4.1) Zp.w)(E) = "EF r_E(w " \/__1(E _5)) '
2rg 2 re

We introduce a function which will appear in the proofs of Lreas 4.5 and 5.3,
and in Example 5.5. For a generic KX,(L) with degree &8, assume thatg ) =
(Zg,0)» Pip,o)) € V(X). We put B, w) = (xL,yL). Then, forE € D(X), the imaginary
part of Z ,)(E) is 2v/—1ydig where Ag = ng —regx. For E, A € D(X), we define
NA,E(Xl y) by

4.2) Nae(X, Y) := Ag - Re Zg,o)(A) — Aa - Re Z(g,0)(E),

where e means taking the real part.

Recall the notion ar@(A) for a o-semistable objecA and o € Stab(X) (cf. Re-
mark 2.2 (2)). In general, we can not determine the argumetiteocomplex number
Z(E) for an objectE € D(X). However if E € P((a, a + 1]) (for somea € R) then
we can determine the argument @{E). So we denote also it by ai)E), that is,

def
¢ =argZ(E) < Z(E) = mexp(v—1r¢) for somem € R.o.

We wrote the symbolg, ) till last section. From here we will omit them.
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We shall use Lemma 4.1 and Proposition 4.2 to analyze of theémna (semi)stable
factor of Gieseker stable sheavEswhen E € P((0, 1]) for o = (Z, P) € V(X).

Lemma 4.1. Let (X, L) be a generic B and o(s,.) = (Z, P) € V(X). Assume
that A— E — F — A[1] is a non-trivial distinguished triangle irP((0, 1]), that is
A, E and F are inP((0, 1]).

(1) If E is a torsion free sheaf then A is also a torsion free sheaf.
(2) In addition to (1), assume that E is a Gieseker stable sheaf. alfZ(E) <
argZ(A) < 1, then u,(A) < u.(E).

Proof. We first prove the assertion (1). & € P((0, 1]) = A(;s.), then thei-th
cohomologyH'(G) is concentrated ait = 0 and—1. Then we see thaf is a sheaf
by the exact sequence

0=H?*F)—>H?YA—->HYE)=0

where we use the fact thaE is a sheaf for the last equality. Sinde and A are
sheaves, we have the following exact sequence of sheaves:

0— HYF)— ALES HO(F) — 0.

The sheafH ~%(F) is torsion free since it is iF,,). ThusA is an extension of torsion
free sheaves. Henca is torsion free.

Let us prove the assertion (2).

CAseE |l. AssumeH™'(F) = 0. ThenA is a subsheaf oE. So we have

(4.3) P(A) < p(E).

Thus u,(A) < ue.(E). Assume thatu,(A) = u,(E). By the formula (3.2) and the
inequality (4.3) we have

Sa Sg

— < _,

ra Te

where v(A) =r1a ® Ap @ sa andv(E) = re & Ag @ Se. Hence we have(A)?/ra >
v(E)?/rZ. Here we also used the fact that the Picard number is 1. Cangpihis
with u,(A) = u,(E), we have argZ(A)/ra < argZ(E)/reg by the formula (4.1). This
contradicts the fact that atg§(E) < argZ(A).

Cast ll. AssumeH™(F) # 0. Recall thatH ~%(F) is torsion free. We have the
following inequalities:

to(HHF)) < ut(HHF)) < B < u,(A) < o (A).
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Hence we have,(H1(F)) < 1,(A) < u,(Im(f)), where Im(f) is the image off: A —
E. Since Im(f) is a subsheaf oE, u,(Im(f)) < u,(E). Hence we have,,(A) < w,(E).
O]

As a consequence of Lemma 4.1, we prove the following prdiposi

Proposition 4.2. Let (X, L) be a generic B, let o = o(3,,) = (Z,P) be in V(X),
and let E be a Gieseker stable torsion free sheaf witB)?> < 0 and E e P((0, 1]).
(1) Assume that E is nat-semistable. Then there is a torsion freestable sheaf
S such thatBw < 1,(S) < 1e(E), v(S)? = —2 and argZ(S) = ¢, (E). In particular
argZ(E) < argZ(9).

(2) Assume that E is not-stable buto-semistable. Then there is a torsion free
stable sheaf S such th@w < 1.(S) < .(E), v(S)? = —2 and argZ(S) = arg Z(E).

Proof. We prove (1). Sincé is not o-semistable, there is the non-trivial HN
filtration of E:

0 E; Ex En_1 E,=E.

N X ~
AN N AN
(TN / (RN / (NN /

AL Az An

Let S be a stable subobject o&;. We show thatS satisfies our requirement. By the
composition of natural two morphisms, we have the followitigtinguished triangle
in P((0, 1)):

(4.4) S—»E—>F — d1].

Then Sis a torsion free sheaf by Lemma 4.1 (1). By Remark 3.5, we laag&(S) =
argZ(A;1) < 1. ThusBw < i, (S). By Lemma 4.1u,(S) < u.(E). Hencev(S)? should
be negative by the assumptiafE)? < 0 and the formula (4.1). Sinc8 is stable, we
have v(S)? = —2.

Next we prove (2). IfE satisfies the assumptios has ao-stable subobjecS
with argZ(S) = argZ(E). Thus we have the same triangle as (4.4). Hence we have
proved the assertion. []

Next we prepare, in some sense, dual assertions of Lemmand.Praposition 4.2
for the caseE € P((-1, Q]).

Lemma 4.3. Let (X, L) be a generic B and o(g,.) = (Z, P) € V(X). Assume
that F - E — A — F[1] is a non-trivial distinguished triangle iP((—1, 0]).
(1) If E is a torsion free sheaf then A is also a torsion free sheaf.
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(2) If E is a u-stable locally free sheathen A is a torsion free sheaf and the strict
inequality 1, (E) < 1o(A) holds.

Proof. We first prove (1). Sinc&®((—1, 0]) = P((0, 1))[-1] = A.[—1], the
i-th cohomologyH'(G) of G € P((~1, 0]) is concentrated dt= 0 and 1. Note that
H(A) = is 0 by the factH?(F) = H(E) = 0. SinceE and A are sheaves, we have
the following exact sequence of sheaves:

f
0— HY%F) - E - A— HY(F) - 0.

Since A € Fg,,), A is torsion free. We remark thati°(F) is also torsion free.

Next we prove the inequality in (2).

CASE I. AssumeH?(F) # 0. Then rank(Imf)) < rankE where Im(f) is the im-
age of f. SinceE is u-stable, we havet,(E) < u,(Im(f)).
(I-i) Assume thatH%(F) = 0. Then Im(f) = A. So we haveu,(E) < jte(A).
(I-ii) Assume thatH(F) is torsion. ThenwApir) > 0. Since rank Im() = rank A
and Aa = Aty + Apry, we haveu,(Im(f)) < n,(A). Hence we get the inequality.
(I-iii) Assume thatH(F) 2 T, whereT is the maximal torsion subsheaf &f'(F).
Then we have the following diagram of exact sequences:

|

0—> T —> HY(F) — H(F)/T —>0.

Recall the following inequalities:
Ho(A) = b (A) = Bo < p,(HH(F)/T) = po(HY(F)/T).

By the argument of (I-ii), we havg,(H(F)/T) < uu(H(F)). Sou.(A) < ie(H(F)).
Since the following sequence is exact, we hayglm(f)) < . (A):

0— Im(f) > A— HYF)— 0.

Thus we have proved the inequality,(E) < ., (A).
CasE Il. Assume H(F) = 0. The sequence

(4.5) 0—-E—>A—HYF)—0

is an exact sequences of sheaves. Hence weFusestead of H'(F). Notice that both
A and E are in Fg ) and thatF is in 7).
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(II-i) Assume thatF 2 tor wheretor is the maximal torsion subsheaf &f. By the
argument of (l-iii), we have the inequality.

(Il-ii)y Assume thatF is torsion with dim Supgt) = 1. Then rankA = rankE and
Arw > 0. So we have the inequality.

(lI-iii)y Assume that F is torsion with dim Sup@d) = 0. Let x be a closed point in
Suppf). By (4.5), we have the exact sequenceC@fvector spaces:

Ext, (E, Ox) — Ex, (F, 0,) — Ex3, (A, Ox) > Ext, (E, O,).

Since E is locally free and dinX = 2, EX%X(E, Ox) = EX%X(E, Ox) = 0. By the
Serre duality we have

Ext;, (F, Oy) = Hom{ (O, F)* and Ex§, (A, Ox) = Hom} (Ox, A)*.

Sincex € SuppfF), Homb (O, F) # 0. So Hon§ (Ox, A) also is not 0. This contradicts
the torsion-freeness oA. Thus we complete the proof. []

Proposition 4.4. Let (X, L) be a generic B, let ¢ = (Z,P) be in V(X), and let
E be apu-stable locally free sheaf with(E)? < 0 and E e P((—1, 0]).
(1) Assume that E is nat-semistable. Then there is @stable torsion free sheaf S
such thatu,,(E) < 1. (S), v(S)? = —2 and argZ(S) = ¢, (E). In particular argZ(S) <
argZ(E) and 1,(S) < Bow.
(2) Assume that E is nat-stable buto-semistable. Then there is @stable torsion
free sheaf S such that,(E) < i.(9), v(S)? = —2 and argZ(E) = argZ(S). Moreover
we haveu,(S) < fw.

Proof. Let us prove (1). Sinc& is not o-semistable E has the HN filtration:

0 E; Ex En_1 E,=E.

N X ~
AN N AN
M~ / (RN / (NN /

AL Ay An

Let S be a stable quotient oA, in P((—1,0]). Then we show tha® is what we need.
By the composition of natural morphisms, we have the follmyvdistinguished triangle
in P((-1, 0]):

(4.6) F - E— S— F[1].

By Lemma 4.3,S is a torsion free sheaf and we hayg,(E) < u,(S). Since
v(E)? < 0, v(S)? should be negative. Sinc8 is o-stable, we have/(S)? = —2. Fi-
nally we prove the inequality:,(S) < Bw. Since S € P((—1, 0]) we haveu,(S) <
1o(S9T < Bw. So, If the equalityu,(S) = Bw holds then we have aig(S) = 0. This
contradicts the fact that aig(S) < argZ(E) < 0.
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(2) By the assumptionE has a stable quotierf — S. Then we have the same
triangle as (4.6). Similarly to (1) we see th&tis a o-stable torsion free sheaf with
v(9)? = -2 andu,(E) < u,(S). Finally we consider the inequality,,(S) < fw. Simi-
larly to (1), we haveu,(S) < Bw. If u,(S) = Bw then argZ(S) = 0. On the other
hand, we haveu,(E) < u,(S) = Bw. Thus argZ(E) should be negative. This contra-
dicts the fact that arg(E) = argZ(S). Thus we have got the assertion. ]

The following lemma is very important since it implies thennexistence ofo-
stable factors in the proof of Theorem 4.6.

Lemma 4.5. Let (X, L) be a generic B with degX = 2d. Assume that E is a
sheaf withO < rankE < +/d and v(E)? = 0, and A is a sheaf withy(A)? = —2. For
op.w) = (Z, P) € V(X).2, the following holds.

Q) If Bw < pu(A) < wu(E), then0 < argZ(A) < argZ(E) < 1.
(2) If uu(E) < no(A) < Bo, then -1 < argZ(E) < argZ(A) < 0.

Proof. Since NSX) =Z- L, we put
B=xL, w=yL, v(E)=re®ngL®sg and v(A) =ra®nal & sa.

Since v(A)? = =2, ra is positive. By the formula (4.1) and by the fac(E)?> = 0,
we have

oo )
=drg (y2 — )rL—ZE)wLZ«/—_l dyie,

E
whereig = ng —regx, and

= (e ()

1
= —— +drA(y2——2)+2v dy)\.A,
Ira s
whereipa = na —rax.

Proof of (1). By the assumption, we hawe< na/ra < ng/re. So bothia and
Ag are positive, and the strict inequalityng —rena > 0 holds. Hence

Re Z(E) - Re Z(A)
AE AA
<— 0< NA’E(X, y)

argZ(A) < argZ(E) «—
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Then
1 di? da2
Nae(x,y) = }\E(__ +dray? — —A) - )»A(deyz - —E)
ra ra e
A A A
= dy*(rahe —FEAR) + d}»AKE(—E - —A) - ZE
le ra ra
= dy*(rang —rena) + d(na —rax)(Ng —rex) Ne _DOa
(4.7) ANE —TENA A= Tax)(Ne —Tex){ T2 =
Ng —TreX
ra
= d(rang —rena)y® + d(rang — rena)(x — a)?
nan n
—d(rang — rena)a? + d—2E(rang —rena) — —,
FAlre ra
where

1/na ng e
a==-24+—=— .
2\ra rg dra(rang —rgna)

We shall proveNae(X, y) > Nag(na/ra, 1/4/d) (notice thaty? = 1/d <=
w? = 2) for any (8, ) satisfying the assumption. We first prova/ra < a. In fact,

T cg e e =
4.8) ra ra  Te ~ dra(rena—rang)
' renNa —rang < e
re T d(rena —rang)

Since the integergna — rang is smaller than 0, the inequality (4.8) is equivalent to
the following:

_ 2
(rena ZrAnE) >

(4.9) ;
E

1

a.

Since (ena —rang)? > 0 and v/d > rg, the inequality (4.9) holds. Hence we have
Na/ra =< a.

Since (ang —rena) > 0, Na (X, y) is strict increasing with respect > 1/+/d.
Since (ang—regna) > 0 andx < na/ra < a, Na e(X,y) is strict decreasing with respect
to X < na/ra. Hence we haveNa g(X, y) > Na g(na/fa, 1/+/d).

If we prove Nae(na/ra, y) > 0, the proof will be complete. Ik = na/ra, we
have Na (X, y) = Ag - BRe Z(A). Recall that the pairA, o) is in V(X) by v? > 2.
Thus we haveRe Z(A) > 0. We have proved the assertion.
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Proof of (2). By the assumption, we hame/rg < na/ra < X andrang—rgna <
0. In addition, bothAg and A are negative. Similarly to the case (1), we have
Re Z(E) - Re Z(A)
AE An
<— 0> NA’E(X, y)

argZ(E) < argZ(A) <—

We have the same formula as (4.7) f8k e(x,y) with two differences. One i fng —
rena) < 0 (this is obvious). The other is < na/ra. So we shall prove the second
inequality a < na/ra. In fact

MA Lo A Ne re
4.10 ra A Te dra(rena —rang)
(4.10) (rena —rang)? 1

r2 - d’

The inequality (4.10) holds by/d > re.

Sincer ang —ren, is negative,Na e(x, y) is strict decreasing ty > 1/+/d. Simi-
larly to (1), since the inequality < na/ra holds, Na (X, y) is strict decreasing with
respect tox > na/ra. Thus we haveNa g(x, y) < Nag(na/ra, 1/+/d). Hence it is
enough to showNa e(Na/ra, y) < 0. This follows fromw? > 2. So we have proved
the assertion (2). ]

Now we are ready to prove the main theorem of this section.

Theorem 4.6. Let (X, L) be a generic B with degX = 2d, o3, in V(X).. and
E a torsion free sheaf with(E)?2 = 0 and rankE < v/d.
(1) Assume that E is Gieseker stable gf@ < u,(E). Then E iso, «)-stable.
(2) Assume that E ig-stable locally free andu,(E) < Bw. Then E isog,.)-Stable.

Proof. We pubrg,.) = (Z,P). The assumption of (1) implies € P((0, 1]) and that
of (2) implieskE € P((—1, 0]).

Proof of (1). Suppose to the contrary thais notos ,)-stable. By Proposition 4.2,
there is &g ,)-stable sheaBwith v(S)? = —2, 11,(S) < . (E) and argz(S) > argZ(E).
This contradicts Lemma 4.5 (1). HenEeis o(3 ,)-stable.

Proof of (2). Suppose to the contrary tlais notos .)-stable. Then by Lemma 4.4,
there is ao(,,)-Stable sheaBwith 1, (E) < 1,(S), v(S)? = —2 and argZ(S) < argZ(E).
This contradicts Lemma 4.5 (2). HenEeis o(4,.,)-stable. ]

Corollary 4.7. Let (X, L) be a generic B with degX = 2d and let E be aqu-
stable locally free sheaf withankE < +/d. Then for allo € U(X).,, E is o-stable.
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Proof. Leto e U(X) and§ e GTf(Z,]R). E is o-stable if and only ifE is o - §-
stable. Thus we have finished the proof by Theorem 4.6. O

The assumption rank < +/d may seem to be artificial but it is just the same as
the conditionr < s in Theorem 3.8. In Example 5.5 we shall show that the assompti
is optimal.

5. o-stability of spherical sheaves

Let the notations be as in Section 4. In this section, for aegenK3 (X, L),
we prove that some spherical sheaves arstable for allo € U(X).,. We start in
this section with a brief review of spherical objects. AnaitjS € D(X) is called a
spherical object if the morphism space Hdms, S is

Cc (i =0,2),

Homix(S, S = {o (otherwise).

By virtue of [10], we can define an autoequivalente called aspherical twist For
E € D(X) the complexTs(E) is isomorphic to

(5.2) Ts(E) ~ the mapping cone of (Hor(S, E[*]) ® s E),

whereev is the evaluation map.
In general it is difficult to computds(E), but much easier to compute the Mukai
vector v(Ts(E)). In fact, we have

(5.2) v(Ts(E)) = v(E) + (v(E), v(9)v(9).

Recall that any equivalenck: D(Y) — D(X) induces an isometrp™: NV(Y) = N (X).
Sincev(®(E)) = " (v(E)), we haveTd o TH = idyx) by (5.2).

ExampLE 5.1. Let X be a projective K3 surface. Then any line bundlk is
spherical. The spherical twiSty (Ox) of Ox by M is Z, ® M[1] where Z is the ideal
sheaf of the closed point € X. This follows from the formula (5.1)

Proposition 5.2. Let (X, L) be a generic B and S a spherical sheaf. Then S is
a pu-stable locally free sheaf.

Proof. We first show thag is locally free. Lett(S) be the maximal torsion sub-
sheaf ofS. Then we have the following exact sequence of sheaves:

0—->t(S) —» S— S/t(§ — 0.

2This definition is “K3” version. More generalized definitiori spherical object appears in [8,
Chapter 8] or [10].
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Since Hom{(S), S/t(S)) = 0O, the result [4, Corollary 2.8] gives us the following
inequality:

0 < homt(t(S), t(S)) + hom(S/t(S), S/t(S) < hom'(S, S) = 0.

Thus v(t(S))? < 0 unlesst(S) = 0. Howeverv(t(S))? > 0 for t(S) is torsion andS is
of Picard number 1. HencHS) = 0. ThusS is torsion free. Then the local-freeness
of S comes from [4, Proposition 3.3].

Finally we show thatS is u-stable. Since(S)? = —2, the greatest common divisor
of (rs, ng) is 1. Then theu-stability of S follows from [6, Lemma 1.2.14] under the
assumption that the Picard number is one. ]

The following lemma is a modified version of Lemma 4.5.

Lemma 5.3. Let (X, L) be a generic B with degX = 2d, o3, € V(X)-> and
both A and E spherical sheaves withnkE < /d.
(1) Assume thapw < u,(A) < u,(E). Then0 < argZ(A) < argZ(E) < 1.
(2) Assume thap,(E) < u,(A) < Bw. Then—1 < argZ(E) < argZ(A) < 0.

Proof. Since NSX) =Z - L, we can put
B=xL, w=yL, v(E)=re®ngLdsg, and v(A) =ra® nal & sa.

Then, by the formula (4.1) in Section 4, we have
1 , AZ
Z(E) = —r— +dre Yy = r—2 + 2 —1dykE and
E E

2
Z(A) = 1y drA(y2 - LQ) + 2v/—=1dyan,
ra ra
wherelg = Ng —rgx andia = nNa — rax.
We only prove (1), because the proof of (2) is essentiallyséime as not only the
proof of (1) but also it of Lemma 4.5.
Since bothi, and Ag are positive by the assumption, we know that

argZ(A) < argZ(E) <= Nag(x,y) > 0.

Similarly to Lemma 4.5, we have

A A A A
Nae(X,y) = dy*(rate —reia) + d)»A)»E(—E - —A) + 24 £

le ra re ra
= d(rang —rena)y? + d(rang — rena)(x — a)?

+ (other terms),
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1/n n 1 r r
a=-(24+E4_ = @ (A_ZE))
2\ra reg d{rang —regna)\re ra

Then we shall show thata/ra < a. Since the integergna — rang is negative,
we have

wherea is

n n n 1 r r

LSRN _A__E<ﬁ(_A__E)
r r r raANg —regn r r

(5.3) A A E AllE ENA E A

2 .2
r'e—"Ta

<~ (rEnA—rAnE)2> d

By the assumption @ rankE < +/d we have gna —rang)? > r2/d. Thus the last
inequality (5.3) holds.

Sincena/ra < a, Na g(X,Y) is strict decreasing with respectxo< na/r . Moreover
by rang —rgna > 0, Na g(X.y) is strict increasing with respect > 1/+/d. Thus we
haveNa (X, y) > Na e(na/r a, 1/+/d). Thus it is enough to show thaia e(Na/ra, y) >
0. This follows fromw? > 2. Hence we havéNa g(X, y) > 0 for all (8, w) satisfying
the assumption. ]

In the same way as Theorem 4.6, we have the following pradpaosit

Proposition 5.4. Let (X, L) be a generic B with degX = 2d and E a spherical
sheaf on X withrankE < +/d. Then E iso-stable for allo € U(X)-».

Proof. We first remark that the proof is essentially the sasninat of Theorem 4.6.
We can assume that = o) = (Z, P) € V(X).2. SinceE is u-stable by Propos-
ition 5.2, E € P((0, 1]) or E € P((—1, 0)).

Let E € P((0, 1]). Assume to the contrary thaét is not o-stable. From Propos-
ition 4.2 we know that there is@-stable torsion free she&e P((0, 1]) with v(S)? = -2,
1o(S) < 1e(E) and argZ(E) < argZ(S). However, by Lemma 5.3, we have atgS) <
argZ(E). This is contradiction.

Let E € P((—1, O]). Assume to the contrary thd& is not o-stable. Then, by
Proposition 4.4, there is a-stable sheafS with p,(E) < u.(S), v(S)?> = —2 and
argZ(S) < argZ(E). However, by Lemma 5.3, we have &£¢S) > argZ(E). So E
is o-stable. O

In Example 5.5, we show that the assumption on the rank @i Theorem 4.6 is
optimal. Namely we give an example of a Gieseker stable sBeafth rankE > /d
which is noto-stable for somer € V(X)-o.
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ExAMPLE 5.5. Let (X, L) be a generic K3 with de = 2d, and E a Gieseker
stable locally free sheaf witkw(E))? = (re @ L @ sg)? = 0 wherev(E) =re L ®se
with rg > v/d. Then we claim that there is a € V(X)., such thatE is not o-
semistable. To prove our claim, it is enough to find ., = (Z,P) € V(X).2 such that

(5.4) argZ(Ox) > argZ(E).

In fact, assume that such a stability conditione V (X)., exists. By Lemma 5.6
(below), we have x(Ox, E) > 0. Since n,(Ox) < uo(E), Home(Ox, E)* =
Homo, (E, Ox) = 0. Thus we have

(5.5) 0< x(Ox, E) = honP(Ox, E) — hom'(Ox, E) < honf(Ox, E).

Recall that Ox is op-stable by Proposition 5.4. IfE is og-semistable, we have
Homy(Ox, E) = 0 by the assumption (5.4). This contradicts (5.5). Helicés not
oop-semistable.

We finally show that there is a,.) € V(X). satisfying the condition (5.4). We
put (8,w) = (XL, yL). Let Na e(x,y) be the function defined by (4.2). SineéOx) =
160® 1 andv(E) =re & L & sg, we have

d
No,,e(X, y) = dx* + (rE - r—)x +dy* - 1.
E
Take X < 0. Then the condition (5.4) is equivalent to

No, (X, y) < 0.

Let us consider the special cagg? = 1. This meansv? = 2. If dy? = 1, the solutions
of No, e(X, v/1/d) =0 are

d—rg
rEd .

X =0,0, where o=

The region defined bWNo, e(X,y) < 0 is the inside of the above circle: Hence we can
chooseog ) € V(X).2 so thatx < 0 and No, (X, y) < 0.
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Lemma 5.6. Let (X, L) be a generic B, let E be a sheaf with(E)? < 0 and
rankE > 0, and let A be a sheaf with(A)? < 0. Then we have((A, E) > 0.

Proof. We put

V(A =ra®nal &sa, and v(E) =rg & ngl & se.

Sincev(A)? < 0 and the Picard number is ong, should be positive. So we have

Sa L_Z(nA)Z_ v(A)? and = — L_Z(nE)Z_ v(E)?

ra 2 \ra 22 re 2 \rg g’
Then
x(A E) _ —(u(A), v(E))
FAl'e FAl'e
B LZ(nA nE)2 (U(E)2 N u(A)Z)
2 \ra re 2r2 2rZ
> 0.
Hence x (A, E) > 0. []

By virtue of Proposition 5.4 we can determine the HN filtrasoof some special
complexes foror € V(X).,. We remark that there is a similar assertion to the following
two corollaries in [7, Proposition 2.15] wheX is a K3 surface with NS{) = 0.

Corollary 5.7. Let (X, L) be a generic B with degX = 2d, 0 = o(5,,) = (Z,P)
in V(X)-» and S a spherical sheaf on X witlankS < +/d. We putg = bL and
(S =renLaes.

(1) If b > n/r, then T5(Ox) is noto-semistable. The HN filtration ofs{Ox) is given by

X ~
(5.6) TN / m ~ /

Ox S*1[1]

(2) If b =n/r, then T5(Ox) is o-semistable. The JH filtration ofs{Ox) is given by
the sequencé¢s.6).
(3) If b <n/r and r < d¥/4, then T(Oy) is o-stable.

Proof. We first remark that the sequence of distinguishezhdtes (5.6) comes
from the formula (5.1).
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(1) Assume thab > n/r. Then S* is in P((—1, 0]) and it iso-semistable by
Proposition 5.4. Hence a@(Oy) > argZ(S*[1]) > 0. Thus the sequence (5.6) is the
HN filtration of Ts(Ox).

(2) If b=n/r then arZ(Oy) = argZ(S*'[1]). By Proposition 5.4S is o-stable.
Thus (5.6) is a JH filtration offg(Ox).

(3) We putS, = Ker(S* — Oy). Note that rankS, = r2. Then Ts(Oy) = S1].
So it is enough to show the, is o-stable. SinceTg is an equivalence we have

homb (S, S) =1, homk(S, S) =2 andu(S) is primitive.

ThusS, is Gieseker stable by [4, Proposition 3.14]. THiis o-stable by Theorem 4.6 (1).
[l

By Corollary 5.7 (1), we can see that it is impossible to reendive assumption
of local-freeness in Theorem 4.6 (2).

Corollary 5.8. Let the notations be as i€orollary 5.7.
(1) If b<n/r and r < d¥* then the HN filtration of T(Ox) (n > 1) is given by

00— T5(Ox) ——— TE(Ox) = - - = T HOy) ————TE(Ox).

N x o
e~ / N / 1~ /

Ts(Ox) S S¥[2 —n]

(2) If b > n/r, then the HN filtration of T(Oy) is

0 Oy Ts(0) = - = TEHO) —————— T(O,).
X x =~
[ / N / 1~ /
0, Sor[1] S*[2 — ]

Proof. By (5.1), we obtain the following distinguished trige:
S¥ — Oy — T5(0Oy) — S¥[1].

Since T5(S) ~ §—1]°, we can easily show that the two sequences of triangles. exist
By Corollary 5.7, both sequences are the HN filtrationsT§{Ox). [l

30ne can prove this facts(S) ~ S—1] easily in the following way. We have the natural exact
sequence of sheaves by taking cohomologies of the disshgditriangle arising from (5.1). Then the
fact follows from the exact sequence of sheaves. See aldBxg@cise 8.5].
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6. Applications of Theorem 1.2

In this section we deal with two applications of Theorem M& first observe the
morphism @, between the space of stability conditions induced by anvaetgnce ®
of triangulated categories.

Let X and Y be projective K3 surfaces, an@: D(Y) — D(X) an equivalence.
Then @ induces a natural morphism, : Stab{Y) — StabX) as follows:

®,: Stabl) — StabX), @.((Zy, Py)) = (Zx, Px)

where Zx(E) = Zy(®H(E)), and Px(¢) = ®(Pv(¢)).
Then the following proposition is almost obvious.

Proposition 6.1. Let X and Y be projective Xsurfaces and ®: D(Y) — D(X)
an equivalence. For € U(X), o is in @, (U(Y)) if and only if &(Oy) is o-stable with
the same phase for all closed pointssyy.

Proof. By the definition ofd,: Stab{() — StabX), ®.(U(Y)) is given by:
®,.(U(Y)) = @.({o € StablY) | o is good, Oy is o-stable {y € Y)})
= {r € Stab) | = is good, ®(Oy) is r-stable ¥y € Y)}.

Recall that the® induces the isometrgpH: V(Y) — N(X). So if o € Stab{) is good,
then @, (o) is also good. This completes the proof. O

Let us consider the first application of Theorem 4.6.
EXAMPLE 6.2. In this example we claim that there is a pdi, ¢) such that a
true complexE € D(X) is z-stable forz € V(X) \ V(X)-2.

We first define a special subsBt™ of V(X)\V(X)-» depending on a line bundle
M in the following way. We put\/(X)Q"2 for M by

V(X)Y; = {0(p.0) € V(X)-2 | B < (M)}
By Proposition 6.1 and Corollary 5.7 (3), we SM{X)Q"Z C (Tw)«(U (X)) N V(X).
We also putU(X)¥, := V(X)", - GL'(2, R). By Remark 2.6, we se®)(X)¥, C
(Tm)«(U(X)) N U(X). Then we define
DM := Ty (U(X)Y) N V(X).

Since Ty = (Q M) o To, o (R M) we see thatD™ is the following half circle:
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Thus DM c V(X)\V(X).2.

Next we show that there is a true compl&e D(X) which is r-stable fort €
DM. In fact, by Proposition 6.1F € D(X) is o-stable for anyo € V(X)¥, (for ex-
ample E is a torsion free sheaf in Theorem 1.2 6X), if and only if Ty,(E) is
r-stable for anyr € DM. For instance,T;;(Ox) is truly complex which isz-stable
for any r € DM. By the definition of Ty, we can easily compute theth cohomology
H' of TyX(Ox). In fact we have

Ox (i =0)=
H' = {M (i =-1),

0  (otherwise).

The crucial part of Example 6.2 is that the spherical twigt enables us to ex-
change the unbounded regidh(X)Y, into the bounded regio®™. We use this idea
in the proof of Theorem 1.1.

Next we shall explain the second application. In genera¢gpal twists send sheaves
to complexes. We first show this easy statement in a spedal ca

Lemma 6.3. Let (X, L) be a generic B, and E a Gieseker stable torsion free
sheaf withv(E)? < 0. Then there is a line bundle M such that the spherical twist
Tu(E) of E is a true complex with’r# O wherev(Ty(E)) =r' @ A’ @ S'.

Proof. Letv(E) =rg ® ngL @ sg and letM = mL be a line bundle with

6.1) DE .
e

Here we computey(Ty (E)):

v(Tm(E)) = v(E) + (v(E), v(M))v(M)
=r'enLaes.
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The conditionr’ = 0 is a closed condition and the condition (6.1) is open. Hemee
can chooseM so thatr’ # 0 and M satisfies the condition (6.1).

Let H' be thei-th cohomology ofTy(E). By the definition of spherical twists,
we obtain the following exact sequence of sheaves:

0— Homy(M,E)® M — E — H°
— Hom;(M,E)® M — 0 — H*!
— Homg (M, E)® M — 0 — H? — 0.

Since bothM and E are Gieseker stable, HgtM, E) = 0 by (6.1). HenceH® is not
0. By Lemma 5.6, we have HojptM, E) # 0. SoH?! # 0. ThusTw(E) is a complex.
O

The following lemma is due to [3] and [12].

Lemma 6.4 ([3, Proposition 14.2], [12, Proposition 6.4])Let X be a projective
K3 surface o) = (Z, P) € V(X) and E inP((0, 1]). We putv(E) =r @ A §s.
(1) Assume that r= 0. If E is o(g,nv)-semistable for any sufficiently large>» 0, then
E is a torsion free sheaf.
(2) Assume that = 0. If E is o(s,n.)-semistable for any sufficiently large>» 0, then
E is a torsion sheaf.

The first assertion of Lemma 6.4 are proved by [3] and the stooe proved by
[12]. We can prove the second assertion in a similar way to [3]

In the next proposition, we show that it is impossible to agtéfTheorem 1.2 to
V(X) by using Lemma 6.4 and the idea of Example 6.2.

Proposition 6.5. Let(X,L) be a generic B and E a Gieseker stable torsion free
sheaf withu(E)? < 0. Then there is a in V(X) such that E is not-semistable.

Proof. Assume thaE is o-semistable for alb € V(X). By Lemma 6.3, there is
a line bundleM such thatTy (E) is a complex withr’ # 0 wherev(Ty(E)) =r'@ A’ ®
s'. By a shift of Ty(E) we can assume that > O if necessary. By the assumption
Tuw(E) is o-semistable for alb not only in (Ty).V(X) but also in Ty).U(X).

Recall that, Tw).(U (X)) N V(X) contains the se¥(X)¥, defined in Example 6.2.
Hence, there is ag ) = (Z, P) € V(X)Y, such that

/
Bo < Fa)

This implies thafly (E)[2n] is in P((0,1]) for somen € Z. By Lemma 6.4 (1)Tu(E)[2n]
should be a sheaf. This contradicts the fact (ha(E) is a true complex. []
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Theorem 6.6. Let (X, L) be a generic B and E € D(X). We assume that
HomY(E, E) = C, v(E) is primitive and v(E)?> = 0. If E is o-semistable for all
o € V(X), then E isOy for some xe X up to shifts.

Proof. We putv(E) =rg ®&ngL ®dsg. Assume thatg # 0. If E is o-semistable,
then E[1] is also o-semistable. Thus we can assume that- 0. Let ¢ be the phase
of E. Then we can assumg € (—1, 1] by even shifts. There is @R divisor 8 = bL
such thatb < ng/re. Let us conside ) = (Z, P) for all ample divisorsw with
? > 2. Notice thatE is in P((0,1]). By Lemma 6.4 E should be a torsion free sheaf.
In addition, E is a Gieseker stable sheaf by [4, Proposition 3.14]. Thistradicts
Proposition 6.5.

Assume thatrg = 0. Sincev(E)? = 0, we haveng = 0. Since there is alR
divisor 8 = bL such thath < 0, E is a torsion sheaf by Lemma 6.4 (2). Since =0,
dim Supp€) = 0. By the assumption HO(E, E) = C, E is O for somex € X. [

Now we are ready to prove an easy consequence of Theorem 6.6.

Corollary 6.7 (= Theorem 1.1). Let (X, Lx) and (Y, Ly) be generic I8 and let
@: D(Y) —» D(X) be an equivalence. I®,(U(Y)) = U(X), then ® can be written in
the following way

o(?)=M® f.(?)n],
where M is a line bundle on Xf is an isomorphism fY — X and ne Z.

Proof. LetEy be ®(Oy) for an arbitrary closed poiny € Y. Since ®..(U(Y)) =
U(X), Ey is Ox[ny] (ny € Z) for somex € X by Theorem 6.6. In addition the phase
of Ey is constant. Sor]y] is also constant. Thugk, is given by O yl[n]. By [8,
Corollary 5.23], we complete the proof. ]

Here we define the subgroup ADX(X), U (X)) of Aut(D(X)):
Aut(D(X), U(X)) := {® € Aut(D) | ©.(U (X)) = U(X)}.
Thus we obtain the following statement:
Corollary 6.8. Notations being as aboyeve have
Aut(D(X), U(X)) = Tri(X),

where Tri( X) is the subgroup generated by shiftensor products of line bundles and
automorphisms.

We remark that TriK) is actually written by (AutX) x Pic(X)) x Z[1].
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Proof of Corollary 6.8. If® is in the right hand side®(Ox) = Oy[n] for some
y e X andn € Z. Thus ®,(U(X)) = U(X). Conversely, if® is in the left hand side,
® is in the right hand side by Corollary 6.7. [

REMARK 6.9. Throughout this remark, we assume tAaand A’ are abelian sur-
faces. Similarly to the case of K3 surfaces, we can constd@). Hence Stalf) is
nonempty. In particular StapA) = U(A) since D(A) has no spherical objects (cf. [3,
Section 15]). In addition, the set of good stability coratis is equal taJ(A) (and
thus is connected) by the result of [7, Theorem 3.15]. Theenty “good” preserved
by any equivalenc&: D(A’) - D(A). Hence for any equivalenc@: D(A’) — D(A),
P, (U(A)) = U(A). Thus we have

Aut(D(A), U(A)) = Aut(D(A)).

ACKNOWLEDGEMENT. | am very grateful to the referees for their careful reading
and giving me their kind advices and comments.

References

[1] T. Bridgeland and A. MaciociaComplex surfaces with equivalent derived categoridath. Z.
236 (2001), 677-697.

[2] T. Bridgeland: Stability conditions on triangulated categorje&nn. of Math. (2)166 (2007),
317-345.

[3] T. Bridgeland: Stability conditions on B surfaces Duke Math. J.141 (2008), 241-291.

[4] S. Mukai: On the moduli space of bundles or3kurfaces I; in Vector Bundles on Algebraic
Varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. MhathTata Inst. Fund. Res., Bombay,
1987, 341-413.

[5] S. Hosono, B.H. Lian, K. Oguiso and S-T. Ya&ourier—Mukai partners of a B surface of
Picard number ongin Vector Bundles and Representation Theory (Columbia, 2@?2), Con-
temp. Math.322, Amer. Math. Soc., Providence, RI, 2003, 43-55.

[6] D. Huybrechts and M. Lehn: The Geometry of Moduli Spaces loé&es, Aspects of Math-
ematics, E31, Vieweg, Braunschweig, 1997.

[7] D. Huybrechts, E. Macri and P. Stellatability conditions for generic B categories Compos.
Math. 144 (2008), 134-162.

[8] D. Huybrechts: Fourier—Mukai Transforms in AlgebraicdBeetry, Oxford Univ. Press, Oxford,
2006.

[9] Y. Kawamata: D-equivalence and K-equivalencé Differential Geom61 (2002), 147-171.

[10] P. Seidel and R. Thoma&raid group actions on derived categories of coherent shgaduke
Math. J.108 (2001), 37-108.

[11] P. Stellari: Some remarks about the FM-partners 08 Kurfaces with Picard numbersand 2,
Geom. Dedicatd 08 (2004), 1-13.

[12] Y. Toda: Moduli stacks and invariants of semistable objects o $Urfaces Adv. Math. 217
(2008), 2736-2781.



1034

K. KAWATANI

Department of Mathematics
Graduate School of Science
Osaka University

Toyonaka 563-0043

Japan
kawatani@cr.math.sci.osaka-u.ac.jp



