UNKNOTTING THE SPUN T^{2}-KNOT OF A CLASSICAL TORUS KNOT

Inasa NAKAMURA

(Received May 11, 2009, revised February 15, 2011)

Abstract

We show that for the closure of a classical braid which satisfies certain conditions, the spun T^{2}-knot of the classical knot has the unknotting number one. This gives an alternative proof of the fact that the spun T^{2}-knot of a classical torus knot has the unknotting number one.

0. Introduction

A surface knot is the image of a smooth embedding of a closed connected surface into the Euclidean 4 -space \mathbb{R}^{4}. Kanenobu and Marumoto [10] showed that the spun 2 -knot of a classical torus knot has the unknotting number one. Hence it follows that the spun T^{2}-knot of a classical torus knot has the unknotting number one. Here, the spun T^{2}-knot of a classical knot K is the product of K in a 3-ball B^{3} with a circle S^{1}, embedded into \mathbb{R}^{4} via the natural embedding of $B^{3} \times S^{1}$ into $\mathbb{R}^{4}([15,2])$. In this paper, we show that for the closure of a classical braid which satisfies certain conditions, the spun T^{2}-knot of the classical knot has the unknotting number one (Theorem 3.1). Theorem 3.1 gives an alternative proof of the above-mentioned fact that the spun T^{2}-knot of a classical torus knot has the unknotting number one (Corollary 3.2). The proof of Theorem 3.1 is shown by a diagrammatic method, by using a surface link chart presenting the spun T^{2}-knot.

A surface link chart is a sort of finite graph in a 2-disk with some additional data ($[5,8,9]$). Any oriented surface knot is presented by a surface link chart ($[7,8,9]$). An unknotted surface knot is presented by an unknotted chart ([5, 9]). It is known [4] that any oriented surface knot S can be deformed to an unknotted surface knot by applying 1 -handle surgeries along a finite number of mutually disjoint oriented 1-handles. The unknotting number of S is the minimum number of such 1-handles necessary to deform S to be unknotted. A free edge is an edge in a chart such that the end points are vertices of degree one. Applying a 1-handle surgery to an oriented surface knot S along a nice 1 -handle is presented by adding a free edge to a surface link chart presenting S ([6]).

[^0]Theorem 3.1 is shown as follows. First, we obtain a surface link chart presenting the spun T^{2}-knot. Then we add a free edge to the chart, and deform it to an unknotted chart (a configuration consisting of free edges) by equivalence relations. We obtain a surface link chart presenting the spun T^{2}-knot, as follows. We showed in [14] (see Theorem 2.2) how to obtain a surface link chart which presents a surface knot in the form of a branched covering over the standard torus. We call such a surface knot a torus-covering knot ([13], see Definition 2.1). Since a spun T^{2}-knot is a torus-covering knot, we can obtain a surface link chart presenting the spun T^{2}-knot by [14].

This paper is organized as follows. In Section 1, we review a braided surface and its chart description, and prepare several notations. In Section 2, we review the definition of a torus-covering knot and Theorem 2.2. In Section 3, we show Theorem 3.1 and Corollary 3.2.

1. A braided surface and its chart description

A braided surface was defined in [16, 7, 9]. A surface braid is a braided surface with some boundary condition, and a notion of a chart was introduced $[5,9]$ to present a simple surface braid. Equivalent simple surface braids have distinct chart presentations. The notion of C-move equivalence between two charts of the same degree was introduced $[5,8,9]$ to give the equivalence class of the chart which represents the equivalence class of a simple surface braid. The notion of a chart can be easily extended to a chart presenting a simple braided surface. In this section, we review a braided surface, and extend the notion of a chart description to a simple braided surface. We review the fact that any oriented surface knot is presented by the closure of a simple surface braid ([7,9]); thus it is presented by a chart. In order to present a certain chart called an "oval nest", we introduce a notation, and we prepare several equivalence relations between oval nests.

DEFinition 1.1. A compact and oriented 2-manifold S embedded in a bidisk $D_{1} \times D_{2}$ properly and locally flatly is called a braided surface of degree m if S satisfies the following conditions:
(i) $\left.p_{2}\right|_{S}: S \rightarrow D_{2}$ is a branched covering map of degree m,
(ii) ∂S is a closed m-braid in $D_{1} \times \partial D_{2}$, where D_{1}, D_{2} are 2 -disks, and $p_{2}: D_{1} \times D_{2} \rightarrow$ D_{2} is the projection to the second factor.
Two braided surfaces are equivalent if there is a fiber-preserving ambient isotopy of $D_{1} \times D_{2}$ rel $D_{1} \times \partial D_{2}$ which carries one to the other. A braided surface S is called simple if $\#\left(S \cap p_{2}^{-1}(x)\right)=m-1$ or m for each $x \in D_{2}$. A braided surface S is called a surface braid if ∂S is the trivial closed braid. A surface braid $Q_{m} \times D_{2}$ is called trivial, where Q_{m} is a set of m interior points of D_{1}.

When a simple braided surface S is given, we obtain a graph on D_{2}, as follows. Identify D_{1} with $I \times I$, where $I=[0,1]$. Consider the singular set $\operatorname{Sing}\left(p_{1}(S)\right)$ of the

Fig. 1.1. Vertices in a chart.
image of S by the projection p_{1} to $I \times D_{2}$. Perturbing S if necessary, we can assume that $\operatorname{Sing}\left(p_{1}(S)\right)$ consists of double point curves, triple points, and branch points. Moreover we can assume that the singular set of the image of $\operatorname{Sing}\left(p_{1}(S)\right)$ by the projection to D_{2} consists of a finite number of double points such that the preimages belong to double point curves of $\operatorname{Sing}\left(p_{1}(S)\right)$. Thus the image of $\operatorname{Sing}\left(p_{1}(S)\right)$ by the projection to D_{2} forms a finite graph Γ on D_{2} such that the degree of its vertex is either 1,4 or 6 . An edge of Γ corresponds to a double point curve, and a vertex of degree 1 (resp. 6) corresponds to a branch point (resp. triple point).

For such a graph Γ obtained from a simple braided surface S, we give orientations and labels to the edges of Γ, as follows. Let us consider a path ρ in D_{2} such that $\rho \cap \Gamma$ is a point P of an edge e of Γ. Then $S \cap p_{2}^{-1}(\rho)$ is a classical m-braid with one crossing in $p_{2}^{-1}(\rho)$ such that P corresponds to the crossing of the m-braid. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m-1}$ be the standard generators of the m-braid group B_{m}. Let $\sigma_{i}^{\epsilon}(i \in$ $\{1,2, \ldots, m-1\}, \epsilon \in\{+1,-1\})$ be the presentation of $S \cap p_{2}^{-1}(\rho)$. Then label the edge e by i, and moreover give e an orientation such that the normal vector of ρ corresponds (resp. does not correspond) to the orientation of e if $\epsilon=+1$ (resp. -1). We call such an oriented and labeled graph a chart of S.

In general, we define a chart on D_{2} as follows.

Definition 1.2. Let m be a positive integer. A finite graph Γ on a 2 -disk D_{2} is called a chart of degree m if it satisfies the following conditions:
(i) $\Gamma \cap \partial D_{2}$ consists of a finite number of vertices of degree 1 .
(ii) Every edge is oriented and labeled by an element of $\{1,2, \ldots, m-1\}$.
(iii) Every vertex has degree 1, 4, or 6.
(iv) The adjacent edges around each vertex in $\operatorname{Int}\left(D_{2}\right)$ are oriented and labeled as shown in Fig. 1.1, where we depict a vertex of degree 1 by a black vertex, and a vertex of degree 6 by a white vertex.

In a chart, an edge without end points is called a loop. An edge whose end points are black vertices is called a free edge. A configuration consisting of a free edge and a finite number of concentric simple loops such that the loops are surrounding the free edge is called an oval nest.

A black vertex (resp. white vertex) of a chart corresponds to a branch point (resp. triple point) of the simple braided surface presented by the chart. A chart presents a simple braided surface. In particular, a chart Γ such that $\Gamma \cap \partial D_{2}=\emptyset$ presents a simple surface braid.

When a chart Γ on D_{2} is given, we can reconstruct a simple braided surface S over D_{2} as follows. Let m be the degree of Γ, and let $N(\Gamma)$ be a neighborhood of Γ in D_{2}. Let us consider a trivial braided surface $S=Q_{m} \times\left(D_{2}-N(\Gamma)\right)$ over $D_{2}-N(\Gamma)$, where Q_{m} is a set of m interior points of D_{1}. We extend S over a neighborhood of each edge as follows. Identify a neighborhood of an edge e with $I \times I$ such that e is identified with $\{1 / 2\} \times I$. Let i be the label attached to e, and let $\epsilon=+1$ (resp. -1) if the orientation of e corresponds (resp. does not correspond) to the orientation of $\{0\} \times I$. Then let the braided surface S over the neighborhood of e be the braided surface which has a presentation $\sigma_{i}^{\epsilon} \times I$ and the image of the double point curve of $p_{1}(S)$ by the projection to D_{2} is e. Since Γ is as in Fig. 1.1 around each vertex, S can be extended naturally over a neighborhood of each vertex. See [3, 6, 9] for more details. Thus we can construct a simple braided surface S over D_{2} such that the original chart is a chart of S.

The boundary of a simple surface braid S consists of trivial closed m-braid. Consider a natural embedding of $D_{1} \times D_{2}$ in \mathbb{R}^{4}, and paste m disks to S to obtain an embedding of a closed surface in \mathbb{R}^{4}. The resulting surface is called the closure of S. It is known [7,9] that any oriented surface knot is presented by the closure of a simple surface braid; thus it is presented by a chart Γ on D_{2} such that $\Gamma \cap D_{2}=\emptyset$. We call such a chart presenting a surface link a surface link chart.

In $[5,9]$, a surface link chart is called simply a chart. However, in this paper we distinguish a "surface link chart" from a "chart".

Two charts on D_{2} of the same degree are C-move equivalent if they are related by a finite sequence of ambient isotopies of D_{2} and C-moves (CI, CII, CIII-moves) as follows.

Let Γ and Γ^{\prime} be two charts on D_{2} of the same degree. Then Γ^{\prime} is said to be obtained from Γ (or Γ is said to be obtained from Γ^{\prime}) by a CI-move, CII-move or CIIImove if there exists a 2-disk E in D_{2} such that the loop ∂E is in general position with respect to Γ and Γ^{\prime} and $\Gamma \cap\left(D_{2}-E\right)=\Gamma^{\prime} \cap\left(D_{2}-E\right)$ and the following condition holds: (CI) There are no black vertices in $\Gamma \cap E$ nor $\Gamma^{\prime} \cap E$.

A CI-move as in Fig. 1.2 is called a CI-move of type (1), (2) or (3) respectively; see [9] for the complete set of CI-moves.
(CII) $\Gamma \cap E$ and $\Gamma^{\prime} \cap E$ are as in Fig. 1.3, where $|i-j|>1$.
(CIII) $\Gamma \cap E$ and $\Gamma^{\prime} \cap E$ are as in Fig. 1.4, where $|i-j|=1$.

It is shown as a minor modification of $[5,8,9]$ that two simple braided surfaces of the same degree are equivalent if and only if their charts are C -move equivalent. Two surface knots are equivalent if there is an ambient isotopy of \mathbb{R}^{4} which carries one to the other. Thus it follows that for two surface link charts of the same degree, their presenting surface knots are equivalent if the charts are C -move equivalent.

Fig. 1.2. CI-moves of types (1), (2) and (3).

Fig. 1.3. CII-moves, where $|i-j|>1$.

Fig. 1.4. CIII-moves, where $|i-j|=1$.

Fig. 1.5. An oval nest $O(2 ; \overline{3} 21)$.
Throughout this paper, let us denote the oval nest with a free edge with the label i and its surrounding loops with the labels $i_{1}, i_{2}, \ldots, i_{n}$ and the orientation $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ from the free edge outward by $O\left(i ; i_{1}^{*} i_{2}^{*} \cdots i_{n}^{*}\right)$, where $\epsilon_{j}= \pm 1$ and $i_{j}^{*}=i_{j}$ (resp. \bar{i}_{j}) if $\epsilon_{j}=+1$ (resp. -1) (see Fig. 1.5). In particular, let us denote the free edge $O(i ; \emptyset)$ by F_{i}. For $0<i<j$, let us denote $i(i+1) \cdots j$ (resp. $\left.\bar{i}(\overline{i+1}) \cdots \bar{j}\right)$ by $i \nearrow j$ (resp. $\bar{i} \nearrow \bar{j}$), and for $0<j<i$, let us denote $i(i-1) \cdots j$ (resp. $\bar{i}(\overline{i-1}) \cdots \bar{j})$ by $i \searrow j$ (resp. $\bar{i} \searrow \bar{j}$).

Let Γ_{1} and Γ_{2} be charts of the same degree in 2-disks D_{1} and D_{2} respectively, where $D_{i}=[0,1] \times[0,1]$ for $i=1$, 2. Identifying D_{1} with $[0,1] \times[0,1 / 2]$ and D_{2} with $[0,1] \times[1 / 2,1]$, we have a new chart $\Gamma_{1} \cup \Gamma_{2}$ in $D_{1} \cup D_{2}=[0,1] \times[0,1]$. We will call it a split union of Γ_{1} and Γ_{2}, and use the notation $\Gamma_{1} \cup \Gamma_{2}$.

Let us define the braid group relations between two sequences of integers as follows: 1. $\emptyset \sim i \cdot \bar{i} \sim \bar{i} \cdot i$, for a positive integer i,
2. $i \cdot j \sim j \cdot i$, for positive integersi, j with $|i-j|>1$,
3. $i \cdot j \cdot i \sim j \cdot i \cdot j$, for positive integers i, j with $|i-j|=1$.

In this paper, we will identify a braid $\sigma_{i_{1}}^{\epsilon_{1}} \sigma_{i_{2}}^{\epsilon_{2}} \cdots \sigma_{i_{n}}^{\epsilon_{n}}$ with a sequence of integers $i_{1}^{*} i_{2}^{*} \cdots i_{n}^{*}$ with the braid group relations, where $i_{j}^{*}=i_{j}$ (resp. \bar{i}_{j}) if $\epsilon_{j}=+1$ (resp. -1). Then we have the following lemma.

Lemma 1.3. For positive integers i, j and braids b, c such that $\bar{b} i b=\bar{c} j c$, the following oval nests are equivalent:

$$
\begin{equation*}
O(i ; b) \sim O(j ; c) \tag{1.1}
\end{equation*}
$$

Before the proof, we review the notions of a braid system of a chart and slide equivalence.

Let Γ be a chart of degree m on a 2-disk D_{2}. Let q_{0} be a fixed point on the boundary of D_{2}, and $\Sigma(\Gamma)$ the set of black vertices in Γ. Let $\mathfrak{A}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a Hurwitz arc system with the starting point set $\Sigma(\Gamma)$ and the terminal point q_{0}, which is, for any i and $j, a_{i} \cap a_{j}=\left\{q_{0}\right\}$ and the normal vector of a_{i} points to a_{i+1}. For each
$i=1,2, \ldots, n$, consider a loop c_{i} in $D_{2} \backslash \Sigma(\Gamma)$ with the base point q_{0} such that it starts from q_{0} and goes along a_{i}, turns around the starting point of a_{i} (the black vertex in Γ which is at the other end of a_{i}) anti-clockwise and comes back along a_{i} to q_{0}. Let η_{i} be the element of $\pi_{1}\left(D_{2} \backslash \Sigma(\Gamma), q_{0}\right)$ represented by this loop c_{i}. The fundamental group is a free group of rank n generated by $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$. We call $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ the Hurwitz generators of $\pi_{1}\left(D_{2} \backslash \Sigma(\Gamma), q_{0}\right)$ associated with \mathfrak{A}. A braid system $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of the chart Γ is an ordered n-tuple of elements of B_{m} such that each b_{i} is the m-braid represented by η_{i}, i.e. η_{i} in $\pi_{1}\left(D_{2} \backslash \Sigma(\Gamma), q_{0}\right)$ represents the m-braid b_{i} in the simple surface braid of degree m which is represented by Γ on D_{2}.

Two braid systems are slide equivalent if we can transform one to the other by applying a finite sequence of the following equivalence relations:

$$
\left(b_{1}, \ldots, b_{i}, b_{i+1}, \ldots, b_{n}\right) \sim\left(b_{1}, \ldots, b_{i-1}, b_{i+1}, b_{i+1}^{-1} b_{i} b_{i+1}, b_{i+2}, \ldots, b_{n}\right)
$$

Two charts of the same degree are equivalent if and only if their braid systems are slide equivalent (see [7, Chapter 17 and Section 18.10]).

Proof of Lemma 1.3. We can take a braid system of \vec{b} of $O(i ; b)$ to be $\vec{b}=$ $\left(b^{-1} \sigma_{i} b, b^{-1} \sigma_{i}^{-1} b\right)$. Since $\bar{b} i b=\bar{c} j c$, we have $\vec{b}=\left(c^{-1} \sigma_{j} c, c^{-1} \sigma_{j}^{-1} c\right)$, which is a braid system of $O(j ; c)$.

By Lemma 1.3, in particular the following equivalent deformations hold. We will prove several of them using C-moves. Let i, j be positive integers and $b, b^{\prime}, c, c^{\prime}$ be braids. For a positive integer k, Let $k^{*} \in\{k, \bar{k}\}$. If $b=b^{\prime}$, then

$$
\begin{align*}
& O(i ; b) \sim O\left(i ; b^{\prime}\right) . \tag{1.2}\\
& O\left(i ; i^{*}\right) \sim O(i ; \emptyset)=F_{i} \quad \text { (see Fig. 1.6), } \tag{1.3}\\
& O\left(i ; j^{*}\right) \sim O(i ; \emptyset)=F_{i}, \quad \text { where }|i-j|>1 \text { (see Fig. 1.7), } \tag{1.4}\\
& O(i ; j) \sim O(j ; \bar{i}), \quad \text { where }|i-j|=1 \text { (see Fig. 1.8). } \tag{1.5}
\end{align*}
$$

If $O(i ; c) \sim O\left(j ; c^{\prime}\right)$, then

$$
\begin{equation*}
O(i ; c b) \sim O\left(j ; c^{\prime} b\right) \tag{1.6}
\end{equation*}
$$

Moreover, applying a CI-move of type (2) between the outermost loop labeled j of the oval nest $O\left(i ; b \cdot j^{*}\right)$ and the free edge F_{j}, we can see that

$$
\begin{equation*}
O\left(i ; b \cdot j^{*}\right) \cup F_{j} \sim O(i ; b) \cup F_{j}, \tag{1.7}
\end{equation*}
$$

where b is a braid.

Fig. 1.6. $O(i ; \bar{i}) \sim O(i ; \emptyset)=F_{i}$.

Fig. 1.7. $O(i ; j) \sim O(i ; \emptyset)=F_{i}$, where $|i-j|>1$.

Fig. 1.8. $O(i ; j) \sim O(j ; \bar{i})$, where $|i-j|=1$.

degree 2

Fig. 2.1. A chart on T presenting the spun T^{2}-knot of a trefoil.

2. A torus-covering knot and its chart description

It is known [7, 9] that any oriented surface knot can be presented by a branched covering over the standard 2 -sphere. A torus-covering knot was introduced in [13] as a new construction of a surface knot, by considering the standard torus instead of the standard 2-sphere. In this section, we give the definition of a torus-covering knot (see also [13]). The spun T^{2}-knot of a classical knot is a torus-covering knot. A toruscovering knot is presented by a chart on the standard torus T. We can obtain a surface link chart presenting a torus-covering knot from its chart on T ([14], see Theorem 2.2). Part of the obtained surface link chart is called a 1-handle chart. We obtain the 1-handle chart for the spun T^{2}-knot (Lemma 2.4).

Let T be a standard torus in \mathbb{R}^{4}, that is, the boundary of an unknotted solid torus in a 3 -space in \mathbb{R}^{4}. Let us consider a tubular neighborhood $N(T)$ of T, and identify $N(T)$ with $D^{2} \times S^{1} \times S^{1}$, where D^{2} is a 2 -disk, and S^{1} is a circle. The first S^{1} corresponds to the meridian, and the second S^{1} corresponds to the longitude of T. Let us identify S^{1} with I / \sim, where $I=[0,1]$ and $0 \sim 1$. For a manifold S in $N(T)$, let us denote by $S \cap\left(D^{2} \times I \times I\right)$ the manifold in $D^{2} \times I \times I$ obtained from S by cutting it at $D^{2} \times S^{1} \times\{0\}$ and $D^{2} \times\{0\} \times S^{1}$.

Definition 2.1. A torus-covering knot is a surface knot S in \mathbb{R}^{4} such that $S \subset$ $N(T)$ and moreover $S \cap\left(D^{2} \times I \times I\right)$ is a simple braided surface.

By definition, a torus-covering knot S is presented by a chart on T. As we mentioned, for two charts of the same degree, their presenting braided surfaces are equivalent if the charts are C-move equivalent. Hence it follows that for two charts on T of the same degree, their presenting torus-covering knots are equivalent if the charts are C-move equivalent.

The spun T^{2}-knot of a classical knot K is the product of K in a 3-ball B^{3} with S^{1}, embedded into \mathbb{R}^{4} via the natural embedding of $B^{3} \times S^{1}$ into \mathbb{R}^{4} ([15, 2]). Identify S^{1} with the longitude of T. Since any classical knot is equivalent to a closed braid by Alexander's Theorem, the spun T^{2}-knot of any K is a torus-covering knot (see [13, Propositions 2.11]); see Fig. 2.1 for example.

Now we review a theorem, which shows how to obtain a surface link chart from a chart on T ([14]). A chart is presented by a simple braided surface. A simple braided surface is presented by a motion picture consisting of isotopic transformations
and hyperbolic transformations. A motion picture of a braided surface $S \subset B^{3} \times I$ is a one-parameter family $\left\{\pi\left(S \cap\left(B^{3} \times\{t\}\right)\right)\right\}_{t \in I}$, where $\pi: B^{3} \times I \rightarrow B^{3}$ is the projection (see [9]).

Let $\left\{h_{t}\right\}_{t \in[0,1]}$ be an ambient isotopy of \mathbb{R}^{3}. For a classical link L, we have an isotopy (a one-parameter family) $\left\{h_{t}(L)\right\}$ of classical links. We say that $h_{1}(L)$ is obtained from L by an isotopic transformation, and we use the notation that $L \rightarrow h_{1}(L)$ is an isotopic transformation (see [9, Section 9.1]).

Let L be a classical link in \mathbb{R}^{3}. A 2-disk B in \mathbb{R}^{3} is called a band attaching to L if $L \cap B$ is a pair of disjoint arcs in ∂B. A band set attaching to L is a union $\mathcal{B}=B_{1} \cup B_{2} \cup \cdots \cup B_{m}$ of mutually disjoint bands $B_{1}, B_{2}, \ldots, B_{m}$ attaching to L. For a subset X of a space, let us denote by $\mathrm{Cl}(X)$ the closure of X. Define a link $h(L ; \mathcal{B})$ by

$$
h(L ; \mathcal{B})=\mathrm{Cl}((L \cup \partial \mathcal{B})-(L \cap \mathcal{B}))
$$

We say that the link $h(L ; \mathcal{B})$ is obtained from L by a hyperbolic transformation along \mathcal{B}, and we use the notation that $L \rightarrow h(L ; \mathcal{B})$ is a hyperbolic transformation (see [9, Section 9.1]).

For a classical m-braid c, let $l_{k}^{l}(c)$ be the $(m+k+l)$-braid obtained from c by adding k (resp. l) trivial strings before (resp. after) c, and put

$$
\begin{aligned}
& \Pi_{i}^{m}=\sigma_{m+1} \sigma_{m+2} \cdots \sigma_{m+i}, \quad \Pi_{i}^{m}=\sigma_{m-1} \sigma_{m-2} \cdots \sigma_{m-i} \\
& \Delta_{m}=\Pi_{m-1}^{m} \Pi_{m-2}^{m} \cdots \Pi_{1}^{m}, \quad \Delta_{m}^{\prime}=\Pi_{m-1}^{m} \Pi_{m-2}^{m} \cdots \Pi_{1}^{\prime m} \\
& \Theta_{m}=\sigma_{m} \cdot \Pi_{m-1}^{m} \cdot \Pi_{m-1}^{m} \cdot \sigma_{m} \cdot \Pi_{m-2}^{\prime m} \cdot \Pi_{m-2}^{m} \cdots \sigma_{m} \cdot \Pi_{1}^{\prime m} \cdot \Pi_{1}^{m} \cdot \sigma_{m}
\end{aligned}
$$

Theorem 2.2 ([14]). Let Γ_{T} be a chart of degree m on $I \times I$, obtained from a chart on T (of degree m) by cutting T by the meridian and the longitude. Let a (resp. b) be a classical m-braid presented by $\Gamma_{T} \cap(I \times\{0\})$ (resp. $\left.\Gamma_{T} \cap(\{0\} \times I)\right)$. Then the torus-covering knot presented by Γ_{T} is presented by a surface link chart Γ_{S} of degree $2 m$ as in Fig. 2.2. Here H_{b} is a chart of degree $2 m$ presenting the simple braided surface whose motion picture is as follows:

$$
\begin{aligned}
\iota_{0}^{m}(b) & \rightarrow \iota_{0}^{m}(b) \cdot\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Delta_{m}^{\prime} \cdot \Delta_{m} \dot{\rightarrow} \iota_{0}^{m}(b) \cdot\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Theta_{m} \\
& \rightarrow\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \iota_{0}^{m}\left(\bar{b}^{*}\right) \cdot \Theta_{m} \rightarrow\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Theta_{m} \cdot \iota_{m}^{0}\left(\bar{b}^{*}\right) \\
& \rightarrow\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Delta_{m}^{\prime} \cdot \Delta_{m} \cdot \iota_{m}^{0}\left(\bar{b}^{*}\right) \rightarrow \iota_{m}^{0}\left(\bar{b}^{*}\right),
\end{aligned}
$$

where \rightarrow is an isotopic transformation and $\dot{\rightarrow}$ is a hyperbolic transformation along bands corresponding to the $m \sigma_{m}$'s, and $-\left(H_{b}\right)^{*}$ is the orientation-reversed mirror image of H_{b}, and \bar{b}^{*} is the m-braid obtained from the classical m-braid b by taking its mirror image and reversing all the crossings.

Definition 2.3. We call H_{b} the 1-handle chart of Γ_{T}.

Fig. 2.2. The surface link chart Γ_{S} of degree $2 m$.
Let us consider the spun T^{2}-knot of \hat{b}, where \hat{b} denotes the closure of a classical braid b. Let us determine Γ_{T} on $I \times I$ to be a chart presenting the braided surface $b \times I$; then the braids presented by $\Gamma_{T} \cap(I \times\{0\})$ and $\Gamma_{T} \cap(\{0\} \times I)$ are b and e respectively, where e is the trivial braid. The 1-handle chart of Γ_{T} is H_{e}. We obtain H_{e}, as follows.

Lemma 2.4. Let e be the trivial m-braid. Then the 1 -handle chart H_{e} is equivalent to the chart as follows:

$$
H_{e} \sim \bigcup_{k=0}^{m-1} O_{k},
$$

where O_{k} is the oval nest

$$
O_{k}=O\left(m ; \prod_{j=0}^{k-1}(m-1 \searrow m-k+j) \prod_{j=0}^{k-1}(m+1 \nearrow m+k-j)\right)
$$

for $k=0,1,2, \ldots, m-1$. Note that for $k=0, O_{0}=O(m ; \emptyset)=F_{m}$.
Proof. By Theorem 2.2, H_{e} is a chart presenting the simple braided surface as follows:

$$
\begin{align*}
e & \rightarrow\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Delta_{m}^{\prime} \cdot \Delta_{m} \\
& \rightarrow\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Theta_{m} \tag{2.1}\\
& \rightarrow\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Delta_{m}^{\prime} \cdot \Delta_{m} \rightarrow e,
\end{align*}
$$

Fig. 2.3. Moving a free edge across an edge.
where \rightarrow means an isotopy transformation and $\dot{\rightarrow}$ means a hyperbolic transformation along bands corresponding to the $m \sigma_{m}$'s. Here e is the trivial $2 m$-braid. Note that since (2.1) presents a simple surface braid, H_{e} does not have a boundary. The 1-handle chart H_{e} has m free edges, whose labels are all m. All the other edges have labels other than m and neither of them is connected with a black vertex. Draw H_{e} on $[0,1 / 2] \times[0,1]$ such that we can read the braids $e,\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Delta_{m}^{\prime} \cdot \Delta_{m},\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Theta_{m},\left(\Delta_{m}^{\prime}\right)^{-1}$. $\Delta_{m}^{-1} \cdot \Delta_{m}^{\prime} \cdot \Delta_{m}$ and e of (2.1) at $[0,1 / 2] \times\left\{t_{1}\right\}, \ldots,[0,1 / 2] \times\left\{t_{5}\right\}$ respectively, where $0<t_{1}<\cdots<t_{5}<1$. Let $q_{k}(k=0,1, \ldots, m-1)$ be the black vertex corresponding to the $(m-k)$-th σ_{m} of the braid $\left(\Delta_{m}^{\prime}\right)^{-1} \cdot \Delta_{m}^{-1} \cdot \Theta_{m}$.

Let us denote by F_{k} the free edge connected with the black vertex q_{k}. Let us move the free edges into $[1 / 2,1] \times[0,1]$ using CI-moves of type (2) as in Fig. 2.3 to be a split sum of oval nests and H_{e}^{\prime}, where H_{e}^{\prime} is the chart $H_{e}-\left(\bigcup_{k=0}^{m-1} F_{k}\right)$. Since H_{e}^{\prime} has no black vertices, we can eliminate it by a CI-move. Thus we have a split sum of oval nests.

Let $\tilde{O}_{k}(k=0,1, \ldots, m-1)$ be the oval nest F_{k} becomes. We will see that each \tilde{O}_{k} is equivalent to the oval nest O_{k}. First we will obtain \tilde{O}_{k}. It suffices to see what edges F_{k} crosses as it moves into $[1 / 2,1] \times[0,1]$. We have

$$
\Theta_{m}=\sigma_{m} \cdot \Pi_{m-1}^{m} \cdot \Pi_{m-1}^{m} \cdot \sigma_{m} \cdot \Pi_{m-2}^{m} \cdot \Pi_{m-2}^{m} \cdots \sigma_{m} \cdot \Pi_{1}^{m} \cdot \Pi_{1}^{m} \cdot \sigma_{m} .
$$

The first free edge F_{0} does not cross any edge. Hence $\tilde{O}_{0}=F_{0}$. Then the second free edge F_{1} crosses edges representing $\Pi_{1}^{m} \cdot \Pi_{1}^{m}=\sigma_{m-1} \sigma_{m+1}$, so it becomes the oval nest $\tilde{O}_{1}=O(m ; m-1 m+1)$. The third free edge F_{2} crosses edges representing Π_{2}^{m}. $\Pi_{2}^{m} \cdot \Pi_{1}^{\prime m} \cdot \Pi_{1}^{m}=\left(\sigma_{m-1} \sigma_{m-2}\right)\left(\sigma_{m+1} \sigma_{m+2}\right) \sigma_{m-1} \sigma_{m+1}$. Hence it becomes the oval nest $\tilde{O}_{2}=$ $O(m ;(m-1)(m-2) \cdot(m+1)(m+2) \cdot(m-1) \cdot(m+1))$. Repeating this step, we see that in general F_{k} crosses edges representing $\Pi_{k}^{m} \cdot \Pi_{k}^{m} \cdot \Pi_{k-1}^{\prime m} \cdot \Pi_{k-1}^{m} \cdots \Pi_{1}^{\prime m} \cdot \Pi_{1}^{m}$, so it becomes an oval nest $\tilde{O}_{k}=O\left(m ; \prod_{j=0}^{k-1}((m-1 \searrow m-k+j) \cdot(m+1 \nearrow m+k-j))\right)$ for $k=0,1, \ldots, m-1$.

We can show that if $i+1<k$ then $(i \searrow j)(k \nearrow l)$ can be transformed to $(k \searrow$ $l)(i \nearrow j)$ by the braid group relation 2, i.e.

$$
\begin{equation*}
(i \searrow j)(k \nearrow l) \sim(k \searrow l)(i \nearrow j) \tag{2.2}
\end{equation*}
$$

Using (2.2), we see that $\tilde{O}_{k} \sim O\left(m ; \prod_{j=0}^{k-1}(m-1 \searrow m-k+j) \prod_{j=0}^{k-1}(m+1 \nearrow m+k-j)\right)$, which is O_{k}.

3. Main theorem

An oriented surface knot is unknotted if it is equivalent to the connected sum of several standard tori. It is known [4] that any oriented surface knot S can be deformed to an unknotted surface knot by applying a finite number of oriented 1-handle surgeries. The unknotting number of S is the minimum number of oriented 1-handle surgeries necessary to deform it to be unknotted. In this section, we show Theorem 3.1 and Corollary 3.2.

Theorem 3.1. Let S be the spun T^{2}-knot of a classical knot \hat{b}, where b is a classical m-braid $(m>1)$ such that there exists a permutation τ of degree $m-1$ which satisfies the following conditions:
(a1) There is an integer $r \in\{1,2, \ldots, m-1\}$ such that for each $k \in\{1,2, \ldots, m-1\}-\{r\}$, $\sigma_{k} \cdot b=b \cdot \sigma_{\tau(k)}$, and
(a2) For each $i, j \in\{1,2, \ldots, m-1\}$, if $i \neq j$, then $\tau^{i}(1) \neq \tau^{j}(1)$. Note that then $\tau^{m-1}(1)=1$.
Moreover assume that S is not unknotted. Then the unknotting number of S is one.
By Theorem 3.1 we have an alternative proof of the fact [10] that the spun T^{2}-knot of a torus (p, q)-knot has the unknotting number one.

Corollary 3.2. The spun T^{2}-knot of a classical torus (p, q)-knot has the unknotting number one.

Proof. First we show that the spun T^{2}-knot is not unknotted. The knot group of the spun T^{2}-knot of a classical torus (p, q)-knot is isomorphic to the knot group of the classical torus (p, q)-knot ([15]). Hence we can see that the spun T^{2}-knot is not unknotted.

We determine the braid b and the permutation τ, as follows. A classical torus (p, q)-knot is presented by the closure of the p-braid $b=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p-1}\right)^{q}$, where p and q are coprime integers and moreover $p>1$. Let r be defined by q mod p such that $r \in\{0,1,2, \ldots, p-1\}$. Since p and q are coprime, $r \neq 0$ and it follows that $r \in\{1,2, \ldots, p-1\}$. Let us define a permutation τ of degree $p-1$ by

$$
\left(\begin{array}{ccccccccc}
1 & 2 & \cdots & r-1 & r & r+1 & r+2 & \cdots & p-1 \\
p-r+1 & p-r+2 & \cdots & p-1 & p-r & 1 & 2 & \cdots & p-r-1
\end{array}\right) .
$$

Fig. 3.1. The braid associated with τ if $r-1<p-r-1$.
We show that Condition (a1) of Theorem 3.1 holds, as follows. If $k \neq 1$, then we can show that $\sigma_{k}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p-1}\right)=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p-1}\right) \sigma_{k-1}$. Similarly we have $\sigma_{1}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p-1}\right)^{2}=$ $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{p-1}\right)^{2} \sigma_{p-1}$. From these two equations, we have $\sigma_{k} \cdot b=b \cdot \sigma_{\tau(k)}$ for each $k \in$ $\{1,2, \ldots, p-1\}-\{r\}$. Thus Condition (a1) holds.

Next we will show that τ satisfies Condition (a2) of Theorem 3.1. Let us define Condition (a2)' as follows.
(a2)' The permutation τ is associated with a classical braid c such that \hat{c} is a knot, i.e. \hat{c} is connected.

We can see that if the permutation τ satisfies (a2)', then (a2) holds, as follows. If Condition (a2) does not hold, then $\tau^{i}(1)=\tau^{j}(1)$ for some $i, j \in\{1,2, \ldots, p-1\}$ with $i \neq j$. We can assume that $j>i$. Then we have $\tau^{j-i}(1)=1$, where $0<j-i<p-1$. On the other hand, if τ is associated with a classical braid c such that \hat{c} is a knot, then $\tau^{k}(1) \neq 1$ for any k with $0<k<p-1$. This is a contradiction.

From now on we will show that τ satisfies (a2)'. Since $r \in\{1,2, \ldots, p-1\}$ with $r=q \bmod p$, and p and q are coprime integers, we see that $r=1$ or p and r are coprime. If $r-1=p-r-1$, then $p=2 r$. Since $r=1$ or p and r are coprime, we have $r=1$ and $p=2$. Then $\tau=\binom{1}{1}$, which is associated with the trivial braid of degree one, whose associated closed braid is a trivial knot. Hence we can assume that $r-1 \neq p-r-1$. If $r-1<p-r-1$, then the permutation τ is associated with a braid whose diagram is as in Fig. 3.1, where we omit the crossing information. Here we have $\tau(r-j)=p-j$ for $j=1,2, \ldots, r-1$ and $\tau(p-j)=p-r-j$ for $j=1,2, \ldots, p-r-1$. Hence we have $\tau^{2}(r-j)=\tau(p-j)=p-r-j$ for $j=1,2, \ldots, r-1$, which means that the $(r-j)$-th string of the closed braid is connected with the $(p-j)$-th string, which is connected with the $(p-r-j)$-th string. Hence we can assume that there is no $(p-j)$-th string, and the $(r-j)$-th string of the closed braid is connected with the ($p-r-j$)-th string, where $j=1,2, \ldots, r-1$ (see Fig. 3.1).

Thus it suffices to show that the following permutation satisfies (a2)':

$$
\left(\begin{array}{cccccccc}
1 & 2 & \cdots & r & r+1 & r+2 & \cdots & p-r \tag{3.1}\\
p-2 r+1 & p-2 r+2 & \cdots & p-r & 1 & 2 & \cdots & p-2 r
\end{array}\right)
$$

Similarly, if $r-1>p-r-1$, then we have $\tau^{2}(r-j)=\tau(p-j)=p-r-j$ for $j=1,2, \ldots, p-r-1$. Hence it suffices to show that the following permutation satisfies (a2)':

$$
\left(\begin{array}{cccccccc}
1 & 2 & \cdots & 2 r-p & 2 r-p+1 & 2 r-p+1 & \cdots & r \tag{3.2}\\
p-r+1 & p-r+2 & \cdots & r & 1 & 2 & \cdots & p-r
\end{array}\right) .
$$

If $r-1<p-r-1$ (resp. $r-1>p-r-1$), then $p-r>r$ (resp. $r>p-r$). Hence together with $1 \leq r \leq p-1$, we can see that $p-r>1$ (resp. $r>1$). Thus the permutation (3.1) (resp. (3.2)) is associated with the m-braid $c=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m-1}\right)^{n}$, where $m=p-r$ (resp. r) is the degree of (3.1) (resp. (3.2)) with $m>1$, and $n=$ $m-\tau(1)+1$. Since for (3.1) (resp. (3.2)) we have $m=p-r$ (resp. r) and $\tau(1)=$ $p-2 r+1$ (resp. $p-r+1$), it follows that $(m, n)=(p-r, r)($ resp. $(m, n)=(r, 2 r-p))$. Note that in both cases $n>0$. Since $r=1$ or p and r are coprime, together with $m>1$ and $n>0$, it follows that in both cases $n=1$ or m and n are coprime. If $n=1$, then $\hat{c}\left(c=\sigma_{1} \sigma_{2} \cdots \sigma_{m-1}\right)$ is a trivial knot, and if m and n are coprime, then $\hat{c}\left(c=\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m-1}\right)^{n}\right)$ is a torus (m, n)-knot. Thus τ satisfies (a2)', and it follows that τ satisfies (a2). Therefore the spun T^{2}-knot has the unknotting number one by Theorem 3.1.

Proof of Theorem 3.1. We show that the unknotting number of S is one. Let Γ_{S} be a surface link chart presenting S. An unknotted chart is a chart presented by a configuration consisting of free edges ([5]). An unknotted oriented surface knot is presented by an unknotted chart ([5]). For an oriented surface knot, adding a free edge to the surface link chart corresponds to a nice 1-handle surgery, which is an oriented 1-handle surgery ([6]). Thus it suffices to see that the surface link chart obtained from Γ_{S} by adding a free edge is equivalent to an unknotted chart.

We will determine Γ_{S} by [14] (see Theorem 2.2). The chart Γ_{T} on $I \times I$ presents the braided surface $b \times I$; thus the braids presented by $\Gamma_{T} \cap(I \times\{0\})$ and $\Gamma_{T} \cap(\{0\} \times I)$ are b and e respectively (see Section 2). By Lemma 2.4 and (3.26) of Lemma 3.3, we can assume that the 1-handle chart H_{e} is as follows:

$$
H_{e}=\bigcup_{k=0}^{m-1} O_{k},
$$

where

$$
\begin{equation*}
O_{k}=O(m-k ;(\overline{m-k+1} \nearrow \bar{m})(m+1 \nearrow m+k)) . \tag{3.3}
\end{equation*}
$$

Let us define and O_{k}^{\prime} as follows:

$$
\begin{equation*}
O_{k}^{\prime}=O(m-k ;(\overline{m-k+1} \nearrow \bar{m})(m+1 \nearrow m+k) \cdot b) \tag{3.4}
\end{equation*}
$$

The oval nest O_{k}^{\prime} is obtained from O_{k} by adding loops describing b around it. By [14] (see Theorem 2.2), the surface link chart Γ_{S} obtained from Γ_{T} is as follows:

$$
\begin{equation*}
\Gamma_{S}=\bigcup_{i=0}^{m-1} O_{i} \cup \bigcup_{i=0}^{m-1} O_{i}^{\prime} \tag{3.5}
\end{equation*}
$$

Remark that Γ_{S} is a ribbon chart of degree $2 m$ (see [5, 9]).
We will show that the surface link chart Γ_{S} can be deformed to an unknotted chart by adding a free edge.

STEP 1. We show that

$$
O_{m-k-1} \cup O_{m-k} \cup F_{2 m-k} \sim O_{m-k-1} \cup F_{k} \cup F_{2 m-k}
$$

for $k \in\{1,2, \ldots, m-1\}$.
By (3.3) and (1.7), we have

$$
\begin{aligned}
& O_{m-k} \cup F_{2 m-k} \\
& =O(k ;(\overline{k+1} \nearrow \bar{m})(m+1 \nearrow 2 m-k)) \cup F_{2 m-k} \\
& \sim O(k ;(\overline{k+1} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1)) \cup F_{2 m-k}
\end{aligned}
$$

Let us denote $O(k ;(\overline{k+1} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1))$ by \tilde{O}_{m-k}. By (1.7) we have

$$
O(k+1 ; \emptyset) \cup O(k ; \overline{k+1}) \sim O(k+1 ; \emptyset) \cup O(k ; \emptyset)
$$

Hence we have

$$
\begin{equation*}
O(k+1 ; c) \cup O(k ; \overline{k+1} \cdot c) \sim O(k+1 ; c) \cup O(k ; c) \tag{3.6}
\end{equation*}
$$

for a braid c by (1.6). By (3.3) and (3.6) we have

$$
\begin{aligned}
& O_{m-k-1} \cup \tilde{O}_{m-k} \\
& =O(k+1 ;(\overline{k+2} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1)) \\
& \sim O O(k ;(\overline{k+1}) \cdot(\overline{k+2} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1)) \\
& \quad O(k+1 ;(\overline{k+2} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1)) \\
& \quad \cup O(k ;(\overline{k+2} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1)) \\
& = \\
& O_{m-k-1} \cup O(k ;(\overline{k+2} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1))
\end{aligned}
$$

By (1.4) we see that

$$
O(k ;(\overline{k+2} \nearrow \bar{m})(m+1 \nearrow 2 m-k-1)) \sim O(k ; \emptyset)=F_{k} .
$$

Thus we have

$$
O_{m-k-1} \cup O_{m-k} \cup F_{2 m-k} \sim O_{m-k-1} \cup F_{k} \cup F_{2 m-k} .
$$

STEP 2. Similarly, we show that

$$
O_{m-k-1}^{\prime} \cup O_{m-k}^{\prime} \cup F_{\tau(k)} \sim O_{m-k-1}^{\prime} \cup F_{2 m-k} \cup F_{\tau(k)}
$$

for $k \in\{1,2, \ldots, m-1\}-\{r\}$.
By (a1), $b^{-1} \sigma_{k} b=\sigma_{\tau(k)}$ for $k \in\{1,2, \ldots, m-1\}-\{r\}$. Hence we have

$$
\begin{equation*}
O(k ; b) \sim F_{\tau(k)} \tag{3.7}
\end{equation*}
$$

for $k \in\{1,2, \ldots, m-1\}-\{r\}$ by Lemma 1.3.
Similarly to Step 1 , using (3.27) of Lemma 3.3, we have

$$
\begin{equation*}
O_{m-k-1} \cup O_{m-k} \cup F_{k} \sim O_{m-k-1} \cup F_{k} \cup F_{2 m-k} \tag{3.8}
\end{equation*}
$$

for $k \in\{1,2, \ldots, m-1\}$. By (3.8) and (1.6), we have

$$
\begin{equation*}
O_{m-k-1}^{\prime} \cup O_{m-k}^{\prime} \cup O(k ; b) \sim O_{m-k-1}^{\prime} \cup O(k ; b) \cup O(2 m-k ; b) \tag{3.9}
\end{equation*}
$$

By (3.7), $O(k ; b) \sim F_{\tau(k)}$ for $k \in\{1,2, \ldots, m-1\}-\{r\}$. On the other hand, by (1.4) and $2 m-k>(m-1)+1$, we have $O(2 m-k ; b) \sim O(2 m-k ; \emptyset)=F_{2 m-k}$. Hence together with (3.9), we see that

$$
O_{m-k-1}^{\prime} \cup O_{m-k}^{\prime} \cup F_{\tau(k)} \sim O_{m-k-1}^{\prime} \cup F_{2 m-k} \cup F_{\tau(k)}
$$

for $k \in\{1,2, \ldots, m-1\}-\{r\}$.
Step 3. Let us denote Step 1 as follows:

$$
\phi_{l}: O_{l-1} \cup O_{l} \cup F_{m+l} \rightarrow O_{l-1} \cup F_{m-l} \cup F_{m+l}
$$

for $l \in\{1,2, \ldots, m-1\}$, and Step 2 as

$$
\psi_{l}: O_{l-1}^{\prime} \cup O_{l}^{\prime} \cup F_{\tau(m-l)} \rightarrow O_{l-1}^{\prime} \cup F_{m+l} \cup F_{\tau(m-l)}
$$

for $l \in\{1,2, \ldots, m-1\}-\{m-r\}$.

We introduce several notations to make things easy to see. Let us define F^{l}, F^{l} and $F^{\prime \prime l}$ as follows:

$$
\begin{align*}
& F^{l}:=F_{m-l}, \tag{3.10}\\
& F^{\prime l}:=F_{m+l}, \tag{3.11}\\
& F^{\prime \prime l}:=F_{\tau(m-l)} \tag{3.12}
\end{align*}
$$

for $l \in\{1,2, \ldots, m-1\}$. Moreover, for an integer s, let us define τ_{s} to be

$$
\begin{equation*}
\tau_{s}:=m-\tau^{-s}(r) . \tag{3.13}
\end{equation*}
$$

Step 1 is written as follows:

$$
\begin{equation*}
\phi_{l}: O_{l-1} \cup O_{l} \cup F^{\prime l} \rightarrow O_{l-1} \cup F^{l} \cup F^{\prime l} \tag{3.14}
\end{equation*}
$$

for $l \in\{1,2, \ldots, m-1\}$, and Step 2 is

$$
\begin{equation*}
\psi_{l}: O_{l-1}^{\prime} \cup O_{l}^{\prime} \cup F^{\prime \prime l} \rightarrow O_{l-1}^{\prime} \cup F^{\prime l} \cup F^{\prime \prime l} \tag{3.15}
\end{equation*}
$$

for $l \in\{1,2, \ldots, m-1\}-\{m-r\}$. Since by definition (3.13) $m-r=\tau_{0}$, Step 2 holds true for $l \in\{1,2, \ldots, m-1\}-\left\{\tau_{0}\right\}$.

From now on we show that Γ_{S} can be deformed to an unknotted chart by adding a free edge F_{r}. Let us define charts $I_{0}, I_{1}, \ldots, I_{2 m-4}$ of degree $2 m$. First, define I_{0} as follows:

$$
I_{0}:=\Gamma_{S} \cup F_{r},
$$

which is by (3.5) as follows:

$$
\begin{align*}
I_{0}= & O_{0} \cup O_{\tau_{1}} \cup O_{\tau_{2}} \cup \cdots \cup O_{\tau_{m-2}} \cup O_{\tau_{0}} \\
& \cup O_{0}^{\prime} \cup O_{\tau_{1}}^{\prime} \cup O_{\tau_{2}}^{\prime} \cup \cdots \cup O_{\tau_{m-2}}^{\prime} \cup O_{\tau_{0}}^{\prime} \tag{3.16}\\
& \cup F_{r} .
\end{align*}
$$

Note that by (a2), $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{m-2}\right\}=\{1,2, \ldots, m-1\}$. For $n=1,2, \ldots, m-2$, let us define $I_{2 n}$ as follows:

$$
\begin{align*}
I_{2 n}:= & O_{0} \cup O_{\tau_{n+1}} \cup O_{\tau_{n+2}} \cup \cdots \cup O_{\tau_{m-2}} \cup O_{\tau_{0}} \cup F^{\tau_{1}} \cup F^{\tau_{2}} \cup \cdots \cup F^{\tau_{n}} \\
& \cup O_{0}^{\prime} \cup O_{\tau_{n+1}}^{\prime} \cup O_{\tau_{n+2}}^{\prime} \cup \cdots \cup O_{\tau_{m-2}}^{\prime} \cup O_{\tau_{0}}^{\prime} \cup F^{\prime \tau_{1}} \cup F^{\prime \tau_{2}} \cup \cdots \cup F^{\prime \tau_{n}} \tag{3.17}\\
& \cup F_{r} .
\end{align*}
$$

And for $n=0,1,2, \ldots, m-3$, let us define $I_{2 n+1}$ as follows:

$$
\begin{equation*}
I_{2 n+1}:=\left(I_{2 n}-O_{\tau_{n+1}}^{\prime}\right) \cup F^{\tau_{n+1}} \tag{3.18}
\end{equation*}
$$

We will show that $I_{2 n+1}$ (resp. $I_{2 n+2}$) is obtained from $I_{2 n}$ (resp. $I_{2 n+1}$) by applying Steps 2 (resp. Steps 1) for $n=0,1, \ldots, m-3$.

When we have $I_{2 n}(n=0,1, \ldots, m-3)$, there is an integer $l_{0}<\tau_{n+1}$ such that for any l with $l_{0}<l<\tau_{n+1}, O_{l}^{\prime} \not \subset I_{2 n}$ and $O_{l_{0}}^{\prime} \subset I_{2 n}$. Note that such an l_{0} exists, for $0<\tau_{n+1}$ and $O_{0}^{\prime} \subset I_{2 n}$ for every $n \in\{0,1, \ldots, m-3\}$. Since $r=\tau^{0}(r)=\tau(m-(m-$ $\left.\left.\tau^{-1}(r)\right)\right)=\tau\left(m-\tau_{1}\right)$, by the definition of $F^{\prime \prime l}$ (3.12) we have

$$
\begin{equation*}
F_{r}=F^{\prime \prime \tau_{1}} \tag{3.19}
\end{equation*}
$$

For $n=0$, by (3.16) we have $l_{0}=\tau_{1}-1$, and by (3.19) we see that

$$
\begin{equation*}
I_{0} \supset F^{\prime \prime \tau_{1}} \cup O_{\tau_{1}-1}^{\prime} \cup O_{\tau_{1}}^{\prime} \tag{3.20}
\end{equation*}
$$

By the definitions (3.10) and (3.13), we have

$$
F_{\tau^{-s}(r)}=F_{m-\left(m-\tau^{-s}(r)\right)}=F^{m-\tau^{-s}(r)}=F^{\tau_{s}},
$$

and by the definitions (3.12) and (3.13), we have

$$
F_{\tau^{-s}(r)}=F_{\tau\left(\tau^{-(s+1)}(r)\right)}=F^{\prime \prime m-\tau^{-(s+1)}(r)}=F^{\prime \prime \tau_{s+1}} .
$$

Hence we have

$$
\begin{equation*}
F^{\tau_{s}}=F^{\prime \prime \tau_{s+1}} \tag{3.21}
\end{equation*}
$$

for each s. By the definition of $I_{2 n}$ (3.17) and (3.21) we have

$$
\begin{align*}
I_{2 n}= & O_{0} \cup O_{\tau_{n+1}} \cup O_{\tau_{n+2}} \cup \cdots \cup O_{\tau_{m-2}} \cup O_{\tau_{0}} \cup F^{\prime \prime \tau_{2}} \cup F^{\prime \prime \tau_{3}} \cup \cdots \cup F^{\prime \prime \tau_{n+1}} \\
& \cup O_{0}^{\prime} \cup O_{\tau_{n+1}}^{\prime} \cup O_{\tau_{n+2}}^{\prime} \cup \cdots \cup O_{\tau_{m-2}}^{\prime} \cup O_{\tau_{0}}^{\prime} \cup F^{\prime \tau_{1}} \cup F^{\prime \tau_{2}} \cup \cdots \cup F^{\prime \tau_{n}} \tag{3.22}\\
& \cup F_{r}
\end{align*}
$$

for $n=1,2, \ldots, m-3$. By (3.22) and (3.19), we can see that if $F^{l l} \subset I_{2 n}$, then $F^{\prime \prime l} \subset I_{2 n}$. So together with (3.20), we have

$$
\begin{align*}
I_{2 n} \supset & F^{\prime \prime l_{0}+1} \cup F^{\prime \prime l_{0}+2} \cup \cdots \cup F^{\prime \prime \tau_{n+1}-1} \cup F^{\prime \prime \tau_{n+1}} \tag{3.23}\\
& \cup O_{l_{0}}^{\prime} \cup F^{l_{0}+1} \cup F^{l_{0}+2} \cup \cdots \cup F^{\prime \tau_{n+1}-1} \cup O_{\tau_{n+1}}^{\prime}
\end{align*}
$$

for $n=0,1, \ldots, m-3$. By (3.22), we can see that if $F^{l l} \subset I_{2 n}$, then $l \in\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$. Hence $l_{0}+1, l_{0}+2, \ldots, \tau_{n+1}-1 \in\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$. By (a2) and $n \leq m-3$, none of $l_{0}+1, l_{0}+2, \ldots, \tau_{n+1}-1, \tau_{n+1}$ is τ_{0}. So we can apply Steps 2 (3.15) and its inverses to $I_{2 n}$ to deform $O_{\tau_{n+1}}^{\prime}$ to $F^{\prime \tau_{n+1}}$. The result is $I_{2 n+1}$ by the definition of $I_{2 n+1}$ (3.18):

$$
\begin{equation*}
\psi_{l_{0}+1} \circ \cdots \circ \psi_{\tau_{n+1}-1} \circ \psi_{\tau_{n+1}} \circ \psi_{\tau_{n+1}-1}^{-1} \circ \cdots \circ \psi_{l_{0}+2}^{-1} \circ \psi_{l_{0}+1}^{-1}\left(I_{2 n}\right)=I_{2 n+1} \tag{3.24}
\end{equation*}
$$

for $n=0,1, \ldots, m-3$.
By (3.16) and (3.17), we see that if $O_{l}^{\prime} \subset I_{2 n}$, then $O_{l} \subset I_{2 n}$, and if $F^{\prime l} \subset I_{2 n}$, then $F^{l} \subset I_{2 n}$. Hence, by the definition of $I_{2 n+1}$ (3.18),

$$
\begin{gathered}
I_{2 n+1} \supset O_{l_{0}} \cup F^{l_{0}+1} \cup F^{l_{0}+2} \cup \cdots \cup F^{\tau_{n+1}-1} \cup O_{\tau_{n+1}} \\
\cup F^{l_{0}+1} \cup F^{l_{0}+2} \cup \cdots \cup F^{\tau_{n+1}}
\end{gathered}
$$

for $n=0,1, \ldots, m-3$, where l_{0} is the same integer used in deforming $I_{2 n}$ to $I_{2 n+1}$. And by the definitions (3.16), (3.17) and (3.18) we have

$$
\begin{aligned}
I_{2 n+2} & =\left(I_{2 n}-O_{\tau_{n+1}}^{\prime}-O_{\tau_{n+1}}\right) \cup F^{\prime \tau_{n+1}} \cup F^{\tau_{n+1}} \\
& =\left(I_{2 n+1}-O_{\tau_{n+1}}\right) \cup F^{\tau_{n+1}}
\end{aligned}
$$

for $n=0,1, \ldots, m-3$. Similarly to (3.24), we can deform $I_{2 n+1}$ to $I_{2 n+2}$ by applying Steps 1 (3.14) and its inverses and deforming $O_{\tau_{n+1}}$ to $F^{\tau_{n+1}}$:

$$
\begin{equation*}
\phi_{l_{0}+1} \circ \cdots \circ \phi_{\tau_{n+1}-1} \circ \phi_{\tau_{n+1}} \circ \phi_{\tau_{n+1}-1}^{-1} \circ \cdots \circ \phi_{l_{0}+2}^{-1} \circ \phi_{l_{0}+1}^{-1}\left(I_{2 n+1}\right)=I_{2 n+2} \tag{3.25}
\end{equation*}
$$

for $n=0,1, \ldots, m-3$.
Thus, repeating Steps 2 (3.24) and Steps 1 (3.25) alternately $m-2$ times each, we have

$$
\begin{aligned}
I_{2(m-2)}= & O_{0} \cup O_{\tau_{0}} \cup \bigcup_{n=1}^{m-2} F^{\tau_{n}} \\
& \cup O_{0}^{\prime} \cup O_{\tau_{0}}^{\prime} \cup \bigcup_{n=1}^{m-2} F^{\prime \tau_{n}} \\
& \cup F_{r} .
\end{aligned}
$$

By (a2), we have $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{m-2}\right\}=\{1,2, \ldots, m-1\}-\left\{\tau_{0}\right\}=\{1,2, \ldots, m-1\}-\{m-r\}$. Hence together with (3.10) and (3.11) we have

$$
I_{2(m-2)}=O_{0} \cup O_{m-r} \cup O_{0}^{\prime} \cup O_{m-r}^{\prime} \cup \bigcup_{k \neq m, 2 m-r} F_{k},
$$

where

$$
\left.O_{m-r} \sim O(2 m-r ; \overline{(\overline{2 m-r-1}} \searrow \bar{m})(m-1 \searrow r)\right)
$$

by (3.27) of Lemma 3.3. On the other hand, by definition $O_{0}=F_{m}$. Hence, we have free edges of all labels except $2 m-r$, using which and (1.7) we can deform the oval nest O_{m-r} to the free edge $F_{2 m-r}$.

Therefore $\Gamma_{S} \cup F_{r}$ can be deformed to a chart containing $\bigcup_{k=1}^{2 m-1} F_{k}$, using which and (1.7) we can deform $\Gamma_{S} \cup F_{r}$ to have only free edges, which is an unknotted chart.

Lemma 3.3. The oval nest of Lemma 2.4

$$
O_{k}=O\left(m ; \prod_{j=0}^{k-1}(m-1 \searrow m-k+j) \prod_{j=0}^{k-1}(m+1 \nearrow m+k-j)\right)
$$

for $k=1,2, \ldots, m-1$, is equivalent to the following:

$$
\begin{align*}
O_{k} & \sim O(m-k ;(\overline{m-k+1} \nearrow \bar{m})(m+1 \nearrow m+k)) \tag{3.26}\\
& \sim O(m+k ;(\overline{m+k-1} \searrow \bar{m})(m-1 \searrow m-k)) . \tag{3.27}
\end{align*}
$$

Proof. First, we will show that the braid $\prod_{j=0}^{k-1}(m-1 \searrow m-k+j)$ is equivalent to $\prod_{j=0}^{k-1}(m-k+j \searrow m-k)$, i.e.

$$
\begin{equation*}
\prod_{j=0}^{k-1}(m-1 \searrow m-k+j) \sim \prod_{j=0}^{k-1}(m-k+j \searrow m-k) \tag{3.28}
\end{equation*}
$$

For positive integers l, i_{1}, i_{2} with $l \geq i_{2}>i_{1}$, we have $\left(l \searrow i_{1}\right) i_{2} \sim\left(i_{2}-1\right)\left(l \searrow i_{1}\right)$. Hence we can see that

$$
\begin{equation*}
\left(l \searrow i_{1}\right)\left(l \searrow i_{2}\right) \sim\left(l-1 \searrow i_{2}-1\right)\left(l \searrow i_{1}\right) . \tag{3.29}
\end{equation*}
$$

By (3.29), we see that

$$
\begin{aligned}
& \prod_{j=0}^{k-1}(m-1 \searrow m-k+j) \\
& =(m-1 \searrow m-k) \cdot \prod_{j=1}^{k-1}(m-1 \searrow m-k+j) \\
& \sim \prod_{j=1}^{k-1}(m-2 \searrow m-k+j-1) \cdot(m-1 \searrow m-k) \\
& \sim \cdots \\
& \sim \prod_{j=s-1}^{k-1}(m-s \searrow m-k+j-(s-1)) \prod_{j=k-(s-1)}^{k-1}(m-k+j \searrow m-k) \\
& =(m-s \searrow m-k) \prod_{j=s}^{k-1}(m-s \searrow m-k+j-(s-1)) \prod_{j=k-(s-1)}^{k-1}(m-k+j \searrow m-k)
\end{aligned}
$$

$$
\begin{aligned}
& \sim \prod_{j=s}^{k-1}(m-s-1 \searrow m-k+j-s) \cdot(m-k+(k-s) \searrow m-k) \\
& \quad \cdot \prod_{j=k-(s-1)}^{k-1}(m-k+j \searrow m-k) \\
& =\prod_{j=s}^{k-1}(m-(s+1) \searrow m-k+j-s) \cdot \prod_{j=k-s}^{k-1}(m-k+j \searrow m-k) \\
& \sim \\
& \sim(m-k) \prod_{j=1}^{k-1}(m-k+j \searrow m-k) \\
& \sim \\
& =\prod_{j=0}^{k-1}(m-k+j \searrow m-k),
\end{aligned}
$$

which is (3.28). Similarly, we have another equivalence relation:

$$
\begin{equation*}
\prod_{j=0}^{k-1}(m+1 \nearrow m+k-j) \sim \prod_{j=0}^{k-1}(m+k-j \nearrow m+k) \tag{3.30}
\end{equation*}
$$

Note that for positive integers l, i_{1}, i_{2} with $l \leq i_{2}<i_{1}$, we can easily show that ($l \nearrow$ $\left.i_{1}\right)\left(l \nearrow i_{2}\right) \sim\left(l+1 \nearrow i_{2}+1\right)\left(l \nearrow i_{1}\right)$.

Using (1.4), we can show that if $m-1>i$, then

$$
\begin{equation*}
O(m ;(i \searrow j) \cdot c) \sim O(m ; c) \tag{3.31}
\end{equation*}
$$

for a braid c. Similarly we can show that if $m+1<i$, then

$$
\begin{equation*}
O(m ;(i \nearrow j) \cdot c) \sim O(m ; c) \tag{3.32}
\end{equation*}
$$

By (3.28) and (3.30), we have

$$
\begin{aligned}
O_{k} & =O\left(m ; \prod_{j=0}^{k-1}(m-1 \searrow m-k+j) \prod_{j=0}^{k-1}(m+1 \nearrow m+k-j)\right) \\
\sim O(m ; & \prod_{j=0}^{k-2}(m-k+j \searrow m-k) \cdot(m-1 \searrow m-k) \\
& \left.\cdot \prod_{j=0}^{k-2}(m+k-j \nearrow m+k) \cdot(m+1 \nearrow m+k)\right)
\end{aligned}
$$

For $j=0,1, \ldots, k-2$, we have $(m+k-j)-((m-1)+1)=k-j>0$. Hence $m+k-j>(m-1)+1$. By (2.2), we have

$$
\begin{aligned}
O_{k} \sim O(m ; & \prod_{j=0}^{k-2}(m-k+j \searrow m-k) \\
& \left.\cdot \prod_{j=0}^{k-2}(m+k-j \nearrow m+k) \cdot(m-1 \searrow m-k)(m+1 \nearrow m+k)\right)
\end{aligned}
$$

By (3.31) and (3.32), we have

$$
\begin{equation*}
O_{k} \sim O(m ;(m-1 \searrow m-k)(m+1 \nearrow m+k)) \tag{3.33}
\end{equation*}
$$

Now we will show that

$$
\begin{equation*}
O(m ;(m-1 \searrow m-k) \cdot c) \sim O(m-k ;(\overline{m-k+1} \nearrow \bar{m}) \cdot c) \tag{3.34}
\end{equation*}
$$

where c is a braid. For positive integers i_{1}, i_{2} with $i_{1}>i_{2}$, by (1.5) and (1.6) we have $O\left(i_{1} ;\left(i_{1}-1 \searrow i_{2}\right)\right) \sim O\left(i_{1}-1 ; \overline{i_{1}} \cdot\left(i_{1}-2 \searrow i_{2}\right)\right)$, which is equivalent to $O\left(i_{1}-1 ;\left(i_{1}-\right.\right.$ $\left.\left.2 \searrow i_{2}\right) \cdot \overline{i_{1}}\right)$ by (2.2). Thus we have

$$
\begin{equation*}
O\left(i_{1} ;\left(i_{1}-1 \searrow i_{2}\right)\right) \sim O\left(i_{1}-1 ;\left(i_{1}-2 \searrow i_{2}\right) \cdot \overline{i_{1}}\right) \tag{3.35}
\end{equation*}
$$

Using (3.35) and (1.6), we can see that

$$
\begin{aligned}
& O(m ;(m-1 \searrow m-k)) \\
& \sim O(m-1 ;(m-2 \searrow m-k) \cdot \bar{m}) \\
& \sim \cdots \\
& \sim O(m-s ;(m-s-1 \searrow m-k) \cdot(\overline{m-s+1} \nearrow \bar{m})) \\
& \sim O(m-s-1 ;(m-s-2 \searrow m-k) \cdot(\overline{m-s}) \cdot(\overline{m-s+1} \nearrow \bar{m})) \\
& =O(m-s-1 ;(m-s-2 \searrow m-k) \cdot(\overline{m-s} \nearrow \bar{m})) \\
& \sim \cdots \\
& \sim O(m-k ;(\overline{m-k+1} \nearrow \bar{m}))
\end{aligned}
$$

Hence by (1.6), we have (3.34).
By (3.33) and (3.34), we have

$$
\begin{aligned}
O_{k} & \sim O(m ;(m-1 \searrow m-k)(m+1 \nearrow m+k)) \\
& \sim O(m-k ;(\overline{m-k+1} \nearrow \bar{m})(m+1 \nearrow m+k))
\end{aligned}
$$

which is (3.26).

By (3.33) and (2.2), we can see that

$$
\begin{align*}
& O(m ;(m-1 \searrow m-k) \cdot(m+1 \nearrow m+k)) \\
& \sim O(m ;(m+1 \nearrow m+k) \cdot(m-1 \searrow m-k)) \tag{3.36}
\end{align*}
$$

And similarly to (3.34), we can see that

$$
\begin{equation*}
O(m ;(m+1 \nearrow m+k) \cdot c) \sim O(m+k ;(\overline{m+k-1} \searrow \bar{m}) \cdot c) \tag{3.37}
\end{equation*}
$$

for a braid c. Hence by (3.36) and (3.37) we have the other equivalence relation (3.27):

$$
O_{k} \sim O(m+k ;(\overline{m+k-1} \searrow \bar{m})(m-1 \searrow m-k))
$$

ACKNOWLEDGEMENTS. The author would like to thank the referee for the helpful and kind advice. The author is supported by JSPS Research Fellowships for Young Scientists.

References

[1] J.S. Birman: Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies 82, Princeton Univ. Press, Princeton, NJ, 1974.
[2] J. Boyle: Classifying 1-handles attached to knotted surfaces, Trans. Amer. Math. Soc. 306 (1988), 475-487.
[3] J.S. Carter and M. Saito: Knotted Surfaces and Their Diagrams, Mathematical Surveys and Monographs 55, Amer. Math. Soc., Providence, RI, 1998.
[4] F. Hosokawa and A. Kawauchi: Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979), 233-248.
[5] S. Kamada: Surfaces in \mathbf{R}^{4} of braid index three are ribbon, J. Knot Theory Ramifications $\mathbf{1}$ (1992), 137-160.
[6] S. Kamada: 2-dimensional braids and chart descriptions; in Topics in Knot Theory (Erzurum, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 399, Kluwer Acad. Publ., Dordrecht, 1993, 277-287.
[7] S. Kamada: A characterization of groups of closed orientable surfaces in 4-space, Topology $\mathbf{3 3}$ (1994), 113-122.
[8] S. Kamada: An observation of surface braids via chart description, J. Knot Theory Ramifications 5 (1996), 517-529.
[9] S. Kamada: Braid and Knot Theory in Dimension Four, Mathematical Surveys and Monographs 95, Amer. Math. Soc., Providence, RI, 2002.
[10] T. Kanenobu and Y. Marumoto: Unknotting and fusion numbers of ribbon 2-knots, Osaka J. Math. 34 (1997), 525-540.
[11] A. Kawauchi: A Survey of Knot Theory, translated and revised from the 1990 Japanese original by the author, Birkhäuser, Basel, 1996.
[12] J.M. Montesinos: On twins in the four-sphere, I, Quart. J. Math. Oxford Ser. (2) 34 (1983), 171-199.
[13] I. Nakamura: Surface links which are coverings over the standard torus, Algebr. Geom. Topol. 11 (2011), 1497-1540.
[14] I. Nakamura: Braiding surface links which are coverings over the standard torus, J. Knot Theory Ramifications 21 (2012), 1250011, 25 pp.
[15] C. Livingston: Stably irreducible surfaces in S^{4}, Pacific J. Math. 116 (1985), 77-84.
[16] L. Rudolph: Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1-37.

Research Institute for Mathematical Sciences
Kyoto University
Kyoto 606-8502
Japan
Current address:
Department of Mathematics
Gakushuin University
1-5-1 Mejiro Toshima-ku Tokyo, 171-8588
Japan
e-mail: inasa@math.gakushuin.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35.

