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Abstract
We show that for the closure of a classical braid which sasisfiertain condi-
tions, the spunT?-knot of the classical knot has the unknotting number oneis Th

gives an alternative proof of the fact that the spfknot of a classical torus knot
has the unknotting number one.

0. Introduction

A surface knotis the image of a smooth embedding of a closed connected sur-
face into the Euclidean 4-spad®®. Kanenobu and Marumoto [10] showed that the
spun 2-knot of a classical torus knot has the unknotting rermdme. Hence it fol-
lows that the spurT?-knot of a classical torus knot has the unknotting number. one
Here, thespun T?-knot of a classical knoK is the product ofK in a 3-ball B3 with
a circle St, embedded int®* via the natural embedding d@® x S* into R* ([15, 2]).

In this paper, we show that for the closure of a classicaldovehiich satisfies certain
conditions, the spui?-knot of the classical knot has the unknotting number onee{Th
orem 3.1). Theorem 3.1 gives an alternative proof of the eboentioned fact that the
spun T2-knot of a classical torus knot has the unknotting number @wollary 3.2).
The proof of Theorem 3.1 is shown by a diagrammatic methodjdiyg a surface link
chart presenting the spuR?-knot.

A surface link chart is a sort of finite graph in a 2-disk withre® additional data
([5, 8, 9]). Any oriented surface knot is presented by a sefink chart ([7, 8, 9]). An
unknotted surface knot is presented by an unknotted cHar®]). It is known [4] that
any oriented surface kn@ can be deformed to an unknotted surface knot by applying
1-handle surgeries along a finite number of mutually disj@nented 1-handles. The
unknotting numbepf S is the minimum number of such 1-handles necessary to deform
S to be unknotted. Afree edgeis an edge in a chart such that the end points are
vertices of degree one. Applying a 1-handle surgery to aented surface knos along
a nice l-handle is presented by adding a free edge to a suiflkcehart presenting

S ([6]).
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Theorem 3.1 is shown as follows. First, we obtain a surfack ¢hart presenting
the spunT?-knot. Then we add a free edge to the chart, and deform it ton&naited
chart (a configuration consisting of free edges) by equinaderelations. We obtain a
surface link chart presenting the spiit-knot, as follows. We showed in [14] (see
Theorem 2.2) how to obtain a surface link chart which presensurface knot in the
form of a branched covering over the standard torus. We cah s surface knot a
torus-covering kno{[13], see Definition 2.1). Since a spuif-knot is a torus-covering
knot, we can obtain a surface link chart presenting the Sptsknot by [14].

This paper is organized as follows. In Section 1, we reviewaided surface and
its chart description, and prepare several notations. kti@e2, we review the defin-
ition of a torus-covering knot and Theorem 2.2. In Sectionw®, show Theorem 3.1
and Corollary 3.2.

1. A braided surface and its chart description

A braided surface was defined in [16, 7, 9]. A surface braid tsraided surface
with some boundary condition, and a notion of a chart waséhtced [5, 9] to present
a simple surface braid. Equivalent simple surface braids hdistinct chart presen-
tations. The notion of C-move equivalence between two shaftthe same degree
was introduced [5, 8, 9] to give the equivalence class of thartcwhich represents
the equivalence class of a simple surface braid. The notfoa chart can be easily
extended to a chart presenting a simple braided surfacehisnsection, we review a
braided surface, and extend the notion of a chart desanigtoa simple braided sur-
face. We review the fact that any oriented surface knot isgreed by the closure of
a simple surface braid ([7, 9]); thus it is presented by a tchir order to present a
certain chart called an “oval nest”, we introduce a notagtiand we prepare several
equivalence relations between oval nests.

DEFINITION 1.1. A compact and oriented 2-manifold embedded in a bidisk
Dy x D, properly and locally flatly is called braided surfaceof degreem if S satisfies
the following conditions:

(i) pz2|s: S— D3 is a branched covering map of degnee

(i) 9Sis a closedm-braid in D; xdD,, whereD,, D, are 2-disks, ang,: Dy x D, —

D, is the projection to the second factor.

Two braided surfaces arequivalentif there is a fiber-preserving ambient isotopy of
D, x D, rel D1 x dD, which carries one to the other. A braided surfégés called
simpleif #(SN p;*(x)) = m—1 or m for eachx € D,. A braided surfaces is called

a surface braidif 89S is the trivial closed braid. A surface brai@,, x D, is called
trivial, where Q, is a set ofm interior points of D;.

When a simple braided surfacgis given, we obtain a graph obD,, as follows.
Identify D1 with | x I, wherel = [0, 1]. Consider the singular set Siqg(S)) of the
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Fig. 1.1. Vertices in a chart.

image of S by the projectionp; to | x D,. PerturbingS if necessary, we can assume
that Sing1(S)) consists of double point curves, triple points, and bhapoints. More-
over we can assume that the singular set of the image of {i(®) by the projection

to D, consists of a finite humber of double points such that thenpages belong to
double point curves of Sing((S)). Thus the image of Singg(S)) by the projection to
D, forms a finite grapi™ on D, such that the degree of its vertex is either 1, 4 or 6.
An edge ofl" corresponds to a double point curve, and a vertex of degreesp.(6)
corresponds to a branch point (resp. triple point).

For such a graph' obtained from a simple braided surfaBgewe give orientations
and labels to the edges @f, as follows. Let us consider a pajh in D, such that
p NT is a point P of an edgee of I'. Then SN p;%(p) is a classicaim-braid with
one crossing inpz‘l(p) such thatP corresponds to the crossing of thebraid. Let
01, 02, ..., om—1 be the standard generators of thebraid groupBn,. Let of (i €
{1,2,...,m—1}, € € {+1,—1}) be the presentation &N p,*(p). Then label the edge
e by i, and moreover give an orientation such that the normal vectorco€orresponds
(resp. does not correspond) to the orientatioredf ¢ = +1 (resp.—1). We call such
an oriented and labeled graphchart of S

In general, we define a chart db, as follows.

DEFINITION 1.2. Letm be a positive integer. A finite graph on a 2-diskD,
is called achart of degreem if it satisfies the following conditions:
(i) T NoaD, consists of a finite number of vertices of degree 1.
(i) Every edge is oriented and labeled by an elemen{lof2,..., m—1}.
(iii) Every vertex has degree 1, 4, or 6.
(iv) The adjacent edges around each vertex inDp}(are oriented and labeled as shown
in Fig. 1.1, where we depict a vertex of degree 1 by a blackexerand a vertex of
degree 6 by a white vertex.

In a chart, an edge without end points is calletbep. An edge whose end points
are black vertices is called faee edge A configuration consisting of a free edge and
a finite number of concentric simple loops such that the lcemgssurrounding the free
edge is called amval nest
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A black vertex (resp. white vertex) of a chart correspondsticanch point (resp. triple
point) of the simple braided surface presented by the charthart presents a simple
braided surface. In particular, a chartsuch thatt N 9D, = @ presents a simple sur-
face braid.

When a chartl’ on D, is given, we can reconstruct a simple braided surf&ce
over D, as follows. Letm be the degree of’, and letN(I") be a neighborhood of
in D,. Let us consider a trivial braided surfaS= Q, x (D>— N(I")) over D, — N(I"),
where Qn, is a set ofm interior points of D;. We extendS over a neighborhood of
each edge as follows. Identify a neighborhood of an eelgdth | x | such thate is
identified with{1/2} x |. Leti be the label attached #® and lete = +1 (resp.—1) if
the orientation of corresponds (resp. does not correspond) to the orientafi¢d} x| .
Then let the braided surfacg over the neighborhood af be the braided surface which
has a presentation x | and the image of the double point curve pf(S) by the
projection toD5 is e. Sincerl is as in Fig. 1.1 around each verte®,can be extended
naturally over a neighborhood of each vertex. See [3, 6, BJnfore details. Thus we
can construct a simple braided surfa&8@ver D, such that the original chart is a chart
of S.

The boundary of a simple surface bra&consists of trivial closedan-braid. Con-
sider a natural embedding dd; x D, in R* and pastem disks to S to obtain an
embedding of a closed surface Rf. The resulting surface is called tltosureof S.

It is known [7, 9] that any oriented surface knot is preseriigdhe closure of a simple
surface braid; thus it is presented by a charon D, such thatl’ N D, = @. We call
such a chart presenting a surface linlswface link chart

In [5, 9], a surface link chart is called simply a chart. Hoeevin this paper we
distinguish a “surface link chart” from a “chart”.

Two charts onD, of the same degree at@-move equivalentf they are related
by a finite sequence of ambient isotopies @f and C-moves (ClI, Cll, Clll-moves)
as follows.

Let I and I'” be two charts onD, of the same degree. Thdr is said to be
obtained fromI” (or I' is said to be obtained from’) by a Cl-move Cll-moveor CllI-
moveif there exists a 2-dislE in D, such that the loo@E is in general position with
respect tol” andI” andI"'N(D,—E) = I"N(D,—E) and the following condition holds:
(CI) There are no black vertices inN E nor I’ N E.

A Cl-move as in Fig. 1.2 is called a Cl-move of type (1), (2) 8) (espectively;
see [9] for the complete set of Cl-moves.

(CIh) TNE andI" N E are as in Fig. 1.3, wherp — j| > 1.
(Clll) TNE andI" N E are as in Fig. 1.4, wherg — j| = 1.

It is shown as a minor modification of [5, 8, 9] that two simplaided surfaces of
the same degree are equivalent if and only if their chartsCareove equivalent. Two
surface knots arequivalentif there is an ambient isotopy d&* which carries one to
the other. Thus it follows that for two surface link charts tbE same degree, their
presenting surface knots are equivalent if the charts aneo@ equivalent.
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Fig. 1.5. An oval nesO(2; 321).

Throughout this paper, let us denote the oval nest with a édgee with the label
i and its surrounding loops with the labeélsio, ...,i, and the orientatiory, ey, .. ., €
from the free edge outward b@(i:ifi;---i7), whereej = £1 andij = (resp.ij) if
€j = +1 (resp.—1) (see Fig. 1.5). In particular, let us denote the free edge 9) by
F.. For O<i < j, let us denoté(i +1)---j (resp.i(i + 1)---]) byi 7 j (resp.i /' ]),
and for O< j <i, let us denoté(i —1)---j (resp.i(i —1)---]) by i \(j (resp.i \(]).

Let I'; and I', be charts of the same degree in 2-didBg and D, respectively,
where D; = [0, 1] x [0, 1] for i = 1, 2. Identifying D; with [0, 1] x [0, 1/2] and D,
with [0, 1] x [1/2, 1], we have a new chalt; U T, in D; U D, = [0, 1] x [0, 1]. We
will call it a split unionof I'; andI';, and use the notatioi; U I',.

Let us define the braid group relations between two sequeridategers as follows:

1. @~i-i~1-i,for a positive integef,
2. i-j~j-i, for positive integefis j with |i — j| > 1,
3. i-j-i~j-i-j, for positive integers, j with |i — j| = 1.

In this paper, we will identify a braidijlcri?- . -afn“ with a sequence of integersi; - - i
with the braid group relations, wher¢ = i (resp.ij) if ¢ = +1 (resp.—1). Then we
have the following lemma.

Lemma 1.3. For positive integers,i j and braids b ¢ such thatbib = ¢jc, the
following oval nests are equivalent

(1.1) 0(i:b) ~ O(j: ©).

Before the proof, we review the notions of a braid system ofharticand slide
equivalence.

Let T be a chart of degreen on a 2-diskD,. Let gy be a fixed point on the
boundary ofD,, and X(T") the set of black vertices ilv. Let 2 = (a, &, ..., a,) be
a Hurwitz arc systenwith the starting point seE(I") and the terminal pointp, which
is, for anyi and j, & Na; = {go} and the normal vector o points toa ;1. For each



UNKNOTTING SPUN T2-KNOT 881

i =1,2,...,n, consider a loog; in D,\ (I') with the base pointjy such that it starts
from qo and goes alongy, turns around the starting point ef (the black vertex in"
which is at the other end o) anti-clockwise and comes back aloagto qo. Let n;
be the element ofr1(D,\ Z(I"),qo) represented by this loog. The fundamental group
is a free group of rank generated by, n2,...,n,. We call n, n2, ..., nn the Hurwitz
generatorsof m1(D2 \ £(I'), qo) associated witl®(. A braid systenﬁ = (b1, by, ..., bn)
of the chartl” is an orderedh-tuple of elements 0B, such that eacly; is the m-braid
represented by, i.e. n; in (D2 \ X(I), qo) represents then-braid by in the simple
surface braid of degrem which is represented by on D,.

Two braid systems arslide equivalentif we can transform one to the other by
applying a finite sequence of the following equivalence tiefe:

(blr e ey bia bi+1a ceey bn) ~ (bl: e ey bi*l! bi+lv b|__Q:_L:|_bl biJrl! bi+2! ceey bn)

Two charts of the same degree are equivalent if and only if thraid systems are
slide equivalent (see [7, Chapter 17 and Section 18.10]).

Proof of Lemma 1.3. We can take a braid systemBobf O(i; b) to be b =
(b~2ob, b1, 1b). Sincebib = ¢jc, we haveb = (¢ tojc, ¢ 'o;*c), which is a braid
system ofO(j: c). O

By Lemma 1.3, in particular the following equivalent defations hold. We will
prove several of them using C-moves. lietj be positive integers and, b’, ¢, ¢’ be
braids. For a positive integes, Let k* € {k, k}. If b =1, then

1.2) O(i; b) ~ O(i; b).

1.3) O@;i*)~0O(i;9) = F (see Fig. 1.6),

(1.4) O(i; j*) ~O(i;0) = F, where]i —j| > 1 (see Fig. 1.7),
(1.5) O(i; j) ~ O(j:i), where|i — j| =1 (see Fig. 1.8).

If O(i;c)~ O(j:c)), then
(1.6) O(i: cb) ~ O(j: c'b).

Moreover, applying a Cl-move of type (2) between the outetnhosp labeled |
of the oval nestO(i; b- j*) and the free edg&;, we can see that

(1.7) O(@i:b-j*)UF; ~ O(i:b) U Fj,

whereb is a braid.
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Fig. 2.1. A chart onT presenting the spuif2-knot of a trefoil.

2. A torus-covering knot and its chart description

It is known [7, 9] that any oriented surface knot can be priskiy a branched
covering over the standard 2-sphere. A torus-covering kvext introduced in [13] as
a new construction of a surface knot, by considering thedstahtorus instead of the
standard 2-sphere. In this section, we give the definitiom ¢drus-covering knot (see
also [13]). The spurT2-knot of a classical knot is a torus-covering knot. A torus-
covering knot is presented by a chart on the standard foru#/e can obtain a surface
link chart presenting a torus-covering knot from its chartTo ([14], see Theorem 2.2).
Part of the obtained surface link chart is called a 1-handtc We obtain the 1-handle
chart for the spurT?-knot (Lemma 2.4).

Let T be a standard torus iR*, that is, the boundary of an unknotted solid torus
in a 3-space inR*. Let us consider a tubular neighborhodt(T) of T, and identify
N(T) with D? x St x S', where D? is a 2-disk, andS' is a circle. The firstS' cor-
responds to the meridian, and the sec@dcorresponds to the longitude af. Let us
identify St with | /~, wherel = [0, 1] and O~ 1. For a manifoldS in N(T), let us
denote bySnN (D? x | x |) the manifold inD? x | x | obtained fromS by cutting it
at D2 x St x {0} and D? x {0} x SL.

DEFINITION 2.1. A torus-covering knots a surface knoS in R* such thatS c
N(T) and moreoverSN (D? x | x 1) is a simple braided surface.

By definition, a torus-covering kno® is presented by a chart oh. As we men-
tioned, for two charts of the same degree, their presentingléd surfaces are equiva-
lent if the charts are C-move equivalent. Hence it followattfor two charts onl of
the same degree, their presenting torus-covering knoteguesalent if the charts are
C-move equivalent.

The spun T-knot of a classical knotK is the product ofK in a 3-ball B® with
S, embedded int&®R* via the natural embedding d x St into R* ([15, 2]). Identify
St with the longitude of T. Since any classical knot is equivalent to a closed braid
by Alexander’s Theorem, the spuif-knot of anyK is a torus-covering knot (see [13,
Propositions 2.11]); see Fig. 2.1 for example.

Now we review a theorem, which shows how to obtain a surfade ¢hart from
a chart onT ([14]). A chart is presented by a simple braided surface. wps
braided surface is presented by a motion picture consigifrigotopic transformations
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and hyperbolic transformations. #otion pictureof a braided surfac& c B3x | is a
one-parameter familyz (SN (B2 x {t}))}te;, Wherer: B3 x | — B2 is the projection
(see [9]).

Let {ht}tepo,17 be an ambient isotopy @3. For a classical link., we have an iso-
topy (a one-parameter familfh(L)} of classical links. We say thdt;(L) is obtained
from L by anisotopic transformationand we use the notation that— hi(L) is an
isotopic transformation (see [9, Section 9.1]).

Let L be a classical link inR3. A 2-disk B in R® is called aband attaching to
L if L N B is a pair of disjoint arcs imMB. A band setattaching toL is a union
B =By UByU---U By of mutually disjoint bandsBs, By, ..., By attaching toL.
For a subsetX of a space, let us denote by XI( the closure ofX. Define a link
h(L; B) by

h(L; B) = CI((L U aB) — (L N B)).

We say that the linkh(L; ) is obtained fromL by a hyperbolic transformatioralong
B, and we use the notation that — h(L; B) is a hyperbolic transformation (see [9,
Section 9.1]).

For a classicaim-braid c, let ¢ (c) be the (n + k + |)-braid obtained fronc by
addingk (resp.l) trivial strings before (resp. afte, and put

" = om110mi2- - Omei, " = 0m 10m 2+ Om i,
A= TR TI0 , TIF, Afy =TI T, T,
Om=om -TIM -T7 com- TINS5+ o - - T - o
Theorem 2.2([14]). Let I't be a chart of degree m on % |, obtained from
a chart on T (of degree m by cutting T by the meridian and the longitude. Let a
(resp. B be a classical m-braid presented By N (I x {0}) (resp. 't N ({0} x I)).
Then the torus-covering knot presented Iby is presented by a surface link charts
of degree2m as inFig. 2.2 Here H, is a chart of degre€2m presenting the simple
braided surface whose motion picture is as follows
§(0) = F(b) - (Ap)~H AL AL A 5> (D) - (AR) T AL Oy
— (AL AL DB O — (AL AL O - (DY)
S (AL AL AL A - 807 — O (D7),
where — is an isotopic transformation ane~> is a hyperbolic transformation along
bands corresponding to the m,’s, and —(Hy)* is the orientation-reversed mirror im-

age of H, and b* is the m-braid obtained from the classical m-braid b by takits
mirror image and reversing all the crossings.

DEFINITION 2.3. We callHy the khandle chartof I't.
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Fig. 2.2. The surface link chalits of degree .

Let us consider the spufiz-knot of b, whereb denotes the closure of a classical
braid b. Let us determind’t on | x | to be a chart presenting the braided surface
b x I; then the braids presented By N (I x {0}) and 't N ({0} x |) areb and e
respectively, where is the trivial braid. The 1-handle chart @fr is He. We obtain
He, as follows.

Lemma 2.4. Let e be the trivial m-braid. Then thehandle chart H is equiva-
lent to the chart as follows

m-—1
He ~ U Ok1
k=0
where Q is the oval nest
k—1 k—1
Ok = O(m; H(m—l\m—k+ j)H(m+l/’m+k—j)>
j=0 j=0

fork=0,1,2,...,m— 1. Note that for k=0, Og = O(m; @) = Fp,.

Proof. By Theorem 2.2H. is a chart presenting the simple braided surface as
follows:
e— (AL AL AL A
(2.1) = (M) AL O

S(AL)T AL AL An — €,
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Fig. 2.3. Moving a free edge across an edge.

where — means an isotopy transformation arid means a hyperbolic transformation
along bands corresponding to theop,’'s. Heree is the trivial 2n-braid. Note that since
(2.1) presents a simple surface braltl, does not have a boundary. The 1-handle chart
He hasm free edges, whose labels are @l All the other edges have labels other than
m and neither of them is connected with a black vertex. Diwon [0, 1/2] x [0, 1]
such that we can read the braigs(A},) 1 AL AL - Am, (AL) 1AL O, (AL) -
ARl AL - Am ande of (2.1) at [0, 2] x {t1}, ..., [0, 1/2] x {ts} respectively, where
O<ty<---<ts <1l Letgk (k=0,1,...,m—1) be the black vertex corresponding
to the (n — Kk)-th on, of the braid A)™%- AL O,

Let us denote by the free edge connected with the black vergx Let us move
the free edges into 2, 1] x [0, 1] using Cl-moves of type (2) as in Fig. 2.3 to be a
split sum of oval nests an#i;, where H, is the chartHe — (Up—o F«). Since H, has
no black vertices, we can eliminate it by a Cl-move. Thus weeha split sum of
oval nests.

Let O (k=0,1,...,m—1) be the oval neskx becomes. We will see that each
O is equivalent to the oval nesd. First we will obtain O. It suffices to see what
edgesFy crosses as it moves into 42, 1] x [0, 1]. We have

Om = oy - T

m /m m /m m
m 1'Hm—l'am'nm—Z'Hm—Z"'dm'Hl .1‘[1 < Om.

The first free edgemy does not cross any edge. HenGg = Fo. Then the second
free edgeF; crosses edges representifiif” - 17" = om_10m+1, SO it becomes the oval
nestO, = O(m; m—1m+ 1). The third free edgd, crosses edges representing” -
M-I T = (0m-10m-2)(0m+10m+2)0m-10m+1. Hence it becomes the oval nedf =
OmM;(m—-21)M-2)-(m+ 1)(mM+ 2)-(m—1)-(m+ 1)). Repeating this step, we see
that in generalF, crosses edges representifig" - ITy" - TT.", - T, - - - I - TIT, so it
becomes an oval nesl = O(m; ]_['j‘;%,((m—l Nm—Kk+j)-(m+1,/"m+k—j))
fork=0,1,...,m—-1
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We can show that if + 1 < k then { N\ j)(k /' I) can be transformed tdk(\
(@  j) by the braid group relation 2, i.e.

(2.2) O\ DK~ RN )
Using (2.2), we see thay ~ O(m;]‘[‘j‘;%,(m—l\ m—k+j)HT;%(m+1/ m+k—j)),
which is Oy. O

3. Main theorem

An oriented surface knot isinknottedif it is equivalent to the connected sum of
several standard tori. It is known [4] that any oriented acef knotS can be deformed
to an unknotted surface knot by applying a finite number ofrded 1-handle surgeries.
The unknotting numberof S is the minimum number of oriented 1-handle surgeries
necessary to deform it to be unknotted. In this section, wawsfiheorem 3.1 and
Corollary 3.2.

Theorem 3.1. Let S be the spun fknot of a classical knob, where b is a clas-
sical m-braid (m > 1) such that there exists a permutatianof degree m- 1 which
satisfies the following conditions
(al) There is an integer e {1,2,...,m—1} such that for each k {1,2,..., m—1}—{r},
ok * b=b- O (k)s and
(@2)For each i j € {1,2,...,m—1}, if i # j, thent'(1) # ri(1). Note that then
™ 1(1) =1
Moreover assume that S is not unknotted. Then the unknattingber of S is one.

By Theorem 3.1 we have an alternative proof of the fact [18} the spuril 2-knot
of a torus @, g)-knot has the unknotting number one.

Corollary 3.2. The spun F-knot of a classical torugp, g)-knot has the unknot-
ting number one.

Proof. First we show that the spuR?-knot is not unknotted. The knot group
of the spunT?-knot of a classical torusp( g)-knot is isomorphic to the knot group
of the classical torusp| g)-knot ([15]). Hence we can see that the splifrknot is
not unknotted.

We determine the braith and the permutatiorr, as follows. A classical torus
(p, g)-knot is presented by the closure of tipebraid b = (6102 - - - op-1)%, Where p
and q are coprime integers and moreovpr> 1. Letr be defined byg mod p such
thatr € {0, 1, 2,..., p—1}. Sincep andq are coprimer # 0 and it follows that
re{l,2,..., p—1}. Let us define a permutation of degreep — 1 by

1 2 ceeor=1 r r+1 r+2 --. p—1
p-r+1 p—-r+2 --- p=1 p-r 1 2 .. p-r-=1)
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p-r p-r .
r+1 P
_ r p-2r+2
r-1 p-2r+1
5 p-2r=T (p-1)

1 1=1(r+1)
Fig. 3.1. The braid associated withif r —1 < p—r — 1.

We show that Condition (al) of Theorem 3.1 holds, as follaf&. # 1, then we can
show thaioy (0102 - -op_1) = (0102 - -0p_1)ok—1. Similarly we haveri(o102- - -ap,l)2 =
(0102 -+ Up,l)zap,l. From these two equations, we have- b = b - o, for eachk e
{1,2,..., p—1} —{r}. Thus Condition (al) holds.

Next we will show thatr satisfies Condition (a2) of Theorem 3.1. Let us define
Condition (a2) as follows.

(a2) The permutationr is associated with a classical braidsuch thatC is a knot,
i.e. € is connected.

We can see that if the permutatian satisfies (a2) then (a2) holds, as follows. If
Condition (a2) does not hold, theri(1) = zi(1) for somei, j € {1,2,..., p—1} with

i # j. We can assume thgt> i. Then we haver! (1) = 1, where 0< j —i < p—1.
On the other hand, if is associated with a classical braidsuch thatt is a knot, then
7K(1) # 1 for any k with 0 < k < p— 1. This is a contradiction.

From now on we will show that satisfies (a2) Sincer € {1, 2,..., p— 1} with
r =q mod p, and p and q are coprime integers, we see thtat= 1 or p andr are
coprime. Ifr —1=p—r —1, thenp = 2r. Sincer =1 or p andr are coprime,

we haver =1 andp = 2. Thent = (i) which is associated with the trivial braid

of degree one, whose associated closed braid is a trivial. KHence we can assume
thatr —1# p—r —1. Ifr —1 < p—r — 1, then the permutation is associated
with a braid whose diagram is as in Fig. 3.1, where we omit ttosging information.
Here we haver(r — j)=p—j for j=1,2,...,r—=1landt(p—j)=p—r —j
for j=1,2,...,p—r —1. Hence we have?r —j)=t(p—j)=p—r —|j for

j =1,2,...,r =1, which means that the € j)-th string of the closed braid is connected
with the (p— j)-th string, which is connected with thg &r — j)-th string. Hence we
can assume that there is np € j)-th string, and ther(— j)-th string of the closed
braid is connected with thepl~r — j)-th string, wherej =1,2,...,r —1 (see Fig. 3.1).
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Thus it suffices to show that the following permutation degss (a2):

3.1) ( 1 2 r r+1 r+2 -~ p-—r )
p—2r+1 p—2r+2 --- p-—r 1 2 - p—2

Similarly, if r —1 > p—r — 1, then we haver?(r — j)=t(p—j)=p—r —j
for j =1,2,..., p—r — 1. Hence it suffices to show that the following permutation
satisfies (a2)
3.2)

1 2 e A —p 2A—p+1 Z—p+1 - r
(p—r+1 p—r+2 --- r 1 2 p—r)'

fr—1l<p—r—1(esp.r—1>p—r—1), thenp—r >r (resp.r > p—r).
Hence together with ¥ r < p— 1, we can see thap —r > 1 (resp.r > 1). Thus
the permutation (3.1) (resp. (3.2)) is associated withrthbraid ¢ = (o102 - - - om-1)",
wherem = p —r (resp.r) is the degree of (3.1) (resp. (3.2)) with > 1, andn =
m — 7(1) + 1. Since for (3.1) (resp. (3.2)) we have = p—r (resp.r) and z(1) =
p—2r +1 (resp.p—r +1), it follows that (m,n) = (p—r,r) (resp. (n,n) = (r,2r — p)).
Note that in both cases > 0. Sincer = 1 or p andr are coprime, together with
m > 1 andn > 0, it follows that in both cases = 1 or m and n are coprime. If
n =1, thent (c = 0102 -om_1) IS a trivial knot, and ifm andn are coprime, then
¢ (c = (0102 --om_1)") is a torus (M, n)-knot. Thust satisfies (a2) and it follows
that r satisfies (a2). Therefore the spidrf-knot has the unknotting number one by
Theorem 3.1. O

Proof of Theorem 3.1. We show that the unknotting numbeBSdé one. Letl's
be a surface link chart presentir§§ An unknotted chartis a chart presented by a
configuration consisting of free edges ([5]). An unknottegtmmted surface knot is pre-
sented by an unknotted chart ([5]). For an oriented surfaw#, kadding a free edge
to the surface link chart corresponds to a nice 1-handleesyrgvhich is an oriented
1-handle surgery ([6]). Thus it suffices to see that the serlank chart obtained from
I's by adding a free edge is equivalent to an unknotted chart.

We will determinel's by [14] (see Theorem 2.2). The chdi on | x| presents
the braided surfacb x | ; thus the braids presented by N (1 x{0}) and't N ({0} x 1)
areb ande respectively (see Section 2). By Lemma 2.4 and (3.26) of Lan3n3, we
can assume that the 1-handle chHtis as follows:

m—1
He = [ O«
k=0
where

(3.3) Ok=0Mm-ki(m—-k+1 7 mm+1,7m+K)).
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Let us define andD; as follows:
(3.4) O =0m-ki(m—k+1,/"mm+1,7"m+Kk)-b).

The oval nestO, is obtained fromOy by adding loops describing around it. By [14]
(see Theorem 2.2), the surface link chBg obtained fromI't is as follows:

m-1 m-1
(3.5) rs=[JoulJo.
i=0 i=0

Remark thatl's is a ribbon chart of degreen® (see [5, 9]).

We will show that the surface link chafts can be deformed to an unknotted chart
by adding a free edge.

Step 1. We show that

Om—k-1 U Om—k U Fom—k ~ Om—x—1 U Fc U Fom_x,

forke{l,2,...,m-1}.
By (3.3) and (1.7), we have

Om—k ) I:2m—k
=0k (k+1 /7 mm+1,/2m—K))U Fonk
~O0Kk (k+1,/ mMmMm+1,/72m—k—1))U Fon.

Let us denoteO(k; (k + 1/~ m)(M+1 7 2m—k — 1)) by On_«. By (1.7) we have
Ok + 1; 9) U O(k; k + 1) ~ O(k + 1; @) U O(k; 9).

Hence we have

(3.6) Ok +L;c)UO(k: k+1-¢) ~ Ok + 1;: ¢) U O(k: c)

for a braidc by (1.6). By (3.3) and (3.6) we have

Om k-1 U Om «

=0k+1L(k+2,/ mMm+1/2m—k—1))
UOk:(k+1)-(k+2 /7 m(m+1_72m—k—1))

~Ok+1LKk+2,/ mMm+1,72m—k—1))
UOKk;(k+2 //m(m+1,/2m—k—1))

= Onw1 UOK: (K+2 7 mM)(Mm+1 7 2m—k—1)).
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By (1.4) we see that
ok;(k+2 // mm+1 /7 2m—k—1))~ O(k; 0) = F.
Thus we have
Om—k-1 U Om—x U Fom—k ~ Om—k—1 U Fx U Fom.
STEP 2. Similarly, we show that
mk-1Y Om i« U Frgg ~ Oy g1 U Famk U Fry,

forke{l,2,...,m—1} —{r}.
By (al), b~toxb = o for ke {l,2,...,m—1} —{r}. Hence we have

(3.7) O(k; b) ~ Fr

forke{1,2,...,m—1} —{r} by Lemma 1.3.
Similarly to Step 1, using (3.27) of Lemma 3.3, we have

(3.8) Omk-1U Omk U Fx~ Omk-1U FcU Fomx

for ke {1,2,..., m—1}. By (3.8) and (1.6), we have

(3.9) O, 1 YO UO(k;b)~ O/, UO(k: b)u O(2m—k; b).

By (3.7), O(k; b) ~ Fry for ke {1,2,...,m—1} —{r}. On the other hand, by (1.4)
and In—k > (m— 1) + 1, we haveO(2m — k; b) ~ O(2m — k; @) = Fonk. Hence
together with (3.9), we see that

Om k1Y Op kU Frgg ~ Ofy 1 U Famk U Frge

forke{l1,2,...,m—=1} —{r}.
STEP 3. Let us denote Step 1 as follows:

$:O0-1UO UFmy — O-1 U Fy U Fnyy
forl €{1,2,...,m—1}, and Step 2 as
Y O|/71 U O|/ U Femony — O|/,1 U Fm U Feman

forl € {1,2,...,m—1} —{m—r}.



892 I. NAKAMURA

We introduce several notations to make things easy to seeud eefineF', F”
and F”' as follows:

(3.10) F' = Fos,

(3.11) F' := Fm,

(3.12) F = Fomoy

forl € {1, 2,..., m—1}. Moreover, for an integes, let us definers to be
(3.13) Ts:=m—1 5(r).

Step 1 is written as follows:
(3.14) #:0_1UOQUF" - 0O_UF UF,
forl €{1,2,...,m—1}, and Step 2 is

(3.15) Y:0_UO/UF" - 0O_uF"uUF"

forl €{1,2,...,m—=1} —{m—r}. Since by definition (3.13ln—r = 7y, Step 2 holds
true forl € {1, 2,...,m—1} — {zo}.

From now on we show thafs can be deformed to an unknotted chart by adding
a free edgeF,. Let us define chartdg, I, ..., lom_4 Of degree Bn. First, definelg
as follows:

lg:=TsUF,
which is by (3.5) as follows:

lo=0,UO, U0, U---U0O, ,UOy,
(3.16) UQyUO, UO, U---UO; ~UO;,
UFr.

Note that by (a2){z, 71, ..., Tm2} ={1,2,...,m=1}. Forn=1,2,...,m—2, let
us definel,, as follows:

lzn:=0pUO,,, U0, ,U---UO,, ,UO, UF*UF?U---UF™
(3.17) UQyuU O;M U O;M U---u O;H U OQO UF®UF™2U...UF™
UF.
And forn=0,1, 2,..., m—3, let us definel,,,.; as follows:
(3.18) lont1 := (lon — O;m) U F'me,
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We will show thatlyn1 (resp.lany2) is obtained fromly, (resp.lan+1) by applying
Steps 2 (resp. Steps 1) for=0,1,...,m—3.

When we havel,, (n =0, 1,..., m—3), there is an integely < 7,1 such that
for any | with lo <1 < th41, Of ¢ 120 and O,’O C lon. Note that such aty exists, for
0 < tny1 and Of C Iz, for everyn e {0,1,...,m—3}. Sincer = t°(r) = r(m—(m—

774r))) = t(m — ry), by the definition ofF” (3.12) we have
(3.19) F = F'm.
Forn =0, by (3.16) we havéy = 11 — 1, and by (3.19) we see that
(3.20) loD> F™ U0, _;UO..
By the definitions (3.10) and (3.13), we have
Fos) = Fn-mrsy = F™7 0 = F*,
and by the definitions (3.12) and (3.13), we have

— F//mfr*@“)(r) — F/Tsi

Frs(r) = Fr(r—(sﬂ)(r))
Hence we have
(3.21) e

for eachs. By the definition ofl,, (3.17) and (3.21) we have

lzn = OpU Oy, UOy ,U---UO, ,UO, UF"2UF"®U...UF/m
(3.22) UOyUO, UO, U---UO,  UO,UF®UF®U...UF™

forn=1,2,...,m—3. By (3.22) and (3.19), we can see thatRf C I, then
F”' C l2,. So together with (3.20), we have
|2n ») F//I0+l U F//I0+2 U..-uU F//rnﬂfl U F”Tn“
UQ[ UFhMflyFlt2y...yFm™ty 0l
0

Tn+1

(3.23)

forn=0,1,...,m—3. By (3.22), we can see that ' C ., thenl € {r1, 12, ..., T}
Hencelg+ 1,104+ 2,...,thy1 — 1€ {11, 72, ..., Tn}. By (@2) andn < m— 3, none of
lo+21,l0+2,...,th+1— 1, h11 IS T0. SO we can apply Steps 2 (3.15) and its inverses
to I, to deform O;M to F'™+1, The result islyny 1 by the definition ofln. 1 (3.18):

-1 -1 -1
(3.24) Yig+10- 0P 10 VYg ;O I,/’znﬂ—1 ©---0 11/f|0.(_2 o I//|0+1(|2n) = a1
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forn=0,1,..., m-3.
By (3.16) and (3.17), we see that@ C Iz, then Oy C Iz, and if F' C Iy, then
F' C I2,. Hence, by the definition ofn,1 (3.18),

lont1 D O|0 U Eltly Elt2 ...y -1y 0

Tnt+1

U F/|0+1 U F/|0+2 U---U F/‘rn+1

forn=0,1,..., m— 3, wherelp is the same integer used in deformihg to I 1.
And by the definitions (3.16), (3.17) and (3.18) we have

loni2 = (|2n -0, - OTn+1) U F'™mity Fia

Tn+1

= (I2n41 = Oy, ) UF™

forn=0,1,...,m—3. Similarly to (3.24), we can defornp,,1 to Ion.2 by applying
Steps 1 (3.14) and its inverses and deformidg,, to F™+1:

-1 -1 -1
(3-25) ¢Io+l ©:++0 ¢rn+171 o ¢rn+1 o d’fnﬂ_l 0--+0 ¢|0+2 o ¢|0+1(|2n+1) = lonq2

forn=0,1,...,m-3.
Thus, repeating Steps 2 (3.24) and Steps 1 (3.25) alteynatel 2 times each,
we have
m-—2
lam-2)= O U O, U | J F™
n=1
m-2
uoyuo, Ul JF™
n=1

UF.

By (a2), we havety, 1o,...,Tm 2} ={1,2,....m=1} {1} = {1,2,...,.m=1} —{m—r}.
Hence together with (3.10) and (3.11) we have

lam-2)= OoU Ons UOU O, U [ ] F
k#m,2m—r

where
Om—r ~0@2M—r;2m—r =1\ mM(m—1\,r))

by (3.27) of Lemma 3.3. On the other hand, by definitiog = F,. Hence, we have
free edges of all labels excepi2- r, using which and (1.7) we can deform the oval
nest Oy, to the free edgdom .
ThereforeT's U F; can be deformed to a chart containngfZIl Fx, using which
and (1.7) we can deformsU F, to have only free edges, which is an unknotted chart.
O
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Lemma 3.3. The oval nest oflLemma 2.4

k-1 k-1
O = O(m;H(m—l\m—k+j)H(m+1/’m+k—j)>
j=0 j=0

fork=1,2,...,m—1, is equivalent to the following
(3.26) O ~OMm-kim—-k+1 7 mm+1,7m+Kk))
(3.27) ~ OM+k;(m+k—1\ m(m—1>\ m-—Kk)).

Proof. First, we will show that the brai]fi]‘;j)(m— 1N\ m—k+ j) is equivalent
to [I\Zpm—k+ j \\m—Kk), i.e.

k=1 k-1
(3.28) [[m-1xm—k+j)~][[(m—k+j\ m=k).
i=0 j=0

For positive integers, i1, i, with | > i, > i, we have [\ ip)iz ~ (i — 1)1 N\ i1).
Hence we can see that

(3.29) (N0 NT2) ~ (=1 N2 = 1) i)

By (3.29), we see that

k-1

H(m—l\m—k+j)

j=0

k—1
=m-1\m-K-[[(m-1\m-k+j)
j=1
k-1
~[m-2\m—k+j-1)-(m-1\ m-k)

j=1

k—1 k-1
~ [Jm=-s\xm—k+j—(s=1) J] m-k+j\.m=k
j=s-1 j=k—(s-1)
k-1 k-1

=m-s\ym-K[[m-s\m-k+j-(s=1) [J] (m-k+j\m-k

j=s j=k—(s-1)
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k—1
~Tm=s—1\im—k+j-5)-(Mm-k+ (k-5 \\m=-Kk)

j=s

k-1
[] m-k+jix\xm-kK
j=k—(s—1)
k-1 k-1
=[[m-G+D\m-k+j-95)- [] (m=-k+j\.m=k
j=s j=k-s
k—1

~ M=Kk [J(m=—k+j\ m—k)
j=1
k=1
=[Jm—k+j\ym=k),
j=0
which is (3.28). Similarly, we have another equivalencatieh:
k-1 k—1
(3.30) [[m+1/ m+k=j)~][m+k=j /" m+Kk.
j=0 j=0
Note that for positive integerk i1, i with | <i, <i;, we can easily show that (

i)l i) ~(+1 i+ 1)1 7 ia).
Using (1.4), we can show that ih—1 > i, then

(3.31) Oo(m; (i \(j)+-¢c)~ O(m;c)
for a braidc. Similarly we can show that in+ 1 < i, then
(3.32) om; (i /" j)-c)~ O(m;c).

By (3.28) and (3.30), we have

k—1 k—1
Ok O(m (Mm—1\,m— k+J)l—[(m+1/’m+k—])>
j=0 j=0

k-2
~O(m M=K+ j\ym—=Kk)-(m—13\ m-Kk)

k-2
(m+k—j /m+k)-(m+1/m+k)).

=0
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Forj=0,1,...,k—2, we havefh + k— j)—((m—-1)+ 1) =k —j > 0. Hence
m+k—j>(m-=1)+1. By (2.2), we have

k—2
Ok~0(m;]_[(m—k+j N\ m—k)

j=0

k-2
JIm+k=i / m+k)-(m-1 m—k)(m+1/m+k)).
j=0
By (3.31) and (3.32), we have
(3.33) Ok ~OM(m—-1\m—K(m+1 7m+Kk)).

Now we will show that
(3.34) om(m—-1x\m—-Kk):-c)~Om-k;i(m—k+1_7m)-c),

wherec is a braid. For positive integeig, i, with i; > i,, by (1.5) and (1.6) we have
O(iy;(i1—1\i2)) ~ O(ir—Li1-(i1— 2\ i2)), which is equivalent taO(iy — 1; (i, —
2\, i2)-11) by (2.2). Thus we have

(3.35) O(i1; (in— 1\ i2)) ~ Ol — L (i1 — 2 \(i2) - 1n).

Using (3.35) and (1.6), we can see that
Oo(m; (m—13\, m—Kk))
~O0O(M=21(m-=2~\ m=Kk)-m)
~O0OMmM-s;(m—s—1\ m—-Kk)-(m—s+1 7" m)
~0OMmM-s—L(Mm-s—2\m—Kk)-(Mm=5)-(m—s+1_7m))
=0(m—-s—1L(m-s—2\m—k)-(Mm=s 7 m))

~ o

~OMm—k;(M—K+1/m).

Hence by (1.6), we have (3.34).
By (3.33) and (3.34), we have

Ok~ OMM—-1\m—-K(m+1 "m+Kk))
~0OMm-k;(m=k+1 /7 m(m+17m-+k)),

which is (3.26).
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By (3.33) and (2.2), we can see that

(3.36) Om(mM—-1\m—Kk)-(m+1 7" m+Kk))
~O0OmmM+1,/"m+Kk)-(m—-1\, m-Kk)).
And similarly to (3.34), we can see that
(3.37) omMm+1,/" m+k)-c)~OMm+k; (m+k—1\,m)-c),
for a braidc. Hence by (3.36) and (3.37) we have the other equivalenetiorl!(3.27):
O ~ O(M + k; (M + Kk — 1\ m)(m— 1\, m—Kk)). O
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