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Abstract
We show that for the closure of a classical braid which satisfies certain condi-

tions, the spunT2-knot of the classical knot has the unknotting number one. This
gives an alternative proof of the fact that the spunT2-knot of a classical torus knot
has the unknotting number one.

0. Introduction

A surface knotis the image of a smooth embedding of a closed connected sur-
face into the Euclidean 4-spaceR4. Kanenobu and Marumoto [10] showed that the
spun 2-knot of a classical torus knot has the unknotting number one. Hence it fol-
lows that the spunT2-knot of a classical torus knot has the unknotting number one.
Here, thespun T2-knot of a classical knotK is the product ofK in a 3-ball B3 with
a circle S1, embedded intoR4 via the natural embedding ofB3

� S1 into R4 ([15, 2]).
In this paper, we show that for the closure of a classical braid which satisfies certain
conditions, the spunT2-knot of the classical knot has the unknotting number one (The-
orem 3.1). Theorem 3.1 gives an alternative proof of the above-mentioned fact that the
spun T2-knot of a classical torus knot has the unknotting number one(Corollary 3.2).
The proof of Theorem 3.1 is shown by a diagrammatic method, byusing a surface link
chart presenting the spunT2-knot.

A surface link chart is a sort of finite graph in a 2-disk with some additional data
([5, 8, 9]). Any oriented surface knot is presented by a surface link chart ([7, 8, 9]). An
unknotted surface knot is presented by an unknotted chart ([5, 9]). It is known [4] that
any oriented surface knotS can be deformed to an unknotted surface knot by applying
1-handle surgeries along a finite number of mutually disjoint oriented 1-handles. The
unknotting numberof S is the minimum number of such 1-handles necessary to deform
S to be unknotted. Afree edgeis an edge in a chart such that the end points are
vertices of degree one. Applying a 1-handle surgery to an oriented surface knotS along
a nice 1-handle is presented by adding a free edge to a surfacelink chart presenting
S ([6]).
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Theorem 3.1 is shown as follows. First, we obtain a surface link chart presenting
the spunT2-knot. Then we add a free edge to the chart, and deform it to an unknotted
chart (a configuration consisting of free edges) by equivalence relations. We obtain a
surface link chart presenting the spunT2-knot, as follows. We showed in [14] (see
Theorem 2.2) how to obtain a surface link chart which presents a surface knot in the
form of a branched covering over the standard torus. We call such a surface knot a
torus-covering knot([13], see Definition 2.1). Since a spunT2-knot is a torus-covering
knot, we can obtain a surface link chart presenting the spunT2-knot by [14].

This paper is organized as follows. In Section 1, we review a braided surface and
its chart description, and prepare several notations. In Section 2, we review the defin-
ition of a torus-covering knot and Theorem 2.2. In Section 3,we show Theorem 3.1
and Corollary 3.2.

1. A braided surface and its chart description

A braided surface was defined in [16, 7, 9]. A surface braid is abraided surface
with some boundary condition, and a notion of a chart was introduced [5, 9] to present
a simple surface braid. Equivalent simple surface braids have distinct chart presen-
tations. The notion of C-move equivalence between two charts of the same degree
was introduced [5, 8, 9] to give the equivalence class of the chart which represents
the equivalence class of a simple surface braid. The notion of a chart can be easily
extended to a chart presenting a simple braided surface. In this section, we review a
braided surface, and extend the notion of a chart description to a simple braided sur-
face. We review the fact that any oriented surface knot is presented by the closure of
a simple surface braid ([7, 9]); thus it is presented by a chart. In order to present a
certain chart called an “oval nest”, we introduce a notation, and we prepare several
equivalence relations between oval nests.

DEFINITION 1.1. A compact and oriented 2-manifoldS embedded in a bidisk
D1�D2 properly and locally flatly is called abraided surfaceof degreem if S satisfies
the following conditions:
(i) p2jSW S! D2 is a branched covering map of degreem,
(ii) �S is a closedm-braid in D1��D2, whereD1, D2 are 2-disks, andp2W D1�D2 !

D2 is the projection to the second factor.
Two braided surfaces areequivalent if there is a fiber-preserving ambient isotopy of
D1 � D2 rel D1 � �D2 which carries one to the other. A braided surfaceS is called
simple if #(S\ p�1

2 (x)) D m� 1 or m for eachx 2 D2. A braided surfaceS is called
a surface braid if �S is the trivial closed braid. A surface braidQm � D2 is called
trivial , where Qm is a set ofm interior points of D1.

When a simple braided surfaceS is given, we obtain a graph onD2, as follows.
Identify D1 with I � I , where I D [0, 1]. Consider the singular set Sing(p1(S)) of the
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Fig. 1.1. Vertices in a chart.

image of S by the projectionp1 to I � D2. PerturbingS if necessary, we can assume
that Sing(p1(S)) consists of double point curves, triple points, and branch points. More-
over we can assume that the singular set of the image of Sing(p1(S)) by the projection
to D2 consists of a finite number of double points such that the preimages belong to
double point curves of Sing(p1(S)). Thus the image of Sing(p1(S)) by the projection to
D2 forms a finite graph0 on D2 such that the degree of its vertex is either 1, 4 or 6.
An edge of0 corresponds to a double point curve, and a vertex of degree 1 (resp. 6)
corresponds to a branch point (resp. triple point).

For such a graph0 obtained from a simple braided surfaceS, we give orientations
and labels to the edges of0, as follows. Let us consider a path� in D2 such that
� \ 0 is a point P of an edgee of 0. Then S\ p�1

2 (�) is a classicalm-braid with
one crossing inp�1

2 (�) such thatP corresponds to the crossing of them-braid. Let
�1, �2, : : : , �m�1 be the standard generators of them-braid group Bm. Let � �i (i 2
{1, 2,: : : , m�1}, � 2 {C1,�1}) be the presentation ofS\ p�1

2 (�). Then label the edge
e by i , and moreover givee an orientation such that the normal vector of� corresponds
(resp. does not correspond) to the orientation ofe if � D C1 (resp.�1). We call such
an oriented and labeled graph achart of S.

In general, we define a chart onD2 as follows.

DEFINITION 1.2. Let m be a positive integer. A finite graph0 on a 2-diskD2

is called achart of degreem if it satisfies the following conditions:
(i) 0 \ �D2 consists of a finite number of vertices of degree 1.
(ii) Every edge is oriented and labeled by an element of{1, 2, : : : , m� 1}.
(iii) Every vertex has degree 1, 4, or 6.
(iv) The adjacent edges around each vertex in Int(D2) are oriented and labeled as shown
in Fig. 1.1, where we depict a vertex of degree 1 by a black vertex, and a vertex of
degree 6 by a white vertex.

In a chart, an edge without end points is called aloop. An edge whose end points
are black vertices is called afree edge. A configuration consisting of a free edge and
a finite number of concentric simple loops such that the loopsare surrounding the free
edge is called anoval nest.
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A black vertex (resp. white vertex) of a chart corresponds toa branch point (resp. triple
point) of the simple braided surface presented by the chart.A chart presents a simple
braided surface. In particular, a chart0 such that0 \ �D2 D ; presents a simple sur-
face braid.

When a chart0 on D2 is given, we can reconstruct a simple braided surfaceS
over D2 as follows. Letm be the degree of0, and let N(0) be a neighborhood of0
in D2. Let us consider a trivial braided surfaceSD Qm� (D2�N(0)) over D2�N(0),
where Qm is a set ofm interior points of D1. We extendS over a neighborhood of
each edge as follows. Identify a neighborhood of an edgee with I � I such thate is
identified with{1=2}� I . Let i be the label attached toe, and let� DC1 (resp.�1) if
the orientation ofe corresponds (resp. does not correspond) to the orientationof {0}� I .
Then let the braided surfaceS over the neighborhood ofe be the braided surface which
has a presentation� �i � I and the image of the double point curve ofp1(S) by the
projection toD2 is e. Since0 is as in Fig. 1.1 around each vertex,S can be extended
naturally over a neighborhood of each vertex. See [3, 6, 9] for more details. Thus we
can construct a simple braided surfaceS over D2 such that the original chart is a chart
of S.

The boundary of a simple surface braidS consists of trivial closedm-braid. Con-
sider a natural embedding ofD1 � D2 in R

4, and pastem disks to S to obtain an
embedding of a closed surface inR4. The resulting surface is called theclosureof S.
It is known [7, 9] that any oriented surface knot is presentedby the closure of a simple
surface braid; thus it is presented by a chart0 on D2 such that0 \ D2 D ;. We call
such a chart presenting a surface link asurface link chart.

In [5, 9], a surface link chart is called simply a chart. However, in this paper we
distinguish a “surface link chart” from a “chart”.

Two charts onD2 of the same degree areC-move equivalentif they are related
by a finite sequence of ambient isotopies ofD2 and C-moves (CI, CII, CIII-moves)
as follows.

Let 0 and 00 be two charts onD2 of the same degree. Then00 is said to be
obtained from0 (or 0 is said to be obtained from00) by a CI-move, CII-moveor CIII-
moveif there exists a 2-diskE in D2 such that the loop�E is in general position with
respect to0 and00 and0\(D2�E)D 0

0

\(D2�E) and the following condition holds:
(CI) There are no black vertices in0 \ E nor 00 \ E.

A CI-move as in Fig. 1.2 is called a CI-move of type (1), (2) or (3) respectively;
see [9] for the complete set of CI-moves.
(CII) 0 \ E and00 \ E are as in Fig. 1.3, whereji � j j > 1.
(CIII) 0 \ E and00 \ E are as in Fig. 1.4, whereji � j j D 1.

It is shown as a minor modification of [5, 8, 9] that two simple braided surfaces of
the same degree are equivalent if and only if their charts areC-move equivalent. Two
surface knots areequivalentif there is an ambient isotopy ofR4 which carries one to
the other. Thus it follows that for two surface link charts ofthe same degree, their
presenting surface knots are equivalent if the charts are C-move equivalent.
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Fig. 1.2. CI-moves of types (1), (2) and (3).

Fig. 1.3. CII-moves, whereji � j j > 1.

Fig. 1.4. CIII-moves, whereji � j j D 1.
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Fig. 1.5. An oval nestO(2I N321).

Throughout this paper, let us denote the oval nest with a freeedge with the label
i and its surrounding loops with the labelsi1, i2, : : : , in and the orientation�1, �2, : : : , �n

from the free edge outward byO(i I i �1 i �2 � � � i
�

n ), where� j D�1 and i �j D i j (resp.i j ) if
� j D C1 (resp.�1) (see Fig. 1.5). In particular, let us denote the free edgeO(i I ;) by

Fi . For 0< i < j , let us denotei (iC1)� � � j (resp.i (i C 1)� � � j ) by i % j (resp.i % j ),
and for 0< j < i , let us denotei (i �1)� � � j (resp.i (i � 1)� � � j ) by i & j (resp.i & j ).

Let 01 and 02 be charts of the same degree in 2-disksD1 and D2 respectively,
where Di D [0, 1] � [0, 1] for i D 1, 2. Identifying D1 with [0, 1] � [0, 1=2] and D2

with [0, 1] � [1=2, 1], we have a new chart01 [ 02 in D1 [ D2 D [0, 1] � [0, 1]. We
will call it a split union of 01 and02, and use the notation01 [ 02.

Let us define the braid group relations between two sequencesof integers as follows:
1. ; � i � i � i � i , for a positive integeri ,
2. i � j � j � i , for positive integersi , j with ji � j j > 1,
3. i � j � i � j � i � j , for positive integersi , j with ji � j j D 1.
In this paper, we will identify a braid� �1

i1
�

�2
i2
� � ��

�n
in

with a sequence of integersi �1 i �2 � � � i
�

n

with the braid group relations, wherei �j D i j (resp.i j ) if � j D C1 (resp.�1). Then we
have the following lemma.

Lemma 1.3. For positive integers i, j and braids b, c such thatNbib D Nc jc, the
following oval nests are equivalent:

(1.1) O(i I b) � O( j I c).

Before the proof, we review the notions of a braid system of a chart and slide
equivalence.

Let 0 be a chart of degreem on a 2-disk D2. Let q0 be a fixed point on the
boundary ofD2, and6(0) the set of black vertices in0. Let A D (a1, a2, : : : , an) be
a Hurwitz arc systemwith the starting point set6(0) and the terminal pointq0, which
is, for any i and j , ai \a j D {q0} and the normal vector ofai points toaiC1. For each
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i D 1, 2,: : : ,n, consider a loopci in D2n6(0) with the base pointq0 such that it starts
from q0 and goes alongai , turns around the starting point ofai (the black vertex in0
which is at the other end ofai ) anti-clockwise and comes back alongai to q0. Let �i

be the element of�1(D2n6(0),q0) represented by this loopci . The fundamental group
is a free group of rankn generated by�1,�2, : : : ,�n. We call �1,�2, : : : ,�n the Hurwitz

generatorsof �1(D2 n6(0), q0) associated withA. A braid systemEbD (b1, b2, : : : , bn)
of the chart0 is an orderedn-tuple of elements ofBm such that eachbi is them-braid
represented by�i , i.e. �i in �1(D2 n 6(0), q0) represents them-braid bi in the simple
surface braid of degreem which is represented by0 on D2.

Two braid systems areslide equivalentif we can transform one to the other by
applying a finite sequence of the following equivalence relations:

(b1, : : : , bi , biC1, : : : , bn) � (b1, : : : , bi�1, biC1, b�1
iC1bi biC1, biC2, : : : , bn).

Two charts of the same degree are equivalent if and only if their braid systems are
slide equivalent (see [7, Chapter 17 and Section 18.10]).

Proof of Lemma 1.3. We can take a braid system ofEb of O(i I b) to be Eb D

(b�1
�i b, b�1

�

�1
i b). Since NbibD Nc jc, we haveEbD (c�1

� j c, c�1
�

�1
j c), which is a braid

system ofO( j I c).

By Lemma 1.3, in particular the following equivalent deformations hold. We will
prove several of them using C-moves. Leti , j be positive integers andb, b0, c, c0 be
braids. For a positive integerk, Let k� 2 {k, k}. If bD b0, then

O(i I b) � O(i I b0).(1.2)

O(i I i �) � O(i I ;) D Fi (see Fig. 1.6),(1.3)

O(i I j �) � O(i I ;) D Fi , where ji � j j > 1 (see Fig. 1.7),(1.4)

O(i I j ) � O( j I i ), where ji � j j D 1 (see Fig. 1.8).(1.5)

If O(i I c) � O( j I c0), then

(1.6) O(i I cb) � O( j I c0b).

Moreover, applying a CI-move of type (2) between the outermost loop labeled j
of the oval nestO(i I b � j �) and the free edgeF j , we can see that

(1.7) O(i I b � j �) [ F j � O(i I b) [ F j ,

whereb is a braid.
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Fig. 1.6. O(i I Ni ) � O(i I ;) D Fi .

Fig. 1.7. O(i I j ) � O(i I ;) D Fi , where ji � j j > 1.

Fig. 1.8. O(i I j ) � O( j I i ), where ji � j j D 1.
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Fig. 2.1. A chart onT presenting the spunT2-knot of a trefoil.

2. A torus-covering knot and its chart description

It is known [7, 9] that any oriented surface knot can be presented by a branched
covering over the standard 2-sphere. A torus-covering knotwas introduced in [13] as
a new construction of a surface knot, by considering the standard torus instead of the
standard 2-sphere. In this section, we give the definition ofa torus-covering knot (see
also [13]). The spunT2-knot of a classical knot is a torus-covering knot. A torus-
covering knot is presented by a chart on the standard torusT . We can obtain a surface
link chart presenting a torus-covering knot from its chart on T ([14], see Theorem 2.2).
Part of the obtained surface link chart is called a 1-handle chart. We obtain the 1-handle
chart for the spunT2-knot (Lemma 2.4).

Let T be a standard torus inR4, that is, the boundary of an unknotted solid torus
in a 3-space inR4. Let us consider a tubular neighborhoodN(T) of T , and identify
N(T) with D2

� S1
� S1, where D2 is a 2-disk, andS1 is a circle. The firstS1 cor-

responds to the meridian, and the secondS1 corresponds to the longitude ofT . Let us
identify S1 with I =�, where I D [0, 1] and 0� 1. For a manifoldS in N(T), let us
denote byS\ (D2

� I � I ) the manifold in D2
� I � I obtained fromS by cutting it

at D2
� S1

� {0} and D2
� {0} � S1.

DEFINITION 2.1. A torus-covering knotis a surface knotS in R

4 such thatS�
N(T) and moreoverS\ (D2

� I � I ) is a simple braided surface.

By definition, a torus-covering knotS is presented by a chart onT . As we men-
tioned, for two charts of the same degree, their presenting braided surfaces are equiva-
lent if the charts are C-move equivalent. Hence it follows that for two charts onT of
the same degree, their presenting torus-covering knots areequivalent if the charts are
C-move equivalent.

The spun T2-knot of a classical knotK is the product ofK in a 3-ball B3 with
S1, embedded intoR4 via the natural embedding ofB3

� S1 into R4 ([15, 2]). Identify
S1 with the longitude ofT . Since any classical knot is equivalent to a closed braid
by Alexander’s Theorem, the spunT2-knot of any K is a torus-covering knot (see [13,
Propositions 2.11]); see Fig. 2.1 for example.

Now we review a theorem, which shows how to obtain a surface link chart from
a chart onT ([14]). A chart is presented by a simple braided surface. A simple
braided surface is presented by a motion picture consistingof isotopic transformations
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and hyperbolic transformations. Amotion pictureof a braided surfaceS� B3
� I is a

one-parameter family{�(S\ (B3
� {t}))}t2I , where� W B3

� I ! B3 is the projection
(see [9]).

Let {ht }t2[0,1] be an ambient isotopy ofR3. For a classical linkL, we have an iso-
topy (a one-parameter family){ht (L)} of classical links. We say thath1(L) is obtained
from L by an isotopic transformation, and we use the notation thatL ! h1(L) is an
isotopic transformation (see [9, Section 9.1]).

Let L be a classical link inR3. A 2-disk B in R

3 is called aband attaching to
L if L \ B is a pair of disjoint arcs in�B. A band setattaching toL is a union
B D B1 [ B2 [ � � � [ Bm of mutually disjoint bandsB1, B2, : : : , Bm attaching toL.
For a subsetX of a space, let us denote by Cl(X) the closure ofX. Define a link
h(LI B) by

h(LI B) D Cl((L [ �B) � (L \ B)).

We say that the linkh(LI B) is obtained fromL by a hyperbolic transformationalong
B, and we use the notation thatL ! h(LI B) is a hyperbolic transformation (see [9,
Section 9.1]).

For a classicalm-braid c, let �lk(c) be the (mC k C l )-braid obtained fromc by
addingk (resp. l ) trivial strings before (resp. after)c, and put

5

m
i D �mC1�mC2 � � � �mCi , 5

0m
i D �m�1�m�2 � � � �m�i ,

1m D 5

m
m�15

m
m�2 � � �5

m
1 , 1

0

m D 5

0m
m�15

0m
m�2 � � �5

0m
1 ,

2m D �m �5
0m
m�1 �5

m
m�1 � �m �5

0m
m�2 �5

m
m�2 � � � �m �5

0m
1 �5

m
1 � �m.

Theorem 2.2 ([14]). Let 0T be a chart of degree m on I� I , obtained from
a chart on T (of degree m) by cutting T by the meridian and the longitude. Let a
(resp. b) be a classical m-braid presented by0T \ (I � {0}) (resp. 0T \ ({0} � I )).
Then the torus-covering knot presented by0T is presented by a surface link chart0S

of degree2m as in Fig. 2.2. Here Hb is a chart of degree2m presenting the simple
braided surface whose motion picture is as follows:

�

m
0 (b) ! �

m
0 (b) � (10

m)�1
�1

�1
m �1

0

m �1m P

! �

m
0 (b) � (10

m)�1
�1

�1
m �2m

! (10

m)�1
�1

�1
m � �

m
0 (Nb�) �2m ! (10

m)�1
�1

�1
m �2m � �

0
m(Nb�)

P

! (10

m)�1
�1

�1
m �1

0

m �1m � �
0
m(Nb�) ! �

0
m(Nb�),

where! is an isotopic transformation andP! is a hyperbolic transformation along
bands corresponding to the m�m’s, and �(Hb)� is the orientation-reversed mirror im-
age of Hb, and Nb� is the m-braid obtained from the classical m-braid b by taking its
mirror image and reversing all the crossings.

DEFINITION 2.3. We call Hb the 1-handle chartof 0T .
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Fig. 2.2. The surface link chart0S of degree 2m.

Let us consider the spunT2-knot of Ob, where Ob denotes the closure of a classical
braid b. Let us determine0T on I � I to be a chart presenting the braided surface
b � I ; then the braids presented by0T \ (I � {0}) and 0T \ ({0} � I ) are b and e
respectively, wheree is the trivial braid. The 1-handle chart of0T is He. We obtain
He, as follows.

Lemma 2.4. Let e be the trivial m-braid. Then the1-handle chart He is equiva-
lent to the chart as follows:

He �

m�1
[

kD0

Ok,

where Ok is the oval nest

Ok D O

 

mI
k�1
Y

jD0

(m� 1& m� kC j )
k�1
Y

jD0

(mC 1% mC k � j )

!

for k D 0, 1, 2,: : : , m� 1. Note that for kD 0, O0 D O(mI ;) D Fm.

Proof. By Theorem 2.2,He is a chart presenting the simple braided surface as
follows:

(2.1)

e! (10

m)�1
�1

�1
m �1

0

m �1m

P

! (10

m)�1
�1

�1
m �2m

P

! (10

m)�1
�1

�1
m �1

0

m �1m ! e,
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Fig. 2.3. Moving a free edge across an edge.

where! means an isotopy transformation andP! means a hyperbolic transformation
along bands corresponding to them �m’s. Heree is the trivial 2m-braid. Note that since
(2.1) presents a simple surface braid,He does not have a boundary. The 1-handle chart
He hasm free edges, whose labels are allm. All the other edges have labels other than
m and neither of them is connected with a black vertex. DrawHe on [0, 1=2] � [0, 1]
such that we can read the braidse, (10

m)�1
�1

�1
m �1

0

m �1m, (10

m)�1
�1

�1
m �2m, (10

m)�1
�

1

�1
m � 1

0

m � 1m and e of (2.1) at [0, 1=2] � {t1}, : : : , [0, 1=2] � {t5} respectively, where
0 < t1 < � � � < t5 < 1. Let qk (k D 0, 1, : : : , m� 1) be the black vertex corresponding
to the (m� k)-th �m of the braid (10

m)�1
�1

�1
m �2m.

Let us denote byFk the free edge connected with the black vertexqk. Let us move
the free edges into [1=2, 1]� [0, 1] using CI-moves of type (2) as in Fig. 2.3 to be a
split sum of oval nests andH 0

e, where H 0

e is the chartHe�
�

Sm�1
kD0 Fk

�

. Since H 0

e has
no black vertices, we can eliminate it by a CI-move. Thus we have a split sum of
oval nests.

Let QOk (k D 0, 1, : : : , m� 1) be the oval nestFk becomes. We will see that each
QOk is equivalent to the oval nestOk. First we will obtain QOk. It suffices to see what

edgesFk crosses as it moves into [1=2, 1]� [0, 1]. We have

2m D �m �5
0m
m�1 �5

m
m�1 � �m �5

0m
m�2 �5

m
m�2 � � � �m �5

0m
1 �5

m
1 � �m.

The first free edgeF0 does not cross any edge. HenceQO0 D F0. Then the second
free edgeF1 crosses edges representing50m

1 �5

m
1 D �m�1�mC1, so it becomes the oval

nest QO1 D O(mIm� 1mC 1). The third free edgeF2 crosses edges representing50m
2 �

5

m
2 �5

0m
1 �5

m
1 D (�m�1�m�2)(�mC1�mC2)�m�1�mC1. Hence it becomes the oval nestQO2 D

O(mI (m� 1)(m� 2) � (mC 1)(mC 2) � (m� 1) � (mC 1)). Repeating this step, we see
that in generalFk crosses edges representing50m

k �5

m
k �5

0m
k�1 �5

m
k�1 � � �5

0m
1 �5

m
1 , so it

becomes an oval nestQOk D O
�

mI
Qk�1

jD0((m� 1& m� kC j ) � (mC 1% mC k� j ))
�

for k D 0, 1, : : : , m� 1.
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We can show that ifi C 1 < k then (i & j )(k % l ) can be transformed to (k &
l )(i % j ) by the braid group relation 2, i.e.

(2.2) (i & j )(k % l ) � (k & l )(i % j ).

Using (2.2), we see thatQOk � O
�

mI
Qk�1

jD0(m�1&m�kC j )
Qk�1

jD0(mC1%mCk� j )
�

,
which is Ok.

3. Main theorem

An oriented surface knot isunknottedif it is equivalent to the connected sum of
several standard tori. It is known [4] that any oriented surface knotS can be deformed
to an unknotted surface knot by applying a finite number of oriented 1-handle surgeries.
The unknotting numberof S is the minimum number of oriented 1-handle surgeries
necessary to deform it to be unknotted. In this section, we show Theorem 3.1 and
Corollary 3.2.

Theorem 3.1. Let S be the spun T2-knot of a classical knotOb, where b is a clas-
sical m-braid (m > 1) such that there exists a permutation� of degree m� 1 which
satisfies the following conditions:
(a1) There is an integer r2 {1,2,: : : ,m�1} such that for each k2 {1,2,: : : ,m�1}�{r },
�k � bD b � �

� (k), and
(a2) For each i, j 2 {1, 2, : : : , m � 1}, if i ¤ j , then � i (1) ¤ �

j (1). Note that then
�

m�1(1)D 1.
Moreover assume that S is not unknotted. Then the unknottingnumber of S is one.

By Theorem 3.1 we have an alternative proof of the fact [10] that the spunT2-knot
of a torus (p, q)-knot has the unknotting number one.

Corollary 3.2. The spun T2-knot of a classical torus(p, q)-knot has the unknot-
ting number one.

Proof. First we show that the spunT2-knot is not unknotted. The knot group
of the spunT2-knot of a classical torus (p, q)-knot is isomorphic to the knot group
of the classical torus (p, q)-knot ([15]). Hence we can see that the spunT2-knot is
not unknotted.

We determine the braidb and the permutation� , as follows. A classical torus
(p, q)-knot is presented by the closure of thep-braid b D (�1�2 � � � �p�1)q, where p
and q are coprime integers and moreoverp > 1. Let r be defined byq mod p such
that r 2 {0, 1, 2,: : : , p � 1}. Since p and q are coprime,r ¤ 0 and it follows that
r 2 {1, 2, : : : , p� 1}. Let us define a permutation� of degreep� 1 by

�

1 2 � � � r � 1 r r C 1 r C 2 � � � p� 1
p� r C 1 p� r C 2 � � � p� 1 p� r 1 2 � � � p� r � 1

�

.
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Fig. 3.1. The braid associated with� if r � 1< p� r � 1.

We show that Condition (a1) of Theorem 3.1 holds, as follows.If k ¤ 1, then we can
show that�k(�1�2 � � ��p�1)D (�1�2 � � ��p�1)�k�1. Similarly we have�1(�1�2 � � ��p�1)2

D

(�1�2 � � � �p�1)2
�p�1. From these two equations, we have�k � b D b � �

� (k) for eachk 2
{1, 2, : : : , p� 1} � {r }. Thus Condition (a1) holds.

Next we will show that� satisfies Condition (a2) of Theorem 3.1. Let us define
Condition (a2)0 as follows.
(a2)0 The permutation� is associated with a classical braidc such thatOc is a knot,
i.e. Oc is connected.
We can see that if the permutation� satisfies (a2)0, then (a2) holds, as follows. If
Condition (a2) does not hold, then� i (1)D �

j (1) for somei , j 2 {1, 2,: : : , p� 1} with
i ¤ j . We can assume thatj > i . Then we have� j�i (1)D 1, where 0< j � i < p�1.
On the other hand, if� is associated with a classical braidc such thatOc is a knot, then
�

k(1)¤ 1 for any k with 0< k < p� 1. This is a contradiction.
From now on we will show that� satisfies (a2)0. Sincer 2 {1, 2,: : : , p� 1} with

r D q mod p, and p and q are coprime integers, we see thatr D 1 or p and r are
coprime. If r � 1 D p � r � 1, then p D 2r . Since r D 1 or p and r are coprime,

we haver D 1 and p D 2. Then� D
�

1
1

�

, which is associated with the trivial braid

of degree one, whose associated closed braid is a trivial knot. Hence we can assume
that r � 1 ¤ p � r � 1. If r � 1 < p � r � 1, then the permutation� is associated
with a braid whose diagram is as in Fig. 3.1, where we omit the crossing information.
Here we have� (r � j ) D p � j for j D 1, 2, : : : , r � 1 and � (p � j ) D p � r � j
for j D 1, 2, : : : , p � r � 1. Hence we have� 2(r � j ) D � (p � j ) D p � r � j for
j D 1,2,:::,r �1, which means that the (r � j )-th string of the closed braid is connected
with the (p� j )-th string, which is connected with the (p� r � j )-th string. Hence we
can assume that there is no (p � j )-th string, and the (r � j )-th string of the closed
braid is connected with the (p�r � j )-th string, wherej D 1,2,: : : ,r �1 (see Fig. 3.1).
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Thus it suffices to show that the following permutation satisfies (a2)0:

(3.1)

�

1 2 � � � r r C 1 r C 2 � � � p� r
p� 2r C 1 p� 2r C 2 � � � p� r 1 2 � � � p� 2r

�

.

Similarly, if r � 1 > p � r � 1, then we have� 2(r � j ) D � (p � j ) D p � r � j
for j D 1, 2, : : : , p� r � 1. Hence it suffices to show that the following permutation
satisfies (a2)0:
(3.2)
�

1 2 � � � 2r � p 2r � pC 1 2r � pC 1 � � � r
p� r C 1 p� r C 2 � � � r 1 2 � � � p� r

�

.

If r � 1 < p � r � 1 (resp.r � 1 > p � r � 1), then p � r > r (resp. r > p � r ).
Hence together with 1� r � p � 1, we can see thatp � r > 1 (resp.r > 1). Thus
the permutation (3.1) (resp. (3.2)) is associated with them-braid cD (�1�2 � � � �m�1)n,
where m D p � r (resp. r ) is the degree of (3.1) (resp. (3.2)) withm > 1, and n D
m� � (1)C 1. Since for (3.1) (resp. (3.2)) we havem D p � r (resp. r ) and � (1) D
p�2r C1 (resp.p�r C1), it follows that (m,n)D (p�r,r ) (resp. (m,n)D (r, 2r � p)).
Note that in both casesn > 0. Sincer D 1 or p and r are coprime, together with
m > 1 and n > 0, it follows that in both casesn D 1 or m and n are coprime. If
n D 1, then Oc (c D �1�2 � � � �m�1) is a trivial knot, and ifm and n are coprime, then
Oc (c D (�1�2 � � � �m�1)n) is a torus (m, n)-knot. Thus� satisfies (a2)0, and it follows
that � satisfies (a2). Therefore the spunT2-knot has the unknotting number one by
Theorem 3.1.

Proof of Theorem 3.1. We show that the unknotting number ofS is one. Let0S

be a surface link chart presentingS. An unknotted chartis a chart presented by a
configuration consisting of free edges ([5]). An unknotted oriented surface knot is pre-
sented by an unknotted chart ([5]). For an oriented surface knot, adding a free edge
to the surface link chart corresponds to a nice 1-handle surgery, which is an oriented
1-handle surgery ([6]). Thus it suffices to see that the surface link chart obtained from
0S by adding a free edge is equivalent to an unknotted chart.

We will determine0S by [14] (see Theorem 2.2). The chart0T on I � I presents
the braided surfaceb� I ; thus the braids presented by0T \ (I �{0}) and0T \ ({0}� I )
are b and e respectively (see Section 2). By Lemma 2.4 and (3.26) of Lemma 3.3, we
can assume that the 1-handle chartHe is as follows:

He D

m�1
[

kD0

Ok,

where

Ok D O(m� kI (m� kC 1% m)(mC 1% mC k)).(3.3)
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Let us define andO0

k as follows:

(3.4) O0

k D O(m� kI (m� kC 1% m)(mC 1% mC k) � b).

The oval nestO0

k is obtained fromOk by adding loops describingb around it. By [14]
(see Theorem 2.2), the surface link chart0S obtained from0T is as follows:

(3.5) 0S D

m�1
[

iD0

Oi [

m�1
[

iD0

O0

i .

Remark that0S is a ribbon chart of degree 2m (see [5, 9]).
We will show that the surface link chart0S can be deformed to an unknotted chart

by adding a free edge.
STEP 1. We show that

Om�k�1 [ Om�k [ F2m�k � Om�k�1 [ Fk [ F2m�k,

for k 2 {1, 2, : : : , m� 1}.
By (3.3) and (1.7), we have

Om�k [ F2m�k

D O(kI (kC 1% m)(mC 1% 2m� k)) [ F2m�k

� O(kI (kC 1% m)(mC 1% 2m� k � 1))[ F2m�k.

Let us denoteO(kI (kC 1% m)(mC 1% 2m� k � 1)) by QOm�k. By (1.7) we have

O(kC 1I ;) [ O(kI kC 1)� O(kC 1I ;) [ O(kI ;).

Hence we have

(3.6) O(kC 1I c) [ O(kI kC 1 � c) � O(kC 1I c) [ O(kI c)

for a braidc by (1.6). By (3.3) and (3.6) we have

Om�k�1 [ QOm�k

D O(kC 1I (kC 2% m)(mC 1% 2m� k � 1))

[ O(kI (kC 1) � (kC 2% m)(mC 1% 2m� k � 1))

� O(kC 1I (kC 2% m)(mC 1% 2m� k � 1))

[ O(kI (kC 2% m)(mC 1% 2m� k � 1))

D Om�k�1 [ O(kI (kC 2% m)(mC 1% 2m� k � 1)).
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By (1.4) we see that

O(kI (kC 2% m)(mC 1% 2m� k � 1))� O(kI ;) D Fk.

Thus we have

Om�k�1 [ Om�k [ F2m�k � Om�k�1 [ Fk [ F2m�k.

STEP 2. Similarly, we show that

O0

m�k�1 [ O0

m�k [ F
� (k) � O0

m�k�1 [ F2m�k [ F
� (k),

for k 2 {1, 2, : : : , m� 1} � {r }.
By (a1), b�1

�kbD �

� (k) for k 2 {1, 2, : : : , m� 1} � {r }. Hence we have

(3.7) O(kI b) � F
� (k)

for k 2 {1, 2, : : : , m� 1} � {r } by Lemma 1.3.
Similarly to Step 1, using (3.27) of Lemma 3.3, we have

(3.8) Om�k�1 [ Om�k [ Fk � Om�k�1 [ Fk [ F2m�k

for k 2 {1, 2, : : : , m� 1}. By (3.8) and (1.6), we have

(3.9) O0

m�k�1 [ O0

m�k [ O(kI b) � O0

m�k�1 [ O(kI b) [ O(2m� kI b).

By (3.7), O(kI b) � F
� (k) for k 2 {1, 2, : : : , m� 1} � {r }. On the other hand, by (1.4)

and 2m � k > (m � 1)C 1, we haveO(2m � kI b) � O(2m � kI ;) D F2m�k. Hence
together with (3.9), we see that

O0

m�k�1 [ O0

m�k [ F
� (k) � O0

m�k�1 [ F2m�k [ F
� (k)

for k 2 {1, 2, : : : , m� 1} � {r }.
STEP 3. Let us denote Step 1 as follows:

�l W Ol�1 [ Ol [ FmCl ! Ol�1 [ Fm�l [ FmCl

for l 2 {1, 2, : : : , m� 1}, and Step 2 as

 l W O0

l�1 [ O0

l [ F
� (m�l ) ! O0

l�1 [ FmCl [ F
� (m�l )

for l 2 {1, 2, : : : , m� 1} � {m� r }.
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We introduce several notations to make things easy to see. Let us defineF l , F 0l

and F 00l as follows:

F l
WD Fm�l ,(3.10)

F 0l
WD FmCl ,(3.11)

F 00l
WD F

� (m�l )(3.12)

for l 2 {1, 2, : : : , m� 1}. Moreover, for an integers, let us define�s to be

(3.13) �s WD m� �

�s(r ).

Step 1 is written as follows:

(3.14) �l W Ol�1 [ Ol [ F 0l
! Ol�1 [ F l

[ F 0l ,

for l 2 {1, 2, : : : , m� 1}, and Step 2 is

(3.15)  l W O0

l�1 [ O0

l [ F 00l
! O0

l�1 [ F 0l
[ F 00l ,

for l 2 {1, 2,: : : , m� 1}� {m� r }. Since by definition (3.13)m� r D �0, Step 2 holds
true for l 2 {1, 2, : : : , m� 1} � {�0}.

From now on we show that0S can be deformed to an unknotted chart by adding
a free edgeFr . Let us define chartsI0, I1, : : : , I2m�4 of degree 2m. First, defineI0

as follows:

I0 WD 0S[ Fr ,

which is by (3.5) as follows:

(3.16)

I0 D O0 [ O
�1 [ O

�2 [ � � � [ O
�m�2 [ O

�0

[ O0

0 [ O0

�1
[ O0

�2
[ � � � [ O0

�m�2
[ O0

�0

[ Fr .

Note that by (a2),{�0, �1, : : : , �m�2} D {1, 2, : : : , m� 1}. For n D 1, 2, : : : , m� 2, let
us defineI2n as follows:

(3.17)

I2n WD O0 [ O
�nC1 [ O

�nC2 [ � � � [ O
�m�2 [ O

�0 [ F�1
[ F�2

[ � � � [ F�n

[ O0

0 [ O0

�nC1
[ O0

�nC2
[ � � � [ O0

�m�2
[ O0

�0
[ F 0�1

[ F 0�2
[ � � � [ F 0�n

[ Fr .

And for n D 0, 1, 2,: : : , m� 3, let us defineI2nC1 as follows:

(3.18) I2nC1 WD (I2n � O0

�nC1
) [ F 0�nC1.
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We will show thatI2nC1 (resp. I2nC2) is obtained fromI2n (resp. I2nC1) by applying
Steps 2 (resp. Steps 1) forn D 0, 1, : : : , m� 3.

When we haveI2n (n D 0, 1, : : : , m� 3), there is an integerl0 < �nC1 such that
for any l with l0 < l < �nC1, O0

l � I2n and O0

l0
� I2n. Note that such anl0 exists, for

0< �nC1 and O0

0 � I2n for every n 2 {0, 1,: : : , m� 3}. Sincer D �

0(r ) D � (m� (m�
�

�1(r ))) D � (m� �1), by the definition ofF 00l (3.12) we have

(3.19) Fr D F 00�1.

For n D 0, by (3.16) we havel0 D �1 � 1, and by (3.19) we see that

(3.20) I0 � F 00�1
[ O0

�1�1 [ O0

�1
.

By the definitions (3.10) and (3.13), we have

F
�

�s(r ) D Fm�(m���s(r )) D Fm���s(r )
D F�s,

and by the definitions (3.12) and (3.13), we have

F
�

�s(r ) D F
� (��(sC1)(r )) D F 00m���(sC1)(r )

D F 00�sC1.

Hence we have

(3.21) F�s
D F 00�sC1,

for eachs. By the definition of I2n (3.17) and (3.21) we have

(3.22)

I2n D O0 [ O
�nC1 [ O

�nC2 [ � � � [ O
�m�2 [ O

�0 [ F 00�2
[ F 00�3

[ � � � [ F 00�nC1

[ O0

0 [ O0

�nC1
[ O0

�nC2
[ � � � [ O0

�m�2
[ O0

�0
[ F 0�1

[ F 0�2
[ � � � [ F 0�n

[ Fr

for n D 1, 2, : : : , m � 3. By (3.22) and (3.19), we can see that ifF 0l
� I2n, then

F 00l
� I2n. So together with (3.20), we have

(3.23)
I2n � F 00l0C1

[ F 00l0C2
[ � � � [ F 00�nC1�1

[ F 00�nC1

[ O0

l0 [ F 0l0C1
[ F 0l0C2

[ � � � [ F 0�nC1�1
[ O0

�nC1

for nD 0, 1,: : : ,m�3. By (3.22), we can see that ifF 0l
� I2n, then l 2 {�1, �2, : : : , �n}.

Hencel0C 1, l0C 2, : : : , �nC1 � 1 2 {�1, �2, : : : , �n}. By (a2) andn � m� 3, none of
l0C 1, l0C 2, : : : , �nC1� 1, �nC1 is �0. So we can apply Steps 2 (3.15) and its inverses
to I2n to deform O0

�nC1
to F 0�nC1. The result isI2nC1 by the definition ofI2nC1 (3.18):

(3.24)  l0C1 Æ � � � Æ  �nC1�1 Æ  �nC1 Æ  
�1
�nC1�1 Æ � � � Æ  

�1
l0C2 Æ  

�1
l0C1(I2n) D I2nC1



894 I. NAKAMURA

for n D 0, 1, : : : , m� 3.
By (3.16) and (3.17), we see that ifO0

l � I2n, then Ol � I2n, and if F 0l
� I2n, then

F l
� I2n. Hence, by the definition ofI2nC1 (3.18),

I2nC1 � Ol0 [ F l0C1
[ F l0C2

[ � � � [ F�nC1�1
[ O

�nC1

[ F 0l0C1
[ F 0l0C2

[ � � � [ F 0�nC1

for n D 0, 1, : : : , m� 3, wherel0 is the same integer used in deformingI2n to I2nC1.
And by the definitions (3.16), (3.17) and (3.18) we have

I2nC2 D (I2n � O0

�nC1
� O

�nC1) [ F 0�nC1
[ F�nC1

D (I2nC1 � O
�nC1) [ F�nC1

for n D 0, 1,: : : , m� 3. Similarly to (3.24), we can deformI2nC1 to I2nC2 by applying
Steps 1 (3.14) and its inverses and deformingO

�nC1 to F�nC1:

�l0C1 Æ � � � Æ ��nC1�1 Æ ��nC1 Æ �
�1
�nC1�1 Æ � � � Æ �

�1
l0C2 Æ �

�1
l0C1(I2nC1) D I2nC2(3.25)

for n D 0, 1, : : : , m� 3.
Thus, repeating Steps 2 (3.24) and Steps 1 (3.25) alternately m � 2 times each,

we have

I2(m�2) D O0 [ O
�0 [

m�2
[

nD1

F �n

[ O0

0 [ O0

�0
[

m�2
[

nD1

F 0�n

[ Fr .

By (a2), we have{�1,�2, : : : ,�m�2} D {1,2,: : : ,m�1}�{�0} D {1,2,: : : ,m�1}�{m�r }.
Hence together with (3.10) and (3.11) we have

I2(m�2) D O0 [ Om�r [ O0

0 [ O0

m�r [
[

k¤m,2m�r

Fk,

where

Om�r � O(2m� r I (2m� r � 1& m)(m� 1& r ))

by (3.27) of Lemma 3.3. On the other hand, by definitionO0 D Fm. Hence, we have
free edges of all labels except 2m� r , using which and (1.7) we can deform the oval
nest Om�r to the free edgeF2m�r .

Therefore0S[ Fr can be deformed to a chart containing
S2m�1

kD1 Fk, using which
and (1.7) we can deform0S[ Fr to have only free edges, which is an unknotted chart.
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Lemma 3.3. The oval nest ofLemma 2.4

Ok D O

 

mI
k�1
Y

jD0

(m� 1& m� kC j )
k�1
Y

jD0

(mC 1% mC k � j )

!

for k D 1, 2, : : : , m� 1, is equivalent to the following:

Ok � O(m� kI (m� kC 1% m)(mC 1% mC k))(3.26)

� O(mC kI (mC k � 1& m)(m� 1& m� k)).(3.27)

Proof. First, we will show that the braid
Qk�1

jD0(m� 1& m� kC j ) is equivalent

to
Qk�1

jD0(m� kC j & m� k), i.e.

k�1
Y

jD0

(m� 1& m� kC j ) �
k�1
Y

jD0

(m� kC j & m� k).(3.28)

For positive integersl , i1, i2 with l � i2 > i1, we have (l & i1)i2 � (i2 � 1)(l & i1).
Hence we can see that

(3.29) (l & i1)(l & i2) � (l � 1& i2 � 1)(l & i1).

By (3.29), we see that

k�1
Y

jD0

(m� 1& m� kC j )

D (m� 1& m� k) �
k�1
Y

jD1

(m� 1& m� kC j )

�

k�1
Y

jD1

(m� 2& m� kC j � 1) � (m� 1& m� k)

� � � �

�

k�1
Y

jDs�1

(m� s& m� kC j � (s� 1))
k�1
Y

jDk�(s�1)

(m� kC j & m� k)

D (m� s& m� k)
k�1
Y

jDs

(m� s& m� kC j � (s� 1))
k�1
Y

jDk�(s�1)

(m� kC j & m� k)
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�

k�1
Y

jDs

(m� s� 1& m� kC j � s) � (m� kC (k � s) & m� k)

�

k�1
Y

jDk�(s�1)

(m� kC j & m� k)

D

k�1
Y

jDs

(m� (sC 1)& m� kC j � s) �
k�1
Y

jDk�s

(m� kC j & m� k)

� � � �

� (m� k)
k�1
Y

jD1

(m� kC j & m� k)

D

k�1
Y

jD0

(m� kC j & m� k),

which is (3.28). Similarly, we have another equivalence relation:

(3.30)
k�1
Y

jD0

(mC 1% mC k � j ) �
k�1
Y

jD0

(mC k � j % mC k).

Note that for positive integersl , i1, i2 with l � i2 < i1, we can easily show that (l %
i1)(l % i2) � (l C 1% i2 C 1)(l % i1).

Using (1.4), we can show that ifm� 1> i , then

(3.31) O(mI (i & j ) � c) � O(mI c)

for a braidc. Similarly we can show that ifmC 1< i , then

(3.32) O(mI (i % j ) � c) � O(mI c).

By (3.28) and (3.30), we have

Ok D O

 

mI
k�1
Y

jD0

(m� 1& m� kC j )
k�1
Y

jD0

(mC 1% mC k � j )

!

� O

 

mI
k�2
Y

jD0

(m� kC j & m� k) � (m� 1& m� k)

�

k�2
Y

jD0

(mC k � j % mC k) � (mC 1% mC k)

!

.
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For j D 0, 1, : : : , k � 2, we have (mC k � j ) � ((m � 1)C 1) D k � j > 0. Hence
mC k � j > (m� 1)C 1. By (2.2), we have

Ok � O

 

mI
k�2
Y

jD0

(m� kC j & m� k)

�

k�2
Y

jD0

(mC k � j % mC k) � (m� 1& m� k)(mC 1% mC k)

!

.

By (3.31) and (3.32), we have

(3.33) Ok � O(mI (m� 1& m� k)(mC 1% mC k)).

Now we will show that

(3.34) O(mI (m� 1& m� k) � c) � O(m� kI (m� kC 1% m) � c),

wherec is a braid. For positive integersi1, i2 with i1 > i2, by (1.5) and (1.6) we have
O(i1I (i1� 1& i2)) � O

�

i1� 1I i1 � (i1� 2& i2)
�

, which is equivalent toO(i1� 1I (i1�

2& i2) � i1) by (2.2). Thus we have

O(i1I (i1 � 1& i2)) � O(i1 � 1I (i1 � 2& i2) � i1).(3.35)

Using (3.35) and (1.6), we can see that

O(mI (m� 1& m� k))

� O(m� 1I (m� 2& m� k) �m)

� � � �

� O(m� sI (m� s� 1& m� k) � (m� sC 1% m))

� O(m� s� 1I (m� s� 2& m� k) � (m� s) � (m� sC 1% m))

D O(m� s� 1I (m� s� 2& m� k) � (m� s% m))

� � � �

� O(m� kI (m� kC 1% m)).

Hence by (1.6), we have (3.34).
By (3.33) and (3.34), we have

Ok � O(mI (m� 1& m� k)(mC 1% mC k))

� O(m� kI (m� kC 1% m)(mC 1% mC k)),

which is (3.26).
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By (3.33) and (2.2), we can see that

(3.36)
O(mI (m� 1& m� k) � (mC 1% mC k))

� O(mI (mC 1% mC k) � (m� 1& m� k)).

And similarly to (3.34), we can see that

(3.37) O(mI (mC 1% mC k) � c) � O(mC kI (mC k � 1& m) � c),

for a braidc. Hence by (3.36) and (3.37) we have the other equivalence relation (3.27):

Ok � O(mC kI (mC k � 1& m)(m� 1& m� k)).
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