
Tanaka, M.S. and Tasaki, H.
Osaka J. Math.
50 (2013), 161–169

ANTIPODAL SETS OF SYMMETRIC R-SPACES

MAKIKO SUMI TANAKA and HIROYUKI TASAKI

(Received January 31, 2011, revised June 13, 2011)

Abstract
We show that antipodal sets of symmetricR-spaces have the following properties.

Any antipodal set is included in a great antipodal set and anytwo great antipodal sets
are congruent.

1. Introduction

We assume thatM is a Riemannian symmetric space and denote bysx the geo-
desic symmetry atx 2 M. A subsetS of M is called anantipodal set, if sx(y) D y
for every pointsx and y in S. The 2-number#2M of M is the supremum of the car-
dinalities of antipodal sets ofM. We call an antipodal set inM great if its cardinality
attains #2M. These were introduced by Chen and Nagano [1].

If the orbit of the linear isotropy action of a Riemannian symmetric space is a
Riemannian symmetric space, the orbit is called asymmetric R-space. We show some
fundamental properties of antipodal sets of Riemannian symmetric spaces, in particular
symmetric R-spaces.

Chen–Nagano [1] gave no explicit proof of the finiteness of 2-number of a sym-
metric spaceM in [1], so we give a proof of the finiteness of 2-number in Section 2.

Hermitian symmetric spaces of compact type have realizations as orbits of the ad-
joint representations of compact semisimple Lie groups. Weshow that the antipodal
sets of Hermitian symmetric spaces of compact type are clearly described in orbits of
the adjoint representations. We review this realization inSection 3 and using this we
prove the following properties of antipodal sets of Hermitian symmetric spaces of com-
pact type.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.
In general we say that two subsetsS1 and S2 of a Riemannian manifoldM arecongru-
ent if there exists an elementg of the identity component of the group of all isometries
of M which satisfiesS2 D gS1.
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A submanifoldL is called areal form of a Kähler manifoldM, if there exists an
involutive anti-holomorphic isometry� of M satisfying

L D {x 2 M j � (x) D x}.

Any real form is a totally geodesic Lagrangian submanifold.We note that any real
form of Hermitian symmetric spaces of compact type is a symmetric R-space and that
any symmetricR-space is a real form of a Hermitian symmetric space of compact type,
which are shown in [4]. Using these results on Hermitian symmetric spaces of com-
pact type, we prove that antipodal sets of symmetricR-spaces satisfy the properties
(A) and (B) in Section 4.

Antipodal sets of the adjoint group ofSU(4) do not satisfy the property (A), which
is shown in Section 5.

The authors would like to thank the referee, whose comments improved the
manuscript.

2. Finiteness of 2-numbers

Let M be a compact connected Riemannian symmetric space and letS be an anti-
podal set ofM. Then S is a subset of the fixed point setF(sx, M) D {p 2 M j sx(p) D
p} for every x in S. So x is an isolated point inS and S is a discrete set. Hence
S is finite because of the compactness ofM. Since we cannot find the proof of the
finiteness of #2M in [1], we give it here.

Proposition 2.1. The 2-number#2M is finite.

Proof. We prove the proposition by induction on dimM. If dim M D 0, the 2-number
#2M D 1. We assume that the 2-number of any compact connected Riemannian symmetric
space whose dimension is less than dimM is finite and prove that #2M is finite. If we
assume that #2M D 1, then there exits a sequence of antipodal setsA1, A2, : : : which
satisfies limi!1

#Ai D1. Since the isometry group ofM acts transitively onM, we may
assume that there is a pointx which is contained in everyAi . Then we haveAi � F(sx, M)
for everyi . We denote each connected component ofF(sx,M) by MC

k (kD 1,: : : ,r ), which
is called a polar ([1]). Then we have

(2.1) Ai D

r
[

kD1

(Ai \ MC

k ).

Since limi!1

#Ai D1, we have limi!1

#(Ai \MC

k )D1 for somek. This means that
#2MC

k D 1, which contradicts the assumption of the induction. Hence #2M is finite.
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3. Hermitian symmetric spaces of compact type

It is well-known that Hermitian symmetric spaces of compacttype are realized as
adjoint orbits. Here we summarize it in order to prepare for the remaining part of
this article.

Let g be a compact semisimple Lie algebra and letGD Int(g). We take aG-invariant
inner producth , i ong. Let J 2 g be an nonzero element which satisfies (adJ)3

D�ad J.
Then theG-orbit M D G � J is a Hermitian symmetric space of compact type with respect
to the induced metric fromh , i. Let K be the isotropy subgroup atJ. Then the Lie
algebrak of K is

k D {X 2 g j [ J, X] D 0}.

Let

m D {[ J, X] j X 2 g},

then we have an orthogonal direct sum decompositiong D k C m. k is the (C1)-
eigenspace andm is the (�1)-eigenspace of the involutive automorphisme� ad J of g

respectively. adJ is a complex structure ofm which can be identified with the tangent
space ofM at J.

Conversely, every Hermitian symmetric space of compact type is obtained like this.
We prove the following theorem using the notation and results mentioned above.

Theorem 3.1. Let M be a Hermitian symmetric space of compact type and take
X,Y 2 M. sX(Y) D Y if and only if[X,Y] D 0. Moreover the following conditions(A)
and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.
A great antipodal set of M is represented as M\ t for a maximal abelian subalgebra
t of g. In particular, a great antipodal set of M is an orbit of the Weyl group ofg.

REMARK 3.2. After submitting the first draft of this paper we found Sánchez [3].
Lemma 5 in [3] implies (A) of Theorem 3.1 and Corollary 6 in [3]implies the descrip-
tion of a great antipodal set in Theorem 3.1.

Proof. The geodesic symmetrysJ of M at J is represented by

sJ(gJ) D e� ad Jge� ad J J D e� ad JgJ (g 2 G),

so we have

sJ(X) D e� ad J X (X 2 M).
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The automorphisme� ad J of g is also the involutive automorphism which determines
the symmetric pair associated withM. Hence

F(sJ , M) D M \ k.

For any X 2 M we denote bykX the centralizer ofX and setmX D [X, g]. Then

g D kX CmX

is the canonical direct sum decomposition ofg associated with the involutive auto-
morphisme� adX. Similarly to the case ofJ we obtain

sX(Y) D e� adXY (Y 2 M).

Now we prove thatsX(Y)D Y if and only if [X,Y] D 0. If [ X,Y] D 0, thensX(Y)D Y.
Conversely we suppose thatsX(Y) D Y. This impliese� adXY D Y and Y 2 kX. Hence
we obtain [X, Y] D 0.

Let S be an antipodal set ofM. It follows from the result above that [X, Y] D 0
for any X,Y 2 S. We denote byS

R

the subspace spanned byS. The subspaceS
R

is an
abelian subalgebra ofg. So we can take a maximal abelian subalgebrat of g including
S
R

. We get S� M \ t. It follows that any great antipodal set ofM is M \ t for a
maximal abelian subalgebrat of g and that the conditions (A) and (B) hold.

4. Symmetric R-spaces

In this section we show that antipodal sets of real forms of Hermitian symmetric
spaces of compact type satisfy the conditions (A) and (B). This implies that antipodal
sets of symmetricR-spaces also satisfy the conditions (A) and (B).

We first prepare the following lemma.

Lemma 4.1. Any real form of a compact Kähler manifold of positive holomorphic
sectional curvature is connected.

REMARK 4.2. We need the above lemma in the case of Hermitian symmetric
spaces of compact type and the statement in this case is stated in Proposition 3.2 of
[2]. The above lemma is a generalization of this.

Proof. Let X be a compact Kähler manifold of positive holomorphic sectional
curvature and� W X ! X be an involutive anti-holomorphic isometry determining a real
form L. Each connected component ofL D F(� , X) is a totally geodesic Lagrangian
submanifold. If there exist more than one connected component of L, they intersect by
Lemma 3.1 of [7], which is a contradiction. ThereforeL is connected.
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Theorem 4.3. Let M be a Hermitian symmetric space of compact type and� W M !

M be an involutive anti-holomorphic isometry determining areal form LD F(� , M). We
define an automorphism I

�

of G by

I
�

W G ! GI g 7! �g��1.

We assume that L contains J . Letg D l C p be the canonical direct sum decompos-
ition determined by I

�

. We have LD M \ p. Moreover the following conditions(A)
and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.
A great antipodal set of L is represented as M\ a for a maximal abelian subspace
a of p. In particular, a great antipodal set of L is an orbit of the Weyl group of the
symmetric pair determined by I

�

.

Proof. SinceM D G � J � g, any point x in M is represented byx D g � J for
g 2 G.

� (x) D (�g) � J D (�g��1
� ) � J D (I

�

(g)) � J,

thus we have

F(I
�

, G) � J � L.

Since L containsJ, sJ and � are commutative, thusIsJ and I
�

are commutative and
d IsJ and d I

�

are simultaneously diagonalizable.

k D k \ lC k \ p, m D m \ lCm \ p

are direct sum decompositions. ForX 2 TJ M � m we have

� (ExpJ X) D � (expX � J) D I
�

(expX) � J D exp(d I
�

(X)) � J,

so we obtain

TJ L D {X 2 m j d I
�

(X) D X} D m \ l.

The Lie algebra ofF(I
�

, G) is l and L is connected by Lemma 4.1. Thus

L D ExpJ(m \ l) � exp(l) � J D F(I
�

, G)0 � J � F(I
�

, G) � J � L

are all equal, whereF(I
�

, G)0 is the identity component ofF(I
�

, G). In particular, we
get L D F(I

�

, G)0 � J, which means thatL is a symmetricR-space.
We shall show thatd I

�

(J) D �J. For X 2 m\ l D TJ L we have [J, X] 2 m\p D

T?

J L becauseL is a Lagrangian submanifold ofM. Hence

�[ J, X] D d I
�

[ J, X] D [d I
�

J, d I
�

X] D [d I
�

J, X].
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On the other hand forX 2 m \ p we have [J, X] 2 m \ l. Hence

[ J, X] D d I
�

[ J, X] D [d I
�

J, d I
�

X] D [d I
�

J, �X].

Therefore we obtain

[d I
�

J, X] D �[ J, X] (X 2 m).

The action of ad(k) on m is effective, so we haved I
�

J D �J. Thus J 2 k\p. We can
continue to calculate� (ExpJ X). Since� is involutive, I

�

and d I
�

are also involutive.
For X, Y 2 g we have

ad(d I
�

(X))k
� Y D d I

�

ad(X)kd I
�

(Y).

If X 2 m, then

� (ExpJ X) D exp(d I
�

(X)) � J D
1

X

kD0

1

k!
ad(d I

�

(X))k
� J

D d I
�

1

X

kD0

1

k!
ad(X)kd I

�

J

D d I
�

expX � (�J) D �d I
�

ExpJ X.

This implies

� (x) D �d I
�

(x) (x 2 M)

and

L D {x 2 M j � (x) D x} D M \ p.

Let S be an antipodal set ofL. It follows from the result above that [X, Y] D 0
for any X, Y 2 S. We denote byS

R

the subspace spanned byS. The subspaceS
R

is
an abelian subspace ofp. So we can take a maximal abelian subspacea of p including
S
R

. We get S� M \ a. It follows that any great antipodal set ofL is M \ a for a
maximal abelian subspacea of p and that the conditions (A) and (B) hold.

Corollary 4.4. For a symmetric R-space the following conditions(A) and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

Proof. Any symmetricR-space is a real form of some Hermitian symmetric space
of compact type by a result of [4]. Hence the corollary follows from Theorem 4.3.

The authors have proved the following theorems in [6].
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Theorem 4.5 ([6] Theorem 1.1). Let M be a Hermitian symmetric space of com-
pact type. If two real forms L1 and L2 of M intersect transversally, then L1 \ L2 is
an antipodal set of L1 and L2.

Theorem 4.6 ([6] Theorem 1.2). Let M be a Hermitian symmetric space of com-
pact type and let L1, L2, L 01, L 02 be real forms of M. We assume that L1, L 01 are con-
gruent and that L2, L 02 are congruent. If L1, L2 intersect transversally and if L01, L 02
intersect transversally, then #(L1 \ L2) D #(L 01 \ L 02).

We can make the conclusion of Theorem 4.6 stronger under a stronger assumption
as follows:

Corollary 4.7. Let M be a Hermitian symmetric space of compact type and let
L1, L2, L 01, L 02 be real forms of M. We assume that L1, L 01 are congruent and that
L2,L 02 are congruent. We also assume that L1,L2 intersect transversally and that L01,L 02
intersect transversally. If#(L1\ L2) D #2L1, then L1\ L2 and L01\ L 02 are congruent.

Proof. According to Theorem 4.5L1\ L2 is an antipodal set ofL1. The assump-
tion #(L1 \ L2) D #2L1 implies that L1 \ L2 is a great antipodal set ofL1. Accord-
ing to Theorem 4.6 #(L1 \ L2) D #(L 01 \ L 02). Since L1, L 01 are congruent, we have
#(L 01 \ L 02) D #2L 01. HenceL 01 \ L 02 is also a great antipodal set ofL 01. We can take
� 2 I0(M) satisfying�(L1) D L 01, thus��1(L 01\ L 02) is a great antipodal set ofL1 and
it is congruent toL1 \ L2 in L1 by Theorem 4.3. ThereforeL1 \ L2 and L 01 \ L 02 are
congruent inM.

5. The adjoint group of SU(4)

In this section we show that antipodal sets of the adjoint group of SU(4) do not
satisfy the condition (A).

We first review some results on antipodal sets of compact connected Lie groups
obtained in [1]. LetG be a compact connected Lie group with a biinvariant Riemann-
ian metric. The geodesic symmetryse at the identity elemente of G is given by

se(y) D y�1 (y 2 G).

For any x, y 2 G we havesx(y) D xy�1x. Without loss of generality it is sufficient to
consider an antipodal setA containinge. We takex, y, z 2 A. In this case we have
x2
D e and y D sx(y) D xyx. HencexyD yx. Moreoversz(xy) D xy. Thus A[ {xy}

is also an antipodal set. ThereforeA is a subgroup ofG, if A is a maximal antipodal
set containinge. According to the fundamental theorem of finite abelian groups A is
isomorphic to a product of someZ2’s. Hence the 2-number ofG is equal to a power
of 2.
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Now we consider the adjoint group ofSU(4). The center ofSU(4) is Z D {�14,
�i 14}, which is equal to the kernel of AdW SU(4) ! Ad(SU(4)). We denote bye
the identity element of Ad(SU(4)). Any antipodal set of Ad(SU(4)) containinge is
included in F(se, Ad(SU(4))), so we investigateF(se, Ad(SU(4))). We have

F(se, Ad(SU(4)))D Ad({x 2 SU(4) j x2
2 Z}).

Each connected component of{x 2 SU(4) j x2
2 Z} is a conjugate class of an element

of a maximal torusS(U (1)4) of SU(4) and we can obtain that all connected components
of F(se, Ad(SU(4))) are

MC

0 D {e},

MC

1 D Ad({gIg�1
j g 2 SU(4)}),

MC

2 D Ad({gJg�1
j g 2 SU(4)}),

where I D diag(1, 1,�1, �1) and J D diag(ei�=4, ei�=4, ei�=4, e�i 3�=4). We denote by
Gk(Rn) the real Grassmann manifold consisting of all real subspaces of dimensionk
in Rn and byGk(Cn) the complex Grassmann manifold consisting of all complex sub-
spaces of dimensionk in Cn. We can see

MC

1 � G2(C4)=Z2 � G2(R6),

MC

2 � SU(4)=S(U (3)�U (1))� G1(C4).

Chen and Nagano [1] showed that #2Gk(Kn) D
�n

k

�

for K D R, C in Proposition 6.1.

Hence we have #2MC

1 D

�6
2

�

D 15 and #2MC

2 D 4. If A is a great antipodal set ofMC

1 ,
then {e} [ A is an antipodal set of Ad(SU(4)). So we have

#2Ad(SU(4))� 1C #AD 16.

On the other hand

#2Ad(SU(4))� #2MC

0 C #2MC

1 C #2MC

2 D 20

by Proposition 1.9 in Chen–Nagano [1]. The 2-number #2Ad(SU(4)) is a power of 2,
thus #2Ad(SU(4)) D 16 and{e} [ A is a great antipodal set of Ad(SU(4)). This is a
counter example of

#2M D

X

j

#2MC

j ,

which holds for a symmetricR-space by Theorem 2 in Takeuchi [5].
We can see that

A1 D {Ad(diag(ei�=4, ei�=4, ei�=4, e�3i�=4)), Ad(diag(e�3i�=4, ei�=4, ei�=4, ei�=4)),

Ad(diag(ei�=4, e�3i�=4, ei�=4, ei�=4)), Ad(diag(ei�=4, ei�=4, e�3i�=4, ei�=4))}
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is a great antipodal set ofMC

2 and

A2 D {e} [ A1

[ {Ad(diag(i , i , �i , �i )), Ad(diag(i , �i , i , �i )), Ad(diag(i , �i , �i , i ))}

is an antipodal subgroup of Ad(SU(4)). The centralizer of Ad(J) is equal to Ad(S(U (3)�
U (1))). We can get the centralizer of each element ofA1 similarly and the centralizer
of A1 is equal to Ad(S(U (1)4)). If QA2 is an antipodal subset of Ad(SU(4)) including A2,
then QA2 is included in the centralizer ofA1 (� A2) and QA2 � Ad(S(U (1)4)) � U (1)3.

8D #A2 � # QA2 � #2 Ad(S(U (1)4)) D 8,

hence these are all equal andA2 is a maximal antipodal subgroup of Ad(SU(4)). As
we have showed, #2Ad(SU(4))D 16 and #A2 D 8. ThusA2 is not included in any great
antipodal subgroup of Ad(SU(4)). Hence Ad(SU(4)) does not satisfy the condition (A).
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