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Abstract
We show that antipodal sets of symmetRespaces have the following properties.
Any antipodal set is included in a great antipodal set andtaygreat antipodal sets
are congruent.

1. Introduction

We assume thaM is a Riemannian symmetric space and denotespyhe geo-
desic symmetry ak € M. A subsetS of M is called anantipodal setif s(y) =y
for every pointsx andy in S. The 2number#M of M is the supremum of the car-
dinalities of antipodal sets df1. We call an antipodal set iM great if its cardinality
attains #M. These were introduced by Chen and Nagano [1].

If the orbit of the linear isotropy action of a Riemannian syetric space is a
Riemannian symmetric space, the orbit is callesdysnmetric R-spaceMe show some
fundamental properties of antipodal sets of Riemanniannsgtric spaces, in particular
symmetric R-spaces.

Chen—Nagano [1] gave no explicit proof of the finiteness afuBaber of a sym-
metric spaceM in [1], so we give a proof of the finiteness of 2-number in Sett?.

Hermitian symmetric spaces of compact type have realizatas orbits of the ad-
joint representations of compact semisimple Lie groups. SMew that the antipodal
sets of Hermitian symmetric spaces of compact type arelglel@scribed in orbits of
the adjoint representations. We review this realizatiorSettion 3 and using this we
prove the following properties of antipodal sets of Heraritisymmetric spaces of com-
pact type.

(A) Any antipodal set is included in a great antipodal set.

(B) Any two great antipodal sets are congruent.

In general we say that two subs&sand S, of a Riemannian manifoldV are congru-
entif there exists an elemeny of the identity component of the group of all isometries
of M which satisfiesS, = g§.
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A submanifoldL is called areal form of a Kahler manifoldM, if there exists an
involutive anti-holomorphic isometry of M satisfying

L={xeM]|o(x)=x}.

Any real form is a totally geodesic Lagrangian submanifoltfe note that any real
form of Hermitian symmetric spaces of compact type is a sytrim®-space and that
any symmetricR-space is a real form of a Hermitian symmetric space of coinyae,
which are shown in [4]. Using these results on Hermitian swtnim spaces of com-
pact type, we prove that antipodal sets of symmeRispaces satisfy the properties
(A) and (B) in Section 4.

Antipodal sets of the adjoint group &U(4) do not satisfy the property (A), which
is shown in Section 5.

The authors would like to thank the referee, whose commemigraved the
manuscript.

2. Finiteness of 2-numbers

Let M be a compact connected Riemannian symmetric space a&lbetan anti-
podal set ofM. ThenSis a subset of the fixed point s€t(s,, M) = {p e M | s(p) =
p} for everyx in S. Sox is an isolated point inS and S is a discrete set. Hence
S is finite because of the compactness Mf Since we cannot find the proof of the
finiteness of #M in [1], we give it here.

Proposition 2.1. The 2-number#,M s finite.

Proof. We prove the proposition by induction on d¥n If dim M = 0, the 2-number
#M = 1. We assume that the 2-number of any compact connected Riéamesymmetric
space whose dimension is less than dihis finite and prove that#M is finite. If we
assume that#M = oo, then there exits a sequence of antipodal #gisA;, ... which
satisfies lim_, o, #A; = oco. Since the isometry group &fl acts transitively orM, we may
assume that there is a poitvhich is contained in eveny;. Then we havey C F(sq, M)
for everyi. We denote each connected componerf @, M) by M,/ (k = 1,...,r), which
is called a polar ([1]). Then we have

(2.1) A = A nmg).

k=1

Since lim_ #A; = oo, we have limL, . #(A N Mlz“) = oo for somek. This means that
#M," = oo, which contradicts the assumption of the induction. Hengl #s finite.
]
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3. Hermitian symmetric spaces of compact type

It is well-known that Hermitian symmetric spaces of compygte are realized as
adjoint orbits. Here we summarize it in order to prepare foe temaining part of
this article.

Let g be a compact semisimple Lie algebra and3et Int(g). We take aG-invariant
inner product( , ) ong. Let J € g be an nonzero element which satisfiesJgd= —ad J.
Then theG-orbit M = G- J is a Hermitian symmetric space of compact type with respect
to the induced metric fronf , ). Let K be the isotropy subgroup &t Then the Lie
algebrat of K is

¢={Xegl|[J X]=0.

Let
m={[J, X] | X € g},

then we have an orthogonal direct sum decompositios ¢ + m. ¢ is the (1)-
eigenspace aneh is the (~1)-eigenspace of the involutive automorphigh??’ of g
respectively. ad is a complex structure afv which can be identified with the tangent
space ofM at J.
Conversely, every Hermitian symmetric space of compaat fgpobtained like this.
We prove the following theorem using the notation and resmientioned above.

Theorem 3.1. Let M be a Hermitian symmetric space of compact type and take
X, Y € M. sx(Y) =Y if and only if[X,Y] = 0. Moreover the following conditionfA)
and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.
A great antipodal set of M is represented asrM for a maximal abelian subalgebra
t of g. In particular, a great antipodal set of M is an orbit of the Weyl group gof

REMARK 3.2. After submitting the first draft of this paper we founch8iez [3].
Lemma 5 in [3] implies (A) of Theorem 3.1 and Corollary 6 in [[&jplies the descrip-
tion of a great antipodal set in Theorem 3.1.

Proof. The geodesic symmetsy of M at J is represented by

SJ(gJ) — eJTange(radJJ — errad.]gJ (g c G),

so we have
s3(X) = € 3IX (X e M).
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The automorphisne” 247 of g is also the involutive automorphism which determines
the symmetric pair associated wit¥l. Hence

F(s;, M) =M Nt
For any X € M we denote bytx the centralizer ofX and setmyx = [X, g]. Then
g = tx + mx

is the canonical direct sum decomposition gfassociated with the involutive auto-
morphisme” 29X Similarly to the case of] we obtain

sx(Y) = €7 3XY (Y e M).

Now we prove thasy(Y) =Y if and only if [X,Y] = 0. If [ X,Y] =0, thensx(Y) =Y.
Conversely we suppose thai(Y) = Y. This impliese” XY =Y andY < ¢x. Hence
we obtain X, Y] = 0.

Let S be an antipodal set ofl. It follows from the result above thaixX]| Y] =0
for any X,Y € S. We denote by the subspace spanned By The subspac& is an
abelian subalgebra gf. So we can take a maximal abelian subalgeboé g including
. We getSc M Nt. It follows that any great antipodal set &ff is M N t for a
maximal abelian subalgebrtaof g and that the conditions (A) and (B) hold. ]

4. Symmetric R-spaces

In this section we show that antipodal sets of real forms ofnhitgan symmetric
spaces of compact type satisfy the conditions (A) and (B)s Tinplies that antipodal
sets of symmetridR-spaces also satisfy the conditions (A) and (B).

We first prepare the following lemma.

Lemma 4.1. Any real form of a compact Kéhler manifold of positive holopic
sectional curvature is connected.

REMARK 4.2. We need the above lemma in the case of Hermitian synometri
spaces of compact type and the statement in this case isl stateroposition 3.2 of
[2]. The above lemma is a generalization of this.

Proof. Let X be a compact Kahler manifold of positive holomorphic sewlo
curvature andr: X — X be an involutive anti-holomorphic isometry determiningealr
form L. Each connected component bf= F(z, X) is a totally geodesic Lagrangian
submanifold. If there exist more than one connected compooiel, they intersect by
Lemma 3.1 of [7], which is a contradiction. Therefoteis connected. O
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Theorem 4.3. Let M be a Hermitian symmetric space of compact typeand —
M be an involutive anti-holomorphic isometry determiningeal form L = F(z, M). We
define an automorphism bf G by

l.: G — G; g tgr L

We assume that L contains J. Let= [+ p be the canonical direct sum decompos-
ition determined by .. We have L= M N p. Moreover the following condition§A)
and (B) hold.

(A) Any antipodal set is included in a great antipodal set.

(B) Any two great antipodal sets are congruent.

A great antipodal set of L is represented asMu for a maximal abelian subspace
a of p. In particular, a great antipodal set of L is an orbit of the Weyl group of the
symmetric pair determined by;.|

Proof. SinceM = G-J C g, any pointx in M is represented bx = g- J for
geG.

7(x) = (z9)- I = (rgr '1)- I = (1.(9)) - J,

thus we have
F(l.,G)-JcC L.

Since L containsJ, s; and r are commutative, thuss, and |, are commutative and
dls, anddl; are simultaneously diagonalizable.

t=tNl4+tNp, m=mNIl+mnNyp
are direct sum decompositions. F&re T;M =~ m we have
T(Exp; X) = t(expX - J) = I (expX) - J = exp@d|.(X)) - J,

SO we obtain
T)L={Xem|dl,(X)=X}=mnNL

The Lie algebra ofF(l,, G) is [ and L is connected by Lemma 4.1. Thus
L =Expy(mnl) cexpl)-J =F(U;,GCp-JCF(;,G)-IJCL

are all equal, wheré=(I., G)o is the identity component of (I, G). In particular, we
getL = F(l;, G)o- J, which means that is a symmetricR-space.

We shall show thadl,(J) = —J. For XemnNI[=T;L we have J,X]emnp =
T;L becausel is a Lagrangian submanifold d¥l. Hence

13, X] = dI.[J, X] = [dI.J, dI.X] = [dI,J, X].
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On the other hand foX e m Np we have P, X] e mN[. Hence
[, X] =dI.[J, X] =[dI.J,dI. X] =[dI.J, —X].

Therefore we obtain
[dI;J, X] =—[J, X] (X €m).
The action of ad{) on m is effective, so we havdl,J = —J. ThusJ € ¢np. We can

continue to calculate (Exp; X). Sincer is involutive, |, anddl, are also involutive.
For X, Y € g we have

add 1, (X)-Y = dl, adX)*d I, (Y).
If X €m, then

e(ExpX) = exp1 (X)) 3 = Y o+ adl 1 (X)) J
k=0

=dl, Zﬁad(X) dl.J
k=0
=dl. expX-(—=J) = —dI.Exp; X.

This implies
(X) =—=dl.(xX) (xe M)

and

L={xeM]|z(X)=x}=MnNp.

Let S be an antipodal set of. It follows from the result above thatX, Y] = 0
for any X, Y € S. We denote byS the subspace spanned By The subspacé& is
an abelian subspace pf So we can take a maximal abelian subspac# p including
&. We getSc M na. It follows that any great antipodal set &f is M N a for a
maximal abelian subspaaeof p and that the conditions (A) and (B) hold. O

Corollary 4.4. For a symmetric R-space the following conditigA3 and (B) hold.
(A) Any antipodal set is included in a great antipodal set.
(B) Any two great antipodal sets are congruent.

Proof. Any symmetricR-space is a real form of some Hermitian symmetric space
of compact type by a result of [4]. Hence the corollary fokofwsom Theorem 4.3. []

The authors have proved the following theorems in [6].
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Theorem 4.5([6] Theorem 1.1). Let M be a Hermitian symmetric space of com-
pact type. If two real forms { and L, of M intersect transversallythen Ly N L, is
an antipodal set of L and L.

Theorem 4.6 ([6] Theorem 1.2). Let M be a Hermitian symmetric space of com-
pact type and let L, Lo, L7, L, be real forms of M. We assume that,IL; are con-
gruent and that L, L, are congruent. If k, L, intersect transversally and if L. L}
intersect transversallythen#(L1 N L) = #(L} N LY).

We can make the conclusion of Theorem 4.6 stronger undewoag&r assumption
as follows:

Corollary 4.7. Let M be a Hermitian symmetric space of compact type and let
Li, Ly, LY, LS be real forms of M. We assume thag,IlL; are congruent and that
Lo,L% are congruent. We also assume thatIL, intersect transversally and that} L}
intersect transversally. (L1 N Ly) =#L1, then LiNL, and L} NL, are congruent.

Proof. According to Theorem 4.6; N L, is an antipodal set of;. The assump-
tion #(L, N Ly) = #L, implies thatL; N L, is a great antipodal set df;. Accord-
ing to Theorem 4.6 #(; N Ly) = #(L; N L,). Sincel,, L} are congruent, we have
#(L7 N L) =#L]. HencelL] N L} is also a great antipodal set &f,. We can take
¢ € lo(M) satisfyingé(L1) = L), thus¢ (L) NL)) is a great antipodal set df; and
it is congruent toL; N Ly in Ly by Theorem 4.3. Therefore; N L, and L} N L} are
congruent inM. []

5. The adjoint group of SU(4)

In this section we show that antipodal sets of the adjoinugrof SU(4) do not
satisfy the condition (A).

We first review some results on antipodal sets of compact exxied Lie groups
obtained in [1]. LetG be a compact connected Lie group with a biinvariant Riemann-
ian metric. The geodesic symmetsy at the identity elemené of G is given by

s(y)=y "' (yeO).

For anyx, y € G we haves,(y) = xy~*x. Without loss of generality it is sufficient to
consider an antipodal seét containinge. We takex, y, z€ A. In this case we have
x2 =eandy = s(y) = xyx. Hencexy = yx. Moreovers,(xy) = xy. Thus AU {xy}
is also an antipodal set. Therefofeis a subgroup ofG, if A is a maximal antipodal
set containinge. According to the fundamental theorem of finite abelian gA is
isomorphic to a product of som®,’'s. Hence the 2-number d& is equal to a power
of 2.
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Now we consider the adjoint group &U(4). The center ofSU(4) is Z = {114,
+i14}, which is equal to the kernel of AdSU(4) — Ad(SU(4)). We denote bye
the identity element of AgU(4)). Any antipodal set of AgU(4)) containinge is
included in F(s, Ad(SU(4))), so we investigatd-(s., Ad(SU(4))). We have

F(se, Ad(SU(4))) = Ad({x € SU4) | X2 € Z}).

Each connected component pf € SU4) | x? € Z} is a conjugate class of an element
of a maximal torusS(U (1)*) of SU(4) and we can obtain that all connected components
of F(se, Ad(SU(4))) are

My = {e},

M; = Ad({glg™ | g € SU4)),

M7 = Ad((gJg™ | g € SU4)),
where | = diag(1, 1,—1, —1) and J = diag@™/*, €7/4, €7/4, e7137/4). We denote by
Gk(R") the real Grassmann manifold consisting of all real subsparf dimensiork

in R" and by Gy(C") the complex Grassmann manifold consisting of all complelx- s
spaces of dimensiok in C". We can see

M;" = G(C*)/Z; = G2(R),
M, = SU(4)/S(U(3) x U(1)) = G1(C?.

Chen and Nagano [1] showed thatGk(K") = (i) for K = R, C in Proposition 6.1.

Hence we have #M;" = (g) =15 and #M,” = 4. If Ais a great antipodal set d¥l;",
then {e} U A is an antipodal set of A&U(4)). So we have

#HAdA(SU4)) > 1 + #A = 16.
On the other hand
#HAdA(SU4)) < #ZMO+ + #sz +#HM; =20

by Proposition 1.9 in Chen—Nagano [1]. The 2-numbghdfSU(4)) is a power of 2,
thus #Ad(SU(4)) = 16 and{e} U A is a great antipodal set of A8(J(4)). This is a
counter example of

HM = Z#ZMJ-*,
i

which holds for a symmetridR-space by Theorem 2 in Takeuchi [5].
We can see that

Al — {Ad(diag(ein/4’ eirr/4, eirr/4' e—3irr/4)), Ad(diag@—SinM, eirr/4, eirr/4' ein/4))’
Ad(diag(ei”/A, e—3irr/4, eirr/4, eirr/4)), Ad(diag(ei”M, eirr/4, e—3irr/4, ein/4))}
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is a great antipodal set d¥l;” and

A =({e}UA
U {Ad(diag(, i, —i, —i)), Ad(diag{, —i, i, —i)), Ad(diag{, —i, —i, 1))}

is an antipodal subgroup of ABU(4)). The centralizer of Ad]) is equal to Ad§(U (3)x
U(1))). We can get the centralizer of each elementtgfsimilarly and the centralizer
of A; is equal to AdS(U (1)%)). If A; is an antipodal subset of ABU(4)) including Ay,
then A; is included in the centralizer oAy (C Az) and A; € Ad(S(U(1)%) = U(1)%.

8 = #A; < #A; <t Ad(S(U(1)%) = 8,

hence these are all equal ag is a maximal antipodal subgroup of A8l((4)). As
we have showed,#Ad(SU(4)) = 16 and #, = 8. ThusA; is not included in any great
antipodal subgroup of A&U(4)). Hence AdEU(4)) does not satisfy the condition (A).
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