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Abstract
We study entire solutions for a discrete diffusive equationwith bistable convolu-

tion type nonlinearity. We construct three different typesof entire solutions. Each of
these entire solutions behaves as two traveling wavefrontsconnecting two of those
three equilibria as time approaches minus infinity. Moreover, the first and second
ones are solutions which behave as two traveling wavefrontsapproaching each other
from both sides ofx-axis. The behavior of the second one is like the first one ex-
cept it connects two different wavefronts. The third one is asolution which behaves
as two different traveling wavefronts and one chases another from the same side of
x-axis.

1. Introduction

In this paper, we study the following discrete diffusive equation with convolution
type nonlinearity.

(1.1) ut (x, t) D D2[u](x, t) � du(x, t)C
X

i2Z

J(i )b(u(x � i , t)), x 2 R, t 2 R,

whered > 0, J(i ) D J(�i ) � 0,
P

i2Z J(i ) D 1, and

D2[u](x, t) WD D[u(x C 1, t)C u(x � 1, t) � 2u(x, t)]

for some positive constantD. Throughout this paper, we shall always assume that the
function b( � ) is an increasing smooth function on [0, 1] such that
(P1) b(0)D b(a) � adD b(1)� d D 0, where 0< a < 1,
(P2) b(t) < dt for 0< t < a, b(t) > dt for a < t < 1,
(P3) max{b0(0), b0(1)} < d < b0(a) (bistable nonlinearity),

(P4)
R 1

0 [b(u) � du] du> 0 (unbalanced case).
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When J(0)D 1 and J(i ) D 0 for all i ¤ 0, (1.1) is reduced to the classical equation

ut (x, t) D D2[u](x, t)C f (u(x, t)), f (u) WD b(u) � du,

which has been studied recently in [5, 6].
We also note that (1.1) is the continuum version of the following lattice dynami-

cal system:

(1.2) u0n(t)D D[unC1(t)Cun�1(t)�2un(t)]�dun(t)C
X

i2Z

J(i )b(un�i (t)), n 2 Z, t 2 R.

For (1.2), in ecology,un represents the population density at siten, D is the migra-
tion coefficient,d is the death rate and the nonlinear functionb is the birth function
of population density which is interacting with neighbors by the nonnegative weighted
function J, if the habitat is divided into discrete regions and the population density is
measured at the representative point in each region. In thismodel, we assume that the
migration only happens to the nearest neighbors and the interaction happens with finite
or infinite range.

We say that{un(t)} is a traveling wavefront solution of (1.2) connecting two dif-
ferent equilibria{u

�

} � {0, a, 1} with speedc, if un(t) D U (n C ct) for n 2 Z and
t 2 R for some functionU (called wave profile) such thatU (�1) D u

�

. Then (c, U )
satisfies the following equation

(1.3) cU 0(y) D D2[U ](y) � dU(y)C
X

i2Z

J(i )b(U (y� i )), y 2 R,

where (as before)

D2[U ](x) WD D[U (x C 1)CU (x � 1)� 2U (x)].

Similarly, we can define the notion of traveling wavefront solution of (1.1) by setting
u(x, t) D U (x C ct), thenU also satisfies the equation (1.3).

Recently, a more general version of (1.2) including time delay was studied in
[11, 10]. In [11], they studied (1.2) with time delay for the bistable case. They proved
that the problem admits a unique (up to a translation) strictly monotone increasing
traveling wavefront solution connecting from 0 to 1 with a positive wave speed when
D � D0 for a certain positive constantD0, under the following extra assumption

(1.4)
X

i2Z

J(i ) < max

(

2
R 1

0 [b(u) � du] du
R 1

0 b(u) du
,

2
R 1

0 [b(u) � du] du
R 1

0 b(u) du� d

)

.
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More precisely, from [11, Theorem 1.1], under the above assumptions, there exist a
unique speedOc > 0 and a unique (up to translations) wave profileU (x) such that

(1.5)

8

<

:

OcU 0(x)DD2[U ](x)�dU(x)C
X

i2Z

J(i )b(U (x� i )), x 2R,

U (�1)D0, U (C1)D1, 0<U <1, U 0

>0 in R,

if D � D0. Note that a propagation failure occurs whenD is small enough.
The monostable case for (1.2) with time delay was consideredin [10]. In the

present setting, it corresponding to the case for connecting two equilibria {a, 1} or
{0, a}. They obtained the existence of the asymptotic speed of propagation, the ex-
istence and (partial) uniqueness of the traveling wavefront and the minimal speed of
the traveling wavefront for the delayed lattice dynamical system under the following
extra condition at the unstable equilibriuma, namely,

(1.6)
b0(a)(u � a) � Mju � aj1C� � b(u) � da

� b0(a)(u � a)C Mju � aj1C� for u 2 [0, 1]

for some constantsM > 0 and� 2 (0, 1]. In fact, by [10, Theorem 1.2], there exist
two constantsc

�

, c� with c� > 0> c
�

such that for anyc1, c2 (with c1 � c�, c2 � c
�

)
there existV1(x) and W2(x) satisfying the following equations:

(1.7)

8

<

:

c1V 0

1(x)DD2[V1](x)�dV1(x)C
X

i2Z

J(i )b(V1(x�i )), x2R,

V1(�1)Da, V1(C1)D1, a<V1<1, V 0

1>0 in R.

and

(1.8)

8

<

:

c2W0

2(x)DD2[W2](x)�dW2(x)C
X

i2Z

J(i )b(W2(x�i )), x2R,

W2(�1)D0, W2(C1)Da, 0<W2<a, W0

2>0 in R,

wherec� (c
�

, resp.) is the minimal (maximal, resp.) speed of (1.7) ((1.8), respectively).
The study of traveling wavefront solutions are important inmany applications. It

can describe certain dynamical behavior of the studied problem such as (1.2). But, the
dynamics of reaction-diffusion equations or its discrete analogue is so rich that there
might be other interesting patterns. Recently it is found that two-front entire solutions
exist in many problems. Here an entire solution is meant by a solution defined for all
(x, t) 2 R2. In particular, traveling wavefront solutions are also entire solutions. For the
study of entire solutions, we refer the reader to, for instance, [3, 5, 6, 7, 8, 9, 12, 13]
and reference therein.
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In a very interesting work by Morita and Ninomiya [12], they gave three differ-
ent types of entire solutions for a bistable reaction-diffusion equation (see also [6] for
the discrete diffusive case). The purpose of this work is to construct these three types
of entire solutions for (1.1). Although the main idea and themethods of proofs in
this paper are from [6, 12], there are certain difficulties indealing with (1.1) (or (1.2))
due to the convolution type nonlinearity. For example, in the construction of super/sub
solutions, we need to derive some estimations. In these estimations, the compactness
(finite range interaction) assumption is needed in this study. So, from now on, besides
the assumptions (1.4) and (1.6), we shall assume that

(1.9) J(i ) D 0 for ji j > m for some m 2 N.

We left the problem with infinite range interaction for the future study.
In fact, to construct these two-front entire solutions it iscrucial to have a pre-

cise information on the asymptotic behavior of wave tails. More precisely, we need
the following estimates for solutionsU , V1, W2 of (1.5), (1.7), (1.8) respectively.

First, there exists a positive constant� such that

(1.10) inf
y�0

U 0(y)

U (y)
� �, inf

y�0

U 0(y)

1�U (y)
� �.

Furthermore, there are positive constantsK , k, 
 , Æ such that

(1.11) ke�y
� U (y) � Ke�y, 8y � mI 
e��y

� 1�U (y) � Æe��y, 8y � �m,

where� is the unique positive root of the characteristic equation

(1.12) Oc� D D(e� C e�� � 2)� dC b0(0)
m
X

iD�m

J(i )ei�,

and� is the unique positive root of the equation

(1.13) �Oc� D D(e� C e�� � 2)� dC b0(1)
m
X

iD�m

J(i )ei�.

Next, for anyc1 � c� and c2 � c
�

, let (c1, V1(x)) and (c2, W2(x)) be solutions of
(1.7) and (1.8), respectively. Then there exist positive constants�i , �i , �i , 
i , i D 1, 2,
such that the following inequalities hold:

V1(y) � a � �1e�1y on (�1, 0]I 1� V1(y) � 
1e��1y on [0,1).(1.14)

W2(y) � �2e�2y on (�1, 0]I a� W2(y) � 
2e��2y on [0,1).(1.15)
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Furthermore, there exist positive constantsN, � such that

�[V1(y) � a] � V 0

1(y) � Ne�1y on (�1, 0],(1.16)

�[1 � V1(y)] � V 0

1(y) � Ne��1y on [0,1),(1.17)

�W2(y) � W0

2(y) � Ne�2y on (�1, 0],(1.18)

�[a� W2(y)] � W0

2(y) � Ne��2y on [0,1).(1.19)

The above asymptotic behavior of wave tail at the unstable equilibrium can be
found in [4]. But, due to the technical difficulty arising from the convolution type non-
linearity, we need to assume thatmD 2. As for the wave tail at the stable equilibrium,
the method developed in [2] is well applicable here for any finite m.

Based on these asymptotic behaviors, we prove the followingtheorems on two-
front entire solutions.

Theorem 1. Let (1.9) be in force with mD 2 and let (Oc, U (x)) be a solution
of (1.5). Then for any real number� there exists an entire solution u(x, t) of (1.1)
such that

(1.20) lim
t!�1

�

sup
x�0
ju(x, t) �U (x C Oct C �)j C sup

x�0
ju(x, t) �U (�x C Oct C �)j

�

D 0.

Moreover, u(x, t) ! 1 as t!1 for any x.

Theorem 2. Let (1.9) be in force with mD 2. For any c1 > c� and c2 < c
�

, let
(c1, V1(x)) and (c2, W2(x)) be solutions of(1.7) and (1.8) respectively. Then there exist
a constant! and an entire solution u(x, t) of (1.1) such that

(1.21)

lim
t!�1

�

sup
x��(c1Cc2)t=2

ju(x, t) � V1(x C c1t C !)j

C sup
x��(c1Cc2)t=2

ju(x, t) � W2(x C c2t � !)j

�

D 0.

Moreover, there exists� 2 R such that

(1.22) lim
t!1

�

sup
x2R
ju(x, t) �U (x C Oct C �)j

�

D 0.

Theorem 3. Let (1.9) be in force with mD 2. For any c2 < c
�

with �c2 < Oc, let
(Oc, U (x)) and (c2, W2(x)) be solutions of(1.5) and (1.8) respectively. Then there exist
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a constant! and an entire solution u(x, t) of (1.1) such that

lim
t!�1

�

sup
x�(c2�Oc)t=2

ju(x, t) �U (x C Oct C !)j

C sup
x�(c2�Oc)t=2

ju(x, t) � W2(�x C c2t � !)j

�

D 0.

Moreover, we have

lim
t!1

�

inf
x2R

u(x, t)

�

D a, lim
t!1

�

sup
x��C

ju(x, t) � 1j

�

D 0, 8C > 0.

The above constructed entire solutions have some common characters. When�t �
1, they behave as two traveling wavefronts on the opposite sides or on the same side
of x-axis. Note that, different from the previous works, we choose the distinguishing
line of the initial conditions in the above theorems to be themid-points of two front-
positions of traveling wavefronts. For example, in Theorem2, x D �c1t and x D �c2t
are front-positions for two traveling wavefrontsV1(x C c1t) and W2(x C c2t), respect-
ively. It is nature to choose the distinguishing line to bex D �(c1 C c2)t=2 in (1.21).

We organize this paper as follows. In Section 2, we give some proofs of the asymp-
totic behaviors of the traveling wavefronts stated above and some useful functions. Next,
in Section 3, we offer the proofs of Theorem 1, Theorem 2 and Theorem 3 by construct-
ing suitable super/sub solutions.

2. Preliminaries

In this section, we first study the asymptotic behaviors of a solution U (y) of (1.5)
as y !�1. Since the behavior neary D 1 is similar to the one neary D �1, we
shall only give the details fory D �1. For this, we use the following notation

N [u j ](t) WD u0j (t) � D[u jC1(t)C u j�1(t) � 2u j (t)]

C du j (t) �
m
X

iD�m

J(i )b(u j�i (t)), j 2 Z, t 2 R.

First, we have the following strong comparison principle.

Lemma 2.1. Let c 2 R, j0 2 Z and t0 2 R. Assume that uj (t) and v j (t) are
bounded and continuous in the set{( j , t) 2 Z�R j j � j0�ct, t 2 [t0, 1)} and satisfy

N [u j ](t) � N [v j ](t) when j� j0 � ct, t > t0,

u j (t0) � v j (t0) when j� j0 � ct0,

u j (t) � v j (t) when j0 � ct � j � j0 � ct Cm, t � t0.
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Then uj (t) � v j (t) for all j � j0 � ct, t > t0. In addition, if u j1(t0) > v j1(t0) for some
j1 � j0 � ct0, then uj (t) > v j (t) for all j � j0 � ct, t > t0.

Since the proof is exactly the same as the one for [2, Lemma 1],we omit it here.
Using this comparison principle (Lemma 2.1), we can follow the proof of [2, The-

orem 2] to prove the following theorem on the asymptotic behavior.

Theorem 4. Assume that(c, {u j (t)}) is a traveling wave solution of(1.2) con-
necting from0 to 1 with positive speed c. Then there exists two positive constants C1,
C2 such that

(2.1) C1 �
u j (t)

e3( jCct)
� C2, 8 j C ct � �m, t � 0

where3 is the positive root of the following characteristic equation

P(c, �) WD c� � D(e� C e�� � 2)C d � b0(0)
m
X

iD�m

J(i )e�i�
D 0.

By the definition of3, the function (x) WD e3x is a solution of the following
equation

c 0(x) � D[ (x C 1)C  (x � 1)� 2 (x)] C d (x) � b0(0)
m
X

iD�m

J(i ) (x � i ) D 0.

In the construction of sub/supersolutions, (x) play an important role. Indeed,
we define

uCj (t I �1, � , �3) WD �1 (0)C � (3)e3( jCct)
� �3 (23)e23( jCct), j 2 Z, t 2 R,

where �1 � 0, �3 � 0, � 2 R. Hereafter the functionb is suitably defined so that it is
smooth withb, b0, b00 bounded inR. Since P(c, 0)> P(c,3) D 0> P(c, 23) (due to
the fact thatb0(0)< d), we have

N [uCj ](t) � 0 when j C ct � �m, t 2 R,

if

0� �1 � E1, �3 D E3�
2, j� j � E2,

where

E1 WD
P(c, 0)

2L (0)
, E3 WD

8L (3)2e23m

�P(c, 23) (23)
, E2 WD

 (3)

E3 (23)
, L WD max

u2R
jb00(u)j.
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Similarly, by defining

u�j (t I �1, � , �3) WD ��1 (0)C � (3)e3( jCct)
C �3 (23)e23( jCct),

we also get

N [u�j ](t) � 0 when j C ct � �m, t 2 R.

Then Theorem 4 can be proved by using the comparison principle as given in the proof
of [2, Theorem 2]. We omit the details here.

Now, for a solutionU of (1.5), usingun(t) D U (nC Oct) we obtain from (2.1) that

C1e�y
� U (y) � C2e�y, 8y � �m,

where� is the unique positive root of the equation (1.12). Hence thefirst part of (1.11)
follows. We remark that this process can be carried out as long as the equilibrium is
stable. Therefore, all of the exponential tail behaviors ofU , V1, W2 near the stable
equilibria {0, 1} in (1.11), (1.14) and (1.15) can be derived similarly.

As for the exponential tail behavior near the unstable equilibrium a, we refer to
[4, Theorem 5]. There it is assumed thatm D 2. Therefore, we have the exponential
tail behaviors ofV1, W2 near the equilibriuma in (1.14) and (1.15) forc1 > c� and
c2 < c

�

when mD 2.
For the estimates related the first derivatives ofU, V1, W2, we recall from [4, The-

orem 2] that the limits

lim
y!�1

V 0

1(y)

V1(y) � a
, lim

y!1

W0

2(y)

a� W2(y)

exist and are positive. Here we need to assume thatm D 2. This result is based on
[4, Theorem 1] and is applicable to the case of stable equilibrium. Therefore, we also
have the limits

lim
y!�1

U 0(y)

U (y)
, lim

y!1

U 0(y)

1�U (y)
, lim

y!1

V 0

1(y)

1� V1(y)
, lim

y!�1

W0

2(y)

W2(y)

exist and are positive. Then the estimates (1.10) and (1.16)–(1.19) can be derived.
Next, we give some useful functions which were constructed in [5]. Given positive

constants�, c, M and considerp(t) and q(t) solutions of

p0(t) D cC Me�p(t), q0(t) D c� Me�q(t), t � 0,(2.2)

p(0)� 0, q(0)< min

�

0,
ln(c=M)

�

�

, e��q(0)
� e��p(0)

<

2M

c
.(2.3)
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Indeed, p(t) and q(t) can be solved explicitly by

p(t) D p(0)C ct �
ln[1C Me�p(0)(1� ec�t )=c]

�

,

q(t) D q(0)C ct �
ln[1 � Me�q(0)(1� ec�t )=c]

�

.

Furthermore, there exists a positive constant� such that

(2.4) �

�ec�t

2
� q(t) � ct � ! < 0< p(t) � ct � ! �

�ec�t

2
, if t � 0,

where

(2.5) ! WD p(0)�
ln(1C Me�p(0)

=c)

�

D q(0)�
ln(1� Me�q(0)

=c)

�

.

Hence,

(2.6) 0< p(t) � q(t) � �ec�t (� �), if t � 0.

Finally, we give the following definitions about a supersolution and a subsolution.

DEFINITION 2.1. A function Nu(x, t) is called a supersolution (subsolution, resp.)
of (1.1) on (x, t) 2 R � (�1, �T ] for some T 2 R, if L[ Nu](x, t) � 0 (L[ -u](x, t) � 0,
resp.) for all (x, t) 2 R � (�1, �T ], where

L[v](x, t) WD vt (x, t) �D2[v](x, t)C dv(x, t) �
m
X

iD�m

J(i )b(v(x � i , t)).

The following useful lemma can be found in [1, 3, 5].

Lemma 2.2. Suppose that-u(x,t) and Nu(x,t) are a subsolution and a supersolution
of (1.1) on (x, t) 2 R� (�1,�T ] for some T2 R, respectively and satisfy that-u(x, t) �
Nu(x, t) on (x, t) 2 R � (�1, �T ]. Then there exists an entire solution u(x, t) of (1.1)
such that

-u(x, t) � u(x, t) � Nu(x, t) for all (x, t) 2 R � (�1, �T ].

With this lemma, the construction of entire solutions is reduced to finding a suit-
able pair of super/sub solutions.

3. Entire solutions

This section is devoted to the proofs of main theorems statedin the introduction.
Since the proofs work as long as the asymptotic behaviors (1.10), (1.11), (1.14)–(1.19)
hold, we shall present the proof for generalm 2 N here.



616 J.-S. GUO AND Y.-C. LIN

3.1. Proof of Theorem 1. Let p(t) andq(t) be the solutions of (2.2)–(2.3) with
c D Oc, � D � and a constantM to be determined later. We divide our discussion into
two cases:b0(0)� b0(1) andb0(0)> b0(1).

First, we consider the case thatb0(0) � b0(1). In this case, we have� > �, where
� and� are positive roots of (1.12) and (1.13), respectively. Indeed, let

F(y) WD D(ey
C e�y

� 2)� dC b0(1)
m
X

iD�m

J(i )eiy .

Then we have

F 0(y) D D(ey
� e�y)C b0(1)

m
X

iD1

i J (i )(eiy
� e�iy) > 0

for all y > 0. Moreover, usingb0(0)� b0(1) we have

F(�) D D(e� C e�� � 2)� dC b0(1)
m
X

iD�m

J(i )ei�

� D(e� C e�� � 2)� dC b0(0)
m
X

iD�m

J(i )ei�

D Oc� > 0> �Oc� D F(�).

This implies that� > �.
Define

(3.1)

�

Nu(x, t) WD U (x C p(t))CU (�x C p(t)), x 2 R, t � 0,

-u(x, t) WD U (x C q(t))CU (�x C q(t)), x 2 R, t � 0.

Then

L[ Nu](x, t)

D p0(t)[U 0(xC p(t))CU 0(�xC p(t))]C (2DCd)[U (xC p(t))CU (�xC p(t))]

� D[U (xC1C p(t))CU (�x�1C p(t))CU (x�1C p(t))CU (�xC1C p(t))]

�

m
X

iD�m

J(i )b(U (x� i C p(t))CU (�xC i C p(t))).
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By using (1.5), we obtain

L[ Nu](x, t) D (p0(t) � Oc)[U 0(x C p(t))CU 0(�x C p(t))] �
m
X

iD�m

J(i )G(x, t, i )

D [U 0(x C p(t))CU 0(�x C p(t))]

(

Me�p(t)
�

m
X

iD�m

J(i )P(x, t, i )

)

,

where

G(x, t, i ) WD b(U (x � i C p(t))CU (�x C i C p(t)))

� b(U (x � i C p(t)) � b(U (�x C i C p(t)),

P(x, t, i ) WD
G(x, t, i )

U 0(x C p(t))CU 0(�x C p(t))
.

From

jb(uC v) � b(u) � b(v)j � Luv if u, v 2 (0, 1),

it follows that

L[ Nu](x, t) � [U 0(x C p(t))CU 0(�x C p(t))]

(

Me�p(t)
� L

m
X

iD�m

J(i )P1(x, t, i )

)

,

where

P1(x, t, i ) WD
U (x � i C p(t))U (�x C i C p(t))

U 0(x C p(t))CU 0(�x C p(t))
.

For any i 2 {�m, : : : , �1, 0, 1,: : : , m}, by using (1.10) and (1.11), we obtain

P1(x, t, i ) �
U (x � i C p(t))

U 0(�x C p(t))
�

K

�


e��i e(���)xe(�C�)p(t), if x < p(t),(3.2)

P1(x, t, i ) �
K 2e�(x�iCp(t))e�(�xCiCp(t))

�k[e�(xCp(t))
C e�(�xCp(t))]

�

K 2

2�k
e�p(t), if p(t) � x � �p(t),(3.3)

P1(x, t, i ) �
U (�x C i C p(t))

U 0(x C p(t))
�

K

�


e�i e(���)xe(�C�)p(t), if x > �p(t).(3.4)

By using the facts� > � and p(t) < 0, it follows from (3.2) and (3.4) that

P1(x, t, i ) �
Ke�m

�


e�p(t), if x < p(t) or x > �p(t).

Therefore, if we choose

M � max

�

L Ke�m

�


,
L K 2

2�k

�

,
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then L[ Nu] � 0 on R � (�1, 0]. By a similar estimation, we getL[ -u] � 0 on R �
(�1, 0].

It follows from Lemma 2.2 that there exists an entire solution u(x, t) of (1.1)
such that

-u(x, t) � u(x, t) � Nu(x, t), 8(x, t) 2 R � (�1, 0].

Now, we derive the initial condition (1.20). By translation, we may only check
� D !. For x � 0, by the mean-value theorem, (2.4) and (2.6), we get

ju(x, t) �U (x C Oct C !)j

� [u(x, t) � -u(x, t)] CU (�x C q(t))C jU (x C q(t)) �U (x C Oct C !)j

� [ Nu(x, t) � -u(x, t)] C Ke�(�xCq(t))
C

�

2
sup{U 0( � )}eOc�t

� Ke�q(t)
C K1eOc�t

for some constantK1. The case forx � 0 is similar. Hence (1.20) holds.
Secondly, we consider the case thatb0(1)< b0(0). In this case, we define

(3.5)

�

Nu(x, t) WD U (x C p(t))CU (�x C p(t)), x 2 R, t � 0,

-u(x, t) WD max{U (x C Oct C !), U (�x C Oct C !)}, x 2 R, t � 0.

Note that the definition ofNu(x, t) is the same as the former case in (3.1). Also, (3.3)
holds, since we do not need the fact that� > � when x 2 [ p(t),�p(t)]. Therefore, we
focus on the other two ranges. Sinceb0(1)< b0(0), by extending the definition ofb( � )
and taking a suitable translation ofU ( � ), we may findÆ1 > 0 such that

(3.6) b0(u) < b0(0) if u > 1� Æ1I U (z) � 1� Æ1 if z� �m.

First, we consider the casex � p(t). From the equality

b(uC v) � b(u) � b(v) D v

Z 1

0
[b0(uC sv) � b0(sv)] ds

and (3.6), it follows that

G(x, t, i ) � U (x � i C p(t))
Z 1

0
[b0(0)� b0(sU(x � i C p(t)))] ds

� L[U (x � i C p(t))]2.

Therefore,

L[ Nu](x, t) � [U 0(x C p(t))CU 0(�x C p(t))]

(

Me�p(t)
� L

m
X

iD�m

J(i )P2(x, t, i )

)

,
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where

P2(x, t, i ) WD
[U (x � i C p(t))]2

U 0(x C p(t))CU 0(�x C p(t))
.

For any i 2 {�m, : : : , �1, 0, 1,: : : , m}, by (1.10) and (1.11), we have

P2(x, t, i ) �
U (x C p(t))

U 0(x C p(t))
�

U (x � i C p(t))

U (x C p(t))
�U (x � i C p(t))

�

K 2e2�m

�k
e�(xCp(t))

�

K 2e2�m

�k
e�p(t)

for x � p(t). So if we chooseM � L K 2e2�m
=(�k), then we haveL[ Nu] � 0 for x � p(t).

The case whenx � �p(t) can be treated similarly. By the definition of-u(x, t) in (3.5),
we can easily check that it is a subsolution. Hence, by Lemma 2.2, there exists an
entire solutionu(x, t) such that

-u(x, t) � u(x, t) � Nu(x, t), 8(x, t) 2 R � (�1, 0].

Finally, we study the asymptotic behavior ofu near t D �1. For x � 0, by the
definition of -u(x, t), we obtain -u(x, t) D U (x C Oct C !). So, by the estimation of
Lemma 2.2 and (2.4),

0� u(x, t) �U (x C Oct C !) � Nu(x, t) �U (x C Oct C !)

� U (x C p(t)) �U (x C Oct C !)CU (�x C p(t))

� sup{U 0( � )}(p(t) � Oct � !)C Ke�(�xCp(t))

� � sup{U 0( � )}
eOc�t

2
C Ke�p(t).

This implies that

lim
t!�1

sup
x�0
ju(x, t) �U (x C Oct C !)j D 0.

The case forx � 0 is similar. Hence (1.20) holds and the proof of Theorem 1 is completed.

3.2. Proof of Theorem 2. Let (c1, V1(x)) and (c2, W2(x)) be solutions of (1.7)
and (1.8) respectively. Set

(3.7) Nc WD
c1 C c2

2
, c0 WD

c1 � c2

2
.

Note thatc0 > 0. We define

f (u(x, t)) WD
m
X

iD�m

J(i )[b(u(x � i , t)) � du(x, t)],
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f (u(x)) WD
m
X

iD�m

J(i )[b(u(x � i )) � du(x)],

Nf (u(x)) WD
m
X

iD�m

J(i )[b(u(x � i )) � du(x � i )].

By a simple computation, it is easy to see thatu(x, t) D R(x C Nct, t) is a solution of
(1.1) if and only if R(x, t) is a solution of

(3.8) F [R](x, t) WD Rt (x, t)C NcRx(x, t) �D2[R](x, t) � f (R(x, t)) D 0.

Also, V1(x C c0t) and W2(x � c0t) are solutions of (3.8).
Let p(t), q(t) be solutions of (2.2)–(2.3) with

� D min{�1, �2}, cD c0, M > 0 (to be determined later).

Consider
�

NR(x, t) WD H (V1(x C p(t)), W2(x � q(t))), x 2 R, t � 0,

-R(x, t) WD H (V1(x C q(t)), W2(x � p(t))), x 2 R, t � 0,

where

H (g, h) WD
(1� a)gh

h(g� a)C a(1� g)
.

We shall claim that (NR, -R)(x, t) is a pair of supersolution and subsolution of (3.8).
For this, we denote

Hg WD
�H

�g
, Hh WD

�H

�h
, Hgg WD

�

2H

�g2
, Hhh WD

�

2H

�h2
, Hgh WD

�

2H

�h�g
,

OH (b, c) WD H (V1(yC b), W2(zC c)), OHg(b, c) WD Hg(V1(yC b), W2(zC c)),

OHh(b, c) WD Hh(V1(yC b), W2(zC c)), OHgg(b, c) WD Hgg(V1(yC b), W2(zC c)),

OHgh(b, c) WD Hgh(V1(yC b), W2(zC c)), OHhh(b, c) WD Hhh(V1(yC b), W2(zC c))

for b, c 2 R. Hereafter we denotey WD x C p(t) and z WD x � q(t).
By a simple computation, we have

Hg(g, h) D
a(1� a)h(1� h)

[h(g� a)C a(1� g)]2
, Hh(g, h) D

a(1� a)g(1� g)

[h(g� a)C a(1� g)]2
.

Also, we have

Hgg(g, h) D
(�2)a(1� a)h(1� h)(h � a)

[h(g� a)C a(1� g)]3
WD h(h � a)H1(g, h),

Hhh(g, h) D
(�2)a(1� a)g(1� g)(g� a)

[h(g� a)C a(1� g)]3
WD (g� 1)(g� a)H2(g, h),
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Hgh(g, h) D
a(1� a)[(2a� 1)ghC a(1� g� h)]

[h(g� a)C a(1� g)]3
.

Because 0< W( � ) < a < V( � ) < 1, we have

(3.9) OHg(b, c) > 0, OHh(b, c) > 0, 8 b, c 2 R.

Now we are in a position to computeF [ NR]. First, we have

F [ NR](x, t) D NRt (x, t)C Nc NRx(x, t) �D2[ NR](x, t) � f ( NR(x, t))

D

OHg(0, 0)V 0

1(y)[ p0(t)C Nc] C OHh(0, 0)W0

2(z)[ Nc� q0(t)]

�

m
X

iD�m

QJ(i )[H (V1(y � i ), W2(z� i )) � H (V1(y), W2(z))]

�

m
X

iD�m

J(i )[b(H (V1(y � i ), W2(z� i ))) � d H(V1(y� i ), W2(z� i ))],

where QJ(i ) WD d J(i ), if ji j ¤ 1, QJ(i ) WD d J(i )C D, if ji j D 1.
Recall (1.7), (1.8), (3.7) and thatp(t),q(t) are solutions of (2.2)–(2.3) withcD c0.

Then we have

F [ NR](x, t)

D

OHg(0, 0)V 0

1(y)[ p0(t) � c0] C OHh(0, 0)W0

2(z)[c0 � q0(t)]

C D OHg(0, 0)[V1(yC 1)C V1(y� 1)� 2V1(y)] C OHg(0, 0)f (V1(y))

C D OHh(0, 0)[W2(zC 1)C W2(z� 1)� 2W2(z)] C OHh(0, 0)f (W2(z))

�

m
X

iD�m

QJ(i )[H (V1(y � i ), W2(z� i )) � H (V1(y), W2(z))]

�

m
X

iD�m

J(i )[b(H (V1(y � i ), W2(z� i ))) � d H(V1(y � i ), W2(z� i ))]

D M OHg(0, 0)V 0

1(y)e�p(t)
C M OHh(0, 0)W0

2(z)e�q(t)

C

OHg(0, 0)
m
X

iD�m

QJ(i )[V1(y � i ) � V1(y)] C OHh(0, 0)
m
X

iD�m

QJ(i )[W2(z� i ) � W2(z)]

�

m
X

iD�m

QJ(i )[H (V1(y � i ), W2(z� i )) � H (V1(y), W2(z))]

C

OHg(0, 0) Nf (V1(y))C OHh(0, 0) Nf (W2(z))

�

m
X

iD�m

J(i )[b(H (V1(y � i ), W2(z� i ))) � d H(V1(y � i ), W2(z� i ))].
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Recall thatV1( � ) and W2( � ) are strictly increasing. It then follows from (2.6), (3.9)
and the mean-value theorem that

F [ NR](x, t)

� Me�q(t)[ OHg(0, 0)V 0

1(y)C OHh(0, 0)W0

2(z)]

C

OHg(0, 0)
m
X

iD�m

QJ(i )[V1(y � i ) � V1(y)] C OHh(0, 0)
m
X

iD�m

QJ(i )[W2(z� i ) � W2(z)]

�

m
X

iD�m

QJ(i ){Hg(V1(yC �1i ), W2(zC �2i ))[V1(y � i ) � V1(y)]

C Hh(V1(yC �1i ), W2(zC �2i ))[W2(z� i ) � W2(z)]}

C

OHg(0, 0) Nf (V1(y))C OHh(0, 0) Nf (W2(z))

�

m
X

iD�m

J(i )[b(H (V1(y � i ), W2(z� i ))) � d H(V1(y � i ), W2(z� i ))]

� Me�q(t) A(x, t) � B(x, t) � G(x, t),

where

A(x, t) WD OHg(0, 0)V 0

1(y)C OHh(0, 0)W0

2(z),

B(x, t) WD
m
X

iD�m

QJ(i ){[ OHg(�1i , �2i ) � OHg(0, 0)][V1(y� i ) � V1(y)]

C [ OHh(�1i , �2i ) � OHh(0, 0)][W2(z� i ) � W2(z)]}

C

m
X

iD�m

J(i ){[ OHg(�i , �i ) � OHg(0, 0)]l (V1(y � i ))

C [ OHh(�i , �i ) � OHh(0, 0)]l (W2(z� i ))}

WD

m
X

iD�m

QJ(i )B1(x, t, i )C
m
X

iD�m

J(i )B2(x, t, i ),

G(x, t) WD
m
X

iD�m

J(i )[l (H (V1(y� i ), W2(z� i ))) � OHg(�i , �i )l (V1(y � i ))

�

OHh(�i , �i )l (W2(z� i ))]

WD

m
X

iD�m

J(i )G(x, t, i ),

with �1i , �2i are between 0 and�i , and l (s) WD b(s) � ds.
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By (3.9), we haveA(x, t) > 0 for all (x, t) 2 R � (�1, 0]. So in order to obtain
F [ NR](x, t) � 0, we must estimate

B1(x, t, i )

A(x, t)
,

B2(x, t, i )

A(x, t)
and

G(x, t, i )

A(x, t)
.

First, we considerA(x,t). Sincep(�1)D q(�1)D�1 andW2(1)D V1(�1)D
a, we can chooseT > 0 such that

(3.10)

8

�

<

�

:

V1(x C p(t)C l1) �
1C a

2
, if x � 0, t � �T , jl1j � m,

W2(x � q(t)C l2) �
a

2
, if x � 0, t � �T , jl2j � m.

By the form of Hg, Hh and the estimation above, we have

(3.11)

8

�

�

<

�

�

:

OHg(0, 0)D Hg(V1(x C p(t)), W2(x � q(t))) �
1

8
, if x � 0, t � �T ,

OHh(0, 0)D Hh(V1(x C p(t)), W2(x � q(t))) �
1

8
, if x � 0, t � �T .

Secondly, we considerB1(x, t, i ), B2(x, t, i ) and G(x, t, i ). For this, we define

S(x, t, l1, l2) WD W2(x � q(t)C l2)[V1(x C p(t)C l1) � a]

C a[1 � V1(x C p(t)C l1)].

By (3.10), if x � 0, t � �T , jl1j � m, jl2j � m, then

S(x, t, l1, l2) �
a

2
[V1(x C p(t)C l1) � a] C a[1 � V1(x C p(t)C l1)]

�

a(1� a)

2
.

On the other hand, ifx � 0, t � �T , jl1j � m, jl2j � m, then

S(x, t, l1, l2) �
1C a

2
[W2(x � q(t)C l2) � a] C a[1 � W2(x � q(t)C l2)]

�

a(1� a)

2
.

Therefore,

S(x, t, l1, l2) �
a(1� a)

2
, if x 2 R, t � �T , jl1j � m, jl2j � m.

This implies that there exists a constantK1 such that

(3.12) j(H1, H2, Hgh)(V1(x C p(t)C l1), W2(x � q(t)C l2))j � K1,
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for all x 2 R, t � �T , jl1j � m, jl2j � m.
Now, we are ready to estimateB1(x,t,i )=A(x,t). Consider the first term ofB1(x,t,i ,),

by the mean-value theorem, we have

[ OHg(�1i , �2i ) � OHg(0, 0)][V1(y � i ) � V1(y)]

D [Hg(V1(yC �1i ), W2(zC �2i )) � Hg(V1(y), W2(z))]V 0

1(yC �3i )

D [�1i Hgg(V1(yC �4i ), W2(zC �5i ))V
0

1(yC �6i )

C �2i Hgh(V1(yC �4i ), W2(zC �5i ))W
0

2(zC �7i )]V
0

1(yC �3i )

D [�1i OHgg(�4i , �5i )V
0

1(yC �6i )C �2i OHgh(�4i , �5i )W
0

2(zC �7i )]V
0

1(yC �3i ),

where�3i , �4i , �5i , �6i , �7i are between 0 and�i . Therefore,

B1(x, t, i ) D [�1i OHgg(�4i , �5i )V
0

1(yC �6i )C �2i OHgh(�4i , �5i )W
0

2(zC �7i )]V
0

1(yC �3i )

C [�1i OHhg(�4i , �5i )V
0

1(yC �6i )C �2i OHhh(�4i , �5i )W
0

2(zC �7i )]W
0

2(zC �3i ),

where�3i , �4i , �5i are between 0 and�i . For x � 0, t � �T , by (3.11), we have

A(x, t) �
1

8
W0

2(x � q(t)).

Moreover, from (1.14)–(1.19) and (3.12), there exists a constant K2 such that
�

�

�

�

�

OHgg(s1, s2)V 0

1(yC s3)V 0

1(yC s4)

W0

2(z)

�

�

�

�

�

� K2e�1 p(t),

�

�

�

�

�

OHgh(s1, s2)W0

2(zC s3)V 0

1(yC s4)

W0

2(z)

�

�

�

�

�

� K2e�1 p(t),

�

�

�

�

�

OHhh(s1, s2)W0

2(zC s3)W0

2(zC s4)

W0

2(z)

�

�

�

�

�

� K2e�1 p(t),

for all js1j, js2j, js3j, js4j � m. Hence, there exists a constantK3 such that
�

�

�

�

B1(x, t, i )

A(x, t)

�

�

�

�

� K3e�1 p(t), if x � 0, t � �T , ji j � m.

Using the same method to consider the case thatx � 0, t � �T , we have
�

�

�

�

B1(x, t, i )

A(x, t)

�

�

�

�

� K4e�2q(t), if x � 0, t � �T , ji j � m,

for some constantK4. Using the fact thatl 0( � ) is bounded over [0, 1], we can choose
a constantK6 such that

jl (V1( � ))j � K6V 0

1( � ), jl (W2( � ))j � K6W0

2( � ).
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By the same estimation ofB1(x, t, i ) for B2(x, t, i ), we have
�

�

�

�

B(x, t, i )

A(x, t)

�

�

�

�

� Ke�1 p(t), if x � 0, t � �T , ji j � m,

�

�

�

�

B(x, t, i )

A(x, t)

�

�

�

�

� Ke�2q(t), if x � 0, t � �T , ji j � m,

for some constantK .
Next, we estimateG(x, t, i )=A(x, t). We define

OG(g, h) WD l (H (g, h)) � Hg(g, h)l (g) � Hh(g, h)l (h).

By a simple computation, we get

(3.13) OG(g, 0)D OG(g, a) D OG(a, h) D OG(1, h) D 0, 8g 2 (a, 1), h 2 (0, a).

For x � q(t), t � 0, by (3.13), we may write

G(x, t, i ) D OG(V1(x C p(t) � i ), W2(x � q(t) � i ))

D W2(x � q(t) � i )[V1(x C p(t) � i ) � a]G1(x, t, i ).

for some bounded functionG1(x, t, i ). When x � q(t), t � �T , ji j � m, by (3.11),
we have

�

�

�

�

G(x, t, i )

A(x, t)

�

�

�

�

� 8jG1(x, t, i )j
W2(x � q(t) � i )[V1(x C p(t) � i ) � a]

W0

2(x � q(t))

� M1e�1 p(t),

for some constantM1 (independent ofx, t and i ). Similarly, for q(t) � x � �p(t), we
may write

G(x, t, i ) D [a� W2(x � q(t) � i )][V1(x C p(t) � i ) � a]G2(x, t, i ),

for some bounded functionG2(x, t, i ). When q(t) � x � 0, t � �T , ji j � m, we have
�

�

�

�

G(x, t, i )

A(x, t)

�

�

�

�

� 8jG2(x, t, i )j
[a� W2(x � q(t) � i )][V1(x C p(t) � i ) � a]

W0

2(x � q(t))

� M2e�1 p(t),

for some constantM2 (independent ofx, t and i ). When 0� x � �p(t), t � �T ,
ji j � m, we have

�

�

�

�

G(x, t, i )

A(x, t)

�

�

�

�

� 8jG2(x, t, i )j
[a� W2(x � q(t) � i )][V1(x C p(t) � i ) � a]

V 0

1(x C p(t))

� M3e�2q(t),



626 J.-S. GUO AND Y.-C. LIN

for some constantM3 (independent ofx, t and i ). For x � �p(t), t � 0, we may write

G(x, t, i ) D [a� W2(x � q(t) � i )][1 � V1(x C p(t) � i )]G3(x, t, i ),

for some bounded functionG3(x, t, i ). When x � �p(t), t � �T , ji j � m, we have
�

�

�

�

G(x, t, i )

A(x, t)

�

�

�

�

� 8jG3(x, t, i )j
[a� W2(x � q(t) � i )][1 � V1(x C p(t) � i )]

V 0

1(x C p(t))

� M4e�2q(t),

for some constantM4 (independent ofx, t and i ).
Because� D min{�1, �2} and (2.6), we may choose

M � max{Ke�� , M1e�� , M2e�� , M3, M4}.

And then we obtainF [ NR] � 0. Similarly, we can obtainF [ -R] � 0.
Hence, by (2.6) and the identity

NR(x, t)� -R(x, t)

D r (t)
Z 1

0
[Hg(V1(xCq(t)Csr(t)), W2(x� p(t)Csr(t)))V 0

1(xCq(t)Csr(t))

CHh(V1(xCq(t)Csr(t)), W2(x� p(t)Csr(t)))W0

2(x� p(t)Csr(t))] ds,

wherer (t) WD p(t) � q(t), we obtain that

0< NR(x, t) � -R(x, t) � M5ec0�t , 8(x, t) 2 R � (�1, 0],

for some constantM5.
Define

�

Nu(x, t) WD NR(x C Nct, t), x 2 R, t � 0,

-u(x, t) WD -R(x C Nct, t), x 2 R, t � 0.

BecauseF [ NR] � 0 and F [ -R] � 0, Nu(x, t) and -u(x, t) are a supersolution and a sub-
solution of (1.1) for (x, t) 2 R � (�1, �T ] respectively and

(3.14) 0< Nu(x, t) � -u(x, t) � M5ec0�t , 8(x, t) 2 R � (�1, 0],

By Lemma 2.2, there exists an entire solutionu(x, t) of (1.1) such that

-u(x, t) � u(x, t) � Nu(x, t), 8(x, t) 2 R � (�1, �T ].



TRAVELING WAVE 627

Next, we consider (1.21) and recallw is defined on (2.5). Ifx � �Nct and t �
�T , then

ju(x, t) � V1(x C c1t C !)j

� ju(x, t) � -u(x, t)j C j-u(x, t) � V1(x C c1t C !)j

� [ Nu(x, t) � -u(x, t)] C jg(x, t) � V1(x C c1t C !)j

C

�

�

�

�

(a� h(x, t))(g(x, t) � 1)g(x, t)

h(x, t)(g(x, t) � a)C a(1� g(x, t))

�

�

�

�

,

where g(x, t) WD V1(x C Nct C q(t)), h(x, t) WD W2(x C Nct � p(t)).
By the mean-value theorem and (2.4),

jg(x, t) � V1(x C c1t C !)j � supV 0

1( � )jq(t) � c0t � !j ! 0 as t ! �1.

This implies

(3.15) lim
t!�1

�

sup
x��Nct

jg(x, t) � V1(x C c1t C !)j

�

D 0.

On the other hand, becausex � �Nct, we have

a > h(x, t) D W2(x C Nct � p(t)) � W2(�p(t)) ! a as t ! �1.

This implies

lim
t!�1

�

sup
x��Nct

ja� h(x, t)j

�

D 0,

and

h(x, t)(g(x, t) � a)C a(1� g(x, t))

has a positive low-bound ifx � �Nct, �t � 1. So

(3.16) lim
t!�1

�

sup
x��Nct

�

�

�

�

(a� h(x, t))(g(x, t) � 1)g(x, t)

h(x, t)(g(x, t) � a)C a(1� g(x, t))

�

�

�

�

�

D 0.

By (3.14), (3.15) and (3.16), we have

lim
t!�1

sup
x��Nct

ju(x, t) � V1(x C c1t C !)j D 0.

Similarly, we get

lim
t!�1

sup
x��Nct

ju(x, t) � W2(x C c2t � !)j D 0.

So (1.21) holds. Finally, from Zinner [14], the asymptotic behavior (1.22) follows. We
have thus completed the proof of Theorem 2.



628 J.-S. GUO AND Y.-C. LIN

3.3. Proof of Theorem 3. Following the methods of [6, 12]), we consider the
functions

�

Nu(x, t) WD H (U (x C Nct C p(t)), W2(�x � Nct � q(t))),

-u(x, t) WD H (U (x C Nct C q(t)), W2(�x � Nct � p(t))),

where Nc WD (Oc�c2)=2, p(t) andq(t) are the solutions of (2.2) and (2.3) withcD c0 WD

(OcC c2)=2 and suitable�, M, and

H (g, h) WD
a(gC h) � (1C a)gh

a� gh
.

Then, by using a similar process as that of the proof of Theorem 2, we obtain the
conclusion of Theorem 3. We safely omit the details here (seealso [12, 6]).
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