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a Small Rectangular Area
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Synopsis: This paper executes analytical integrals of the original Mindlin's solutions, which

are intended to be used as the fundamental solution in a point matching method in place of
the original Mindlin's solutions to avoid a singularity within them and to yield more

accurate solutions by the method for 3-D elastic solid or structural problems.
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1. Introduction

A point matching method is a kind of boundary integral method for 2-D or 3-D structural analyses.
The first application of this method to 2-D elastic solid problem was done by Oliveira [1], in which
Melan's solution for an infinite elastic plane was used as a fundamental solution. The method can
naturally extended to 3-D elastic problem using Kelvin's solution for an infinite elastic solid as a
fundamental solution. A point matching method is characterized by satisfying point-wise the conditions
prescribed on the boundary planes. Therefore, this method can also be called a boundary point
matching method (BPM).

In applying this method, a lot of the known analytical solutions which exactly satisfy the field
equation are first supetposed and then satisfaction of boundary conditions on the collocation points on
boundary planes yields a simultaneous linear equation with the same degree to the number of selected
point. Therefore, accuracy of solutions by this method mainly depends on the number of collocation
points. From practical viewpoint, however, the number of collocation points as less as possible is more
desirable, if the solution obtained has a sufficient accuracy in an engineering sense. It is important,
therefore, to find optimal positions of collocation points and optimal type of fundamental solutions to
get higher accuracy with less number of collocation points on boundary planes.

In the civil engineering field, a problem of infmite half space bounded by a free surface is often
encountered such as soil foundation-structure interaction problems, pipe lines and underground
structural problems. For this type of problems, Mindlin's solution [2,3] is naturally better as
fundamental solution in a boundary point matching method than Kelvin's solution, because it originally
satisfies a free boundary surface [4].
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Another problem to be solved in a boundary point matching method is treatment of singularity of
fundamental solution. For this problem, it is effective to use the integral of the original Mindlin's

solution as a fundamental solution to remove its singularity.
This paper is mainly devoted to present the analytical integrals of the original Mindlin's solutions

regarding a small two-dimensional area, which can be used as a fundamental solution.

2. Boundary Point Matching Method

In a procedure of this method, first, a solid or a structure to be solved is cut off from an infmite half
space. Second, arbitrarily distributed forces with an unknown intensity (called adjustment forces in the
following) are applied on an auxiliary boundary planes placed exterior to the real boundary plane. Last,
a simultaneous linear equation to detennine the intensity of adjustment forces is solved to satisfy

pointwise boundary conditions on the real boundary planes.

Distribution of
adjustment forces

CD ,® : Vertical auxiliary plane

@ : Horizontal auxiliary plane
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Fig.l Boundary point matching method

Here, consider a problem of rectangular prism as shown in Fig.l. The auxiliary boundary planes are
placed exterior near to the real boundary planes. Adjustment forces stepwise distributed on a small area
are assumed. These adjustment forces are derived from integrals of the original Mindlin's solutions
over a small rectangular area on the auxilially boundary planes. Then, stresses and displacements on
the real boundary conditions can be expressed by superposition of the adjustment forces with the
unknown intensities and the external load, and simultaneous linear equations to detennine those
intensities can be obtained as follows:

C m== L [1 / X S (J 1 dA' + S / x S 0" 2 dA' + q / x S a 2 dA ' ] m

i

+ L [1 j. X S (J 1 dA " + S j. X S 0" 2 dA • + q j. X S a 2 dA "J m
j



+ r [q .. x S (J 1 dA + s .. X S (J 2 dA + t .. X S (J 2 dA] m

+ [q 0 X S( (J l)D=O dA + SoX S( (J 2)D=0 dA] In
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(1)

where em: a prescribed boundary stress or displacement, (J 1, (J 2 : the stress or displacement In

Mindlin's first or second problem respectively, t i' , S i' ,q i' , • • • •• : the unknown intensities of

adjustment force, and q 0, So: the external load intensities.

3. Fundamental Solution

3.1 Characteristics offundamental solutions

In order to cut off a three dimensional body from an infinite half elastic space, the distributed loads

on the auxiliary boundary planes may exert an action like a knife to make prescribed conditions on the

real boundary planes. The fundamental solutions are made by a solution for a uniformly distributed

stress over a small rectangular area on the auxiliary boundary planes, which can be derived from

integrals of the solutions of Mindlin's first and second problems as shown in Fig.2. Since a small
rectangular area within a three dimensional solid can be yielded in x-y plane, x-z plane and y-z plane
respectively in Cartesian coordinates, the relevant integral problems can be classified into 9 types as

shown in Fig.3, depending on the direction of a force.

y x

1 · (J 1

z

Mindlin's problem I

y

z

Mindlin's problem n

Fig.2 Mindlin's problem
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Fig.3 Integral with respect to a rectangular area

The distributed force which acts in the nonnal and tangential directions to each integral plane is
shown in Fig.3, and the stress components at any point within elastic solid by them are shown as
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follows:

CD : q S (J 1 dA,

@:t' SaldA',

(j):t" S aIdA",

® : s S (J 2 dA,

@:s' Sa2dA',

@:q" S (J2dA",

® : t S (J 2' dA

@ : q' S (J 2' dA'

@:S"S(J2'dA"

where q,s, t, · · · .• : intensities of the distributed loads, and the integral expressions have the following

meaning:

s (J 1 dA : Integral calculation with respect to the rectangular horizontal plane (A) of a stress

components of Mindlin's problems I for a unit load.
S (J 2 dA : Integral calculation with respect to the rectangular horizontal plane (A) of a stress

components of Mindlin's problems II for a unit load.
S (J 2' dA : Integral calculation with respect to the rectangular horizontal plane (A) of a stress

components of Mindlin's problems II of y axis directional concentrated force for a
unit load.

S (J 1 dA " J (J 2 dA' and S (J 2' dA' :

Similar integral calculation with respect to the rectangular vertical plane (A' ) of a
stress components of Mindlin's problems I and II.

S (J IdA", S (J 2 dA " and S (J 2' dA" :

Similar integral calculation with respect to the rectangular vertical plane (A ") of a
stress components of Mindlin's problems I and II.

3.2 Mindlin's solution

Mindlin's solutions are an analytical solution for a concentrated force acting on an inside of
semi-infmite solid consisting of homogeneous and isotropic elastic material.

In Cartesian coordinates (x,y,z), the stresses (J(a x, a y, a z, t" xy, 1: yz, 'C zx), the strain f (f x, E y,

E z, Y xy, Y y z, l' z x) and the displacements <5 (u, v, w) are given as,

au ov aw
E x ax' E y==ay' E z==--a-;- ,

au av avaw
'Y xy= ay+a-;-, 'Y yz= --a-;-+ay- , y zx==

a w a u--+--a x a z
(2)

111
EX=E{ax-v(ay+az)}, Ey= E{ay-v(a.+ax)}, Ez= E{az-v(a,,+a y)},

1 1 1
Y xy==c;t" xy, Y yz==c;1: yz, Y zx==c;1: zx (3)

in which E : Young's modulus, v : Poisson's ratio and G : modulus of elasticity in shear with
E

G==
2(1 + v )
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Figure 4 shows a positive direction of stress components.
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Fig.4 Stress components

(1) The solution of Mindlin's problem I

Taking the position of a vertical force P and the coordinate system as Fig.5, the solutions of
Mindlin's problem I are given as follows:

y

z

r 1 == [x 2 + Y 2 + (z - D)2fl2

r2==[x 2+ y2+(Z + D)2f'2

Fig.5 Mindlin's problem I

Px [Z-D (3-4v)(z-D) 4(1-v)(1-2v) 6ZD(Z+D)]
u== --3-+ 3 - + 5

16 1t (1 - v )G r 1 r 2 r 2 (r 2 + Z + D) r 2

v==

w==

Py [Z-D (3-4v)(z-D) _ 4(1-V)(1-2V)+6ZD(Z+D)]'
161t(l-v)G rl 3 + r2 3 r2(r2+z+D) r2 5

P [3-4 v (z - D)2 1+4(1- v )(1-2 v) (3-4 v)(z + D)2 -2zD
---+ 3 + + 3

16 1t (1 - v )G r 1 r 1 r 2 r 2

6zD(z + D)2 ]
+ 5r 2

a x ==
P [(1-2V)(Z-D) _ 3x 2(z-D)+ (1-2v){3(z-D)-4v(z+D)}

81t (1- v) r 1 3 r 1 5 r 2
3

3(3-4 v)x 2(Z - D)-6D(z + D){(1-2 v)z -2 v D}

r 2
5

4(1- v )(1- 2 v) [ X 2 X 2 J]
r 2 (r 2 + Z + D) 1- r 2 (r 2 + Z + D) - r 2 2 .

30x 2 zD(z + D)
r 2 7
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P [(1-2 v)(z - D) 3y 2(Z - D) (1-2 v ){3(z - D)-4 v (z + D)}
~-""";""";'-3-~- 5 + 3

8 11: (1- v ) r 1 r 1 r 2

3(3-4 V)y 2(Z - D)-6D(z + D){(1-2 v)z -2 v D}

r 2
5

4(1-V)(1-2V)[1_ y2 _LJJ
r 2 (r 2 + Z + D) r 2 (r 2 + Z + D) r 2 2

30y 2 zD(z + D)

r 2 7

Oz== __p__ [_ (1-2V~(Z-D)_3(Z-~)3+ (1-2v)~Z-D)
811: (1- v ) r 1 r 1 r 2

_ 3(3-4 V)Z(Z + D)2 -3D(z + D)(5z - D) _ 30zD(z + D)3J

r2 5 r2 7

Pxy [
811: (1- v)

3(z - D)
r 1 5

3(3 - 4 v )(z - D)

r 2
5

30zD(z + D)
r 2 7

t' z x==

+ 4(1- v )(1- 2 v ) [ 1 + 1 JJ
r 2 2 (r 2 + Z + D) r 2 + Z + D r 2

Py [_ 1-2 v _ 3(z - D)2 + 1-2 v _ 3(3-4 v)z(z + D)-3D(3z + D)
8 11: (1- v ) r 1 3 r 1 5 r 2 3 r 2 5

- 30zD(z;- D)2 ]
r 2

Px [_ 1-2 v _ 3(z - D)2 + 1-2 v _ 3(3-4 v )z(z + D)-3D(3z + D)
8 11: (1 - v ) r 1 3 r 1 5 r 2 3 . r 2 5

- 30zD(z + D)2 ]
r 2 7

(4)

(2) The solution of Mindlin's problem II

Taking the position of a horizontal force H and the coordinate system as Fig.6, the solutions of
Mindlin's problem II are given as follows:

..r--a----,-~x

H---+.. ••
y (0, 0, D)! ...... -.

r 1'- (x,y, z)
(02,02)

z

r 1 ==[x 2+ Y 2 +(z - D)2fl2

r 2== [x 2 + Y 2+ (z + D) 2r/2

Fig.6 Mindlin's problem II
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H [3-4V x
2

1 (3-4v)x
2

2zD ( 3X 2J--+-+-+ +- 1---16 1t (1 - v )G r 1 r 1 3 r 2 r 2 3 r 2 3 r 2 2

+4(1-v)(1-2v) ( X
2

JJ
r 2 + Z + D 1- r 2 (r 2 + Z + D)

Hxy [_1_ + 3 - 4 v _ 6zD _ 4(1- v )(1- 2 v ) J
16 1t (1 - v )G r 1 3 r 2 3 r 2 5 r 2 (r 2 + Z + D) 2

Hx [Z-D (3-4v)(z-D) 6zD(z+D) 4(1-V)(1-2V)J
16 n (1- v)G r 1 3 + r 2

3
- r 2

5 + r 2(r 2 + Z + D)

ax==
Hx [_1-2V _ 3x 2 + (1-2v)(5-4v) _ 3(3-4v)x 2

8 1t (1 - v ) r 1 3 r 1 5 r 2 3 r 2 5

_ 4(1-v)(1-2v) (3- X2(3r2+z+D~ 6D ~ 5X 2 ZJJ
( + + D) 2 2 ( + + D) + -5 3D - (3 - 2 v )(z + D) + -2-r2r2 z r2 r2 z r2 r2

ay== Hx [1-2V _3y 2 + (1-2v)(3-4v)_ 3(3-4v)y2
8 1t (1 - v ) r 1 3 r 1 5 r 2 3 r 2 5

4(1-v)(1-2v) [ y2(3r2+z+D)~ 6D ~ 5y2 zJJ
- r 2 (r 2 + Z + D) 2 1- r 2 2 (r 2 + Z + D)J+ r 2 5 ~ - (1 - 2 v )(z + D) +~

a z ==

!' zy==

Hx [ 1-2 v _ 3(z - D) 2 _ 1-2 v _ 3(3 - 4 v )(z + D) 2

8 1t (1 - v ) r 1 3 r 1 5 r 2 3 r 2 5

+ 6D
5

[D +(1-2 v )(z + D)+ 5z(z + 2
D)2 JJ

r2 r2

Hy [_ 1- 2 v _ 3x 2 + 1- 2 v _ 3(3 - 4 v )x 2

8 1t (1 - v ) r 1 3 r 1 5 r 2 3 r 2 5

_ 4(1-V)(1-2V)(1_ X
2
(3r2+z+D)J_ 6zD (1- 5X

2 JJ
r 2 (r 2 + Z + D) 2 r 2 2 (r 2 + Z + D) r 2 5 r 2 2

3Hxy [_ z - D _ (3 - 4 v )(z + D) + 2D (1- 2 v + 5z(z + D)J J
8 1t (1 - v ) r 1 5 r 2 5 r 2 5 r 2 2

!' zz== __H__ [_ (1-2 v )(~ - D) _ 3x 2(Z 5- D) + (1-2 v )3(z - D)
8 1t (1 - v ) r 1 r 1 r 2

3(3-4 v)x 2(Z + D) 6D ( 2 5x 2 Z(rz2+
2

D)J ]- - - z(z + D)-(1-2v)x - --~-..;.-.

r2 5
72

5 (5)

3.3 Integral ofMindlin's solutions over a rectangular area

In order to derive solutions for a uniformly distributed load over a small rectangular area from
Mindlin's solutions (4) and (5) mentioned above, we first take a coordinate system as Fig.7. Then, the
integral calculation of Mindlin's solutions are executed by exchanging x by x - x 0 and y by y - y 0

in expressions (4) and (5) given in the coordinates of Figs.5 and 6. From the sake of this, the
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following fonnulas about replacement of variables can be utilized.

X2 X-X2
S f(x -Xo,y -yo,D) dxo==- S f(X, Y,D)dX

Xl X-Xl

o

(6)

y (X o,y 0, D)

1(x,y, z)
Reference point

z

Fig.7 Mindlin's solution

As already mentioned in Fig.3, integrals required for the fundamental solutions of boundary point
matching method are classified into 9 cases, as shown from CD to ® in Fig.3. However, the solutions
for a force along y-axis can easily be derived from the solutions for a force along x-axis exchanging
corresponding coordinate axes. Therefore, only the five cases for a vertical force P and a horizontal
force H along x-axis, namely cases CD, ®, @, @ and ® in Fig.3 are enough to describe here the
results of integrals.

(1) Integral of the solution of Mindlin's problem lover a horizontal rectangular area
As shown in Fig.8, a reference point is placed on z-axis and one corner of a horizontal rectangular

loaded area passes through z-axis. From the results of integral using this coordinate system, an integral
for an arbitrarily located horizontal rectangular area can be obtained using a superposition principle
given by Fig.9.

o

y

~~~----~X

Reference point

z

Fig.8 Integral to horizontal rectangular area of Mindlin's problem I

Reference point
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I I
I I
I I

!_---_._~

I
I
I

---- - -:- ---------
I
I
I
I
I

1___..._
+
o

Integral area (1) (2) (3) (4)

Fig.9 Superposition of loaded area
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161[ ~1- v )G ~z - D)l G1 + {(3-4 v)(z - D)+4(1- v )(1-2 v )(z + D)}I G2 +2bzD(z + D)l E13

+4(1- v )(1-2 v )(bIo7 + aI F6)]

16 7[ ~1 - v )G ~z - D)l G3 + {(3 - 4 v )(z - D) + 4(1- v )(1- 2 v )(z + D)}I G4+ 2azD(z + D)I E 14

+4(1- v )(1-2 v )(aI G5 + hI FS) ]

q ~ 2abzD(A 22+ B 22)
16n (1- v)G (3-4 v )(b/ os + aI 07)+(5-12 v +8 v 2)(b/ 06 + aI 08) +

A2 2B2 2 C2

+ Z~D (-2(3-4V)lF1+IF3]+ Z~D (-2(S-12V+8V 2)lF2+(3-4V)lF4]J

q [2 ab(z - D)
8 1

-2v IFI-2(1-2v )/F2+2(1- v)(1-2v)/Fs+ 2
n(-v) Al CI

+ ab ~ + D 4 6D 2 2r 2ill 4a 2 zD 4 v A 22 D] J
A 2 2 C 2l (Z ) - V Z - Z + D - C 22(Z + D) A 22(Z + D) - B 2 2

q [2 ab(z - D)-2v IFI-2(1-2v )IF2-2(1- v)(1-2v)/F5+ 2
8n (1- v ) B I C I

ab ~ 6D 2 27 2 zD 4b 2 zD 4 v B 2 2 D] J
+ B 2 2 C 2 t(Z + D) - 4 V z - Z + D - C 22(Z + D) B 22(Z + D) - A 22

8 q [-2(1-V)(IF1+IF2)- ab(Z~D)!El0 - C a~D)( r
2

zD +(3 4 ) 2
n (1 - v ) 1 2 (Z 3C 2 2 - V z

+2(5-2V)ZD+D 2 ]IEU+ C4ahzDIE12 J
2(Z + D)

r zy=='

r yz-==

q [ 4(1- V )(1-2 V)/ GIO-(Z - D)/ El +(3-4 v)(z - D)l E2 -2zD(z + D)/ E3

8 n (1- v)

D ( z - D J (4(1- v ), (for z > D)] ]+ -- 5-8v- ---
z + D z + D2(1-2 v) , (for z < D)

q [ a a(z - D) 2 2azD 2azD ( 2b 2 (z - D)J
8 1 - (1 - 2 v )(1 03 - / G 4) + A- - B 2 C + -A3 + B 2 C -B2 - C 2 2n( - v) I I I 2 2 2 2

+ a{ (3 - 4 V )z + D} (z + D) ]
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+ b{(3-4v)z + D}cz + D) ] (7)

(2) Integral of the solution of Mindlin's problem II (in case of a force acting along x-axis)
The case of an unifonnly distributed force along x-axis over a horizontal rectangular area as shown

in Fig.tO is dealt with here. Procedure of integral calculation is the same to the before mentioned case.
The results obtained are as follows:

o

y

-z-.~----~ X

(0, 0, z)~ Reference point

z

Fig.tO Integral to horizontal rectangular area of Mindlin's problem II

u= 161t (:- v )G~4(1- v){ (z - D)ll' 1 + (z + D)ll' 2 + (1 - 2 v )(z + D)I I' 6 }

4 2abzD J+ (1 - v )b(I G 5+ I G 6) + (3 - 4 v )al G 7 + (5 - 12 v + 8 v 2)al G 8 + --2-

A 2 C 2

Oz=

v = 161t (:_ v )G [- C 1 + B 1 + A 1 -1z - DI+(1-8 v +8 v 2)(C 2 - B 2 - A 2 + Z + D)

+ 4(1- v )(1- 2 v )(z + D)/o 10 - 2zD ~ I! 2 + Z ~ DJ]
w= 161t (:_ v)G [(Z - D)/o 1 +{(3-4 v )(z - D)-4(1- v )(1-2 v )(z + D)}I 02

-4(1- v )(1-2 v )(bl 09 + aI 02)+2bzD(z + D)I 1!13 ]

81t (:_ v) [-(3-2 v)l 01 -(5-6 v)1 02 +2bD{z -2 v (z + D)}+4(1- v )(1-2 v )bIE15

- 2b(_1_+ 3-4v+ 2zD [_2__1_JJJ
a l{t12CI A2 2 C2 A2 2 C2 A22+C22

81t (:_ v) [-2 v {I 01 +(3-4 v)l 02} -4 v bD(z + D)-4(1- v )(1-2 v)bl 1!15



a z ==

8n (:- v) [(1- V )1011- a{4(1- v )(1-2 v)l E15- I E7 -(3-4 v )1Es+ 2zDI E9} ]

S [(Z-D) ~El+ 1 ] +{2(1-2V)Z+Z+D}[IE2+ _1_._]
8 n (1 - v ) ~ Iz - DI z + D

+2zD(z - D) ~ E3 + (z : D)3J ]

s [ ab(z - D)
8n(l-v) -(1-v)(IF3+IF4)+ A1 2 Cl

abzD(z + D) (3 -4v _ 2(1 - 2v ) __6_ 2b 2 J]
+ 2 C 2+ 2 2A 2 2 zD z(z + D) A 2 A 2 C 2
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(8)

In which, the following notations are used in the above expressions (7) and (8):

(9)

1 1 1 1 1 1
lEI ----- I E2 ----- I E3 ==-------- ,

CI BI Al C2 B2 A 2 C2
3 B2 3 A 2

3

1 1 1 1 1 1 1
I E4 ==--- I E5 --- I E6 ------ , I E7 == -- - ,

CI Bl C2 B2 C2
3 B2 3

CI Al

1 1 1 1 1 1
I E8 ==--- I E9 ==----- , I ElO == ~2+ Ji":2 , IEll == ~+ ,

C2 A 2 C2
3 A 2

3 B2 2

a 2

I El2 == A 24 +
b 2

B 2
4

'

1
IE13 == ----

B 2(Z + D)2

1 1 _
IE14 == ----

A 2(Z + D)2

1

1
I El5 == ----

C2+z+D

1
(10)
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I F 1 = ± sin - 1 [--!!!?-J (in sign ±, + for z > D; - for z < D) ,
A1Bl

• -1 [ab J1F2==sm A2B2.'

IF 3 = ± [Sin - 1 (A 1 2 + aC 1J-sin - 1 (A 1 2 - aC 1 J](in sign ±, + for z > D; - for z < D) ,
A l(C 1 + a) A l(C 1 - a)

~
2 + C J eA

2 C ~ ~ ab(a 2 - b 2) ~2 a 2 • -1 2 - a 2 I '-1

I I' 4 = sin - 1 A 2 (C 2 + a) - sm A 2 (C 2 - a)' I' 5 = sm 2 B 2 {c 2 2 + (2C 2 + z + D)(z + D) ,

_ • _ 1 (b 2 - C 2 (C 2 + Z + D)J+ ..2:.
I I' 6 - sm l (C 2 + Z + D)A 2 J 2 '

_ • _ 1 ~ 2 b 2 - C 2 2 (z + D)J + ..2:.
Il'7-sm [ A2 2 B2 2 J 2 (11)

Iz - DI(C 1 + b)
101 = log A 1 (B 1 + b) ,

Iz - DICC 1 + a)
103== log

B leA 1 + a)

(z + D)(C 2 + a)
104=log B2(A2+a) ,

Cl+ a
105 = log B 1 '

C 2+ a
I os == log B 2

C 1+ b
I 01 = log

Al

C 2+ b
I 08 = log A 2

C2+z+D
I 09 = log B 2 + Z + D '

(A 2 + z + D)(B 2 + z + D)
I 010 = log

2(z + D)(C 2 + Z + D)

(A 1 + a)(A 2 + a)(C 1 - a)(C 2 - a)I 011 = log ~-----:;.....;..-...--.--;.~------.;~--~

(A 1 - a)(A 2 - a)(C 1 + a)(C 2 + a)
(12)

(3) Integral of the solutions of Mindlin's problem lover a vertical rectangular area
In this case, the coordinate system shown in Fig.ll is used, in which one side of a rectangular

loaded area in x-z plane coincides with z-axis and a reference point is placed in y-z plane. The
expressions (13) shown in the following are given in a fonn of indefmite integral along z-axis, namely
in a fonn of j(D). Therefore, the required expressions for the case of Fig.ll must be calculated by
j(D 2) - j(D 1). In addition to that, since a reference point is placed in y-z plane in these expressions,
the expressions for an arbitrary reference points should be obtained using a superposition principle of
Fig.9.

y

nI-------.~~ X

z

Fig.ll Integral of Mindlin's problem lover a vertical rectangular area



v==

t
l

[u == ----- B 1 - C 1 + {(3-4 v )+4(1- v )(1-2 v )}(B 2 - C 2)-2zDI El
16n G(1- V)

+ {8(1- v)z +4(1- V )(1-2 V )(z + D)}I G6 ]

t 1 [ 2ayzD
161t G(l-v) B2 2 C2 -yIGI-{(3-4v)+4(1-v)(1-2v)}yIG2

- 4(1- v)(1 - 2 V ) { zI F 6 - (Z + D)I F 7 } ]
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w==
t 1 [ 2azD(z + D)

161t G(l- v) C 2B 22 +(3-4 v)(Z - D)I GI + {3z -(5-12 V +8 V 2)(Z + D)}Io2

+4(1- V )a{Io3 -2(1- v)l G4} - ~ ((7 -8 v)l F 1 + I F 3 + _2z_
2

_1_F:)
2 ~ y2 j

+ ~(2(5-12V +8v 2)lF2+ [3-4V - ~22J(lF2- IF4)] ]

t I

[
2a 3 zD 4(1- V )(1-2 V) a a [. z Ja x== ---- - - - - 3-4v -8(1- v)--

8n(1-v) B2 2 C2 3 C2+z+D C2 z+D

2aD{(1-2v)(z+D)-D} 8(1-v)azC2 2+ - -(1- v)IF5-(1-3v +4v )IFs
B 2 2 C 2 (z + D)r 2

-4(1- V )(1 +2 v)l F7 ± [; - C~J(in sign ±, + for z > D; - for z < D) ]

t
l [~+ ay2 ~3-4V- 2(9-4V)Z+lODl+ 2ay

2
D{z-2v(z+D)}

8 n (1- v ) B 1 2 C 1 B 2 2 C 2 ~ Z + D j B 22 C 2

+ _8(.;.-.1_-_v~)az_C_2

r 2(Z + D)

-(1-4v)lF6 ]

t 1

[
a(z - D) 2 a{ 5(z + D) 2 - 6D 2 +4z 2 - 2(7 - 2 v )(z + D)z}

Oz==---- 2 + - 2 -
8n (1- v) B 1 C 1 B 2 C 2

2a(z+D)2 zD(3C2 2 -a 2) ]
- -v(IF5-IFs)

B2 4 C2 3

t 1 Y [ (5 - 4 v )z - (3 - 4 v )DI E 2

8
- lEI + + 2zDl E 3 - 4(1- v )(1- 2 v )1 E 8

n (1- v) z + D

- 8(1- v ) z [f2 -~J ]
z+D r 2 y2
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r yz=
t I [ (z - D)

(1 - v )(! G 1 - ! G 2) + B 2 C
8 n (1- v ) 1 1

_ 2a(z + D)zD(3C 22- a 2) ]

B2 4 C2 3

ay{2(3-2v)z -(Z + D)}

B 2
2 C 2

t I 1_(1- v)l 04 -(Z - D)lI!:1 + {(5-6 V)Z - D}I I!: 2+2(z + D)zDI 1!:3J
8n (1- v) l (13)

(4) Integral of the solutions of Mindlin's problem II over a vertical rectangular area (in case of forces

acting in x-z plane)
In this case, Fig.12 is used as a coordinate system. Procedure of integral to obtain the required

expressions is the same to previous case (3). Expressions corresponding to (13) are shown as follows.

x

y

(O,y, z)
Reference point

z

Fig.12 Integral of Mindlin's problem IT over a vertical rectangular area

u=
S [ 2az ( z(z + D)I (1 - v )(1 - 2 v ) r 2

1671: G(l-v) ---c-: 1+ r 2 j+ (C2+z+D)2 +4(1-v){(z-D)/ol-(z+D)/02}

+ a { (3 - 4 v )l 0 3 - (3 - 6 v +4 v 2)1 0 4 } - 4(1 - v )y(1 F 1 - 1 F 2) J

v= 16 s~!t ) [ZZ!E2+ZZ 2(Z+D)!E5+(1-V)(1-ZV) ( r2

2
n - v (C 2 + Z + D)

- 105+(1+2 v -4 v 2)1 O~

w = 16 71: ~;1_ v) ~ 1 - C 1 + {3 - 4 v - 4(1- v )(1- 2 v ) }(B 2 - C 2)+2zDI I!: 2

+4(1- 2 v ){z - (1 - v )(z + D)}1 G ~

S [-(1-3 v )+2(1- v )(1-2 v) (c 2(C 2 + Z + D)- x 2

8n(1-v) (C2+z+D)2
B 2 J

B2+z+D



Oy==

o z ==

r xy==

r yz ==

(z - D)x 2 [D zC 2 J
+ r 2C. -2x

2

z C2 3 (Z+D)+ r 4 (z+D) -{(3D+(1-4v)z}/E2

+ (3 - 4 v )y 2 (Z + D)I E 5+ 2y 2 Z 2 (Z + D)/ E8 + (3 - 2 v )1 05 - (1 - 2 v )(3 + 2 v )10 6 ]

_ _ S __ [(2-3V),(fOrz>D) (C2(C2+Z+D)-X2 B2 J
-2(1- v)(1-2v) - ----

8rc(1-v) (-3v),(forz<D) (C2+z+D)2 B2+Z+D

4 v X 2 D
2 C +2zI I! 2 + z 2 (Z + D)/ I! 5 - Y 2 {3(z + D) - 4 v z}I E 5 + Y 2 (Z + D)/ I! 4

r 1

s [-(z -D)I EI - {Z + D -2(1-2 v )z}1 E2 +2zD(z + D)/ E3 +2 V (I 05 + 106)l
8rc(1- V) J

S [-(1-V)/1'5- 2ay(1-v)(1-2v) + ay (Z-D_(3_4V+ 2Z
2JZ+DJ

8 rc (1 - V ) (C 2 + Z + D)2 r 2 C 1 r 2 C 2

- z
2
7D [Z::2+ ~J]

sly [ ]
- / E 1 + / E 2 +4 V Z(Z + D)/ I! 5 + 2zD/ I! 3

8rc (1- V)
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In which, the following notations are used in the above expressions (13) and (14):

(15)

1 1
/E2== ---

C 2 B 2

1

B 2 'ly

1 1
/ ------

E5 - C 2 B 2
2 r 2 y

1 1
/ ------

ES- C 4 B 42r 2y
1

/ 1!7 == C 3 2
2 r

1

1

B 2+ z + D
(16)
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[ . -1[ac 1+ r 2J . -1[ Y J] (in sign ±, + for z > D~ - for z < D) ,I F 1 == ± sm r(C 1 + a) - sm B 1

_. -1(aC2-r 2J+' -l[LJI F4 - sm SIn B
r(C 2 - a) 2

== + [ . _1 [a 2 (z - D) 2 - Y 2 C 1 2J+ ~ ]
I P 5 - sm r 2 B 1 2 J 2

_. _,Ca2(z+D)2_y2C22J+~
Ips-sm [r 2 B2 2 J 2

(in sign ±, + for z > D; - for z < D) ,

_ • _ 1 (a 2 - C 2 (C 2 + Z + D21 + ~
I P7 - sm (C 2 + Z + D)B 2 j 2

(17)

Cl+ a
I G 1 == log B 1 '

C 2+ a
I G 2 == log B 2

I G3 == ± log _C_l_+...;..Iz_-_D......;I
r

I - + I (C 1 +Iz - D/)y
G5 - - og

(B 1 + z - D)r

C2+z+D
I G6 == log + DB 2+ z

(in sign ±, + for z > D; - for z < D) ,

(in sign ±, + for z > D; - for z < D) ,

C2+z+D
IG4==log--------

r

(18)

(5) Integral of the solutions of Mindlin's problem II over a vertical rectangular area (in case of forces
acting in y-z plane)
In this case, the coordinate system as shown in Fig.13 is used. Procedure of integral calculation is

the same to previous case. Expressions corresponding to (14) are shown as follows.

y

x

(x, 0, z)
Reference point

z

Fig.13 Integral of Mindlin's problem II over a vertical rectangular area



xl G 1 - { (3 - 4 V ) - 4(1 - V ) (1 - 2 V ) } xI G 2

u==

v==

w==

q [_ 2b ( C 2 Z 2 _ (1 - v)(1- 2 v )(z + D)) _ 2x 2 bzD
16nG(1-v) lCz+D)r 2 C2+z+D j A2 2 C2(z+D)+(3-4v)xIFl

x{I F 3 - (3 - 4 v )1 F 4 }

-{1+4(1- v)(1-2v)}xIF2+ -------
. 2

- {I +4(1- v )(1- 2 v )}{bI 04 + (z + D)I 06} +(3-4 v )(Z - D)/ 01 +2zI 02 ]

16 ~~; ) [2zI E 2 + 2z 2 (z + D)I E 4 + (1 - v )(1- 2 v ) ( r 2 2 - X 2 J
n -V (C2+z+D) (A2+Z+D)2

-Ios+(1+2v -4v 2)/0j

q I I 2bxzD

16 n G(l- v) [ A 2
2 C 2
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Ox==

-2(1- 2 v ){zI F4 - 2(1- v )(Z + D)1F2 ~

q [b [<Z-D)(C1 2+x 2)_ (3-4v)(zo+D)(C2 2+X 2)
8 n (1- v) [X r 2 CIA 1 2 r 2 C 2 A 2

2

2x 2 b 2 Dz+------
A 2 4 C 2 3 (Z + D)

2x 2 Z 2 2z 2 C 2 4z 2 C 2------ + - ----
A 2 2 C 2 (Z + D) 3 r 2 (Z + D) 3 r 4 (Z + D)

o z ==

2(1- V )(1- 2 V ) J 2 ]+ 2 -(1-v)IF3-(1-3v+4v)IF4-4(1-v)(1-2v)Ip2
(C 2 + Z + D)

q [( Z - D (3 - 4 V )(z + D ) 2 V D zD z 2 C 2

a y= 8n (1- v) bx ~ - r 2 C 2 + A 22 C 2 - C 2 3(Z + D) - r 4(Z + D)

z2(z+D) 2(1-V)(1-2V)] ~
- - -v{IF3-(1-4v)IF4}

r 4 C 2 (C 2 + Z + D)2

q [ bx(z - D) bx ( 6x 2 Z 6z 2 (z + D)
8n(1-v) A1 2 C1 + A2 2 C2 z+D+4(1+v)z-A7- A2 2

-V(IF3+IF4)]

q I y [ b 2 (z - D) (3 - 4 V )b 2 (z + D)
r xy== ---- 2 - 2 +2zIE2-2x 2 zIE3-(1-2v){IGs+(1-2v)IGs}

8 n (1- v) reI r C 2

[
Ix 2 2x 2 1 1 J

+2z 2 (z + D) 2 C - 2 C 3 - ----;--C + A----S +~Ar 2 r 2 r 2 2 X 2
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(
b2 C2 A2 JJ

+2(I-v)(1-2v) (C2+z+D)2-C2+Z+D+ A2+Z+D

r yz == q I X [ IE, + I E2+ 2zDI E3+ 4 v Z(Z + D)/ E4 J
8n: (1- v) [

__q:--_ I bx 2 bx 2 _ 4 v bz [ C 2 _ X 2 J- 2bzD [ 1_~
8 n: (1- v) [A 1 2 C 1 A 2 2 C 2 Z + D r 2 A 2 2 C 2 A 2 2 C 2 A 2 2

A ~22;222J+(1-2 V )(10, - I 02)J (19)

In which, the following notations are used in the above expression (19):

(20)

1 1
IE4==-C2 --A2

2 r 2 x
(21)

I == ± [ . - 1 (b 2 - C 1 (C 1 + Iz - DDJ+ . -1 [£..] ]
F 1 sm A 1 (C 1 + Iz - DD sm r

I _. -1 (b 2 - C 2(C 2 + Z + D)J 1t
F2- sm +-

A 2(C 2 + Z + D) 2

(in sign ±, + for z > D; - for z < D) ,

. _ + ~ . _1 [b 2 (z - D) 2 - C 1 2 X 2J 1t ]

IF3--L'm r 2A,2 J+2"

_ . -1 (b 2(Z + D)2 - C 22X 2J ~
I F 4 - SIn r 2 A 2 2 + 2

(in sign ±, + for z > D~ - for z < D) ,

(22)

C 1+ b
I G1 == log A 1

+ I C l+lz - DI
I G3 == - og B 1

I
- + I (C 1 + z - D)r

G5 - - og
(A 1 + z - D)x

C2+z+D
IG6==log

A2+Z+D

C 2+ b
I G 2 == log A 2

(in sign ±, + for z > D~ - for z < D) ,

(in sign ±, + for z > D; - for z < D) ,

C2+z+D
I G 4 == log -----

B2

(23)
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4. Concluding Remarks

To avoid a singularity of a fundamental solution to be used in a boundary point matching method
and to get more accurate solutions by the method for 3-D elastic analysis of solids or structures,
analytical integrals of the original Mindlin's solutions over a small rectangular area within an infmite
half space were executed. Since the resultant integral expressions may be rather complicated but

analytically exact, they are useful as not only a fundamental solution of boundary point matching
method but also an elementary solution available for a specific 3-D elastic problem in place of the

original Mindlin's solutions.

References

[1] Oliveira, E. R. A. : Plane stress analysis by a general integral method, Proc. A.S.C.E., Vol. 94, No.

EM1, pp. 79-101, 1968.
[2] Mindlin, R. D. : Force at a point in the interior of a semi infinite solid, Physics, Vol. 7, No.5, pp.

195-202, 1936.
[3] Shimada, I., Okamura, H. and Sonoda, K. : A method of solution for analysis of a cross-anisotropic

semi-infinite solid bounded by a free or fixed surface, Mem. Fac. Eng., Osaka City Univ., Vol. 23, pp.123-

138, 1982.
[4] Okamura, H. and Shimada,!.: A method of numerical analysis of three-dimensional elastic problems with its

applications, Proc. J.S.C.E., No. 199, pp. 33-43, 1972 (in Japanese).


