
9

Access Load Balancing on the Parallel Storage Systems

Masahisa SHIMIZU* , Yasuhiro OUE*, Kazumasa OHNISHI*, Toru KITAMURA*
and Eiji SHIMIZU**

(Recieved September 30, 1996)

Synopsis
A massively parallel computer handles massive amount of data with simultaneous access requests from

multiple processors, and therefore the massively parallel computer must have a large capacity secondary

storage system of very high concurrency. Such a storage system should consists many disks that are

connected in paralle. With such large-scale parallel disk systems, access load balancing is extremely

important to enhance the effective operation of all disks. This paper proposes a parallel file access method

named DECODE (Dynamic Express Changing Of Data Entry) that implements load balancing among disks

by dynamically finding the l~ss busy disks for writing data. The efficiency of this method was verified by

preliminary performance evaluation using software simulation under varying access conditions.

Keyword: parallel computer, secondary storage, load balancing, disk, RAID.

1. Introduction
We have been assumed in studies on secondary storage for massively parallel computers involving more

than 1,000 processors. They are targeting scalability of up to approximately 1,000 disks.

Load balancing of access requests is extremely important in a parallel disk system of such a large scale,

whose scalability is easily impaired by a heavy concentration of data accesses. Striping is often used to

achieve load balancing, and there have been some studies done to determine appropriate striping sizes. They

claim that an appropriate striping size can be determined by the number of concurrent access

requests(simultaneity) that reach an array of disks at a given time. I) However, several applications having

various access characteristics will run simultaneously on the massively parallel computers that we assume.

Therefore, this simultaneity of access and access patterns are likely to change from time to time. This makes

it hard to achieve load balancing by only static striping. One of the common methods is a dynamic load

balancing in which data in a disk having a large access workload (hot disk) is transferred to another disk of

less access workload(cold disk)2). But this method necessarily generates side effect of an additional access

for making such data transfers and thus requires the control of timing at which data is transferred.

The DECODE method being proposed in this paper for parallel file access is designed to achieve load

balancing by changing the disks into which data is written according to load conditions. 3) Although this

method has no effects in situations requiring only read accesses, it ensures a substantial reduction in

overhead in situations containing write accesses because it does not create any additional data access for

load balancing. This paper presents the configuration of the parallel secondary storage (Chapter 2), detailed

description of load balancing by DECODE (Chapter 3), the method of load information management for

load balancing (Chapter 4), the results of preliminary evaluation of DECODE (Chapter 5), related work

(Chapter 6), and conclusion (Chapter 7).

* Tokyo Information & Communication Research Center, SANYO Electric Co., Ltd.

** Fuculty of Engineering Osaka City University



10

2. Parallel Disk System

The overall system configuration is introduced below. Several parallel disk system models for connecting

processors have been shown as listed below:

• Connect multiple storage disks directly with processors

• Connect multiple storage disks via dedicated processors for I/O processing

• Connect multiple storage disks via a dedicated network for I/O processing etc.

Among them, the third method(the model to connect multiple storage disk via an 110 network independent

of the interprocessor network) was chosen for the following reasons 4):

• All disks can be accessed in the same manner from all processors.

• Two different types of communication(i.e, communication for command executions and for 110
processing), are effectively performed.

The I/O network has communication performance of approximately 20MB/sec per port. The parallel disk

system is configured as shown in Figure 1 to match the performance of the disks.

As shown above, the disks are connected to a dedicated I/O network in clusters named PDMs(Parallel Disk

Modules), each PDM consisting of around eight disks and a disk node. The disk node is responsible for

gathering load information of individual disks, determining targetPDM or disk for write access , cache

management, disk control, etc. RAIDs are used throughout the system to enhance the system reliability.

··-r --·--..··~~;~·:~~: ..·· · ·f·· .- .
~ ~ ~

[~.~~ ...... [;?
: (RAID) .(RAID) (RAID).__ _ _............... ..__...............•

Fig.l : Configuration of the Parallel Disk System

3. Load Balancing by the DECODE

Disk load balancing is implemented in the DECODE by the disk node (DN) that manages the load

information and routes an access request to a disk with a lower workload whenever a write operation occurs.

To be more precise, the processor issues a write (data update) request to the DN responsible for the disk that

contains the original data. Since the ON has information about load conditions of other PDMs as well, it

passes the data update request to another POM with less workload. In a PDM, the ON intensively manages

the workload of all the disk within that module, and selects a disk with a lower workload for writing data to

balance the workload.

Ideally, the request should be passed on to the disk with the lowest workload for the sake of load balancing.

However, data update causes a constant change in the file data allocation, depending on load conditions of

individual disks, which leads to the problem of file fragmentation. Fragmentation is thought to cause a major

deterioration of performance especially during sequential read operation from the same file after random



11

write operation. For this reason, the DN must be designed to select a write data position in disks while

achieving "balancing of workload" and "suppression of fragmentation" at the same time.

The system being presented in this paper has free spaces inserted in files for changing a write disk. The

write data position within a disk is selected within the same stripe group or its neighborhood as the "original

position(OP)" of the data(Figure 2). Such an area is named an "equivalent area", whose size is given to the

system as a parameter. In a PDM, the DN, while referencing load conditions of all disks, writes data in the

free space of the least busy disk among the disks having a free space within the equivalent area.

Selecting a disk while taking the positions within the disk into consideration tends to minimize the load

balancing since data is not necessarily written in the least busy disk. Nevertheless, fragmentation is

suppressed drastically compared with a system without any limitation in write positions.

Since data update changes the physical allocation of file data, the data structure (i-node) must be modified

each time an update takes place. Modification of the i-node for every data update generates an overhead, but

such an overhead due to i-node update can be concealed by writing the i-node at the same time successively

next to the data.

} Equivalent

I Area

\ j. _ ........................................................................_...

1..... IJo_n_e_tw_o_rk 1

.....................................t.................................. . t .

rI t D;SK node t nit D;SK node t r

PDM

•
PDM

G
Original Position Free Space

Fig.2 : Selection of Data Write Positions

4. Access Load Management

Managing the access load information of all disks is necessary to balance access workload among them.

Besides, since the DECODE balances the workload on the basis of this information, it should use the most

recent possible information to produce the best result. This part of the paper introduces the management

method of access load conditions of the disks within the parallel disk system. This type of information

management is often accomplished either by a centralized management method or a distributed management

method.6
)7) As discussed in Chapter 2, the proposed parallel disk system has a disk node (DN) to control

eight disks centrally within the parallel disk module (PDM). The workload of the parallel disk system as a

whole, however, is managed by distributed management of the DNs in consideration of the system

scalability. For this reason, load conditions are managed in two steps; distributed management among the

PDMs and centralized management within each PDM.

In distributed management, exchanging management information among the DNs is a key to successfully

balancing access workload in the entire disk system. Consequently, the management information must be



12

exchanged among the DNs taking the followings into consideration:

• Reduction of communication overhead caused by the exchange of management information.

• Exchange of the most recent possible information.

Frequent exchange of information ensures that the latest possible information is sent, but it increases the

communication overhead. In our system, several levels of access workload is assumed and, rather than

sending information at regular intervals, each DN sends its load information to other DNs whenever its load

level changes. Meanwhile, load information must be broadcast to all DNs in order to inform current

conditions of all PDMs. In terms of the scale of the system being proposed in which each DN controls eight

disks, this means one DN must send load information to more than 100 DNs because we assume scalability

of up to approximately 1,000 disks. This would inevitably lead to an enormous communication overhead.

Besides, assuming that all DNs rely on the same information, the PDM with the lowest workload would be

bombarded by access requests from many DNs at once, which must be avoided.

In order to prevent this bombarding from occurring, DNs are allocated in several groups, and load

information is gathered and access workload requests sent to other DNs within the same group. Grouping of

DNs helps to minimize the increase in overhead due to broadcasting of load information. However, a simple

grouping of DNs can restrict access workload transfers to occur only within a given group. This prevents

load balancing to occur in the system as a whole, and leads to unbalanced loading among different groups.

This problem is dissolved by overlapping groups so that each DN is included in plural groups. One way to

construct such an overlapping configuration would be to give a serial number to each DN, whereby load

information is sent to the DNs whose numbers differ by 1 or n bits from that of the sender(Figure 3).

Fig.3 : Transfer of Load Information among DNs

5. Performance Evaluation

To verify the load balancing effect of this basic algorithm of the DECODE, the effect of load balancing

within a POM was evaluated by software simulation.

The simulation was conducted with the access file size of 10MB and data striped over the disks at the time

the file was created. The test was designed in such a way that the total amount of workload on the write



13

target disk was compared with that on the original disk containing the original data. If the former was

greater than the half of the latter, in other words, if only a small effect of data transfer was anticipated, data

would be written in the original disk without a transfer. The total amount of workload is the sum of the

workload on a disk, and the amount of each workload on the disk can be calculated with seek time, waiting

time for rotation, and access' data size. The performance evaluation test compared the DECODE in which

the data position was changed dynamically in the units of stripe size, against the conventional method in

which the data position remained unchanged. The average access response times of the two methods were

compared for the sake of evaluation.

5.1. Simulation Model

The simulation model was made on the simulator tool SES/workbench that allowed description at a

functional level. The simulation was conducted on a single PDM consisting of eight disks as the primary

purpose of the test was to verify the effect of the basic algorithm of the DECODE. The simulation model

was configured as summarized below.

• Eight disks were connected in parallel and controlled by a disk node.

• Common single disks (having parameters as shown in Table 1) were used to simplify the model

although the proposed system would use RAID-3 disk arrays.

• The disk node used the access time, calculated from the size of access requests to the disks, as the

workload of each disk.

Table 1 : Disk Parameters

Average seek time 12 [ms]

Rotational speed 5400 [rpm]

Sector size 512 [B]

Sectors/track 100

Tracks/cylinder 25

5.2 Test Conditions

The simulation used two types of application access patterns, presented below, in several combinations.

[Random access]

• Entire file accessed randomly

• Three access sizes:
512B-.:-16KB (1 ~32 sectors, random)

512B~32KB (1 ~64 sectors, random)

64KB~ 128KB (128~256 sectors, random)

• Access frequency: 200KB/s~

• Read/write ratio: 3/1
[Sequential access]

• File accessed sequentially from the top

• Access sizes: 1MB

• Access frequency: 10MB/s

• Read/write ratio: 1/1
5.3. Simulation Cases

The simulation was conducted on three cases to evaluate their access performance.

(a) Two applications having random access patterns were executed simultaneously.



14

(b) Two applications having sequential access patterns were executed simultaneously.

(c) One application having random access patterns and another application having sequential access

patterns were executed simultaneously.

5.4. Evaluation Results

A basic evaluation of the three simulation cases had already led to a conclusion that access performance

could be improved substantially in cases (a) and (c) by the DECODE. 5) Based on this past result, case (a)

in which two applications generate random accesses were executed simultaneously, was evaluated in more

detail by simulation under various conditions. In this paper, not only the influence of the access size but also

the influence of the equivalent area size and the free space size are evaluated.

Figures 4 and 5 show the response times of case (a) in the various access frequency under conditions that

access sizes are 1-32 sectors and 1-64 sectors. Access frequency in a given time in an application is shown

horizontally while the average response time is shown vertically.

The load balancing effect of the DECODE is obvious in write accesses. In the case of an access size of 1-64

sectors, for instance, the graph indicates performance improvement of approximately 46% at access

frequency of 800KB/s. In the conventional method, the response time increased sharply with the increase in

access frequency. In the DECODE, the response time increased only slowly with the increase in access

frequency because of the load balancing effect.

In read accesses, the response time of the DECODE indicated a 2-8% increase over the conventional in

lower access frequencies. However, in higher access frequencies, the load balancing effect of the DECODE

is obvious in read accesses also. In the case of an access size of 1-64 sectors, for instance, the graph

indicates performance improvement of approximately 33% at access frequency of 800KB/s.This was

because when the access frequency is low, an amount of workload on the disk is small and the degree of

workload imbalance among disks is low as well. Thus, the influence of fragmentation eliminates the

effectiveness of load balancing by the DECODE. As a result, the access performance is unchanged or little

worse when compared to the performance result derived from the conventional method. When the access

frequency is high, the imbalance of the workload become large.

1000800600

I...•..'
.'..'.'...•....

400

---+-- DECODE
(1-32 sectors)

----'-- DECODE
(1-64 sectors)

•••.••..•.• Conventional
(1-32 sectors)

••••••••••• Conventional
(1-64 sectors)

Access frequency (KBls]

Fig.5 : READ Response Time for

Access Frequency

200

180

160

~
140

C/)

oS 120
CD
E
~

CD 100C/)
c:
0a.
en
CD 80a:

60

40

20

0
200

I
I
!

......•
...•

.._ _.._....•,:::~~:::~:........•/

- DECODE
(1-32 sectors)

~ DECODE
(1-64 sectors)

•..•••••••• Conventional
(1-32 sectors)

·····0····· Conventional
(1-64 sectors)

200 400 600 800 1000
Access frequency [KB/s]

Fig.4 : WRITE Response Time for

Access Frequency

o

20

40

180

60

160

200

140

~
C/)

oS 120
CD
E
~ 100
C/)
c:o
~ 80
a:



15

So, the response time is greatly extended when using the conventional method. On the other hand, load

balancing by the DECODE has a large positive effect on the response time. When the access frequency is

high, movement of the write position is more frequent, and influence of fragmentation becomes larger. But,

the DECODE can minimize the influence of fragmentation as described in Chapter 3. Hence, the positive

effect of load balancing overcomes the negative influence of fragmentation and therefore the access

performance can be improved. In addition, the response time increased more slowly with the increase in

access frequency as demonstrated in write accesses.

Next, a similar evaluation was conducted with relatively large access sizes, namely 128-256 sectors. Figure

6 shows the results of evaluation at those access sizes. The DECODE demonstrated improvement in

performance at those access sizes also.

At last, the influence of the size of the equivalent area upon performance was examined at the access size of

1-64 sectors. Figure 7 shows the results. As defined earlier, the size of the equivalent area determines the

range to which data can be removed from the stripe group of the original data when updating data is written

in another disk. This range is limited strongly when the size of the equivalent area is small, thereby

suppressing the fragmentation more effectively. But it also reduces the effect of load balancing. Among

three equivalent area sizes, 1, 10, and 100 times the stripe size(8 sectors), the best results were achieved

when the size of the equivalent area was 10 times that of the stripe size.

Thus, the DECODE proved to be effective in random access applications under varying conditions in terms

of the access size and equivalent area size. For applications that generate random access requests, access

requests concentrate to some disks in a short term though they are even in a long term. The DECODE

method balances the disk workload for the concentrated access requests, thus greatly enhancing the access

p~rformance. The above results indicate the effect of this method will be greater for applications with

complicated access request patterns.

300 250

- DECODE
(8 sectors)

~ DECODE
(80 sectors)

--..-. DECODE
(800 sectors)

••.•••••••• Conventional !

I
I•::..

.....;

........_...~//........
50

200

~
g150
Q)

:§
~c
o
m100
a:

f
I
/

•••J.

- DECODE
(128-256 sectors)

••••••••••• Conventional
(128-256 sectors)

250

50

~200

en
.§.
Q)

E
:;:: 150
Q)
enc
8.
en
Q)

a: 100

0 """-- 1....- 1....-__ o L..--_---! --I.- ----I...- --J

1000 2000 3000 4000
Access frequency [KB/s]

Fig.6 : Response Time for Access

Frequency(Access Size 128-256)

600 800 1000
Access frequency [KB/s]

Fig.? : Influence of Equivalent Area Size

6. Related Work

The DECODE enables high speed access to secondary storage by dynamically selecting a disk to write .data

according to the workload of each disk. The independence of logical storage blocks from physical storage
blocks as adopted in the DECODE has already been advocated with existing methods such as LFS 8)9) and



16

FLOATING. to)

The LFS method manages files as log data. It collects multiple data modifications into a larger amount of

data, then writes it into a disk as a unit. This method ensures high access performance by minimizing the

head seek time. There is a research that has adopted the LFS method to RAIDs, though the LFS method does

not assume parallel accessing. 9) However, the LFS method requires costly garbage collection operations to

allocate continuous disk space in which to write a data segment. The DECODE method enables efficient use

of disk storages as mentioned above since it uses free space that are allocated in advance for the writing of

modification data.

FLOATING is a method for writing data into the closest free block to the current head position instead of

the original block. Thus, this method tends to shorten the revolution wait time and enhance the disk access

speed. The virtual stripingll
) is a method used on RAID disk arrays for separating logical addresses from

physical addresses and dynamically assigning parity stripes to reduce the parity modification cost.

The above methods aim to enhance disk access performance with individual disks or RAID disk arrays, but

not with parallel disk systems. Also, these methods do not tend to balance workload of parallel disks and do

not enhance the overall parallel disk system perfonnance.

So far, various research has been performed in the field of parallel file systems for parallel computers. 12
)-16)

In these researches, files are positioned in disks by the striping method which optimizes the number of disks

and the striping size for each file. The optimum positioning of individual files by the above method is not

always effective where multiple applications are executed simultaneously, as mentioned previously.

Dynamic load balancing according to the current workload of each disk is indispensable in taking full

advantage of parallel disk systems.

7. Conclusion

A method is proposed here that will allow efficient use of enormous storage resources of parallel computers

by balancing access workload on secondary storage. It implements dynamic load balancing by dynamically

selecting a disk for writing data on the basis of current load conditions of all available disks, thereby

meeting varying access requests more flexibly.

This paper presents the proposed parallel file access method named DECODE. It introduces a concept of

equivalent area designed to minimize fragmentation associated with the DECODE, and presents the method

of selecting data positions that would suppress fragmentation. This paper also proposes a method of efficient

distributed management of load information to implement load balancing. Finally, it reports the result of

preliminary evaluation of performance by software simulation regarding load balancing within a PDM. The

proposed method proved to be capable of substantially improving access performance through a series of

detailed tests under various access conditions.

Future plans include preliminary verification of the parallel disk system as a whole including load balancing

among clusters. The proposed system will eventually be built into a massively parallel computer to

demonstrate its practical efficiency.

References

1) Chen, D. Patterson., "Maximizing Performance in a Striped Disk Array", Proc. of Int. Symp. on

Computer Architecture, (1990).

2) Weikumm G., Zabback, P., Scheuermann, P., "Dynamic File Allocation in Disk Arrays", Proc. ofACM

SIGMOD Conference, (1991).

3) Oue, T. Kitamura, K. Ohnishi, M. Shimizu, "Dynamic Load Balancing of File Access on Parallel

Secondary Storage", IPS], SIG NOTES 95-ARC-112-1, (1995), pp.1--8. (In Japanese)

4) Ohnishi, T. Kitamura, Y. Oue, M. Shimizu, "Network Architecture and Performance Evaluation for a



17

Dispersive Independent 110 System", IPSJ, SIG NOTES 94-ARC-111-6, (1995), pp.41--48. (In

Japanese)

5) Oue, T. Kitamura, K. Ohnishi, M. Shimizu, "Parallel File Access for Dynamic Load Balancing on the

Massively Parallel Computer", Proc. of Int. Symp. on Parallel and Distributed Supercomputing, (1995),

pp.179--187.

6) Watanabe, T. Ohta, T. Mizuno, and H. Nakanishi, "Adaptive Load Balancing with Bidirectional

Piggybacking", The Journal of IEICE Vol.78 D-l No.3, (1995), pp.302-312. (In Japanese)

7) K.M.Baumgartner and B.W.WAH, "GAMMON: A Load Balancing Strategy for Local Computer

Systems with Multiaccess Networks", IEEE Trans. on Computers Vol.38 No.8, (1989), pp.l098-1109.

8) Mendel Rosenblum and John K.Ousterhout, "The Design and Implementation of a Log-Structured File

System", Proc.ofthe 13thACM Symposium on Operating Systems Principles, (1991).

9) Margo Seltzer, Keith Bostic, Marshall Kirk McKusick and Carl Staelin, "An Implementation of a Log

Structured File System for UNIX", 1993 Winter USENIX, (1993), pp.201--220.

10) Jai Menon and Jim Kasson, "Methods for Improved Update Performance of Disk Arrays", Proc. of25th

Hawaii Int. Con! on System Science Vol.l, (1992), pp.74--83.

11) Mogi and M. Kituregawa, "Analysis of data update performance of RAID5 disk arrays with Virtual

Striping", Proc. of the 48th Annual Convention IPS Japan 3B-7, (1994). (In Japanese)

12) T.W.Crockett, "File Concept for Parallel 110", Proc.ofSupercomputing'89, (1989), pp.574--579.

13) E.P.DeBenedicts and S.C.Johnson, "Extending Unix for Scalable Computing", IEEE Computer,

November 1993, (1993), pp.43--53.

14) P.F.Corbett, D.G.Feitelson, J.P.Prost and S.J.Baylor, "Parallel Access to Files in the Vesta File System",

Supercomputing'93, (1993), pp.472--481.

15) R.R.Bordawekar, J.M.del Rosario and A.N.Choudhary, "Design and Evaluation of Primitives for

Parallel I/O", Supercomputing '93, (1993), pp.452--461.

16) J.M.del Rosario and A.N.Choudhary, "High-Performance 110 for Massively Parallel Computers", IEEE

Computer, March 1994, (1994), pp.59-68.


