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Synopsis: In this paper, (1) in case of tIle forward type three layer neural network (NN), we
make clear that there exists the most suitable number of units in the hidden layer. (2) In case of
tIle multi-layer forward NN, when the total number of the units in the hidden layers is limited,
the success rate of the learning is increased to arrange their units numbers as descending order
from the input layer to the output one. (3) The learning of NN, who.se temperature coefficient
T is not one, is transformed into the equivalent learning scheme whose T is one, by changing
the learning coefficient a to a/T2 , so that we need not treat the temperature coefficient as an
independent coefficient concerning the learning of NN .
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coefficient, learning.

1 Introduction

In this paper we only treat the forward type neural networks (NN's), especially three layer
NN's. Concerning the learning of these NN's, those are usually problems that; (1) what is tIle
suitable number of units in the hidden layer?; (2) which temperature coefficient is desirable?

In spite of tIle importance of these problems, they are determined by one's intuition and
experience at present.

Regarding the problem (2), it is assertened that while learning the convergence rate is in
creased by decreasing the temperature coefficient [1].

In this paper we deal with these problems taking the parity discrimination problem as an
example and make clear the efficiency of NN learning concerning the number of units in the
hidden layer and concerning the temperature coefficient.

The reason why we take the parity discrimination problem as an example is that the minilnum
number of units in the hidden layer is proved to be [N/2] + 1 for N bits parity discrimination
[2] .

One of the main results in this paper lies in the clarification that there is a reasonable
number of units in the hidden layer by which an efficient learning is done and the number is
experimentally obtained as four tilnes as large as tilis minimum number of units in the hidden
layer regarding to the parity discrimination.

The other lies in that the learnillg constant a alld the temperature coefficient T are mutually
connected and by challgillg a to a/T2 and weight coefficient Wij or Wi to wij/T or wilT, we can
theoretically and experinlentally get tIle same learlling result or process of NN in which T == 1.0
as the process in which T 1= 1.0.

Using this rule, we are able to execute the NN learning depending only on (}, but not
concerning the temperature coefficient.

If we know the times of units in the hidden layer compared with the minimum number, in
parity problem, we may cOlljecture the preferable number of units for the other problems.
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2 Parity Discrimination

There is 2N different signals for N bits signals. To discriminate these signals by parity is
to classify them illto two categories, in which adjacent vertex to each other are classified as
tIle different categories respectively, considering the signals as the vertexes of a N dimensional
hyper-cube. This classification is regarded as one of the most difficult classification problem for
binary signals.

The minimum number of units in the hidden layer for a forward type three layer NN to N
bits parity discrimillation is already proved to be [N/2] + 1 [2] [3] [4].

But as this number is a theoretically possible minimum number of hidden Ullits, actually this
number is an impossible number to discriminate the parity of the signals if the input number N
is seven or more. Accordingly to know what times of the theoretical minimum number of hidden
units to be converged is efficient, is thought to be very useful, even for otller discrimination
problems to conjecture the necessary number of hidden units.

In the sequel we abbreviate this number as the minimum number of hidden Ullits or more
simply the min number.

3 ExperiITlents and their results

Fig.1 shows the relation between the convergent rates on vertical axis and the number of
hidden units on horizontal axis. The values of the parameters in these experiments are (1) 0.2 for
learning rate, (2) 0.9 for momentum (3) 2,000 trials in learning cycle, and 1.0 for temperature.
All other experiments in this section are done by the same conditions as this.

According to this graph in Fig.1, we can conclude tllat the convergent rate becomes 11igher
as the number of the hidden units is larger, but saturates at points near about four times of the
min number.

Table 1 shows the convergent rates when the numbers of units in two hidden layers are
changed on the condition that the total hidden number of units is constant. Judging from this
table the arrangement of the number of the hidden units in each layer may be recommended to
arrange as the descending order from the input layer to the output one.
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Fig.l Relation between convergent rates and numbers of hidden units

Fig.2 is a graph showing the relation between the computation efficiency, that is, [convergent
rate (%)/ computing time until converge] and the number of hidden units in three layer NN
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as horizontal axis. The definition of the computational efficiency is based on the idea that the
convergent rate is gradually saturated when the number of hidden units is increased, but the
computation time is much increased than the increment of tllis convergent rate. So that tIle
efficiellct number of Ullits is at the point that this ratioll is maximum.

According to this graph we can clearly see that there exists the most suitable number of
hidden units concerning this computatiollal efficiency.

Table 1 Convergent rate when the numbers of hidden units are changed

construction of NN convergent rate
6-4-12-1 13%
6-5-11-1 30%
6-6-10-1 37%
6-7-9-1 60%
6-8-8-1 53%
6-9-7-1 60%
6-10-6-1 80%
6-11-5-1 77%
6-12-4-1 77%
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Fig.2 Relation between the computation efficiency and the number of hiddell units

4 Application of This Efficiency to a N urneric Recognition

We applied the above mentioned proposition to the proposition that there exists the most
suitable number of hidden units to a numeric recognition in order to ascertain it.

Fig.3 shows the relation betweell the number of hidden units (as horizontal axis) and the
computational efficiency cOllcerning a numeric recognition in which the mesh of a numeric char
acter is divided illtO 7 x 5. The construction of the NN is 35 - [the number of hiddell units] - 10.
III tllis case we call also see that the lllOSt suitable nUlnber of llidden units exists.

As 24 > 10 > 23 where 10 is the number of numeric and 4 is the nUlnber of inner expression
needed to express its number, so that the minimum number of hidden units may be thought to
be 4.

Accordingly the most efficient number is also four times of this minimum number 4, that is
16, as sanle as the case of tIle parity discrimination.
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Fig.3 TIle computation efficiency ill case of the recogllition of numeric

5 The Relation between Learning Constant and Temperature
Coefficient

5.1 Learning and local minimum

We define Ilere the cOllstruction of a three layer parity discrilninating NN precisely in Fig.4
in order to obtain tIle relation between learlling constant and tenlperature coefficient. Fig.5 is
a simplified construction of Fig.4 using matrix and vector notatiollS.

Where X is input, W(i) is weight coefficient to i-th layer, oy) is threshold of j-th unit in the

i-th layer, 1Ji) is a net input to the j-th unit in the i-th layer Y is the output, those are expressed
as follows;

where t is transpose.

(1)

W(l) =

WNl

WN2

8~ WlN W2N ••• WNM

(2)

(1 I( l) I( l) ... I( 1) ) t
, 1 , 2' 'M

W(l)X

((J( 2
) , W1, W2, • • • , W M ).

(3)

(4)

(5)

The locallTIillilTIUm is the POillt where

'IE = 0,

where

E = L(Yp - Zp)2/2.
p

(6)

(7)
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Where P lneans the P-th pattern of binary signals. Suffix P is used only when the discrim

ination for patterns is necessary.
And \l is defined as;

\l == (8/8wll' 8/8w12,···, 8/WNM, 8/8wl,· .. , 8/8wM, 8/8{)~1), ... ,8/8{)c:l, 8/8{}(2»). (8)

If we assume that each unit has the same time constant, tIle output Y is expressed as;

(9)

If we traJ.lsform W(i)' == TW(i) in the above equation, we call get the equivalent NN where its
weight paran1eters are Wei) and temperature is T == 1. Botll outputs are equal and furthermore
both constructions are topologically tIle same and they 11ave the same local minimum. That
is, in the equivalellt NN's, all relations are not changed between the NN of T -# 1.0 and the
NN of T==1.0 by the transforlnation froln W to W'. Accordingly the expectation to get higher
convergellt rate by cllallging T froIn large to sinall as for the case of the Hopfield type NN's[1]
is dellied at least for tllis forward type NN's.

TIle learlling is dOlle to I11iniinize the error E. In the sequel we put T as a suffix when the
paralneter T -# 1 in NN as follows. For siginoid functions;

fr(x)

f(x)

1/(1 + e-x
/
r )

1/(1 + e-X
).

(10)

(11)

According to Eq.10 and Eq.11, we get the next relation as;

f(x/T) == fr(x)

Using this relation, we get a next relation

(12)

Yr fT(W~)fT(W¥) . X))

f( W?) f( Wr(l) · X))
T T

f(W(2) f(W(l»))

Y,

(13)

(14)

(15)

(16)

where we used the relatioll as next transformatioll as;

(17)

1 1
(1)

the tal
th ta (1)

w 2
I

theta(2)

y

Fig.4 A construction of three layer NN
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Fig.5 A simplified construction of three layer NN

Next we will get the learning rule for the NN of T == 1 which is equivalent to the NN of
T =1= 1 dividing into two cases.

(1) From the hidden layer to the output layer

The learning rule is

-aTd~)OTi + {3T~w¥l(t - 1)

2(Yp - Zp)d!T(I¥»)/dI¥)

(18)

(19)

Using Eq.17 we get

(20)

(21)

(22)

tllerefore,

(23)

Accordingly we get the relation for the equivalent learning constant a, concerning the NN when
T == 1 as; .

{3

(24)

(25)

(2) From the input layer to the hidden layer

The learning rule is;

LlW¥~(t)

dW

therefore,

TLlWU)(t)

dW

(26)

(27)

(28)

(29)

(30)

(31)
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Tllerefore concernillg the learning constant and momentuln, we get the same relation as tIle

case (1).
We do not describe the case of multi-layer NN at present, but the results is the same as this

three layer case. We can describe tIle result as follows to summarize above two cases.

The rule that the equivalent NN of T == 1 works as same as the NN of T # 1 is ;

(1) to change the initial weigilts as
Wij == WTij/T or Wi == WTi/T ,

(2) to cllange learlling COllstallt
a == aT/T2,

(3) to maintain tIle lnomelltum to be the original value.

5.2 Simulation Results

To ascertain this rule to be true, we used seven bits parity discrimination NN taking the
proper size of NN into consideratioll, in which we selected the number of the hidden units as
fifteen for input signals of seven bits.

The solid line ill Fig.6 sllows the convergellt rate of NN as vertical axis against telnperature
as horizontal axis. The dotted line shows the convergent rate when the learning coefficient aT

is changed into T 2aT for each NN with telnperature T's. As we can easily see' that in every case
the convergent rates agree well with a case of T == 1. In these cases, we set the initial weight
region as [-1/'V 1]/T.

In Fig.7, the solid line is tIle saIne as the solid line in Fig.6 and the dotted tille shows the
cOllvergent rate whell tIle learning COllstallt is changed to aT/T2 in an equivalent circuit of
T == 1. Both lines agree so well tllat it sllows the rule we proposed is right.
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Fig.7 Convergent relations between original NN and equivalellt NN

6 Conclusion

For the forward type three layer NN, we showed that there exists tlie lnost efficient nUlllber
of the hiddell units wllich is four tilnes the minilnum number of tllem, througll parity discrilni
nation. In addition to this assertion, for four lay~r NN under the condition of tile total nUll1ber
of 11idden units being fixed, we asserted that tIle convergellt rate becon1es higher if the nun1bers
of 11idden units are arranged ill descending order. Next, we showed theoretically and experilnen
tally that the back propagation learning of NN, when the telnperature coefficients of its siglnoi.d
fUllctions for eacll unit have the same value, could be able to work equivalently as tIle equivalent
NN of which temperature coefficient T == 1, by changing the weigllt coefficient WT to WT IT and
the learning coefficient aT to aT IT2 , tllrough seven bit parity discrimination problem.

A future subject is to obtain tIle most efficient number of hidden units for general problelns,
that is, to obtain the number of which is what times of the minimum number. We tllink it lnay
be obtainable by using tIle principal value analysis.

Another subject is to obtaill the changing rule of the learning COllstant on the way of the
learning. Througllout tllese experilnent we think that in NN the parity discrilnination problen1
may playa role like bellchn1ark test for von Neumann type cOlnputer.
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