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Synopsis
Tangent stiffness equations for a beam-column which is subjected to either uniformly or sinusoidally distributed
lateral load are presented. The equations have been derived by differentiating the slope-deflection equations under
axial forces for a member. Then, the tangent stiffness equations take into account axial forces, a bowing effect and
laterally distributed loads. Elastic buckling behavior of parallel chord latticed beams with laterally distributed
loads is investigated, to compare the results of the present method with a conventional method in which the
distributed loads are considered as concentrated loads at additional nodes of a member. Furthermore, buckling
tests were carried out to confirm the derived equations and to make clear the buckling behavior of space frame
structures. As a result, the new equations can lead to a good efficiency of estimating equilibrium paths and a
significant savings in the core storage and computing time required for the analysis of space frame structures.
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Introduction
In treating a frame structure which is subjected to a distributed load, an ordinary method is a so-called
conventional matrix method that divides a two-nodded beam-column element into finite segments and considers a
distributed load as concentrated loads acting on additional nodes of the element. However, for space frame
structures with the great number of members, the advantage of the preceding approximation with respect to loads
can lead to a considerable increase in the number of degrees of freedom and in the computing time. It may be,
therefore, desirable to use member force-deformation equations considering laterally distributed loads. In the
literature, slope-deflection equations under axial forces for a member that is subjected to either uniformly or
sinusoidally distributed lateral loads have been already presented 1),2). However, tangent stiffness expressions are
necessary for space frame structures to study the effect of distributed loads on constituent members, since the
flexural rigidity of members is very different from that of a whole structural system.
Space frame structures are widely used to cover large areas without the need for intermediate supports. The two
main components of any space frame structure are members and joints. In design, it is generally assumed that only
joints are directly subjected to external loads. The constituent members transmit the loads from a joint to the other
joint as axial forces. However if the possibility of a larger space frame structural -system may be pursued in the
future, the existing structural system must be changed, barring unexpected developments of materials. Then, one
of developed structural systems is the hybrid system that combines a space frame structure with a cladding, for
example, a concrete slab, steel panels or membrane, etc. In such a case, constituent members may be directly
subjected to external loads. From this viewpoints, tangent stiffness equations for uniformly or sinusoidally
distributed laterally loaded members under axial forces are presented. As a numerical example, the load-deflection
relationships and buckling loads are estimated for parallel chord latticed beam and the results by the present
method are compared with a conventional matrix method, in which distributed loads are assumed to be
concentrated ones. Furthermore, buckling tests were carried out to confirm the derived equations and to make
clear the buckling behavior of space frame structures subjected to laterally distributed loads.

Member Force-Deformation Relations
Relative deformations and forces of the member subjected to laterally distributed loads are shown in Fig.l.
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The member is assumed to be an elastic straight one whose section is uniform and biaxial symmetric. The shear
deformation of a member is neglected. The relation between the member forces {s} and deformations{u} is
defined as follows.

{s}= [kKu}+{r}
in which {S}=[MyiMyjMziM~MTN]T, {u}=[ 8 yi 8 yj 8 zi 8 zj

[k] is an elastic stiffness matrix for a beam-column and given by

cyay cy{3y 0 0 0 0

cy/3y cyay 0 0 0 0

0 0 czaz cz/3z 0 0

[k]= EI 0 0 cz{3z czaz 0 0
1 GJ - ro

2N
0 0 0 0 0

EI

0 0 0 0 0
EA
-
EI

(1)

8 T P. - (p. y+ P. z)]T and {r}=[ry -ry -rz rz 0 OlT.

(2)

(3.a-c)

(4)

in which a and (J =stability functions3
), EI =a standard flexural rigidity, GJ =a torsional rigidity and EA = an

extensional rigidity. The coefficients cy' cz and ro
2 are shown in (3.a-c).

c = EIy c =EIz r. 2 =EIy + EIz

y EI' z EI' 0 EA

The subscripts y, z denote the each term with respect to y axis and z axis, respectively. The loading term ry, Tz in
(1) are given as the following expressions, in which the subscripts u, s mean the each term for the uniformly and
sinusoidally distributed load, respectively. The loading term ruy of a uniformly distributed load is given by

2Qny1CEIyEy(ay - /3y)
ruy = 1

in which € y is given as Table 1.

Table 1 The functions of € y

N €y

N>O
2~-cos(n~Pny )}-n~Pny sin(n~PnJ

nPny~Pny sin~~Pny )

N=O rc 2

-
12

N<O
2{COSh(nJPJ)-l}-n#JSinh(nJPJ)

n~yJPJSinh(n#J)

at Pny =1

The loading term rs of a sinusoidally distributed is given by

Qny1CEIy(a y - {3y)
r =-------sy /(1- Pny )

Qny1C 3Ely
r =-----~sy 4/

(5)

(6)



(9)

(10)
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In the above expressions, Pny, qny are given by

p _ NZ
2

_ qozZ3 (7, 8)
ny - n2Ely , qny - 41C 3Ely

All the subscript y can be replaced by z. The functions p. y and p. z in (1), which are length correction factor due to
bowing effect, are shown as follows.

~y =byl((}y; + (}yj)2 +by2 ((}y; _(}y)2 -by3 ((}yi -(}yj)+by4

~z =bzl((}Zi + (}<;j)2 +bz2 ((}Zi _(}<;j)2 +bz3 ((}Zi -(}<;j)+bz4

in which bYI and b y2 are bowing functions 4) , and by) and b y4 are new bowing 'functions resulting from the laterally
distributed loads and given by (11)-(14). The functions of the uniformly distributed load are given by (11) and
(12), and those of the sinusoidally distributed loads are given by (13) and (14).

buy3 = 4~nY{2bY2-2(ay~f3y)}' buy3 =n
3
qny/180 at Pny =0 (11)

buy4 =[ 4~nY J{bY2 - 2(a
y
~ f3

y
) + 2~ }, 'bUy4 =n

6
q;y /3780 at Pny = 0 (12)

bsy3 = (l~yp) {~y_-:y - 4n
2
by2 }, bsy3 =1ClJ.ny /16 at Pny = 1 (13)

n ny ny

bSY4=[1~;nY J{:2 +4n
2
by2 - 2(7~~:Y)}, bSY4=n2(n2-6)q;y/192 atPny =1 (14)

Tangent Stiffness Equations of Member
The incremental vectors of member forces, relative deformations and loading terms are denoted as { !:l s}, { !:l u}
and { !:l r}, respectively. The relation between the incremental vectors can be written as

{As}= [M ]{Llu}+ {Llr} (15)

in which
{ !:l s}=[!:l My; !:l Myj !:l Mz; !:l Mzj !:l MT !:l N]T,

{ !:l u}=[!:l 8 yj !:l 8 yj !:l 8 zj ~ 8 zj !:l 8 T ~ P. ]T ,
{ !:l r}=[!:l ry - ~ ry -!:l rz ~ rz 0 O]T

and [!:l k] = an elastic tangent stiffness matrix with

as. as. aN
Mij =au', + aJv au " (i, j = 1- 6 )

J J

The components of the tangent stiffness matrix [!:l k] are obtained as follows.

EI [ G;; J EI [ G~ JMIl =- cyaV +-2-, Llk22 =- Cya y +-2-
1 ~ nH 1 nH

EIl G 2. ) EI [ G 2. JM 33 =- czaz +--f-, M 44 =- czaz+~1 nH 1 nH

EIl f3 Gy;Gyj )M l2 =M 21 =- c y y + 2
1 nH

(16)

(17,18)

(19,20)

(21)



(22)

(23,24)

(25,26)

(27,28)

, ,
Gy; =ay ()y; + /3 y°yj + 1C 2by3 '

, 1

Gz; =a1. 01.; + /31. 0lj -1C
2
b1.3 '

, ,
Gyj = /3y 0y; +ay 0yj -1C

2
bY3, ,

G<j = f3 1. 01.; +a 1. 0<j + 1C
2
b1.3

(29,30)

(31,32)

and

H =n
2

+ ry + rz
A} cy C

1.

A? = [2EA
EI '

(33,34)

, , , ,
ry =bY1 (Oy; +Oyj)2 +bY2 (Oy; _OYj)2 -bY3 (Oy; -OYj) +bY4, , , ,
r1. =b1.1 «()1.; + 0<j )

2
+ b1. 2 (01.; - ()<j ) 2 + b1.3 (01.; - () lj ) +b1.4

(35)

(36)

in which a prime superscript indicates one differentiation with respect to Pny or Pnz. The other components of
matrix [~k] are zero. The functions a 'y, (i 'y, b'Yl and b'y2 are listed in the reference 5). The functions b'Y3 and b'y4
are the new terms resulting from the laterally distributed loads, and given by

(37)

(38)

(39)

(40)

(41)

. (42)

(43)

,
bSy4 =1C 2 (1C 4 -151C 2+70)q;y /1536 at Pny =1 (44)

The obtained tangent stiffness matrix is for member forces - relative deformations relations in local coordinates.
The tangent stiffness matrix (12 X 12) of member forces - displacements relations in local coordinates can be
obtained from considerations of geometry and equilibrium 5) •
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Numerical Examples

The tangent stiffness equations of laterally distributed loads have been developed here, previously. In this
paragraph, some comparisons of the buckling behaviour of parallel chord latticed beams has been made between
the predictions of the new tangent stiffness equations, and those of a conventional matrix method where each
constituent member are divided into finite segments, with respect to a sinusoidally distributed load.
As numerical models, parallel chord latticed beams of 3 structural units shown in Fig.2 are treated. As a parameter,
the number of structural units is 3, 10 and 16, and the 3 loading cases are adopted.
In Fig.2, NL loading type denotes vertical concentrated loads on upper nodes, DL type denotes distributed loads
on upper chord members. CL loading type denotes equivalent concentrated loads on the additional nodes of
members. In numerical analyses, the additional nodes of a member are 10 for a 3 structural unit beam and 5 for 10
and 16 structural unit beams. The mechanical properties of constituent members are shown in Table 2.

~220~1~~~1~~220~1 (mm)

(a) NL loading type (Nodal load)

(b) DL loading type (True distributed load) (c) CL loading type (Equivalent concentrated load
on additional nodes)

Fig.2 Loading types for a parallel chord latticed beam

Table 2 Mechanical properties of members

Tubular member Section are A Moment inertia I

Young modulus E =2.145 X 102 (kN/mm2
), Yield stress (J y = 2.354X 10-1 (kN/mm2

)

The obtained total load-deflection relationships are shown in Figs.3, 4 and 5. The elastic buckling modes of DL
and NL loading type~ are shown in Figs.6 and 7, respectively. In the figures, the markT represents the elastic
buckling load of each loading case. The mark "\7 represents the initial yield load before the buckling load. In
such a case, the yield condition is defined by the axial force N and the biaxial bending moments M as follows.

F=W -CO{2~p )=0, (45)
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Fig.3 Total load - deflection relationships of 3 structural units
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Fig.4 Total load - deflection relationships
of 10 structural units

Fig.5 Total load - deflection relationships
of 16 structural units

1\Z\7~\7V\ I\1\Z~V\1\

1\/\Z\Z\Z\7~\/\/\Z\Z\Z\

Fig.6 Elastic buckling mode of DL loading type Fig.7 Elastic buckling mode of NL loading type
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Table 3 Elastic buckling load

Loading type
Number of structural units

3 10 16
NL 99.87 31.92 19.50
DL 65.19 (65.3%) 28.44 (89.1 %) 18.21 (93.4%)
CL 67.80 (67.9%) 28.44 (89.1%) 18.21 (93.4%)

) denotes the ratio to NL loading tyPe. (kN)

The obtained elastic buckling loads are shown in Table 3. In the figures, the two elastic buckling loads by the
present equations and the conventional matrix method are similar to each other at the each structural unit.
However, the deformation of the conventional matrix method (CL type) ,where the distributed loads are
considered as concentrated loads on additional nodes of a member, is larger than that of the present equations (DL
type). The ratio between the two values of deformations is about 1.5 times for the 3 structural unit beam. The
deformation of CL type is about 10 % higher than DL type for the 10 structural unit beam. For the 16 structural
unit beam, the deformations of the two method are almost equal to each other. It may be caused by the reason that
the geometrical nonlinear effect of members becomes relatively smaller on the geometrical nonlinearity of the
whole structure. Then, it can be said that the differences of deformations depend upon the number of additional
nodes of members. The each buckling mode shown in Figs.6 and 7 is member buckling that appears in the middle
of beam.
The computing time of the conventional matrix method is about 9 times of the present method for the 3 structural
unit beam and about 4 times for 10 or 16 structural unit beams. The present method can save the computing time
and core storage.
Secondly, the effect of distributed load is considered by comparing the two results of NL and DL loading type. For
the 3 structural unit beam, the load-deformation relationships by the distributed loads show strong nonlinearity
and the elastic buckling load is about 35% smaller than NL loading type. The elastic buckling load of DL loading
type is about 10% , 7% smaller than NL loading type at the 10, 16 structural unit case, respectively. Then it can be
said that the reduction of elastic buckling load is relatively small while the number of structural units is large at
the present model. Furthermore, when the material shown in Table 1 is used, the yield of members may be reached
before an elastic buckling load. The initial yield load is about 10% of the elastic buckling load at the 3 structural
unit beam, about 57% at the 10 unit case and 85% at the 16 unit case, respectively. However, this fact may not be
always disadvantageous in practical design, that is, if the number of structural units is small, it may be sufficient
for a designer to make the stiffness of members larger.

Model Experiment
Some model experiments were carried out in order to confirm the new tangent stiffness equations and make clear
the buckling behaviour of latticed beam which is subjected to a laterally distributed load. The test model is shown
in Fig.8. The test models consist of tubular brass members (~5.0X t 0.8 rnm)and brass ball joints (~15.9 rnm)
connected by steel bolts as shown in Fig.9. Table 4 shows the mechanical properties of members.

A B

I
oI 264 I 264 11~:~ I 264 I 264 IC

o ~ Roller bearing support

Fig.8 Latticed beam

(mm)
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F--- - -€1'-"~'~
0=15.9

(a) Upper chord member

0=15.9 A

~
~ OJ<'> -f5XO~- -e- .~-GIHIJllEJ.[l)]~ --

ClIll tlIP. I .8 2~ 12 I (mm)

(b) Bottom chord members
Fig.9 Jointing system

Table 4 Material strength and mechanical properties

(a) Brass Tubular Member
Axial rigidity EA

Flexural rigidity EI
Yield bending moment Mp

Yield tensile strength Np

(b) Joint
Length of rigid end part Ii i l
Rotational spring rigidity Cj

Yield bending moment on connection ~p

6.37X 10 3 N mm

11.9 rnm

In Fig.9(a), a continuos tubular member passes throiIgh all upper brass ball joints and is fixed by screw bolts in
order to obtain rigid-jointed stiffness. The test models are roller supported at the both ends. The upper chord
members are directly subjected to vertical loads ,as shown in Fig. 10.

Membrane

.&...-,;..,~ .... support

Fig. I0 Distributed loading method
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Fig.ll Total load-deflection relationships

The total load-deflection curves obtained by model experiments are shown in Fig.11 with numerical results. The
vertical axis denotes the total load and the horizontal axis denotes the deflection of node 3 shown in Fig.8. The
load-carrying capacity and the elastic buckling loads are shown in Table 5. The experimental curves are denoted
as a dotted line.
The latticed structures gradually exhibited strong nonlinearity with the load increasing. The member buckling
occurred at the peak load. After the peak load, the load-bearing capacity rapidly decreased. The deformation mode
of a beam before the peak load is shown in Fig.I2 and the residual deformations after the experiments are shown
in Fig.I3. In Fig. I I , the upper chord members were bent in the vertical direction by the distributed loads.
However at the peak load, the upper chord members buckled in the horizontal direction. It can be seen by the
residual defonnations shown in Fig.13.
The elastic buckling loads have been estimated by the present equations at the two distributed loading cases. In
the numerical analyses, the member model is the one consisting of a uniform member, rigid end parts, and
rotational springs for the bolted jointing system 6). In Fig. 1I, the numerical result of a sinusoidally distributed load
is denoted as a solid line, that of a uniformly distributed load is denoted as a dashed and dotted line. The elastic
buckling load of each loading case is almost equal to each other.

Fig.I2 Deformation mode appearing
before the peak load

(a) No.1

(b) No.2
Fig. 13 Residual deformation
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Table 5 Load-carrying capacity and theoretical elastic buckling load

Ex erimental results (kN
Load-carrying capacity No.1

No.2
Mean value

Theoretical results (kN)
Elastic buckling load of uniformly distributed load
Elastic buckling load of sinusoidally distributed load
Elastic buckling load by the conventional matrix method

(4 additional nodes / a member)
Elastic buckling load by the conventional matrix method

(one intermediate node / a member)

782.8
763.1

773.0(1 ±0.013)

785.3 (102%)
777.9 (101 %)

780.0 (101 %)

772.8 (100%)

However, the deflections of a sinusoidally loaded case are larger than the uniform load. The experimental curves
are relatively close to the curve of the sinusoidally distributed load case. During the experiments (see Fig.12),
when the flexural deformation of upper chord members became larger, some wrinkles appeared in the loading
sheets and the shape of distributed load seemed to be close to a sinusoidal shape.
The elastic buckling mode obtained by the numerical analysis is shown in Fig.14. The theoretical buckling mode
corresponds with the experimental mode. Furthermore in Fig.ll, the results by the conventional matrix method
are shown. The long dashed line represents the curves of four additional nodes per a member and the short dashed
line represents that of one intermediate additional node per a member. The distributed load is considered as a
concentrated load acting on the additional nodes. The conventional matrix method has estimated a buckling load
with a sufficient accuracy, however had a large tolerance in the estimation of deflection.

Fig. 14 Theoretical elastic buckling mode (Sinusoidally distributed load)

Summary and Conclusions
Tangent stiffness equations of a beam-column which is subjected to sinusoidally or uniformly distributed lateral
loads have been presented. Numerical study is carried out with the equations in order to investigate the load­
deflection relationships and elastic buckling loads of parallel-chord latticed beam. The buckling behaviour of
latticed beam structures has been theoretically and experimentally made clear, while the upper chord members are
subjected to a distributed load. The following conclusions of the present work have been obtained:
The use of the new equations can lead to a good efficiency of estimating equilibrium paths of space frame
structures as well as a significant savings in the core storage and computing time in the analysis.
The elastic buckling load with a distributed member load is smaller than the only nodal load case, however the
reduction depends upon the number of structural units.
As for the present latticed beam with a vertical distributed load, the direction of member buckling mode is in
horizontal plane, although the loading direction is vertical.
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Appendix: Series expressions
The functions ruy' buy, b 'uy of a uniform distributed load case become infinite at Pny=O and the functions rsy' bsy, b'sy
of a sinusoidal distributed load case also become infinite at Pny=l. Then the following series expression have to be
used.

qnyEIy ( 2)
ruy = 10.335425 + lO.200655Pny + 10. 187496Pny

1 .

buy3 =qny (1.722571 X10-1 + 8.095759 X10-2 Pny + 2.996322 X10-2 Pn~)

buy4 = q;y (2.543357 X10-1 + 1.255096 X 10-1Pny + 4.692159xlO-2 Pn~)
,

buy3 =qny (8.095758 X10-2 + 5.992645 X10-2 Pny + 2.987123x 10-2 Pn~)

bUy4 = q;yV·255097X1O-1 + 9.384325 x10-2 Pny + 4.688637 X10-2 Pn~)

q EI
rsy = ny y (7.751569+1.233701dZy +4.496145X1O-ldZ~)

1
bSy3 =qny(1.963495XlO-1 +8.061677 X1O-2dZ y +3.834705XlO-2dZ:)

bSy4 = q;y V.989139X 10-1 + 8.394592 X 1O-2dZ y +4.005274XlO-2dZ:)
,

bsY3 = qny (1.266214 X10-1 + 8.016471x 10-2 dZy + 4.674284 X10-2dZ~)
,

bsy4 = q;y (1.199180X 10-1 +9.145578xlO-2dZ y +4.590451XlO-2dZ~)

in which dZy = 1~INI/EIy -1C

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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