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Synopsis

The plasma created by the T~D-S machine of National Institute for Fusion Science changes its shape

depending on the discharge current and the density in the experimental region. We measured the spatial

distribution ofthe intensity ofHe atomic line (5876A) and ionic line (4686A) emitted by the plasma. In order

to explain the distribution, we carried out a numerical simulation by integrating the rate equ~tions. A suitable

electron temperature distribution may explain the measured spatial distribution ofthe line intensity.
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Introduction

The TPD-S (Test Plasma by Direct current discharge for Spectroscopy) machine of National Institute for

Fusion Science was built for the fundamental study of plasma spectroscopy. It creates a plasma with high

degree of ionization and small noise.

The shape of the plasma created by this machine considerably changes when the discharge current and the

introduced gas density are varied. For example, it is a simple cylindrical plasma whose emission strongly

extends along the center axis or double structure of a cylindrical plasma and halo around it. In some condition,

the emission spatially disappears and then appears once again. We took monochromatic image of helium line

spectrum of these plasmas by a digital camera and interference filters. The spatial distribution of the intensity

of these line spectrums is obtained from the image data. To explain the spatial distributions, we made a

computer simulation on the helium line intensity using rate equations. When we assumed a suitable electron

temperature distribution for each plasma discharge current, the calculated spatial distribution of the light

intensity resembles to that ofthe experiment data.
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Experimental Setup and Result

The experimental setup is shown schematically in Fig I. The discharge is made between a cathode and an anode

which has a hole in the center. The floating electrodes are placed between the cathode and the anode to stabilize

the pressure gradient and to smooth the electric potential. The magnetic field is applies to confine the plasma on

center axis and to introduce the plasma to the anode hole. Helium gas is introduced from the back of the

cathode. The discharge voltage is 150V~160V and the discharge current is IOA"-'40A. The plasma flows

through the anode hole to the experimental region by the pressure gradient.

Three examples of plasma shape are shown in Fig. 2. They are taken from the window by the digital
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Fig. 2 The schematic drawing ofTPD-S machine.

Mode A

Fig. 1 The shape ofmode A,B,C plasma.
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camera (FUJIX DS-505) as a usual picture without the interference filter. Mode A plasma in Fig.2 is created

by 150V-35A discharge. The gas pressure in the discharge region and the experiment region is 5 Torr and

5 x 10-4 Torr respectively. A cylindrical plasma with a diameter ofabout 8mmeJ» which equals to that ofanode

hole flows out through the anode hole. Its emission extends along the center axis. Mode B plasma is created by

155V-25A discharge. The gas pressure in the discharge region and the experiment region is 10 Torr and

1 x 10-3 Torr respectively. There is a core plasma whose diameter is equal to that of anode hole. Enveloping

the core plasma, there is also a halo plasma whose diameter is approximately 80mmcJ». It is seen that both

plasma emissions disappear spatially on the way. Mode C plasma is created by 160V-10A discharge. The gas

pressure in the discharge region and the experiment region is 20 Torr and 5 X 10.3 Torr respectively. Similar to

the mode B plasma, a core plasma and a halo plasma are seen. Both the core and the halo plasma spatially

disappear, but appear once again.

Next, we took monochromatic images of the plasma using the digital camera with interference filters

(TOSmBA KL59 and KL46). From these images we got the spatial distributions ofthe intensity ofthe atomic

line (5876A) and the ionic line (4686A). Although the resolving power of the interference filter is low

(All2=140A), the filter is applicable because other line spectrum doesn't appear near 5876A and 4686A line.

The image consists of 1280 X 1000 pixels. It is stored in an uncompressed TIFF format file (24bit color mode).

To analyze the image, we have used NEOSLASHprogram(l) developed at our group. The program is written in

Quick Basic ofNEC PC 9801 computer. Using this program, it is possible to display x- or y-cross section,

bird's-eye view, histogram and so on..------------------.
Mode A

5876

Mode B

Mode C

Fig.3 The intensity distribution of 5876A line and 4686A line

along the center axis for A,B,C plasma.
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At first we analyze the intensity distribution along the center axis. We omit the data near the anode hole

because of the saturation of ceD and the reflection of light by the wall. We performed Abel inversion of the

two dimensional monochromatic plasma image of HeI 5876A and HeB 4686A. Thus obtained intensity

distributions along the center axis are shown in Fig.3. In mode A plasma the intensity of both 5876A and

4686A lines extends along the center axis and decrease monotonously. We could not get the right half of the

5876Aline intensity because of an experimental mistake. In mode B plasma, the intensity of both lines

decreases rapidly and disappears. In mode C plasma, 5876A line disappears once and then appears again. As

for the 4686A line, only one peak is seen in this range. But there is bigger peak near the anode, where we omit

because of saturation. Therefore the 4686A line also disappears once and then appears again in the similar

way to 5876A line.

Computer Simulation using the Time History Method

To explain the intensity distributions ofthese line-spectra, we calculate them using the time history method by

rate equations. Time history method is originally applied to transient plasmas like Pinch or Tokamak(2)(3). To

apply this method to a stationary plasma, we used the relation between time and position of plasma in a

following way. As shown in Fig.4, the plasma flows out ofthe anode hole and moves as a function oftime. The

Anode y'i~~-~(!2~j.!~!_Q~~~!~-l
I

,._~fi$ilt~~~~1?Jf~~~:~~~~~~~ft:~~~;~··
I

I________________________ J

I •Anode Hole

t:O
Fig.4 The image view ofthe conversion the location ofthe plasma to the time.

plasma traverses the field ofview ofthe digital camera (30 em) in about 0.3 ms due to the thermal velocity. We

solve the rate equations in the time interval between t =0 ms and 0.3 ms, where t =0 ms corresponds to the

position ofanode hole. The rate equations to be solved are;

dnt n t-- = -Stnent + rtn en 2 --dt f'

dn2 n2-- = Stnent - rtnen 2 - s2n en2+ r2n en2--
~ f'

dn3 n3-- = s2nen2 - r2nen3--
dt f'



81

where n1 , n2 and n3 mean the density of He, He + and He 2+ respectively, SI and S2 are the ionization rate

coefficient from He to He+ and from He+ to He 2+respectively, 'I and r2 are the recombination rate

coefficient from He+ to He and He 2+ to He+ respectively. To include the density decrease due to plasma

expansion, we introduce an attenuation coefficient t.

Grotorian diagram of He and He+ is shown in Fig.5. Only the excitation from the ground state and

'n;=;oo

n=:2.
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Fig.5 The Grotorian diagram of He and He+ in the range from the quntum number of

n= I to n=4. The 5876A line is emitted by the transition from 33 D to 2 3 P and

the 4686A line is from n =4 to n =3.

recombination from the continuous level are taken into account. The intensity of5876A line and 4686A line

is written as;

I(5876A) =ne (OV)1 n1 + neGR1(3)n2

A
I(4686A) =(ne (OV)2 n2 + neR2 (4)n3 ) x 43

A41 + A42 + A43

where (01')) and (OV)2 mean the excitation rate coefficient of He and He+ respectively, R1(3) is the

recombination rate coefficient from the continuous level of He+ to the n =3 state of He, R2 (4) is that from

the continuous state of He 2+ to the n =4 state of He+, G is the ratio of the statistic weight of 33 D state to
the sum ofthat of all the n =3 levels (Le. G =7 / (1 + 3 + 5 + 3 + 5 + 7) =0.292 ) and Aij is the transition

probability between i state and j state.

Therefore, the emission intensity depends on the eleven parameters; the electron density ne , the atom and ion

density nl , n2 ,n3 , the excitation rate coefficients (ov) 1 ,(OV)2' the recombination rate coefficients 71,72 , the

ionization rate coefficients SI' S2 and the attenuation coefficient t. But as shown below, it actually depends on

the three independent parameters; electron temperature Te, the sum of the atom and ion density

N (=nl + n2 + n3 ) and the attenuation coefficient t.

i) The Electron Density .

Because the plasma is electrically neutral, the electron density is derived from the ion density;
ne =n2 + 2· n3
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ii) The Ionization, Excitation and Recombination rate Coefficients

The ionization rate coefficient is given as the following relation(4);

Sj = e-I';Te(~~);{to an(IOglo(~~))n em 3 /s,

where Te is the electron temperature, Ii is the ionization potential and an is a coefficient which depends on

the atom species. Figure 6 shows the dependence on the electron temperature.

"iii"1 -8

100
Temperature reV]

Fig. 6 The ionization rate coefficient.

The excitation rate coefficient is given as the following relation(5);

(ov)z = 1.70 x 10-3(Te.1l600r~Eijlfjj · p(y). exp(-y) em3Is
p(y) =A +(By-Cy2 +D).(ln(Y+l) - 0.4 2) +~y

Y (y+l) ,
where E ij is the excitation energy, f ij is the oscillator strength, A, B, C and D are the coefficients ofMewe,

and y = Ii / Te. Z is unity or two. Figure 7 shows the dependence on the electron temperature.

Temperature [eV]

Fig. 7 The excitation rate coefficient
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The recombination rate coefficient from He + to He and from He 2+ to He + are given;
00 00

7] = 2· R] (1) + LR; (i) and 72 = LR2 (i) (6),

i=2 i=]

where

R (i) =2.607 x 10-12 _Z_4 •(Ter% ·(IOg-Y_+_l - _0._4_J
Z j3 y (y + 1)2

Figure 8 shows the dependence on the electron temperature.

Fig. 8 The recombination rate coefficient

iii) The Attenuation Coefficient

The plasma density near the center axis decreases because the plasma flows with expansion. To include

this effect in the equations, we introduced the attenuation coefficient.

iv) The Initial Values ofthe Density ofAtom and Ions

The initial values of n] ,n2 and n3 can't measured. We assume that the plasma in the discharge region is

stationary; dn; / dt = o. Then from the rate equations and N = n] +n2 +n3 , we get following relations;

n] =r] · r2 / s] · N/(r] · r2 / s] + S2 + 72 )

n2 = r2 • N / (r1 • r2 / S1 + S2 + 72 )

n3 = S2 • N / (r] · r2 / S] + S2 + r2 )

therefore if the initial values of N and electron temperature are given, the initial values of n1 ,n2 and n3 are

obtained.

Now the intensity distribution of the emission can be calculated if the electron temperature distribution, the

attenuation coefficient, and the sum of the atom and the ion density are given. The data necessary for the

calculation are summarized in Table 1. We calculated the line intensity distribution by changing these three

parameters. A good agreement with the experimental result was obtained when f' =0.04 ms. We fixed this

parameter and changed the initial value of N and the electron temperature distribution so that the calculated

intensity distribution agrees to the measured intensity distribution.



84

(a) Data necessCln' for the calculation ofthe ionization rate coefficients

I.P.feV] ao a1 a2 a3 a4 as

He 24.587 1.500E-8 5.666E-I0 -6.082E-9 -3.589E-9 1.553E-9 1.320E-9

He+ 54.416 3.436E-9 -1.687E-9 -6.924E-I0 9.786E-ll 1.559E-I0 6.224E-ll

(b) Date necessary for the calculation ofthe recombination rate coefficients

• He+ --+ He

Level I.P.[eV] Statistic Level I.P.[eV] Statistic Level I.P.[eV] Statistic

Weight Weight Weigh

lIS 24.59 1 31D 1.51 5 4 1D 0.85 5

2 1S 1.97 1 33 S 1.83 3 4 1F 0.85 7

2 1 p 3.37 3 33 P 1.54 5 4 3 S 0.96 3

2 3 S 4.73 3 33 D 1.48 7 4 3 P 0.84 5

2 3 S 3.59 5 4 1S 0.91 1 4 3 D 0.82 7

31S 1.67 1 4 1 p 0.84 3 4 3 F 0.82 9

31 p 1.50 3

Level I.P.[eV] Transition Probability[108s·11(8) Level I.P.[eVl

n=4 3.402 1.438(A43 } n=3 6.047

1.347(A42 } n=2 13.606

2.045(A41 } n=1 54.402

(c) Date necessary for the calculation of the excitation rate coefficients

Excitation Transition Excitation Oscillator Mewe's Coefficients(4)

Energy[eV] Strength

He(1 1S --+ 33D) 23.105 0.0734 A=B=D=O,C=O.1

He+ (n =1--+ n =4) 51.020 0.0290 A=0.25,B=0.04,C=0,D=0.28

Table 1 Data necessary for calculating the ionization, recombination and excitation

rate coefficients.

The result of the calculation for the mode A plasma is shown in Fig.9. The top shows the electron

temperature, which is varied from 5.5 eV to 5 eV in 0.3 ms. The center shows the density. It is seen that the

He+ ion is dominant in this temperature region. Because of the attenuation coefficient, all of the He ,He+ and

He 2
+ density decrease gradually. The excitation rate coefficient also decreases due to the temperature drop. So

the intensity ofboth ofthe atomic 5876A line and ionic 4686A line also decrease.
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Fig.9 The simulation result ofthe mode A plasma

The result of the calculation for mode B plasma is shown in Fig. IO. This time, the temperature drops

exponentially from 5.5 eV to 1.0 eV in 0.3 ms. Similar to the mode A case, the He+ and He 2+ density

decrease. However, recombination takes place as a result of the sharp temperature drop and the He density

increases. Because of this density increase, the decrease of 5876A line intensity is small near the anode hole.

Although the recombination takes place, the main process for the emission of the 5876A line in this

temperature region is excitation. Thereafter, the 5876A line decreases and disappears before 0.3 ms due to

low temperature. As for the 4686A line, because both ofthe decrease of He+ density and the excitation rate

coefficient, its emission disappears as soon as the plasma flows out of the anode hole. The calculated result

differs from the measured result, in which the 4686A line disappears in similar way to the 5876A line as

shown in Fig.3.

ModeB

5. rat~re _

t91c5enf
3

Densit~~_e+ _

0 92+ He(X 10)

2e17cm~-1 : Line Intensity

Fig. 10 The simulation result of the mode B plasma

The result ofthe calculation for mode C is shown in Fig.ll. This time, the temperature drops exponentially

from 5.5 eV to 1.2 eV in 0.12 ms and thereafter drops from 1.2 eV to 0.1 eV in 0.03 ms. When the temperature

drops in such a rapid way, the He density increases sharply and the He 2+ density decreases also sharply.

Then recombination occurs more actively than the Mode B case. The intensity of both of the 5876A line and
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the 4686A line which decreases when the plasma leaves the anode hole, shows a sudden increase. This is in

good agreement with the intensity distribution observed in the experiment. Therefore the reappearance of the

5876A line and the 4686A may be explained by the recombination due to the rapid electron temperature

drop.

ModeC
5. emperature

5ej J1e+

~------

1818

1

~~.1 j Line Intensity
~Jl !5876.A

468r _ ~
I, ~----

o O.3[ms]

Fig. II The simulation result ofthe mode C plasma

Conclusion

Using a digital camera and interference filters, we measured the spatial intensity distribution of He I 5876A

line and He II 4686A line for three discharge modes of TPD-S plasma. By the inverse Abel transformation,

the axial intensity distribution of these two lines are obtained.

We performed a simulation oftheir intensity distribution using rate equations. When we assumed a suitable

electron temperature distribution, the initial value ofthe density ofatom and ion, and an attenuation coefficient,

the calculated intensity distribution of the two lines agreed quite well to the measured distribution. In this way

the reappearance ofthese two lines observed in the mode C plasma was explained by the recombination process

due to a rapid electron temperature drop.

The occurrence of such a rapid temperature drop may be explained by the three-body recombination

process. When the plasma is high density and low electron temperature like mode C plasma, the effect of

three-body collision and the kinetic energy loss of electrons may not be ignored. Such three-body recombination

effect, however, is not taken into consideration so far. The inclusion of this effect in the rate equations will be

the next research theme.
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