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Syn~sis: Described in this paper is the fundamental theory of a computer program,
EPASS, which have been developed for the elasto-plastic and finite displacement
analysis of spatial framed steel bridge structures composed of the thin-walled box
members and cable members by taking strain hardening of steel materials into
consideration. An efficient fonnulation for the elasto-plastic and finite displacement
theory of the thin-walled box members subjected to the combinations of bending,
compression and torsion is presented Then, some effective strategies for nonlinear
analysis such as the arc-length method, technique by using current stiffness parameter
and under-relaxation method are employed in the theory for making the "accurate
evaluation of the ultimate load carrying capacity of bridge structures. The validity of
this proposed methods is demonstrated through the analyses of various numerical
examples and an actual cable-stayed bridge.

Keywords: Elasto..plastic and finite displacement analysis, Ultimate strength, Finite
elementmethod., Three dimensional framed structure, Steel bridge

1. Introduction

In recent years, numerous long span and complicated steel bridges, such as the Akashi-kaikyo bridge, a
suspension bridge with the longest span in the world, and Tatara bridge, a cable-stayed bridge with alffi the
longest span in the world, have been constructed according to the development of design techniques and
manufacturing skills in Japan. In the design of such bridges, it is one of the most important \fPrks to
estimate their ultimate load carrying capacity from a standpoint of limit state, particularl~ ultimate limit
state. Some computer programsl)-S) for calculating the ultimate strength of three dimensional framed
structures on the basis of the elasto-plastic and finite displacement theory have already been developed
hitherto. Among them, several finite element programs for ffilving the comprehensive problems, such as
ABAQUS, MARC and NASTRAN can, ofcourse, be used for this purpose. However, these programs may not
cope with various and ffiphistica~d problems on the analysis. of practical and spatial bridge structures,
because they are too comprehensive and large. That is the reaffin why a computer program, EPASS4

),5), have
been developed for the elasto-plastic and finite displacement analysis of the framed steel bridge structures
composed of the thin-walled box members and cable members.

In the EPASS, various theories and analytical techniques are employed according to our experiences.
Although the elastn-plastic behavior of the thin-walled box members subjected to bending, compression and
torsion simultaneously is formulated on the basis of Komatsu-Sakimoto's method1), the stress-strain
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relationship of steel materials composing the thin-walled box members is not perfectly elasto-plastic but on
the combinations of isotropic hardening and kinematic one.

Generally speaking, some difficult problems occur in the elasto-plastic and finite displacement analysis
of large and complicated steel bridge structures, for instance, problems that the accurate ultimate load
carrying capacity is not often calculated or evaluated exactly. Several effective strategies for adopting
nonlinear analysis such as the arc-length method6),7), technique by using current stiffness parameterS) and
under-relaxation method9

),lO) are employed to solve the problems, and the other effective strategies for the
analysis of spatial steel bridges are also employed.

First of all, this paper describes the basic formulation of the elasto-plastic and finite displacement
theory of the thin-walled box members subjected to the combinations of bending, compression and torsion.
Secondl~ the outlines of the EPASS and the effective strategies which are used in the EPASS are shown in
detail. Several numerical examples are analyzed for investigating the validity of the proposed formulation.
Finall~ an example of an actual cable-stayed bridge is analyzed to verify the efficiency of the proposed
strategies.

2. Elasto-Plastic and Finite DisplacementAnalysis

2,1 AnalyticalAssumptions
The elasto-plastic and finite displacement behavior of the thin-walled box members is formulated on

the basis of the following assumptions:
1) The finite displacement behavior is formulated according to the Approximate Updated Lagrangian

Description (AULD) methodll
).

2) The cross section of the beam-column members keeps plane after deformation.
3) The shearing stress due to flexure and the warping stress due to torsion can be neglected.
4) The torsional angle of the cross section is small enough to be ignored.
5) The elasto-plastic behavior of the thin-walled box members is formulated according to the assumption1) of

constant shear flow along the box wall even after the partial yielding is occurred in the cross section.
6) The material of the box members is assumed to be homogeneous, isotropic, strain hardening and

satisfying the von Mises' yield criterion as well as Prandtl-Reuss' plastic flow rule.
7) The local buckling of the component plates of the box members do not occur.

2,2 Formulation usingPrinciple ofVntual U0rk
The elasto-plastic and finite displacement behavior of the thin-walled box members is formulated by

applying the incremental variational method. When a box beam-rolumn element which stays in the
equilibrium configuration of load step n, is subjected to incremental loads and moves to the equilibrium
configuration of load step n +1, the fundamental equation is obtained from the principle ofvirtual work as
follows:

(1)

where
Au : incremental nodal displacement vector
Ae : incremental deformation vector

/(n) : stress-resultant vector at the configuration of load step n

AI :incremental stress-resultant vector

p(n+l) : nodal force vector including incremental nodal force to the configuration of load step

n+l



(6)
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and l, 0 and the superscript T denote the length of the element, variation, and transposition of vectors,
respectively.

The incremental deformation vector ~e is the summation of linear term ~eL and nonlinear term

~eN' Thus,

~e = ~eL + ~eN (2)

While, the incremental stress-resultant vector ~f can be expressed as a material rigidity matrix S and

the incremental deformation vector ~e, then

!J.f = S!J.e = (S e + S p X!J.e L +!J.eN ) (3)

where S and S are the elastic and plastic material rigidity matrices, respectively. Substitution of Eqs.
e p

(2) and (3) into Eq. (1) gives

~ <5 ( !J.eL +!J.eN { (S e + S p X!J.eL +!J.eN ) dx +~ <5!J.e~ f (n) dx

I
= <5!J.uT p(n+l) - 1"0 <5!J.e~ f(n)dx (4)

Since the first term of the left-hand side in Eq. (4) is nonlinear term with respect to incremental
displacement, Eq. (4) may be reduced approximately to the linear form as follows by neglecting the high
order terms:

flD~eT (S + S \... e dx + fl<5!J.eT f (n) dx = <5!J.uT p(n+l) - l <5!J.eT f (n) dx (5)
Jo L e p P L Jo N Jo L

The stiffness matrix of the box beam-column element can be derived from Eq. (5) as shown in the latter.

2.3 Relationship between Strains andDisplacements
(1) Normal Strain

The local coordinate system of the box beam-column element is situated as shown in Fig. 1. The
incremental displacements (!J.u p , !J.vp ' !J.wp ) at a point p(x, y, z) in the cross section, which are shown

in Fig. 2, can be expressed by the incremental displacements (~u, ~v, ~w) at the shear center and the

incremental torsional angel ~4J of the cross section as follows:

!J.u p = !J.u - (y cos!J.~ - z sin !J.~ ) !J.v' - (z cos!J.~ + y sin !J.~ ) !J.w'

!J.vp = !J.v - z sin !J.~ - Y (1- cos!J.~ )

!J.wp =!J.w + y sin !J.~ - z (1 - cos!J.~ )

y

z

Fig. 1 Box beam-column element and
local coordinate system

x

Fig. 2 Incremental displacement and
torsional angle ofcross section



56

in which the prime means the derivative with respect to the coordinate axis- x .
The incremental normal strain Ae at the point P is generally given by

, 1( ,\2 1( ,\2
lie = liup +"2 IivpJ + 2 IiwpJ

Substitution ofEq. (6) into Eq. (7) gives

lie = lieo - ylitjJ z + zlitjJy + (y2 +Z2 ) IitjJ;

(7)

(8)

where Aeo' A1jJz' AtjJ y and AtjJ; are obtained by the assumption that the torsional angle-is small enough
to be ignored and by neglecting the higher order terms as follows:

, 1 ( , )2 1 ( , )2Ae0 = Au + - Av + - Aw
2 2

A1jJ z = Av" + AljJ Aw"

AtjJ y = -Aw" + A~ Av"

IitjJ; = ~ (liep' Y

(9)

(10)

(2) ShearingStrain
The box beam-column element subjected to pure torsion is deformed as shown in Fig. 3. For this

situation, the incremental shearing strain Ay at an arbitrary point in the cross section, illustrated in Fig. 4,
is given by the sum of the shearing strain due to pure torsion and warping as follows:

, aAii aAfi
Ay =,A~ +-=,A8+-

s 'Y as s as

where 's is the perpendicular distance from the shear center to the center line of the wall under
consideration, Au is the incremental displacement due to warping, s is the curvilinear coordinate along
the perimeter of the cross section, and A8 is the rate ofincremental torsional angle.

dx

y
AMx

x

s

Fig. 3 Deformation ofelement subjecte'd to
pure torsion

Fig. 4 Deformation of small element
dxxds

2.4 Relationship between Stresses andStrains
(1) Elastic Zone

The relationship between the incremental stresses and incremental strains in the elastic zone of the
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box beam-column element is expressed by Hooke's law as follows:

(11)

where

De = [~ ~] (12)

in which ~a and ~T are the incremental normal stress and incremental shearing stress, and E and G
are the Young's modulus and shear modulus ofelasticit~ respectively.

(2) Plastic Zone
The combination of isotropic hardening and kinematic one on the basis of von Mises' yield criterion is

defined by

f=~(a-a.)z+3(r-az)Z-H(sJ=O (13)

where two parameters a l and a z are the coordinates ofthe center of the yield surface, and H(sp) means

the size of the yield surface which is the function of the equivalent plastic strain ep • The term of the square

root in the above equation means the equivalent stress a. Thus,

a = ~(a-alY +3(r-azY
The incremental equivalent stress, ~a is obtained from Eq. (13) as follows:

Aa = (a-al XAa-Aa.)+3(r-azXAr-Aa2 ) =H'As
a p

where H' is the rate of isotropic hardening. The rate ofkinematic hardening H ~ is defined as follows:

(a-al)Aal +3(r -az)Aaz _ H' A-
_ - kU£p
a

(14)

(15)

(16)

The equations for the transition of the yield surface are expressed according to the Ziegler's kinematic
law as follows:

{~al} = H~~ep {a -al} (17)
~a2 a T-a2

According to the associated flow rule, the incremental plastic strains are proportional to the gradient of
the yield surface with respect to the corresponding stresses. Thus,

at
~£ =~A-,

p aa
at

~y =~A-
p aT (18)

where ~A is a scalar which is taken as a positive value or zero.

The incremental plastic work AWp is defined as follows:

AWp = (a -al)Aep+ (r - az)Ay p = dAsp (19)

Since each incremental strain at the plastic state is the summation of the incremental elastic strain
and plastic one, Eq. (11) can be rewritten as follows:
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{
Aa} = De{Ae - Aep}
Ar Ay-Ayp

From Eqs. (15), (16), (18), (19) and (20), M is derived as follows:

A'] - a
U/1, = Asp = S(SlAs +S2Ay)

where

(20)

(21)

Sl =E(a-al), Sz =3G(r-az) (22)

S = (H' + H~)az + Sl(a - al) + 3Sz(r -az) (23)

Hence, the relationship between the incremental stresses and incremental strains in the plastic zone of
the box beam-column element is given by

(24)

where

(25)

(3) Elasto-Plastic 1brsion ofBox Element

Let us consider that relationship between the stresses and strains in the box beam-column element.

For the elastic zone, the incremental shearing strain Ay is obtained from Eq. (11) as follows:
~T

~r =- (26)
G

The corresponding incremental normal stress, ~a being given by

~a =EAe

For the plastic zone, the incremental shearing strain ~r is obtained from Eq. (24) as follows:

A ~r S [3(r-az)j Z

Ar S 3(r-aZ )Auy = - + h - + h ue
G a-a E a-a1 1

where

S = E(a-aJ2
h (H' +H;)a2 +E(a-aJ2

The corresponding incremental normal stress, Aa being given by

3(r -a )
Aa = E Ae -ShEAe -Sh Z ~r

a-al

(27)

(28)

(29)

(30)

Sub~tution ofEqs. (26) and (28) into Eq. (10) and integration around the perimeter of the cross section
results in

[

(
)]

2 () _1 1 1 3 1: - a 3 1: - a aAu
- fArds +- fAms +- f Sh 2 Ams + f Sh 2 Aeds = AfJfrsds+f~s
GJe GJp EJp a-al Jp a-a l as

(31)
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where i ds and Lds mean the integration along the elastic and plastic zone, respectively and f ds is the

integration around the perimeter of the section. The serond term of the right-hand side in Eq. (31) vanishes
because of the continuity condition ofwarping in the box cross section.

Substituting Eq. (8) into Eq. (31) and assuming constant shear flow in the box cross section, the

incremental shearing flow A.q can be derived as follows:

!1q = !1r·t = - 1 (C3 !1Bo -C4!11jJz +Cs!11jJy +C6!11jJ; -C7!1(J) (32)
Ct +C2

where t is the thickness of the component plates of the box beam-column element and

C
2
=!fs

h
[3(r-a 2 )j2!dS,

EJp a-at t

C - r s 3(r - a 2 ) d
4 - Jp h Y S,

p a-at

C
6

= iSh 3(r-a2\y2 +z2}1s,
p a-at

(33)

(34)

C7 = frsds = 2As

in which As is the area enclosed by the center line of the wall in the box cross section.
Substituting Eq. (32) into Eq. (30), the relationship between the incremental normal stress and

incremental stains in the plastic zone can be obtained as follows:

~a = E~e - ShEA.e

3(r - a 2 ) 1 ( )+ S h C3~eO - C4~1jJ z + CsA1jJ y + C6 A1jJ; - C7A8
a-at Ct +C2

2.5 Relationship between Stress-Resultants and Strains

The incremental stress-resultants of the box beam-column element can be expressed by integrating the

incremental normal stress ~a and the incremental shearing flow A.q in the cross section. The positive
sign of the stress-resultants is defined as shown in Fig. 5, and then the corresponding incremental stress­
resultants are given by

Y

Fig. 5 Stress-resultants ofa box beam-column element
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AN =L Aa dA =JAa dA +£Aa dA

AM z = -LAaydA = i AaydA - f, AaydA

AMy =L AazdA =JAazdA +£AazdA (35)

AMp =L Aa{y2 + Z2 )dA =JAa{y2 + Z2 )dA +£Aa{y2 + Z2 )dA

AM x =f Aqrsds

Substituting Eqs. (8), (27), (32) and (34) into Eq. (35), the final equation can be written in a matrix form
as follows:

where

AI = {AN AM z AMy AMp AM
x

}T

Ae={Aso f11jJ z f11Jl y f11jJ t/J AO Y
EAe

-ESz Elz Sym.

S = ESy -Elyz Elye

E(Iz+Iy ) -Elpy Elpz , Elpp
0 0 0 0 GJ

c 2
3

-C3C4 C2 Sym.
1 4

S = C3CS -C4CS C2

p C
1

+C
2

S

C3C6 -C4C6 CSC6 C2
6

-C3C7 C4C7 -CSC7 -C6C7 -GJC2

in which

(36)

(37)

(38)

(39.a)

(39.b)

Ae =LdA -£ShdA ,

Sy =LzdA -LShZdA ,

I y =fl 2dA - £ShZ2dA , I yz =LyzdA -LShyZdA, .

I py =L (y2 + Z2 )ydA - LSh{y2 + Z2 )ydA ,

I pz =L (y2 + Z2~dA - £Sh(y2 + Z2~dA ,

I pp = L(y2+ Z2)2 dA -f,Sh(y2+ Z2YdA,

4A 2

J = __$ ds

f~

(40)



61

2.6 Equilibrium Equation
By using Eq. (5) on the tangent stiffness ~atrix, the following equilibrium equation can be derived for

an elasto-plastic box beam-column element expressed in their local coordinate system:

(k e +kp +kg ) Au = p- 11 (41)

where k , k , k ,and II are the elastic stiffness matrix, plastic stiffness matrix, geometric stiffnesse p g

matrix, and the nodal force vector for the internal forces, respectivel~

Equation (41) should be transformed to the global coordinate system through their transformation
matrix T and the whole equilibrium equation in the global coordinate system can easily be obtained by
assemblying the transformed equation of all the elements.

3. Outline ofEPASS

EPASS is a computer program which have been developed for the elasto-plastic and finite displacement
analysis of spatial framed steel bridge structures composed of the thin-walled box members and cable
members. By using the EPASS, it may be possible to estimate the ultimate load carrying capacity of the
Nielsen-Lohse arch bridges, cable-stayed bridges, suspension bridges and other special types ofbridges.

The main features of the program are outlined as follows:
1) The various finite elements and connections can be adopted, as listed in Table 1.

2) The choice of elastic or elasto-plastic analysis and small or finite displacement analysis is possible
according to analytical purposes.

3) The elasto-plastic behavior of the thin-walled box members subjected to the. combinations of bending,
compression and tDrsion can be simulated on the basis of the theory described in Chapter 2.

4) An arbitrary cross-sectional shape includLTlg box cross section with multi-cells can be treated in the elasto­
plastic box beam-column element. However, the shearing flow is assumed to flow along only the outside
perimeter of the cross section.

5) The inherent residual stress and initial deflection in the steel bridge members can be taken into
consideration.

6) The non-linearity of -cable members due to cable tension can be accounted according to the tangent
stiffness equation ofcatenary cables on the basis of the Goto's method12).

Table 1 Types of finite elements and connections in EPASS

(a) Finite elements

J//
i) Elasto-plastic

box beam-column
element

ii)Elastic
beam-column
element

iii) Cable
element

(b) Connections

iv)Spring
element

v) Elasto-plastic
rod element

i) Rigid
connection

ii)Pin
connection

iii) Eccentric
connection
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7) All kinds of load combinations used in bridge design can be adopted.

8) The initial stress-resultants and loads for the initial configuration of an analytical model can eaSily be
taken into consideration.

9) The equilibrium path of the analytical model after their ultimate load point can be traced.

A system surrounding the EPASS is illustrated in Fig. 6. This system consists of pro-processing

programs for making the initial configuration of the bridge structure, main program EPASS and post­
processing programs for representing the numerical results diagrammatically.

In one of the pre-processing programs, the stress-resultants in the structural members of an analytical
model subjected to dead load and prestressing load are calculated by the elastic linear analysis in advance of
the elasto-plastic and finite displacement analysis. The calculated stress-resultants are inputted into the

EPASS as the initial ones, so that the expected initial configuration of the analytical model can easily be
generated. The most unfavorable initial deflection of the analytical model can be evaluated according 1D the
fundamental buckling mode calculated by a pre-processing buckling analysis.

~ Graph i CSt:==:::=::=!:===:::::#

Fig.6 System surrounding EPASS

4. Effective Strategies for Analysis ofSpatial Steel Bridges

There are some effective strategies which are used in the EPASS for the accurate and efficient

evaluation of the ultimate load carrying capacity as well as reduction of computation time. For these
strategies, arc-length method, technique by using the current stiffness parameter and under-relaxation

method are introduced mainly as follows.

4.1 Arc-Length Method
Th evaluate an unknown ultimate load by the load incremental method accurately; it is difficult to select

an appropriate load increment according to the degree of nonlinearity and to decide suitable smaller load
increment near the unknown ultimate state which may be predicted after several trials. Moreover, it is also
very difficult 1D predict the unknown ultimate load and 1D select the suitable load increment without
adequate knowledge and experience. No chance 1D carry out several trail calculations on the basis of the
elasto-plastic and finite displacement theory for deciding the suitable load increment can be permitted in
designing actual bridges because of limited computation time and cost.

For these reasons, the arc-length method, shown in Fig. 7, has been introduced into the EPASS on the
basis of Refs. 6 and 7. Therefore, the ultimate load of any analytical models can easily be evaluated, because
the equilibrium path of the model after reaching their ultimate load points can be traced by using this arc­

length method. Each load increment is also decided automatically in this method.
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Final solution
atB

Tangential solution
from point.A

Displacement 6' D

AI.
B I'

Circular pat~~ I
Al .-_ .... Load-deflection

_............. path

Final solution
atB

Tangential solution
from point A

Bt \
Circular pat~.. I

Al ............. Load·deflection
............. path

Displacement 0' D

(a) With Newton-Raphson technique (b) With modified Newton-Raphson techique

Fig. 7 Arc-length method

A = 0.32 in2

E = l.OX 107 psi
I = l.0 in4

y = a sin( rexlL)

a= 5.0 in
L = l.OX 102 in
p = l.OX 103 lb

(a) Analytical model
6 1.2

0 a
~

4 • Sp 0.8....
Qj

Q) ~~
8
~ 2 0.4 ci.
~ eli

P-c U
~
~

j 0.0(42)

corresponding incremental displacement vector AU i at the

loading level i are standardized by the Euclidean norm of

the incremental load vector IMJi I. And the following scalar

S p; is defined as the reciprocal of the product of these

standardized vectors:

4.2 Current Stiffness Parameter
In order to obtain the ultimate load effectivel~ a

current stiffness parameter (c.s.p.) proposed in Ref. 8 has
been adopted. The current stiffness parameter is positive in
stable region, negative in unstable region and equal to zero
at the stationary points as defined as follows.

The incremental load vector MJ. and the
I

(43)

This value of Sp; is in proportion to the stiffness of the

analytical model. The current stiffness parameter SPi at

the loading level i is defined as:
S *

S =--.!2.
Pi S *

Pi

in which S p; is the value of S p; at the loading level i = 1 J

where the load-displacement relationships of the analytical
model under consideration are linear.

Figure 8 shows how the current stiffness parameter
changes in accordance with the loading levels in the analysis
of a two-hinged arch under a concentrated load13), as an
example. It can be seen from Fig. 8(b) that the current
stiffness parameter becomes equal to zero at the extremum

-20 -2.0 -4.0 -6.0 -8.0 -10.0 -0.4

Displacement under load (in)

(b) Load parameter and c.s.p.-displacement
CUIVes

1.2

0.8

~~

~0.4
fIi
0

0.0

-0.4
0 2 4 6

Load Parameter a
(c) Load parameter-c.s.p. cmve

Fig. 8 Current stiffness parameter5)
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points of the load-displacement curve. The ultimate load of the analytical model may be predicted by plotting
their current stiffness parameters as shown in Fig. 8(c) and by using the extrapolation in case where the
calculation is interrupted before the ultimate state.

4.3 Under-Relaxation Method
The under-relaxation method9

),lO) is adopted in case that the solution will not easily diverge by using
constant load increments.

Let us now considered a load increment that the converged configuration of the load step i has been
evaluated and the next converged configuration of the load step i +1 is going to be calculated. When the

solution procedure until the iteration loop k finished, the incremental displacement vector A.U
i
+

1
(k+1) at

the iteration loop k +1 is expressed as follows:
1) Using load incremental method

A.U. (k+1) = A.U. (k) + f3 (k+1) [K. (k)}l rro(A. + M. ) _ F. (k)] (44)
1+1 1+1 1+1 J I.l' I 1+1 1+1

where K ;+1(k) is the tangent stiffness matrix, P(A; + A.A;+1) is the nodal force vector for the external loads,

F i+1(k) is the nodal force vector for the internal forces, M i+1 is the incremental loading parameter, and

f3(k+1) is the relaxation parameter (0 < f3 ~ 1).
2) Using Arc-length method

A.U. (k+1) = f3 (k+1) (A.U. (k) + c5 (k+1) + c5A(k+1) c5 ) (45)
1+1 ~ 1+1 T

(A.U. (k) + c5 (k+1) + c5A(k+1) (j \T (A.U. (k) + c5 (k+1) + c5A(k+1) c5 ) = (A£)2
1+1 T J 1+1 T

where A.£ is the incremental arc-length and

c5 (k+1) = [K. (k)}l [P(A. + M. ) _ F. (k)]
1+1 J I 1+1 1+1

[
(k) }1

c5 T = K i+1 J q

(46)

(47)

(48)

in which q is the reference nodal force vector for the external loads.

The value of the incremental loading parameter f3 is varied on each iteration.
Although the number of iteration loop at the load step increases by using the under-relaxation method,

the larger load increment can be used. Then, it may be advantageous to use this method in the case of
elasto-plastic analysis using the arc-length method.

4.4 Other Effective Strategies
Other effective strategies which are employed in the EPASS are given as follows:

(1) PartialAULD (Approximate Updated Lagrangian Description)
The finite displacement behavior is formulated according to two types of ULD (Updated Lagrangian

Description) methods. One is AULD11) and the other is Partial AULD. In the AULD, a reference configuration
to make the stiffness matrix is defined approximately by a rigid body motion of the undeformed body of the
finite element. The Partial AULD is the AULD improved by the concept used in the PULD (partial ULD)14)

in which the coordinates ofeach element are updated only at the beginning ofeach load step.
It is advantageous to use the AULD in problems where the geometrically nonlinear behavior

predominates and to use the Partial AULD in the case where the elasto-plastic behavior predominates by
using the arc-length method.
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(2) EfIiciencyofMakingInput Data on ResidualStress
In the presented program, the practical residual stress distribution which have been proposed by the

first author through their experimental studyl5) can be automatically introduced only by designating the
material type of steel in order to raise the efficiency ofmaking input data.

(3) RestartingFunction ofCalculation
The EPASS provides a function of restarting calculation. Even if a calculation is interrupted

accidentally and an unexpected result before reaching the ultimate load of the analytical model under
consideration is calculated, the calculation can be resumed from the interrupted state by detecting the bugs
and removing them.

5. Verification ofthe Program

In this chapter, several results of numerical examples analyzed by the EPASS are shown to investigate
the validity ofEPASS program.

-0- EPASS result

• Result by Ref.1)

5

6,------------

Fully plastic
interaction curve

(~)2+(.Mr)2=1
Mpx Mpy

Fig. 10 Interaction between bending moment
and torsional moment4)

+oJ
C
Q)

Eo
E
C)
c:c
c
Q)

-co

1.2

i.:::: 100 'J'l-
11.9 ~ 4

I I ~

O'ltb~llrnl i 3

Cross section ci (unit:cm)

E =2.1x106 kgf/cm2
C1 y = 4,032 kgf/cm2

Mpx =1.953x1 05 kgf cm 1 2 3
Mpy = 2.240x105 kgf cm Deflection under load w/L x1 02

(a) Model (b) Numerical results

Fig. 9 Analysis of two cantilever beams connected
at their free edges4
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5.1 Elasto-plasticAnalysis ofFolded Beam
Subjected to Bendingand 1brsion
Two cantilever beams connected at

tlieir free edges under a concentrated load
are analyzed as a numerical example of
bending and torsion to examine the validity
of the elasto-plastic behavior of the box
members as shown in Fig. 9(a). The
analytical results of the relationships
between the load P and deflection w at a
loading point as plotted in Fig. 9(b) agree
with the results by Ref. 1. The variations of
bending and torsional moments at three
nodal points, where the cross section will
yield, are shown in Fig. 10. It can be seen
from this figure that numerical results by
the EPASS vary along the interaction curve
of the fully plastic state.

5.2 Elasto-plastic and Finite Displacement
AnalysisofColumn

As a numerical example for elasto-plastic
and finite displacement analysis, a box column
with the initial deflection and residual stress is
analyzed as shown in Fig. 11(a). The obtained
results are compared with the Euler's buckling
load and the solutions given by Shulz l

6) in Fig.
11(b). The ultimate loads obtained by the EPASS
agree well with the numerical results by Shulz.



66

1.2..----------
P

Elastic bucklin

-0- Elastic analysis
-a- Elasto-plastic analysis

(un:=O)
0.2 -+- Elasto-plastic analysis

( U n: =0.4 0' y)
O~-~_----II.-_--L------J

o 0.5 1 1.5 2
Deflection at center v/h x1 02

(b) Numerical results.

V D-,b 0.8

~" ~0..c: 0.6
Cross section ~

(unit:cm) - Y .3
E =2.1 x1 06 kgf/cm2

Per = 0.60' yA
(J y =3,000 kgf/cm2

~ . rex
Vo = uoslnh
~ 0 = h /1 ,000
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Fig. 11 Analysis ofelasto-plastic column with residual stress4
)

6. Practical Example ofCable Stayed Bridge

An actual example of a cable-stayed bridge is analyzed to verify the efficiency of the strategies
mentioned above.

Fig. 12 Analytical model ofcable stayed bridge
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Fig. 13 Residual stress distribution
Introduced into cross
section ofpylons

Compression
(49)

D1 : pre-dead load (weight of main girder, deck
plates and pylons)

D 2 : post-dead load (weight ofpavement etc.)

where

6.1 AnalyticalModel
An analytical model Qf a cable-stayed

bridge l
7) with the multi-cable type is shown in

Fig. 12. In this model, only the pylons are
idealized as the assemblies ofelasto-plastic box
beam-column elements, which can simulate
the elasto-plastic and finite displacement
behavior of steel members subjected to the
combinations of bending, compression and
torsion becau~ the purpose of the analysis is
to evaluate the ultimate load carrying capacity
of these pylons. Then, the main girder and
cables are idealized with the elastic beam­
column elements and the elastic rod elements,
respectively:

The residual stress distribution depicted in Fig. 13 is
automatically introduced into the cross section of the
pylons.

The load condition applied to the analytical model is
defined as follows:
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Ps : prestressing forces ofcables
L : live load specified by JSHB18)

a : load parameter to control loading levels

The elasto-plastic and finite displacement analysis is executed according to the following manners.

Firstl~ the expected initial configuration of the analytical model subjected to the load 1.0(D1 +Ps + D2 ) is

generated by the method mentioned in the following Section 6.2. Secondly; the load 0.7(D1 + D 2 ) is applied
to this model. Finally; the live load aL is gradually increaEed up to the ultimate state of the analytical

model. 1.7(= 1.0 +0.7) is the safety factor expected in Japan Specifications for Highway Bridgesl
8).

6.2 Pre-processingAnalysis

Pre-processing elastic linear analyEes are carried out for evaluating the expected initial configuration of

the analysis model subjected to the dead load (PI + D2 ) and the prestressing forces Ps as shown in Fig.
14. In this caEe, the stress-resultants ofeach element are evaluated in the following three analytical models:

1) in the erection model subjected to the pre-dead load D1 ,

2) in the erection model without cables subjected to the external forces equivalent to the prestressing forces

Ps and
3) in the completion model subjected to the post-dead load D 2

(a) Erection model subjected to pre-dead load

(b) Erection model without cables subjected to prestressing forces

(c) Completion model subjected to post-dead load
Fig. 14 Three models for pre-processing analysis

Then, the obtained stress-resultants are introduced as the initial ones into the completion model

together with the dead load (D1 +D 2 ) as the initial load and with the prestressing forces Ps as the initial

stress-resultants in the cable elements. The expected initial configuration of the completion model can be
generated in this method becaUEe these initial stress-resultants including the prestressing forces Ps in the

cable elements are balanced with the initial load (D1 + D2 ).

6.3 AnalyticalResults
The numerical results of the analytical model subjected to the live load only on the center span are

shown in Figs. 1&-18.
Figure 15 shows the relationships between the load parameter and deflection of the top of the Pylon 2.

Although the ultimate load may be evaluated from the gradient of the load parameter-deflection curve in the
caEe of the load incremental method, it can be Eeen that the ultimate load can be obtained areurately by the
arc-length method with the under-relaxation method. However, the converged EDlutions were not obtained
near the ultimate load point in the analysis only using the arc-length method.

Figure 16 depicts the relationship between the load parameter and the current stiffness parameter in
the load incremental method. In this figure, the ultimate load can be predicted through the extrapolation of
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Load parameter a

Fig. 16 Prediction of ultimate load by c.s.p.5)
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Fig. 18 Deformation and plastic rone of Pylon 2
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Fig. 17 Deformation of analytical model at ultimate state5)

7. Conclusion

the load parameter-c.s.p. curve. As compared
Fig. 15 with Fig. 16, it can be seen that this
prediction technique of the ultimate load is
very effective. And it is possible by using a load
parameter-c.s.p. diagram to know how close the
final load level to the unknown ultimate load
and to a~rtain the accuracy of ultimate load
obtained by the ordinary load incremental
method.

Figure 17 illustrates the deformation of
the analytical model at the ultimate state. In
this ultimate state, the out-of-plane
deformation of the Pylon 2 is predominant.

The deformation and plastic zone of the
Pylon 2 at the ultimate state are shown in Fig.
18. This figure is very useful to understand the
failure mode of the Pylon 2.

In this paper, a computer program,
EPASS, to analyze the elasto-plastic and finite
displacement behaviors of spatial framed steel
bridge structures composed of the thin-walled
box members and cable members, have been
presented.

The originality of this paper is to formulate the elasto-plastic and finite displacement behavior of beam­
column members with box cross section on the basis of a finite element method by taking strain hardening of
steel material into consideration.

The validity of the elasto-plastic and finite displacement theory of the thin-walled box members
subjected to the combinations of bending, oompression and torsion is verified by comparing the numerical
results with the theoretical ones and the other numerical ones.

Furthermore, the efficiency of strategies, which are used in the EPASS for the accurate evaluation of
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the ultimate load, such as the arc-length method, technique by using current stiffness parameter and under­

relaxation method, has been verified.
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