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Fundamental Theory of Computer Program, EPASS, for Applying Elasto-Plastic
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Synopsis: Described in this paper is the fundamental theory of a computer program,
EPASS, which have been developed for the elasto-plastic and finite displacement
analysis of spatial framed steel bridge structures composed of the thin-walled box
members and cable members by taking strain hardening of steel materials into
consideration. An efficient formulation for the elasto-plastic and finite displacement
theory of the thin-walled box members subjected to the combinations of bending,
compression and torsion is presented. Then, some effective strategies for nonlinear
analysis such as the arc-length method, technique by using current stiffness parameter
and under-relaxation method are employed in the theory for making the ‘accurate
evaluation of the ultimate load carrying capacity of bridge structures. The validity of
this proposed methods is demonstrated through the analyses of various numerical
examples and an actual cable-stayed bridge.

Keywords: Elasto-plastic and finite displacement analysis, Ultimate strength, Finite
element method, Three dimensional framed structure, Steel bridge

1. Introduction

In recent years, numerous long span and complicated steel bridges, such as the Akashi-kaikyo bridge, a
suspension bridge with the longest span in the world, and Tatara bridge, a cable-stayed bridge with also the
longest span in the world, have been constructed according to the development of design techniques and
manufacturing skills in Japan. In the design of such bridges, it is one of the most important works to
estimate their ultimate load carrying capacity from a standpoint of limit state, particularly, ultimate Lmit
state. Some computer programs”® for calculating the ultimate strength of three dimensional framed
structures on the basis of the elasto-plastic and finite displacement theory have already been developed
hitherto. Among them, several finite element programs for solving the comprehensive problems, such as
ABAQUS, MARC and NASTRAN can, of course, be used for this purpose. However, these programs may not
cope with various and sophisticated problems on the analysis of practical and spatial bridge structures,
because they are too comprehensive and large. That is the reason why a computer program, EPASS? 9, have
been developed for the elasto-plastic and finite displacement analysis of the framed steel bridge structures
composed of the thin-walled box members and cable members.

In the EPASS, various theories and analytical techniques are employed according to our experiences,
Although the elasto-plastic behavior of the thin-walled box members subjected to bending, compression and
torsion simultaneously is formulated on the basis of Komatsu-Sakimoto's method”, the stress-strain
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relationship of steel materials composing the thin-walled box members is not perfectly elasto-plastic but on
the combinations of isotropic hardening and kinematic one.

Generally speaking, some difficult problems occur in the elasto-plastic and finite displacement analysis
of large and complicated steel bridge structures, for instance, problems that the accurate ultimate load
carrying capacity is not often calculated or evaluated exactly. Several effective strategies for adopting
nonlinear analysis such as the arc-length method®?, technique by using current stiffness parameter® and
under-relaxation method®'® are employed to solve the problems, and the other effective strategies for the
analysis of spatial steel bridges are also employed.

First of all, this paper describes the basic formulation of the elasto-plastic and finite displacement
theory of the thin-walled box members subjected to the combinations of bending, compression and torsion.
Secondly, the outlines of the EPASS and the effective strategies which are used in the EPASS are shown in
detail. Several numerical examples are analyzed for investigating the validity of the proposed formulation.
Finally, an example of an actual cable-stayed bridge is analyzed to verify the efficiency of the proposed
strategies.

2. Elasto-Plastic and Finite Displacement Analysis

2.1 Analytical Assumptions
The elasto-plastic and finite displacement behavior of the thin-walled box members is formulated on

the basis of the following assumptions:

1) The finite displacement behavior is formulated according to the Approximate Updated Lagrangian
Description (AULD) method?.

2) The cross section of the beam-column members keeps plane after deformation.

3) The shearing stress due to flexure and the warping stress due to torsion can be neglected.

4) The torsional angle of the cross section is small enough to be ignored.

5) The elasto-plastic behavior of the thin—walled box members is formulated according to the assumption? of
constant shear flow along the box wall even after the partial yielding is occurred in the cross section.

6) The material of the box members is assumed to be homogeneous, isotropic, strain hardening and
satisfying the von Mises' yield criterion as well as Prandtl-Reuss’ plastic flow rule.

7 The local buckling of the component plates of the box members do not occur.

2.2 Formulation using Principle of Virtual Work

The elasto-plastic and finite displacement behavior of the thin-walled box members is formulated by
applying the incremental variational method. When a box beam-column element which stays in the
equilibrium configuration of load step n, is subjected to incremental loads and moves to the equilibrium
configuration of load step » +1, the fundamental equation is obtained from the principle of virtual work as
follows:

[,one™( £ + Af ) dx = onu” pe )

where
Au  :incremental nodal displacement vector
Ae :incremental deformation vector
f (") . stress-resultant vector at the configuration of load step »
Af  :incremental stress-resultant vector
p("”) : nodal force vector including incremental nodal force to the configuration of load step
n+l
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and [, 6 and the superscript T denote the length of the element, variation, and transposition of vectors,
respectively.

The incremental deformation vector Ae is the summation of linear term Ae, and nonlinear term
Ae,, . Thus,

Ae = Ae; + Ae, @)

While, the incremental stress-resultant vector Af can be expressed as a material rigidity matrix S and
the incremental deformation vector Ae, then

Af =SAe=(Se+Sp XAeL +Ae, ) 3)
where S, and § , are the elastic and plastic material rigidity matrices, respectively. Substitution of Eqs.
(2) and (3) into Eq. (1) gives

T !
J;lé(AeL +he, ) (s, +5, XAeL +Ae,, )dx+j;6Ae,f,f(”)dx

_ oAuT p _ fo' dhe? f ™ dx )

Since the first term of the left-hand side in Eq. (4) is nonlinear term with respect to incremental
displacement, Eq. (4) may be reduced approximately to the linear form as follows by neglecting the high
order terms:

) ! ‘l
J;dAe{(Se +S, )Aede +L6Ae;f(")dx = 6Au’ p*Y —L(SAeff(”)dx (5)
The stiffness matrix of the box beam-column element can be derived from Eq. (5) as shown in the latter.

2.3 Relationship between Strains and Displacements
(1) Normal Strain

The local coordinate system of the box beam-column element is situated as shown in Fig. 1. The
incremental displacements (Au 20 AV, Awp) at a point P(x, Y z) in the cross section, which are shown
in Fig. 2, can be expressed by the incremental displacements (Au, Av, Aw) at the shear center and the
incremental torsional angel A¢ of the cross section as follows:

Au, = Au ~(ycosA¢ - zsin Ag )Av' — (zcos Ag + ysin Ap ) Aw'
Av, =Av -zsin Ag - y (1-cosAg) (6)
Aw, = Aw + ysin Ap-z(1-cosA¢)

Fig. 1 Box beam-column element and Fig. 2 Incremental displacement and
local coordinate system torsional angle of cross section
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in which the prime means the derivative with respect to the coordinate axis- x .
The incremental normal strain Ag at the point P is generally given by

A 1 '
As=Aul,+5(AvP)2+5(AwP)2 @)
Substitution of Eq. (6) into Eq. (7) gives
As = Ay — yAy, + 2y, +(y? +2° ) Ay, ®

where A¢,, Ay,, Ay and Ay, are obtained by the assumption that the torsional angle-is small enough
to be ignored and by neglecting the higher order terms as follows:

N
Ag, = Au'’ +%(Av’ )y +% (aw')
Ay, = AV" + Agp Aw”
Ay =-Aw" + Ap AV' > ©)
1 )
A¢¢ = E (A¢ )2
J

(2) Shearing Strain

The box beam-column element subjected to pure torsion is deformed as shown in Fig. 3. For this
situation, the incremental shearing strain Ay at an arbitrary point in the cross section, illustrated in Fig. 4,
is given by the sum of the shearing strain due to pure torsion and warping as follows:

Ay =rAp + B4 _ ) g 9B% (10)

as as
where r, is the perpendicular distance from the shear center to the center line of the wall under
consideration, A« is the incremental displacement due to warping, s is the curvilinear coordinate along

the perimeter of the cross section, and A# is the rate of incremental torsional angle.

Fig. 3 Deformation of element subjected to Fig. 4 Deformation of small element
pure torsion dx x ds

2.4 Relationship between Stresses and Strains
(1) Elastic Zone
The relationship between the incremental stresses and incremental strains in the elastic zone of the
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box beam-column element is expressed by Hooke' s law as follows:
Ao Ae
-D, 11)
At Ay

E 0
D, - [ ] (12)

where

0 G
in which Ao and At are the incremental normal stress and incremental shearing stress, and £ and G

are the Young’s modulus and shear modulus of elasticity, respectively.

(2) Plastic Zone
The combination of isotropic hardening and kinematic one on the basis of von Mises’ yield criterion is
defined by

f-Alo-af +3-a) -#(,)-0 a9
where two parameters «, and «, are the coordinates of the center of the yield surface, and H (E R ) means

the size of the yield surface which is the function of the equivalent plastic strain & » - The term of the square
root in the above equation means the equivalent stress & . Thus,
(7=\/(0—a1)2 +3-a,) 14
The incremental equivalent stress, AG is obtained from Eq. (13) as follows:
5 ( —aIXAa - Aa1)+ 3(1: —aZXAr - Aa2)
o

A - HAZ, (15)

where H' is the rate of isotropic hardening. The rate of kinematic hardening H, is defined as follows:
(a - ozl)Aoz1 + 3(1: -a, )Aa2
rod

= H,Az, (6)

The equations for the transition of the yield surface are expressed according to the Ziegler's kinematic
law as follows:

{Aal}=H;_AEP {o—al} -
Aa, o T-a,
According to the associated flow rule, the incremental plastic strains are proportional to the gradient of

the yield surface with respect to the corresponding stresses. Thus,

af of
Ae =AA—, Ay =AA— 18
“r 0o Ve it (18)

where AA is a scalar which is taken as a positive value or zero.
The incremental plastic work AWP is defined as follows:

AW, = (a —al)Aep + (t —az)Ayp = 0A¢, (19)

Since each incremental strain at the plastic state is the summation of the incremental elastic strain
and plastic one, Eq. (11) can be rewritten as follows:
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{Aa} _D {As -Ae, } @0
At “|Ay - Ay,
From Egs. (15), (16), (18), (19) and (20), AA is derived as follows:
AL =Ae, = %(SIAE +S,Ay) 21
where
S, =E(c-a)), S,=3G(r-0,) (22)
S=H'+H)o*+S,(c-a,)+3S,(r-a,) 23)

Hence, the relationship between the incremental stresses and incremental strains in the plastic zone of
the box beam-column element is given by

Ao Ae
=D (29
{oe 2}

1
D,-D, -

where
S12 S1S2

2 (25)
SS, S,

(3) Elasto-Plastic Torsion of Box Element
Let us consider that relationship between the stresses and strains in the box beam-column element.
For the elastic zone, the incremental shearing strain Ay is obtained from Eq. (11) as follows:
At

Ay = v (26)
The corresponding incremental normal stress, Ao being given by

Ao =F A¢ 27
For the plastic zone, the incremental shearing strain Ay is obtained from Eq. (24) as follows:

2
3(r - 3(z -
G o-a, E o-a,
where
E (a -, )2
B ’ 1\—2 2 (29)
(H'+H,)5?+E(0-a,)

The corresponding incremental normal stress, Ao being given by

Ao =E A -S,EAe - S, -y, (30)

o-a,

Substitution of Egs. (26) and (28) into Eq. (10) and integration around the perimeter of the cross section
results in

1 1 1 3z -a,)’ M-ay), Al
EJ;ATdS +5LATdS+Ej;Sh[—U_—aI—} Atds +J;Sh U_—alAEdS'—ABfrde +f—gs—ds

(3D
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where f ds and f ds mean the integration along the elastic and plastic zone, respectively and f ds is the
e P

integration around the perimeter of the section. The second term of the right-hand side in Eq. (31) vanishes
because of the continuity condition of warping in the box cross section.

Substituting Eq. (8) into Eq. (31) and assuming constant shear flow in the box cross section, the
incremental shearing flow Ag can be derived as follows:

1

C +C

Ag=Av-t=- (Cihe, - C,AY, +CAy, +C Ay, - C,A6) 32)

2

where ¢ is the thickness of the component plates of the box beam-column element and

Cl=éf1ds, fS [3@ az)} L, )

c, J.S 3(r a) is, C, fS ‘L’ a)

se-a), - > “
Cs =[S, ;ZZ ds, Co=[5, Taz(y +2° )ds,
C, =frsds=2As Y,

in which A_ is the area enclosed by the center line of the wall in the box cross section.
Substituting Eq. (32) into Eq. (30), the relationship between the incremental normal stress and
incremental stains in the plastic zone can be obtained as follows:

Ao =EAe - S, EAe

.S, 3(r—a2) 1 (C3A£0 -C,Ay, +C,Ay +C Ay, —C7A0) 34
o-a, C +C,

2.5 Relationship between Stress-Resultants and Strains

The incremental stress-resultants of the box beam-column element can be expressed by integrating the
incremental normal stress Ao and the incremental shearing flow Ag in the cross section. The positive
sign of the stress-resultants is defined as shown in Fig. 5, and then the corresponding incremental stress-
resultants are given by

Fig. 5 Stress-resultants of a box beam-column element
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AN = [[AcdA = [AodA+ [ AodA )

AM, = ~[ AoydA - -[AoydA - [ Ao ydA

MM, = [\ AozdA = [AczdA + [ AozdA > @35)
MM, - [ 8o{y? +2 JaA - [Ao(y* +22 Jaa+ [ Ao(y® + 2 Jia

AM , = §Agr.ds J

Substituting Egs. (8), (27), (32) and (34) into Eq. (35), the final equation can be written in a matrix form
as follows:

Af =(S.+S,)Ae 36)
where
Af -{AN AM, AM, AM, AM, ) @7
Ae-{Ae, Ay, Ay, Ay, AGY 38)
 EA, *
-ES, El, Sym.
S.-| ES, -EI, EI, (39.2)
E(1,+1,) -EI, EI, EI,
0 0 0 0 GJ]
e
-c,Cc, C? Sym.
S, = 1 c,c, -C,C, (! (39.b)
C, +C, )
cc, -CC, CC, C:
-C,C, CC, -CC, -CC, -GIC,
in which - -

A‘=LM-LShM’ S2=LydA—LShycM,
Sy=deA—J;Shsz, I, =fy2dA—fShy2dA,
1, =L22¢4—J;Shzsz e —fysz fShysz '
o= [0 42y [5, (v + 22 yda > (40)
L(y2+z )zcm fS,,(y2+z )sz
(y2+z )dA J'S (y2+ )
4A‘zds

f, J

t

1

I,

||
s

J =
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2.6 Equilibrium Equation
By using Eq. (6) on the tangent stiffness matrix, the following equilibrium equation can be derived for
an elasto-plastic box beam-column element expressed in their local coordinate system:

(ke+kp+kg)Au=p_fl (41)

where k_, kp, kg, and f, are the elastic stiffness matrix, plastic stiffness matrix, geometric stiffness
matrix, and the nodal force vector for the internal forces, respectively.

Equation (41) should be transformed to the global coordinate system through their transformation
matrix T and the whole equilibrium equation in the global coordinate system can easily be obtained by
assemblying the transformed equation of all the elements.

3. Outline of EPASS

EPASS is a computer program which have been developed for the elasto-plastic and finite displacement
analysis of spatial framed steel bridge structures composed of the thin-walled box members and cable
members. By using the EPASS, it may be possible to estimate the ultimate load carrying capacity of the
Nielsen-Lohse arch bridges, cable-stayed bridges, suspension bridges and other special types of bridges.

The main features of the program are outlined as follows:

1) The various finite elements and connections can be adopted, as listed in Table 1.

2) The choice of elastic or elasto-plastic analysis and small or finite displacement analysis is possible
according to analytical purposes.

3) The elasto-plastic behavior of the thin-walled box members subjected to the combinations of bending,
compression and torsion can be simulated on the basis of the theory described in Chapter 2.

4) An arbitrary cross-sectional shape including box cross section with multi-cells can be treated in the elasto-
plastic box beam-column element. However, the shearing flow is assumed to flow along only the outside
perimeter of the cross section.

5) The inherent residual stress and initial deflection in the steel bridge members can be taken into
consideration.

6) The non-linearity of -cable members due to cable tension can be accounted according to the tangent
stiffness equation of catenary cables on the basis of the Goto’s method 2.

Table 1 Types of finite elements and connections in EPASS
(@ Finite elements

S

i) EI —pl i El

i)Elasto-plastic i) Elastic iii) Cable iv) Spring v) Elasto-plastic
box beam-column beam-column element ) t d el ¢
element element m elemen rod elemen

() Connections

_J o

i) Rigid ii) Pin iii) Eccentric
connection connection connection
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7) All kinds of load combinations used in bridge design can be adopted.

8) The initial stress-resultants and loads for the initial configuration of an analytical model can easily be
taken into consideration.

9) The equilibrium path of the analytical model after their ultimate load point can be traced.

A system surrounding the EPASS is illustrated in Fig. 6. This system consists of pro-processing
programs for making the initial configuration of the bridge structure, main program EPASS and post-
processing programs for representing the numerical results diagrammatically.

In one of the pre-processing programs, the stress-resultants in the structural members of an analytical
model subjected to dead load and prestressing load are calculated by the elastic linear analysis in advance of
the elasto-plastic and finite displacement analysis. The calculated stress-resultants are inputted into the
EPASS as the initial ones, so that the expected initial configuration of the analytical model can easily be
generated. The most unfavorable initial deflection of the analytical model can be evaluated according to the
fundamental buckling mode calculated by a pre-processing buckling analysis.

Output
data
EPASS

Initial
condition Post file
file
Pre -processing Post -processing
program program

/N

ﬁg& Graphi
raphi
~ > phics

Fig.6 System surrounding EPASS

4. Effective Strategies for Analysis of Spatial Steel Bridges

There are some effective strategies which are used in the EPASS for the accurate and efficient
evaluation of the ultimate load carrying capacity as well as reduction of computation time. For these
strategies, arc-length method, technique by using the current stiffness parameter and under-relaxation
method are introduced mainly as follows.

4.1 Arc-Length Method

To evaluate an unknown ultimate load by the load incremental method accurately, it is difficult to select
an appropriate load increment according to the degree of nonlinearity and to decide suitable smaller load
increment near the unknown ultimate state which may be predicted after several trials. Moreover, it is also
very difficult to predict the unknown ultimate load and to select the suitable load increment without
adequate knowledge and experience. No chance to carry out several trail calculations on the basis of the
elasto-plastic and finite displacement theory for deciding the suitable load increment can be permitted in
designing actual bridges because of limited computation time and cost.

For these reasons, the arc-length method, shown in Fig. 7, has been introduced into the EPASS on the
basis of Refs. 6 and 7. Therefore, the ultimate load of any analytical models can easily be evaluated, because
the equilibrium path of the model after reaching their ultimate load points can be traced by using this arc-
length method. Each load increment is also decided automatically in this method.
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Tangential solution Tangential solution
from point A from point-A
~ N <
s AL N Final solution z Final solution
< B at B s B at B
E AX 1| . f\ \ 8 . {\ \
g Circular patll» g Circular paf’j
=% AL """ Load-deflection =8 A Load-deflection
.%‘3 [ - path -%” - path
o] A ®
Q Q
[ -
0 0 -
0 Displacement &) 0 Displacement & ,

(a) With Newton-Raphson technique (b) With modified Newton-Raphson techique
Fig. 7 Arc-length method

4.2 Current Stifthess Parameter

In order to obtain the ultimate load effectively, a
current stiffness parameter (c.s.p.) proposed in Ref. 8 has
been adopted. The current stiffness parameter is positive in
stable region, negative in unstable region and equal to zero

at the stationary points as defined as follows. y=asin(rta/L) A =032 in?
The incremental load vector AP, and the a=350in £ =1.0X107psi
L =1.0X10%in I =10in*
corresponding incremental displacement vector AU, at the P =10x10Ib
loading level i are standardized by the Euclidean norm of ) (2) Analytical model .
the incremental load vector |AP1| . And the following scalar o a '
. SIS
S p: 18 defined as the reciprocal of the product of these 5 4 ® 5 108
i ‘Q-) H Q,
standardized vectors: g at {04 2
S, a7 (42) E i d
=T — 3 o 0.0
' AUAP N
This value of § P: is in proportion to the stiffness of the 220 40 60 30 100 °*

Displacement under load (in)

analytical model. The current stiffness parameter S »; b (b) Load parameter and c.s.p.-displacement

the loading level i is defined as: curves
: 1.2
S, =—+ (43)
S 08
Py o
in which SP: is the value of SPT at the loading level i =1, : 04k
! @
where the load-displacement relationships of the analytical ©
model under consideration are linear. 0.0 4\“}
Figure 8 shows how the current stiffness parameter
changes in accordance with the loading levels in the analysis 049 2 4 6
of a two-hinged arch under a concentrated load'®, as an Load Parameter o

example. It can be seen from Fig. 8(b) that the current (©) Load parameter-c.s.p. curve

stiffness parameter becomes equal to zero at the extremum Fig.8 Current stiffness parameter®
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points of the load-displacement curve. The ultimate load of the analytical model may be predicted by plotting
their current stiffness parameters as shown in Fig. 8(c) and by using the extrapolation in case where the
calculation is interrupted before the ultimate state.

4.3 Under-Relaxation Method
The under-relaxation method®!” is adopted in case that the solution will not easily diverge by using

constant load increments.
Let us now considered a load increment that the converged configuration of the load step i has been
evaluated and the next converged configuration of the load step i +1 is going to be calculated. When the

solution procedure until the iteration loop k finished, the incremental displacement vector AU, ,**" at

the iteration loop k +1 isexpressed as follows:
1) Using load incremental method

AU;+1(k+1) = AUM(k) + ﬂ e [Ki+1(k) }l [P(A'i + Mi+1 ) - Fi+1(k) ] “9)
where K., isthe tangent stiffness matrix, P(A, + AA,,, ) is the nodal force vector for the external loads,
F,

i+l

B**Y is the relaxation parameter (0 < 8 <1).

® s the nodal force vector for the internal forces, AA,,, is the incremental loading parameter, and

2) Using Arc-length method
AU, = e (AU, @ +5®D 1+ 5245, ) 45)
(U, + 8¢ + 52495, J (AU, ® + 6% + 62%9s, )= (ALY 46)
where A/ is the incremental arc-length and
3¢ _[k. O ' [PO, + Ab.) - F.,®] "
6, = [k 1'q 48

in which g is the reference nodal force vector for the external loads.

The value of the incremental loading parameter S is varied on each iteration.

Although the number of iteration loop at the load step increases by using the under-relaxation method,
the larger load increment can be used. Then, it may be advantageous to use this method in the case of
elasto-plastic analysis using the arc-length method.

4.4 Other Effective Strategies
Other effective strategies which are employed in the EPASS are given as follows:

(1) Partial AULD (Approximate Updated Lagrangian Description)

The finite displacement behavior is formulated according to two types of ULD (Updated Lagrangian
Description) methods. One is AULD' and the other is Partial AULD. In the AULD, a reference configuration
to make the stiffness matrix is defined approximately by a rigid body motion of the undeformed body of the
finite element. The Partial AULD is the AULD improved by the concept used in the PULD (Partial ULD)"
in which the coordinates of each element are updated only at the beginning of each load step.

It is advantageous to use the AULD in problems where the geometrically nonlinear behavior
predominates and to use the Partial AULD in the case where the elasto-plastic behavior predominates by
using the arc-length method.
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(2) Efficiency of Making Input Data on Residual Stress

In the presented program, the practical residual stress distribution which have been proposed by the
first author through their experimental study'® can be automatically introduced only by designating the
material type of steel in order to raise the efficiency of making input data.

(3) Restarting Function of Calculation

The EPASS provides a function of restarting calculation. Even if a calculation is interrupted
accidentally and an unexpected result before reaching the ultimate load of the analytical model under
consideration is calculated, the calculation can be resumed from the interrupted state by detecting the bugs
and removing them,

5. Verification of the Program

In this chapter, several results of numerical examples analyzed by the EPASS are shown to investigate
the validity of EPASS program.

5.1 Elasto-plastic Analysis of Folded Beam

Subjected to Bending and Torsion p

Two cantilever beams connected at s A 6
their free edges under a concentrated load 7 e 5l
are analyzed as a numerical example of S 705\
bending and torsion to examine the validity 119 < ar
of the elasto-plastic behavior of the box 0.5 ps E_‘ aL
members as shown in Fig. 9(a). The Yz | = 3
analytical results of the rejlationships Cross section 3' (unit:cm) =T
between the load P and deflection w at a E = 2.1x10° kgflom? 4 —o- EPASS result
loading point as plotted in Fig. 9(b) agree o, = 4,082 kgflom? * Resultby Ref.1)
with the results by Ref. 1. The variations of M, =1953x10°kgfom B 1 2 3
bending and torsional moments at three M,, = 2.240x10° kgf cm Deflection under load w/L x10?
nodal points, where the cross section will (a) Model (b) Numerical results
yield, are shown in Fig. 10. It can be seen Fig.9 Analysis of two cantilever beams connected
from this figure that numerical results by at their free edges”
the EPASS vary along the interaction curve
of the fully plastic state. t2r

r g Ifully plz_astic

5.2 Elasto-plastic and Finite Displacement §~ Ime"ﬁl? cm,Jerez

Analysis of Column = 08 () +()=1

As a numerical example for elasto-plastic %’ 0.6-
and finite displacement analysis, a box column E
with the initial deflection and residual stress is é’ 0411 — Point®
analyzed as shown in Fig. 11(a). The obtained .&Cg 0.2 i gg::’t‘%

results are compared with the Euler's buckling

load and the solutions given by Shulz'® in Fig. 02 04 06 08 1 12
11(b). The ultimate loads obtained by the EPASS Torsional moment MM,
agree well with the numerical results by Shulz. Fig. 10 Interaction between bending moment

and torsional moment?
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Residual P
stress 1.2
¥ 1| Elastic buckling
8 \5}_ v g 08 o ~SSchylz
n E 0.6 T
< 6
Cross section x B
(unit:cm) y S 04k 4 = Elastic analysis )
E = 2.1x10° kgf/cm? . - !(EclraStOB'))lasm analyss
Py=060,A 02r [ = E|a'§to—plastic analysis
0\ = 3,000 kgf/cm? 0 I( O,.= 0.'4 o) .
% = 8,sinTX 0 05 1 15 2
6, =h/1,000 Deflection at center v/h x102

(a) Model

(b) Numerical resuits.

Fig. 11 Analysis of elasto-plastic column with residual stress?

6. Practical Example of Cable Stayed Bridge

An actual example of a cable-stayed bridge is analyzed to verify the efficiency of the strategies

mentioned above.

6.1 Analytical Model

An analytical model of a cable-stayed
bridge!” with the multi-cable type is shown in
Fig. 12. In this model, only the pylons are
idealized as the assemblies of elasto-plastic box
beam-column elements, which can simulate
the elasto-plastic and finite displacement
behavior of steel members subjected to the
combinations of bending, compression and
torsion because the purpose of the analysis is
to evaluate the ultimate load carrying capacity
of these pylons. Then, the main girder and

Pylon 2

cables are idealized with the elastic beam- Fig. 12 Analytical model of cable stayed bridge

column elements and the elastic rod elements,
respectively.

The residual stress distribution depicted in Fig. 13 is
automatically introduced into the cross section of the

pylons.
The load condition applied to the analytical model is
defined as follows:

1.0(D, + P, + D,)+0.7(D, + D,)+aL  (49)

where
D, :pre-dead load (weight of main girder, deck
plates and pylons)
D, :post-dead load (weight of pavement etc.)

Tension

Fig. 13 Residual stress distribution
Introduced into cross
section of pylons
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P; :prestressing forces of cables

L :live load specified by JSHB'®

o :load parameter to control loading levels

The elasto-plastic and finite displacement analysis is executed according to the following manners.

Firstly, the expected initial configuration of the analytical model subjected to the load 1.0(D, + P; + D, ) is
generated by the method mentioned in the following Section 6.2. Secondly, the load 0.7(D1 + D2) is applied
to this model. Finally, the live load aL is gradually increased up to the ultimate state of the analytical
model. 1.7(=1.0 +0.7) is the safety factor expected in Japan Specifications for Highway Bridges'®.

6.2 Pre-processing Analysis
Pre-processing elastic linear analyses are carried out for evaluating the expected initial configuration of
the analysis model subjected to the dead load (Dl + Dz) and the prestressing forces P; as shown in Fig.
14. In this case, the stress-resultants of each element are evaluated in the following three analytical models:
1) in the erection model subjected to the pre-dead load D,,
2) in the erection model without cables subjected to the external forces equivalent to the prestressing forces
P, and
3) in the completion model subjected to the post-dead load D,

(a) Erection model subjected to pre-dead load

G, W —

(b) Erection model without cables subjected to prestressing forces

(¢©) Completion model subjected to post-dead load
Fig. 14 Three models for pre-processing analysis

(o Pl T

Then, the obtained stress-resultants are introduced as the initial ones into the completion model
together with the dead load (D, + D, ) as the initial load and with the prestressing forces P, as the initial
stress-resultants in the cable elements. The expected initial configuration of the completion model can be
generated in this method because these initial stress-resultants including the prestressing forces P in the
cable elements are balanced with the initial load (D, + D, ).

6.3 Analytical Results ,

The numerical results of the analytical model subjected to the live load only on the center span are
shown in Figs. 15~18,

Figure 15 shows the relationships between the load parameter and deflection of the top of the Pylon 2.
Although the ultimate load may be evaluated from the gradient of the load parameter-deflection curve in the
case of the load incremental method, it can be seen that the ultimate load can be obtained accurately by the
arc-length method with the under-relaxation method. However, the converged solutions were not obtained
near the ultimate load point in the analysis only using the arc-length method.

Figure 16 depicts the relationship between the load parameter and the current stiffness parameter in
the load incremental method. In this figure, the ultimate load can be predicted through the extrapolation of
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Load parameter a
£

x Load incremental method
o Arc-length method

1 N 1 1 1 N 1

1 2 3 4 5
Displacement ¢ (m)

Fig. 15 Load-displacement curves of top of Pylon 29

the load parameter-c.s.p. curve. As compared
Fig. 15 with Fig. 16, it can be seen that this
prediction technique of the ultimate load is
very effective. And it is possible by using a load
parameter-c.s.p. diagram to know how close the
final load level to the unknown ultimate load
and to ascertain the accuracy of ultimate load
obtained by the ordinary load incremental
method.

Figure 17 illustrates the deformation of
the analytical model at the ultimate state. In
this ultimate state, the out-of-plane
deformation of the Pylon 2 is predominant.

The deformation and plastic zone of the
Pylon 2 at the ultimate state are shown in Fig.
18. This figure is very useful to understand the
failure mode of the Pylon 2.

7. Conclusion

In this paper, a computer program,
EPASS, to analyze the elasto-plastic and finite
displacement behaviors of spatial framed steel
bridge structures composed of the thin-walled
box members and cable members, have been
presented.

III°7° el s B R

(a) Viewpoint A
Fig. 18 Deformation and plastic zone of Pylon 2

i

0 2 1 " 1

Load parameter a

=

Viewpoint A

——.
e

-.__.
o T Ty

N, r ~

at ultimate state®

o 2 S ba.

8

Fig. 16 Prediction of ultimate load by c.s.p.?

(b) Viewpoint B

The originality of this paper is to formulate the elasto-plastic and finite displacement behavior of beam-
column members with box cross section on the basis of a finite element method by taking strain hardening of

steel material into consideration.

The validity of the elasto-plastic and finite displacement theory of the thin-walled box members
subjected to the combinations of bending, compression and torsion is verified by comparing the numerical

results with the theoretical ones and the other numerical ones.

Furthermore, the efficiency of strategies, which are used in the EPASS for the accurate evaluation of
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the ultimate load, such as the arc-length method, technique by using current stiffness parameter and under-
relaxation method, has been verified.

Acknowledgments

The authors would like to express our appreciation to Mr. M. Nibu of Japan Information Processing
Service Co., Ltd. and Mr. M. Kano of Bridge & Computer Engineering Co., Ltd. for their cooperation in
developing this computer system.

References

1) Komatsu, S. and Sakimoto, T.: Nonlinear Analysis of Spatial Frames Consisting of Members with Closed
Cross-Section, Proceedings of Japan Society of Civil Engineers, No. 252, pp. 143-157, August 1976.

2) Maeda, Y. and Hayashi, M.: In-Plane and Out-of-Plane Instability of a 297m Span Steel Arch Bridge,
Transportation Research Record 664, Bridge Engineering, Vol. 1, pp. 246-254, September 1978.

3) Nakai, H., Kitada, T,, Ohminami, R. and Nishimura, T: Elasto-Plastic and Finite Displacement Analysis of
Cable-Stayed Bridges, Memories of Faculty of Engineering, Osaka City University, Vol. 26, pp. 251-271,
December 1985.

4) Tanaka, K., Kitada, T., Nibu, M. and Kano, M.: On a Computer Program, EPASS, to Analyse Ultimate Load
Carrying Capacity of Spatial Steel Bridge Structures, Proceedings of Annual Technical Session, Structural
Stability Research Council, Milwaukee, Wisconsin, U.S.A., pp. 357-367, April 1993.

5) Kano, M., Kitada, T, Nibu, M. and Tanaka, K.: Effective Strategies for Elasto-Plastic and Finite Displacement
Analysis of Spatial Steel Bridges, Proceedings of Annual Technical Session, Structural Stability Research
Council, Milwaukee, Wisconsin, U.S.A., pp. 333-343, April 1993.

6) Crisfield, M. A.: AFast Incremental/Iterative Solution Procedure that Handles “Snap-through”, Computers &
Structures, Vol. 13, No. 1-3, pp. 55-62, 1981.

7) Bellini, P. X. and Chulya, A.: An Improved Automatic Incremental Algorithm for the Efficient Solution of
Nonlinear Finite Element Equations, Computers & Structures, Vol. 26, No. 1/2, pp. 99-110, 1987.

8) Bergan, P. G, Holand, 1. and Soreide, T. H.: Use of the Current Stiffness Parameter in Solution of Nonlinear
Problems, in Energy Methods in Finite Element Analysis (ed. by Glowinski, R., Rodin, E. Y. and Zienkiewicz,
0. C)), John Wiley & Sons, pp. 265-282, 1979.

9) Stricklin, J. A., Haisler, W. E., MacDougall, H. R. and Stebbins, F. J.: Nonlinear Analysis of Shells of
Revolution by the Matrix Displacement Method, Journal of American Institute of Aeronautics and
Astronautics, Vol. 6, No. 12, pp. 2306-2312, 1968.

10) Kawai, T. and Yoshimura, N.: Analysis of Large Deflection of Plates by the Finite Element Method,
International Journal for Numerical Methods in Engineering, Vol. 1, No. 1, pp. 123-133, 1969.

11) Jetteur, P, Cescotto, S. and deGoyet, V.: Improved Nonlinear Finite Element for Oriented Bodies Using an
Extension of Marguerre's Theory, Computers & Structures, Vol 17, No. 1, pp. 129-137, 1983.

12) Goto, S.: Tangent Stiffness Equation of Flexible Cable and Some Considerations, Proceedings of Japan Society
of Civil Engineers, No. 270, pp. 41-49, February 1978 (in Japanese).

13) Haisler, W. E. and Stricklin, J. A.: Displacement Incrementation in Non-Linear Structural Analysis by the
Self-Correcting Method, International Journal for Numerical Methods in Engineering, Vol. 11, pp. 3-10, 1977.

14) Wong, M. B. and Tin-Loi, F.: Geometrically Nonlinear Analysis of Elastic Framed Structures, Computers &
Structures, Vol. 34, No. 4, pp. 633-640, 1990.

15) Komatsu, S., Ushio, M. and Kitada, T.: An Experimental Study on Residual Stresses and Initial Deformations
of Stiffened Plates, Proceedings of Japan Society of Civil Engineers, No. 265, pp. 25-35, September 1977 (in
Japanese).

16) Schulz, G.: Die Traglastberechnung von PlanmiBig Mittig Belasteten Druckstiben aus Baustahl unter
Berticksichtigung von Geometrischen und Strukturellen Imperfektionen, Dissertation, T.H. Graz, Juni 1968

17) Kitada, T.,, Nakai, H., Kamei, M. and Wakabayashi, Y.: Ultimate Load Capacity of a Cable-Stayed Steel
Bridge with Multiple Cables, Proceedings of International Symposium for Innovation in Cable-Stayed Bridge,
Fukuoka, Japan, pp. 41-52, April 1991.

18) Japan Road Association: Specifications for Highway Bridges, Part I, Common Specifications and Part]II,
Steel Bridges, Maruzen, December 1996 (in Japanese).



